1
|
Samardak K, Bâcle J, Moriel-Carretero M. Behind the stoNE wall: A fervent activity for nuclear lipids. Biochimie 2024; 227:53-84. [PMID: 39111564 DOI: 10.1016/j.biochi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/27/2024]
Abstract
The four main types of biomolecules are nucleic acids, proteins, carbohydrates and lipids. The knowledge about their respective interactions is as important as the individual understanding of each of them. However, while, for example, the interaction of proteins with the other three groups is extensively studied, that of nucleic acids and lipids is, in comparison, very poorly explored. An iconic paradigm of physical (and likely functional) proximity between DNA and lipids is the case of the genomic DNA in eukaryotes: enclosed within the nucleus by two concentric lipid bilayers, the wealth of implications of this interaction, for example in genome stability, remains underassessed. Nuclear lipid-related phenotypes have been observed for 50 years, yet in most cases kept as mere anecdotical descriptions. In this review, we will bring together the evidence connecting lipids with both the nuclear envelope and the nucleoplasm, and will make critical analyses of these descriptions. Our exploration establishes a scenario in which lipids irrefutably play a role in nuclear homeostasis.
Collapse
Affiliation(s)
- Kseniya Samardak
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - Janélie Bâcle
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
2
|
Atakpa-Adaji P, Ivanova A. IP 3R at ER-Mitochondrial Contact Sites: Beyond the IP 3R-GRP75-VDAC1 Ca 2+ Funnel. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231181020. [PMID: 37426575 PMCID: PMC10328019 DOI: 10.1177/25152564231181020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Membrane contact sites (MCS) circumvent the topological constraints of functional coupling between different membrane-bound organelles by providing a means of communication and exchange of materials. One of the most characterised contact sites in the cell is that between the endoplasmic reticulum and the mitochondrial (ERMCS) whose function is to couple cellular Ca2+ homeostasis and mitochondrial function. Inositol 1,4,5-trisphosphate receptors (IP3Rs) on the ER, glucose-regulated protein 75 (GRP 75) and voltage-dependent anion channel 1 (VDAC1) on the outer mitochondrial membrane are the canonical component of the Ca2+ transfer unit at ERMCS. These are often reported to form a Ca2+ funnel that fuels the mitochondrial low-affinity Ca2+ uptake system. We assess the available evidence on the IP3R subtype selectivity at the ERMCS and consider if IP3Rs have other roles at the ERMCS beyond providing Ca2+. Growing evidence suggests that all three IP3R subtypes can localise and regulate Ca2+ signalling at ERMCS. Furthermore, IP3Rs may be structurally important for assembly of the ERMCS in addition to their role in providing Ca2+ at these sites. Evidence that various binding partners regulate the assembly and Ca2+ transfer at ERMCS populated by IP3R-GRP75-VDAC1, suggesting that cells have evolved mechanisms that stabilise these junctions forming a Ca2+ microdomain that is required to fuel mitochondrial Ca2+ uptake.
Collapse
Affiliation(s)
- Peace Atakpa-Adaji
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Adelina Ivanova
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
3
|
Veklich TO, Nikonishyna YV, Kosterin SO. Pathways and mechanisms of transmembrane calcium ions exchange in the cell nucleus. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
4
|
Martins TV, Evans MJ, Wysham DB, Morris RJ. Nuclear pores enable sustained perinuclear calcium oscillations. BMC SYSTEMS BIOLOGY 2016; 10:55. [PMID: 27449670 PMCID: PMC4957432 DOI: 10.1186/s12918-016-0289-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/14/2016] [Indexed: 11/16/2022]
Abstract
Background Calcium signalling relies on the flux of calcium ions across membranes yet how signals in different compartments are related remains unclear. In particular, similar calcium signals on both sides of the nuclear envelope have been reported and attributed to passive diffusion through nuclear pores. However, observed differing cytosolic and nucleosolic calcium signatures suggest that the signalling machinery in these compartments can act independently. Results We adapt the fire-diffuse-fire model to investigate the generation of perinuclear calcium oscillations. We demonstrate that autonomous spatio-temporal calcium patterns are still possible in the presence of nuclear and cytosolic coupling via nuclear pores. The presence or absence of this autonomy is dependent upon the strength of the coupling and the maximum firing rate of an individual calcium channel. In all cases, coupling through the nuclear pores enables robust signalling with respect to changes in the diffusion constant. Conclusions We show that contradictory interpretations of experimental data with respect to the autonomy of nuclear calcium oscillations can be reconciled within one model, with different observations being a consequence of varying nuclear pore permeabilities for calcium and refractory conditions of channels. Furthermore, our results provide an explanation for why calcium oscillations on both sides of the nuclear envelope may be beneficial for sustained perinuclear signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0289-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teresa Vaz Martins
- Computational & Systems Biology and Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK.
| | - Matthew J Evans
- Computational & Systems Biology and Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Derin B Wysham
- Mathematics Department, Wenatchee Valley College, Wenatchee, USA
| | - Richard J Morris
- Computational & Systems Biology and Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
5
|
Oliveira AG, Guimarães ES, Andrade LM, Menezes GB, Fatima Leite M. Decoding calcium signaling across the nucleus. Physiology (Bethesda) 2015; 29:361-8. [PMID: 25180265 DOI: 10.1152/physiol.00056.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Calcium (Ca(2+)) is an important multifaceted second messenger that regulates a wide range of cellular events. A Ca(2+)-signaling toolkit has been shown to exist in the nucleus and to be capable of generating and modulating nucleoplasmic Ca(2+) transients. Within the nucleus, Ca(2+) controls cellular events that are different from those modulated by cytosolic Ca(2+). This review focuses on nuclear Ca(2+) signals and their role in regulating physiological and pathological processes.
Collapse
Affiliation(s)
- André G Oliveira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Erika S Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil; Molecular Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil; and
| | - Lídia M Andrade
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo B Menezes
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - M Fatima Leite
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil;
| |
Collapse
|
6
|
Vivot RM, Goitia B, Usach V, Setton-Avruj PC. DMT1 as a candidate for non-transferrin-bound iron uptake in the peripheral nervous system. Biofactors 2013; 39:476-84. [PMID: 23361852 DOI: 10.1002/biof.1088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/21/2012] [Indexed: 12/22/2022]
Abstract
Iron, either in its chelated form or as holotransferrin (hTf), prevents the dedifferentiation of Schwann cells (SC), cells responsible for the myelination of the peripheral nervous system (PNS). This dedifferentiation is promoted by serum deprivation through cAMP release, PKA activation, and CREB phosphorylation. Since iron elicits its effect in a transferrin (Tf)-free environment, in this work we postulate that non-transferrin-bound iron (NTBI) uptake must be involved. Divalent metal transporter 1(DMT1) has been widely described in literature as a key player in iron metabolism, but never before in the PNS context. The presence of DMT1 was demonstrated in nerve homogenate, isolated adult-rat myelin, and cultured SC by Western Blot (WB) analysis and confirmed through its colocalization with S-100β (SC marker) by immunocytochemical and immunohistochemical analyses. Furthermore, the existence of its mRNA was verified in sciatic nerve homogenate by RT-PCR and throughout SC maturational stages. Finally, we describe DMT1's subcellular location in the plasma membrane by confocal microscopy of SC and WB of different subcellular fractions. These data allow us to suggest the participation of DMT1 as part of a Tf independent iron uptake mechanism in SC and lead us to postulate a crucial role for iron in SC maturation and, as a consequence, in PNS myelination.
Collapse
Affiliation(s)
- Rocio Martínez Vivot
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), UBA-CONICET, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956- Buenos Aires C1113AAD, Argentina
| | | | | | | |
Collapse
|
7
|
Resende RR, Andrade LM, Oliveira AG, Guimarães ES, Guatimosim S, Leite MF. Nucleoplasmic calcium signaling and cell proliferation: calcium signaling in the nucleus. Cell Commun Signal 2013; 11:14. [PMID: 23433362 PMCID: PMC3599436 DOI: 10.1186/1478-811x-11-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 02/12/2013] [Indexed: 01/19/2023] Open
Abstract
Calcium (Ca2+) is an essential signal transduction element involved in the regulation of several cellular activities and it is required at various key stages of the cell cycle. Intracellular Ca2+ is crucial for the orderly cell cycle progression and plays a vital role in the regulation of cell proliferation. Recently, it was demonstrated by in vitro and in vivo studies that nucleoplasmic Ca2+ regulates cell growth. Even though the mechanism by which nuclear Ca2+ regulates cell proliferation is not completely understood, there are reports demonstrating that activation of tyrosine kinase receptors (RTKs) leads to translocation of RTKs to the nucleus to generate localized nuclear Ca2+ signaling which are believed to modulate cell proliferation. Moreover, nuclear Ca2+ regulates the expression of genes involved in cell growth. This review will describe the nuclear Ca2+ signaling machinery and its role in cell proliferation. Additionally, the potential role of nuclear Ca2+ as a target in cancer therapy will be discussed.
Collapse
Affiliation(s)
- Rodrigo R Resende
- Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | |
Collapse
|
8
|
Zampese E, Pizzo P. Intracellular organelles in the saga of Ca2+ homeostasis: different molecules for different purposes? Cell Mol Life Sci 2012; 69:1077-104. [PMID: 21968921 PMCID: PMC11114864 DOI: 10.1007/s00018-011-0845-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/28/2022]
Abstract
An increase in the concentration of cytosolic free Ca(2+) is a key component regulating different cellular processes ranging from egg fertilization, active secretion and movement, to cell differentiation and death. The multitude of phenomena modulated by Ca(2+), however, do not simply rely on increases/decreases in its concentration, but also on specific timing, shape and sub-cellular localization of its signals that, combined together, provide a huge versatility in Ca(2+) signaling. Intracellular organelles and their Ca(2+) handling machineries exert key roles in this complex and precise mechanism, and this review will try to depict a map of Ca(2+) routes inside cells, highlighting the uniqueness of the different Ca(2+) toolkit components and the complexity of the interactions between them.
Collapse
Affiliation(s)
- Enrico Zampese
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
9
|
Fiume R, Keune WJ, Faenza I, Bultsma Y, Ramazzotti G, Jones DR, Martelli AM, Somner L, Follo MY, Divecha N, Cocco L. Nuclear phosphoinositides: location, regulation and function. Subcell Biochem 2012; 59:335-361. [PMID: 22374096 DOI: 10.1007/978-94-007-3015-1_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lipid signalling in human disease is an important field of investigation and stems from the fact that phosphoinositide signalling has been implicated in the control of nearly all the important cellular pathways including metabolism, cell cycle control, membrane trafficking, apoptosis and neuronal conduction. A distinct nuclear inositide signalling metabolism has been identified, thus defining a new role for inositides in the nucleus, which are now considered essential co-factors for several nuclear processes, including DNA repair, transcription regulation, and RNA dynamics. Deregulation of phoshoinositide metabolism within the nuclear compartment may contribute to disease progression in several disorders, such as chronic inflammation, cancer, metabolic, and degenerative syndromes. In order to utilize these very druggable pathways for human benefit there is a need to identify how nuclear inositides are regulated specifically within this compartment and what downstream nuclear effectors process and integrate inositide signalling cascades in order to specifically control nuclear function. Here we describe some of the facets of nuclear inositide metabolism with a focus on their relationship to cell cycle control and differentiation.
Collapse
Affiliation(s)
- Roberta Fiume
- Cellular Signalling Laboratory, Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mauger JP. Role of the nuclear envelope in calcium signalling. Biol Cell 2011; 104:70-83. [PMID: 22188206 DOI: 10.1111/boc.201100103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/18/2011] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the major Ca(2+) store inside the cell. Its organisation in specialised subdomains allows the local delivery of Ca(2+) to specific cell areas on stimulation. The nuclear envelope (NE), which is continuous with the ER, has a double role: it insulates the nucleoplasm from the cytoplasm and it stores Ca(2+) around the nucleus. Furthermore, all the constituents of the signalling cascade leading to Ca(2+) mobilisation are found in the NE; this allows the nuclear Ca(2+) to be regulated autonomously. On the other hand, cytosolic Ca(2+) transients can propagate within the nucleus via the nuclear pore complex. The variations in nuclear Ca(2+) concentration are important for controlling gene transcription and progression in the cell cycle. Recent data suggest that invaginations of the NE modify the morphology of the nucleus and may affect Ca(2+) dynamics in the nucleus and regulate transcriptional activity.
Collapse
|
11
|
Martelli AM, Ognibene A, Buontempo F, Fini M, Bressanin D, Goto K, McCubrey JA, Cocco L, Evangelisti C. Nuclear phosphoinositides and their roles in cell biology and disease. Crit Rev Biochem Mol Biol 2011; 46:436-57. [DOI: 10.3109/10409238.2011.609530] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Keune WJ, Bultsma Y, Sommer L, Jones D, Divecha N. Phosphoinositide signalling in the nucleus. ACTA ACUST UNITED AC 2010; 51:91-9. [PMID: 21035491 DOI: 10.1016/j.advenzreg.2010.09.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/14/2010] [Indexed: 12/11/2022]
|
13
|
He H, Kong SK, Chan KT. Identification of source of calcium in HeLa cells by femtosecond laser excitation. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:057010. [PMID: 21054126 DOI: 10.1117/1.3485741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Calcium is an important messenger in cells and whose store and diffusion dynamics at the subcellular level remain unclear. By inducing a controlled slow subcellular Ca2+ release through femtosecond laser irradiation in HeLa cells immersed in different media, cytoplasm is identified to be the major intracellular Ca2+ store, with the nucleus being the minor store and the extracellular Ca2+ also contributing to the total cellular Ca2+ level. Furthermore, Ca2+ released in either the cytoplasm or nucleus diffuses into the nucleus or cytoplasm, respectively, at different rates and influences the Ca2+ release in those regions.
Collapse
Affiliation(s)
- Hao He
- Chinese University of Hong Kong, Department of Electronic Engineering, Hong Kong
| | | | | |
Collapse
|
14
|
Cárdenas C, Escobar M, García A, Osorio-Reich M, Härtel S, Foskett JK, Franzini-Armstrong C. Visualization of inositol 1,4,5-trisphosphate receptors on the nuclear envelope outer membrane by freeze-drying and rotary shadowing for electron microscopy. J Struct Biol 2010; 171:372-81. [PMID: 20457258 DOI: 10.1016/j.jsb.2010.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 05/04/2010] [Indexed: 01/27/2023]
Abstract
The receptors for the second messenger InsP(3) comprise a family of closely related ion channels that release Ca(2+) from intracellular stores, most prominently the endoplasmic reticulum and its extension into the nuclear envelope. The precise sub-cellular localization of InsP(3)Rs and the spatial relationships among them are important for the initiation, spatial and temporal properties and propagation of local and global Ca(2+) signals, but the spatial organization of InsP(3)Rs in Ca(2+) stores is poorly characterized. Using nuclei isolated from insect Sf9 cells and freeze-dry rotary shadowing, we have addressed this by directly visualizing the cytoplasmic domain of InsP(3)R located on the cytoplasmic side of the nuclear envelope. Identification of approximately 15 nm structures as the cytoplasmic domain of InsP(3)R was indirectly supported by a marked increase in their frequency after transient transfections with cDNAs for rat types 1 and 3 InsP(3)R, and directly confirmed by gold labeling either with heparin or a specific anti-InsP(3)R antibody. Over-expression of InsP(3)R did not result in the formation of arrays or clusters with channels touching each other. Gold-labeling suggests that the channel amino terminus resides near the center of the cytoplasmic tetrameric quaternary structure. The combination of nuclear isolation with freeze-drying and rotary shadow techniques allows direct visualization of InsP(3)Rs in native nuclear envelopes and can be used to determine their spatial distribution and density.
Collapse
Affiliation(s)
- Cesar Cárdenas
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Gerasimenko O, Gerasimenko J. Two-photon permeabilization and calcium measurements in cellular organelles. Methods Mol Biol 2010; 591:201-10. [PMID: 19957132 DOI: 10.1007/978-1-60761-404-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inositol trisphosphate and cyclic ADP-ribose, main intracellular Ca(2+) messengers, induce release from the intracellular Ca(2+) stores via inositol trisphosphate and ryanodine receptors, respectively. Recently, studies using novel messenger nicotinic acid adenine dinucleotide phosphate (NAADP) releasing Ca(2+) from calcium stores in organelles other than endoplasmic reticulum (ER) have been conducted. However, technical difficulties of Ca(2+) measurements in relatively small Ca(2+) stores prompted us to develop a new, more sensitive, and less damaging two-photon permeabilization technique. Applied to pancreatic acinar cells, this technique allowed us to show that all three messengers - IP(3), cADPR, and NAADP - release Ca(2+) from two intracellular stores: the endoplasmic reticulum and an acidic store in the granular region. This chapter describes a detailed procedure of using this technique with pancreatic acinar cells.
Collapse
Affiliation(s)
- Oleg Gerasimenko
- Department of Physiology, Biomedical School, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
16
|
Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation. Prostate Cancer Prostatic Dis 2009; 13:195-201. [PMID: 20029400 PMCID: PMC2871075 DOI: 10.1038/pcan.2009.55] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have identified a novel function for a member of the transient receptor potential (TRP) protein super-family, TRPM2, in prostate cancer cell proliferation. TRPM2 encodes a non-selective cation-permeable ion channel. We found that selectively knocking down TRPM2 with the small interfering RNA technique inhibited the growth of prostate cancer cells but not of non-cancerous cells. The subcellular localization of this protein is also remarkably different between cancerous and non-cancerous cells. In BPH-1 (benign), TRPM2 protein is homogenously located near the plasma membrane and in the cytoplasm, whereas in the cancerous cells (PC-3 and DU-145), a significant amount of the TRPM2 protein is located in the nuclei in a clustered pattern. Furthermore, we have found that TRPM2 inhibited nuclear ADP-ribosylation in prostate cancer cells. However, TRPM2 knockdown-induced inhibition of proliferation is independent of the activity of poly(ADP-ribose) polymerases. We conclude that TRPM2 is essential for prostate cancer cell proliferation and may be a potential target for the selective treatment of prostate cancer.
Collapse
|
17
|
van den Bout I, Divecha N. PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J Cell Sci 2009; 122:3837-50. [DOI: 10.1242/jcs.056127] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It has long been known that phosphoinositides are present in cellular membranes, but only in the past four decades has our understanding of their importance for proper cell function advanced significantly. Key to determining the biological roles of phosphoinositides is understanding the enzymes involved in their metabolism. Although many such enzymes have now been identified, there is still much to learn about their cellular functions. Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) are a group of kinases that catalyse the production of phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2]. As well as being a substrate for the enzymes phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI3K), PtdIns(4,5)P2 acts as a second messenger in its own right, influencing a variety of cellular processes. In this Commentary, we review how PIP5Ks are modulated to achieve regulated PtdIns(4,5)P2 production, and discuss the role of these proteins in different cellular processes.
Collapse
Affiliation(s)
- Iman van den Bout
- Inositide Laboratory, Paterson Institute for Cancer Research, Wilmslow Road, Manchester M20 4BX, UK
| | - Nullin Divecha
- Inositide Laboratory, Paterson Institute for Cancer Research, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
18
|
Barlow CA, Laishram RS, Anderson RA. Nuclear phosphoinositides: a signaling enigma wrapped in a compartmental conundrum. Trends Cell Biol 2009; 20:25-35. [PMID: 19846310 DOI: 10.1016/j.tcb.2009.09.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/27/2009] [Accepted: 09/28/2009] [Indexed: 01/09/2023]
Abstract
While the presence of phosphoinositides in the nuclei of eukaryotes and the identity of the enzymes responsible for their metabolism have been known for some time, their functions in the nucleus are only now emerging. This is illustrated by the recent identification of effectors for nuclear phosphoinositides. Like the cytosolic phosphoinositide signaling pathway, nuclear phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) is at the center of the pathway and acts both as a messenger and as a precursor for many additional messengers. Here, recent advances in the understanding of nuclear phosphoinositide signaling and its functions are reviewed with an emphasis on PI4,5P(2) and its role in gene expression. The compartmentalization of nuclear phosphoinositide phosphates (PIP(n)) remains a mystery, but emerging evidence suggests that phosphoinositides occupy several functionally distinct compartments.
Collapse
Affiliation(s)
- Christy A Barlow
- University of Wisconsin-Madison, Department of Pharmacology, 1300 University Ave. University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | |
Collapse
|
19
|
Importance of CCL25 in the attraction of T cells and the role of IL-7 on the signaling pathways in intestinal epithelial cells. Immunobiology 2009; 214:403-9. [DOI: 10.1016/j.imbio.2008.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 11/23/2022]
|
20
|
The role of dietary niacin intake and the adenosine-5'-diphosphate-ribosyl cyclase enzyme CD38 in spatial learning ability: is cyclic adenosine diphosphate ribose the link between diet and behaviour? Nutr Res Rev 2009; 21:42-55. [PMID: 19079853 DOI: 10.1017/s0954422408945182] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The pyridine nucleotide NAD+ is derived from dietary niacin and serves as the substrate for the synthesis of cyclic ADP-ribose (cADPR), an intracellular Ca signalling molecule that plays an important role in synaptic plasticity in the hippocampus, a region of the brain involved in spatial learning. cADPR is formed in part via the activity of the ADP-ribosyl cyclase enzyme CD38, which is widespread throughout the brain. In the present review, current evidence of the relationship between dietary niacin and behaviour is presented following investigations of the effect of niacin deficiency, pharmacological nicotinamide supplementation and CD38 gene deletion on brain nucleotides and spatial learning ability in mice and rats. In young male rats, both niacin deficiency and nicotinamide supplementation significantly altered brain NAD+ and cADPR, both of which were inversely correlated with spatial learning ability. These results were consistent across three different models of niacin deficiency (pair feeding, partially restricted feeding and niacin recovery). Similar changes in spatial learning ability were observed in Cd38- / - mice, which also showed decreases in brain cADPR. These findings suggest an inverse relationship between spatial learning ability, dietary niacin intake and cADPR, although a direct link between cADPR and spatial learning ability is still missing. Dietary niacin may therefore play a role in the molecular events regulating learning performance, and further investigations of niacin intake, CD38 and cADPR may help identify potential molecular targets for clinical intervention to enhance learning and prevent or reverse cognitive decline.
Collapse
|
21
|
Rodrigues MA, Gomes DA, Nathanson MH, Leite MF. Nuclear calcium signaling: a cell within a cell. ACTA ACUST UNITED AC 2008; 42:17-20. [PMID: 18982194 DOI: 10.1590/s0100-879x2008005000050] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 09/29/2008] [Indexed: 11/21/2022]
Abstract
Calcium (Ca2+) is a versatile second messenger that regulates a wide range of cellular functions. Although it is not established how a single second messenger coordinates diverse effects within a cell, there is increasing evidence that the spatial patterns of Ca2+ signals may determine their specificity. Ca2+ signaling patterns can vary in different regions of the cell and Ca2+ signals in nuclear and cytoplasmic compartments have been reported to occur independently. No general paradigm has been established yet to explain whether, how, or when Ca2+ signals are initiated within the nucleus or their function. Here we highlight that receptor tyrosine kinases rapidly translocate to the nucleus. Ca2+ signals that are induced by growth factors result from phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate formation within the nucleus rather than within the cytoplasm. This novel signaling mechanism may be responsible for growth factor effects on cell proliferation.
Collapse
Affiliation(s)
- M A Rodrigues
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | |
Collapse
|
22
|
Bezin S, Charpentier G, Lee HC, Baux G, Fossier P, Cancela JM. Regulation of nuclear Ca2+ signaling by translocation of the Ca2+ messenger synthesizing enzyme ADP-ribosyl cyclase during neuronal depolarization. J Biol Chem 2008; 283:27859-27870. [PMID: 18632662 DOI: 10.1074/jbc.m804701200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In neurons, voltage-gated Ca(2+) channels and nuclear Ca(2+) signaling play important roles, such as in the regulation of gene expression. However, the link between electrical activity and biochemical cascade activation involved in the generation of the nuclear Ca(2+) signaling is poorly understood. Here we show that depolarization of Aplysia neurons induces the translocation of ADP-ribosyl cyclase, a Ca(2+) messenger synthesizing enzyme, from the cytosol into the nucleus. The translocation is dependent on Ca(2+) influx mainly through the voltage-dependent L-type Ca(2+) channels. We report also that specific nucleoplasmic Ca(2+) signals can be induced by three different calcium messengers, cyclic ADP-ribose, nicotinic acid adenine dinucleotide phosphate (NAADP), both produced by the ADP-ribosyl cyclase, and inositol 1,4,5-trisphosphate (IP(3)). Moreover, our pharmacological data show that NAADP acts on its own receptor, which cooperates with the IP(3) and the ryanodine receptors to generate nucleoplasmic Ca(2+) oscillations. We propose a new model where voltage-dependent L-type Ca(2+) channel-induced nuclear translocation of the cytosolic cyclase is a crucial step in the fine tuning of nuclear Ca(2+) signals in neurons.
Collapse
Affiliation(s)
- Stéphanie Bezin
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France
| | - Gilles Charpentier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France; Université Bordeaux 1 Laboratoire DMPFCS, IECB, 2, Rue Robert Escarpit, 33607 Pessac, France
| | - Hon Cheung Lee
- Department of Physiology, University of Hong Kong, 4/F Lab Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong
| | - Gérard Baux
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France
| | - Philippe Fossier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France
| | - José-Manuel Cancela
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France.
| |
Collapse
|
23
|
Saha S, Chowdhury P, Mazumdar A, Pal A, Das P, Chakrabarti MK. Role of Yersinia enterocolitica heat-stable enterotoxin (Y-STa) on differential regulation of nuclear and cytosolic calcium signaling in rat intestinal epithelial cells. Cell Biol Toxicol 2008; 25:297-308. [PMID: 18563600 DOI: 10.1007/s10565-008-9084-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 04/22/2008] [Indexed: 01/11/2023]
Abstract
The heat-stable enterotoxin (Y-STa) produced by the pathogenic strains of Yersinia enterocolitica is a causative agent of secretory diarrhea. We have reported earlier that Y-STa-induced inositol trisphosphate-mediated cytosolic calcium rise occurs in rat intestinal epithelial cells. In the present communication, the involvement of a nuclear calcium store in the action mechanism of Y-STa in rat intestinal epithelial cells has been shown. Calcium imaging with time series confocal microscopy shows that Y-STa stimulates both the nuclear and cytosolic calcium levels in rat intestinal epithelial cells where a rise in nuclear calcium precedes the cytosolic events. Moreover, Y-STa stimulates both cytosolic and nuclear inositol trisphosphate (IP(3)) levels in a time-dependent manner. Western blot and immunocytochemical analysis reveal a higher density of IP(3) receptor type II in the nuclear membrane compared to the cytosol, which may be the cause of an early rise of the nuclear calcium level. Therefore, it is suggested that Y-STa regulates the nuclear and cytosolic calcium signals in a distinct temporal manner in rat intestinal epithelial cells.
Collapse
Affiliation(s)
- Subhrajit Saha
- Division of Pathophysiology, National Institute of Cholera and Enteric Diseases, Calcutta, India
| | | | | | | | | | | |
Collapse
|
24
|
Petersen OH. Ca2+ signalling and Ca2+-activated ion channels in exocrine acinar cells. Cell Calcium 2008; 38:171-200. [PMID: 16107275 DOI: 10.1016/j.ceca.2005.06.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 01/11/2023]
Abstract
The development of the calcium signalling field, from its early beginnings some 40 years ago to the present, is described. Calcium signalling in exocrine gland acinar cells and the effects of neurotransmitter- or hormone-elicited rises in the cytosolic calcium ion concentration on ion channel gating are reviewed. The highly polarized arrangement of the organelle systems in living acinar cells is described as well as its importance for the physiologically relevant local and polarized calcium signalling events.
Collapse
Affiliation(s)
- Ole H Petersen
- MRC Group, The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| |
Collapse
|
25
|
Gerasimenko O, Tepikin A. How to measure Ca2+ in cellular organelles? Cell Calcium 2008; 38:201-11. [PMID: 16102822 DOI: 10.1016/j.ceca.2005.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 11/27/2022]
Abstract
The review will aim to briefly summarise information on calcium measurements in cellular organelles with emphases on studies conducted in live cells using optical probes. When appropriate we will try to compare the effectiveness of different indicators for intraorganellar calcium measurements. We will consider calcium measurements in endoplasmic reticulum, Golgi apparatus, endosomes/lysosomes, nucleoplasm, nuclear envelope, mitochondria and secretory granules.
Collapse
Affiliation(s)
- Oleg Gerasimenko
- The Physiological Laboratory, The University of Liverpool, Crown Street, P.O. Box 147, Liverpool L69 3BX, UK
| | | |
Collapse
|
26
|
GD3 nuclear localization after apoptosis induction in HUT-78 cells. Biochem Biophys Res Commun 2008; 368:495-500. [DOI: 10.1016/j.bbrc.2007.12.196] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 12/14/2007] [Indexed: 11/22/2022]
|
27
|
Luo D, Yang D, Lan X, Li K, Li X, Chen J, Zhang Y, Xiao RP, Han Q, Cheng H. Nuclear Ca2+ sparks and waves mediated by inositol 1,4,5-trisphosphate receptors in neonatal rat cardiomyocytes. Cell Calcium 2008; 43:165-74. [PMID: 17583790 PMCID: PMC2266086 DOI: 10.1016/j.ceca.2007.04.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/16/2007] [Accepted: 04/29/2007] [Indexed: 11/21/2022]
Abstract
Dynamic nuclear Ca(2+) signals play pivotal roles in diverse cellular functions including gene transcription, cell growth, differentiation, and apoptosis. Here we report a novel nuclear Ca(2+) regulatory mechanism mediated by inositol 1,4,5-trisphosphate receptors (IP(3)Rs) around the nucleus in developing cardiac myocytes. Activation of IP(3)Rs by alpha(1)-adrenergic receptor (alpha(1)AR) stimulation or by IP(3) application (in saponin-permeabilized cells) increases Ca(2+) spark frequency preferentially in the region around the nucleus in neonatal rat ventricular myocytes. A nuclear enrichment of IP(3)R distribution supports the higher responsiveness of Ca(2+) release in this particular region. Strikingly, we observed "nuclear Ca(2+)waves" that engulf the entire nucleus without spreading into the bulk cytosol. alpha(1)AR stimulation enhances the occurrence of nuclear Ca(2+) waves and confers them the ability to trigger cytosolic Ca(2+) waves via IP(3)R-dependent pathways. This finding accounts, at least partly, for a profound frequency-dependent modulation of global Ca(2+) oscillations during alpha(1)AR stimulation. Thus, IP(3)R-mediated Ca(2+) waves traveling in the nuclear region provide active, autonomous regulation of nuclear Ca(2+) signaling, which provides for not only the local signal transduction, but also a pacemaker to drive global Ca(2+) transient in the context of alpha(1)AR stimulation in developing cardiac myocytes.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Animals
- Animals, Newborn
- Calcium Signaling/physiology
- Cell Membrane Permeability
- Inositol 1,4,5-Trisphosphate Receptors/drug effects
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- Microscopy, Confocal
- Myocytes, Cardiac/physiology
- Nuclear Envelope/physiology
- Phenylephrine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/physiology
Collapse
Affiliation(s)
- Dali Luo
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Guatimosim S, Amaya MJ, Guerra MT, Aguiar CJ, Goes AM, Gómez-Viquez NL, Rodrigues MA, Gomes DA, Martins-Cruz J, Lederer WJ, Leite MF. Nuclear Ca2+ regulates cardiomyocyte function. Cell Calcium 2008; 44:230-42. [PMID: 18201761 DOI: 10.1016/j.ceca.2007.11.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 10/30/2007] [Accepted: 11/30/2007] [Indexed: 01/19/2023]
Abstract
In the heart, cytosolic Ca(2+) signals are well-characterized events that participate in the activation of cell contraction. In contrast, nuclear Ca(2+) contribution to cardiomyocyte function remains elusive. Here, we examined functional consequences of buffering nuclear Ca(2+) in neonatal cardiomyocytes. We report that cardiomyocytes contain a nucleoplasmic reticulum, which expresses both ryanodine receptor (RyR) and inositol 1,4,5-trisphosphate receptor (InsP(3)R), providing a possible way for active regulation of nuclear Ca(2+). Adenovirus constructs encoding the Ca(2+) buffer protein parvalbumin were targeted to the nucleus with a nuclear localization signal (Ad-PV-NLS) or to the cytoplasm with a nuclear exclusion signal (Ad-PV-NES). A decrease in the amplitude of global Ca(2+) transients and RyR-II expression, as well as an increase in cell beating rate were observed in Ad-PV-NES and Ad-PV-NLS cells. When nuclear Ca(2+) buffering was imposed nuclear enlargement, increased calcineurin expression, NFAT translocation to the nucleus and subcellular redistribution of atrial natriuretic peptide were observed. Furthermore, prolongation of action potential duration occurred in adult ventricular myocytes. These results suggest that nuclear Ca(2+) levels underlie the regulation of specific protein targets and thereby modulate cardiomyocyte function. The local nuclear Ca(2+) signaling and the structures that control it constitute a novel regulatory motif in the heart.
Collapse
Affiliation(s)
- Silvia Guatimosim
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte CEP: 31270-901, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gomes DA, Rodrigues MA, Leite MF, Gomez MV, Varnai P, Balla T, Bennett AM, Nathanson MH. c-Met must translocate to the nucleus to initiate calcium signals. J Biol Chem 2007; 283:4344-51. [PMID: 18073207 DOI: 10.1074/jbc.m706550200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hepatocyte growth factor (HGF) is important for cell proliferation, differentiation, and related activities. HGF acts through its receptor c-Met, which activates downstream signaling pathways. HGF binds to c-Met at the plasma membrane, where it is generally believed that c-Met signaling is initiated. Here we report that c-Met rapidly translocates to the nucleus upon stimulation with HGF. Ca(2+) signals that are induced by HGF result from phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate formation within the nucleus rather than within the cytoplasm. Translocation of c-Met to the nucleus depends upon the adaptor protein Gab1 and importin beta1, and formation of Ca(2+) signals in turn depends upon this translocation. HGF may exert its particular effects on cells because it bypasses signaling pathways in the cytoplasm to directly activate signaling pathways in the nucleus.
Collapse
Affiliation(s)
- Dawidson A Gomes
- Department of Internal Medicine and Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Meyer T, Allbritton NL, Oancea E. Regulation of nuclear calcium concentration. CIBA FOUNDATION SYMPOSIUM 2007; 188:252-62; discussion 262-6. [PMID: 7587621 DOI: 10.1002/9780470514696.ch14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transient increases in nuclear calcium concentration have been shown to activate gene expression and other nuclear processes. It has been suggested that nuclear calcium signals are controlled by a mechanism that is independent of calcium signalling in the cytosol. This would be possible if calcium diffusion is slow and a separate calcium release mechanism is localized to the nuclear region. Alternatively, the nuclear envelope could act as a diffusion barrier for calcium ions released either inside or outside the nucleus. It has also been proposed that inositol 1,4,5-trisphosphate (InsP3) can be generated inside the nucleus and that there are calcium release channels in the inner membrane of the nuclear envelope. Most of the experimental evidence supporting these hypotheses is based on the calibration of nuclear and cytosolic calcium concentrations. However, recent studies suggest that the local calibration of calcium indicators may not be accurate. We propose that nuclear calcium signals can be investigated by a different approach that does not rely on accurate calibration of indicators. We have developed calcium indicators that minimize facilitated calcium diffusion and are localized to either the nucleus or the cytosol. Using the diffusion coefficient of calcium ions, and measuring the delay between cytosolic and nuclear calcium increases, we show that the nuclear envelope is not a substantial barrier for calcium ions in PC12 (phaeochromocytoma) cells. This suggests that nuclear and cytosolic calcium signals equilibrate rapidly in these cells.
Collapse
Affiliation(s)
- T Meyer
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
31
|
Juretić N, Urzúa U, Munroe DJ, Jaimovich E, Riveros N. Differential gene expression in skeletal muscle cells after membrane depolarization. J Cell Physiol 2007; 210:819-30. [PMID: 17146758 DOI: 10.1002/jcp.20902] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle is a highly plastic tissue with a remarkable capacity to adapt itself to challenges imposed by contractile activity. Adaptive response, that include hypertrophy and activation of oxidative mechanisms have been associated with transient changes in transcriptional activity of specific genes. To define the set of genes regulated by a depolarizing stimulus, we used 22 K mouse oligonucleotide microarrays. Total RNA from C2C12 myotubes was obtained at 2, 4, 18, and 24 h after high K+ stimulation. cDNA from control and depolarized samples was labeled with cyanine 3 or 5 dyes prior to microarray hybridization. Loess normalization followed by statistical analysis resulted in 423 differentially expressed genes using an unadjusted P-value < or = 0.01 as cut off. Depolarization affects transcriptional activity of a limited number of genes, mainly associated with metabolism, cell communication and response to stress. A number of genes related to Ca2+ signaling pathways are induced at 4 h, reinforcing the potential role of Ca2+ in early steps of signal transduction that leads to gene expression. Significant changes in the expression of molecules involved in muscle cell structure were observed; K+-depolarization increased Tnni1 and Acta1 mRNA levels in both differentiated C2C12 and rat skeletal muscle cells in primary culture. Of these two, depolarization induced slow Ca2+ transients appear to have a role only in the regulation of Tnni1 transcriptional activity. We suggest that depolarization induced expression of a small set of genes may underlie Ca2+ dependent plasticity of skeletal muscle cells.
Collapse
Affiliation(s)
- Nevenka Juretić
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
32
|
Abstract
Cytosolic Ca(2+) is a versatile secondary messenger that regulates a wide range of cellular activities. In the past decade, evidence has accumulated that free Ca(2+) within the nucleus also plays an important messenger function. Here we review the mechanisms and effects of Ca(2+) signals within the nucleus. In particular, evidence is reviewed that the nucleus contains the machinery necessary for production of inositol 1,4,5-trisphosphate and for inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) release. The role of Ca(2+) signals within the nucleus is discussed including regulation of such critical cell functions as gene expression, activation of kinases, and permeability of nuclear pores.
Collapse
Affiliation(s)
- Dawidson A Gomes
- Department of Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
33
|
Zhu T, Gobeil F, Vazquez-Tello A, Leduc M, Rihakova L, Bossolasco M, Bkaily G, Peri K, Varma DR, Orvoine R, Chemtob S. Intracrine signaling through lipid mediators and their cognate nuclear G-protein-coupled receptors: a paradigm based on PGE2, PAF, and LPA1 receptors. Can J Physiol Pharmacol 2006; 84:377-91. [PMID: 16902584 DOI: 10.1139/y05-147] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostaglandins (PGs), platelet-activating factor (PAF), and lysophosphatidic acid (LPA) are ubiquitous lipid mediators that play important roles in inflammation, cardiovascular homeostasis, and immunity and are also known to modulate gene expression of specific pro-inflammatory genes. The mechanism of action of these lipids is thought to be primarily dependent on their specific plasma membrane receptors belonging to the superfamily of G-protein-coupled receptors (GPCR). Increasing evidence suggests the existence of a functional intracellular GPCR population. It has been proposed that immediate effects are mediated via cell surface receptors whereas long-term responses are dependent upon intracellular receptor effects. Indeed, receptors for PAF, LPA, and PGE(2) (specifically EP(1), EP(3), and EP(4)) localize at the cell nucleus of cerebral microvascular endothelial cells of newborn pigs, rat hepatocytes, and cells overexpressing each receptor. Stimulation of isolated nuclei with these lipids reveals biological functions including transcriptional regulation of major genes, namely c-fos, cylooxygenase-2, and endothelial as well as inducible nitric oxide synthase. In the present review, we shall focus on the nuclear localization and signaling of GPCRs recognizing PGE(2), PAF, and LPA phospholipids as ligands. Mechanisms on how nuclear PGE2, PAF, and LPA receptors activate gene transcription and nuclear localization pathways are presented. Intracrine signaling for lipid mediators uncover novel pathways to elicit their effects; accordingly, intracellular GPCRs constitute a distinctive mode of action for gene regulation.
Collapse
Affiliation(s)
- Tang Zhu
- Department of Pediatrics, Research Center of Hôpital Sainte-Justine, Université de Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ho KK, Mann DJ. Nuclear signalling through phospholipase C and phosphatidyl 4,5-bisphosphate. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Malviya AN, Klein C. Mechanism regulating nuclear calcium signalingThis paper is one of a selection of papers published in this Special Issue, entitled The Nucleus: A Cell Within A Cell. Can J Physiol Pharmacol 2006; 84:403-22. [PMID: 16902586 DOI: 10.1139/y05-130] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the outer nuclear membrane is continuous with the endoplasmic reticulum, it is possible to isolate nuclei both intact and free from endoplasmic reticulum contaminants. The outer and the inner nuclear membranes can be purified free from cross-contamination. Evidence in support of autonomous regulation of nuclear calcium signaling relies upon the investigations with isolated nuclei. Mechanisms for generating calcium signaling in the nucleus have been identified. Two calcium transporting systems, an ATP-dependant nuclear Ca2+-ATPase and an IP4-mediated inositol 1,3,4,5-tetrakisphosphate receptor, are located on the outer nuclear membrane. Thus, ATP and IP4, depending on external free calcium concentrations, are responsible for filling the nuclear envelope calcium pool. The inositol 1,4,5-trisphosphate receptor is located on the inner nuclear membrane with its ligand binding domain facing toward the nucleoplasm. Likewise, the ryanodine receptor is located on the inner nuclear membrane and its ligand cADP-ribose is generated within the nucleus. A 120 kDa protein fragment of nuclear PLC-γ1 is stimulated in vivo by epidermal growth factor nuclear signaling coincident with the time course of nuclear membrane epidermal growth factor receptor activation. Stimulated 120 kDa protein fragment interacts with PIKE, a nuclear GTPase, and together they form a complex with PI[3]kinase serving as a module for nuclear PI[3]K stimulation. Thus, the nucleus has its own IP3generating system.
Collapse
|
36
|
Jacques D, Sader S, Perreault C, Abdel-Samad D, Jules F, Provost C. NPY, ET-1, and Ang II nuclear receptors in human endocardial endothelial cellsThis paper is one of a selection of papers published in this Special Issue, entitled The Nucleus: A Cell Within A Cell. Can J Physiol Pharmacol 2006; 84:299-307. [PMID: 16902577 DOI: 10.1139/y05-158] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropeptide Y (NPY), endothelin-1 (ET-1), and angiotensin II (Ang II) are peptides that are known to play many important roles in cardiovascular homeostasis. The physiological actions of these peptides are thought to be primarily mediated by plasma membrane receptors that belong to the G-protein-coupled receptor superfamily. However, there is increasing evidence that suggests the existence of functional G-protein-coupled receptors at the level of the nucleus and that the nucleus could be a cell within a cell. Here, we review our work showing the presence in the nucleus of the NPY Y1receptor, the ETAand ETBreceptors, as well as the AT1and AT2receptors and their respective ligands. This work was carried out in 20-week-old fetal human endocardial endothelial cells. Our results demonstrate that nuclear Y1, AT1, and ETAreceptors modulate nuclear calcium in these cells.
Collapse
Affiliation(s)
- Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, North, Canada.
| | | | | | | | | | | |
Collapse
|
37
|
Bkaily G, Nader M, Avedanian L, Choufani S, Jacques D, D'Orléans-Juste P, Gobeil F, Chemtob S, Al-Khoury J. G-protein-coupled receptors, channels, and Na+–H+exchanger in nuclear membranes of heart, hepatic, vascular endothelial, and smooth muscle cellsThis paper is one of a selection of papers published in this Special Issue, entitled The Nucleus: A Cell Within A Cell. Can J Physiol Pharmacol 2006; 84:431-41. [PMID: 16902588 DOI: 10.1139/y06-002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The action of several peptides and drugs is thought to be primarily dependent on their interactions with specific cell surface G-protein-coupled receptors and ionic transporters such as channels and exchangers. Recent development of 3-D confocal microscopy allowed several laboratories, including ours, to identify and study the localization of receptors, channels, and exchangers at the transcellular level of several cell types. Using this technique, we demonstrated in the nuclei of several types of cells the presence of Ca2+channels as well as Na+–H+exchanger and receptors such as endothelin-1 and angiotensin II receptors. Stimulation of these nuclear membrane G-protein-coupled receptors induced an increase of nuclear Ca2+. Our results suggest that, similar to the plasma membrane, nuclear membranes possess channels, exchangers and receptors such as those for endothelin-1 and angiotensin II, and that the nucleus seems to be a cell within a cell. This article will emphasize these findings.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, QC, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bezin S, Charpentier G, Fossier P, Cancela JM. The Ca2+-releasing messenger NAADP, a new player in the nervous system. ACTA ACUST UNITED AC 2006; 99:111-8. [PMID: 16458493 DOI: 10.1016/j.jphysparis.2005.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Many physiological processes are controlled by a great diversity of Ca2+ signals. Within cell, Ca2+ signals depend upon Ca2+ entry and/or Ca2+ release from internal Ca2+ stores. The control of Ca2+-store mobilization is ensured by a family of messengers comprising inositol 1,4,5 trisphosphate, cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP). From recent works, new concepts have emerged where activation of the cells by outside stimuli, acting at the plasma membrane, results in the synthesis of multiple Ca2+-releasing messengers which may interact and shape complex Ca2+ signals in the cytosol as well as in the nucleus. This contribution will cover the most recent advances on NAADP signalling with some emphasis on neurons.
Collapse
Affiliation(s)
- Stéphanie Bezin
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1 Avenue de La Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
39
|
Gerasimenko JV, Sherwood M, Tepikin AV, Petersen OH, Gerasimenko OV. NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area. J Cell Sci 2006; 119:226-38. [PMID: 16410548 DOI: 10.1242/jcs.02721] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Inositol trisphosphate and cyclic ADP-ribose release Ca2+ from the endoplasmic reticulum via inositol trisphosphate and ryanodine receptors, respectively. By contrast, nicotinic acid adenine dinucleotide phosphate may activate a novel Ca2+ channel in an acid compartment. We show, in two-photon permeabilized pancreatic acinar cells, that the three messengers tested could each release Ca2+ from the endoplasmic reticulum and also from an acid store in the granular region. The nicotinic acid adenine dinucleotide phosphate action on both types of store, like that of cyclic ADP-ribose but unlike inositol trisphosphate, depended on operational ryanodine receptors, since it was blocked by ryanodine or ruthenium red. The acid Ca2+ store in the granular region did not have Golgi or lysosomal characteristics and might therefore be associated with the secretory granules. The endoplasmic reticulum is predominantly basal, but thin extensions penetrate into the granular area and cytosolic Ca2+ signals probably initiate at sites where endoplasmic reticulum elements and granules come close together.
Collapse
Affiliation(s)
- Julia V Gerasimenko
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.
| | | | | | | | | |
Collapse
|
40
|
Cárdenas C, Liberona JL, Molgó J, Colasante C, Mignery GA, Jaimovich E. Nuclear inositol 1,4,5-trisphosphate receptors regulate local Ca2+ transients and modulate cAMP response element binding protein phosphorylation. J Cell Sci 2006; 118:3131-40. [PMID: 16014380 DOI: 10.1242/jcs.02446] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several lines of evidence indicate that increases in nuclear Ca(2+) have specific biological effects that differ from those of cytosolic Ca(2+), suggesting that they occur independently. The mechanisms involved in controlling nuclear Ca(2+) signaling are both controversial and still poorly understood. Using hypotonic shock combined with mechanical disruption, we obtained and characterized a fraction of purified nuclei from cultured rat skeletal myotubes. Both immunoblot studies and radiolabeled inositol 1,4,5-trisphosphate [IP(3)] binding revealed an important concentration of IP(3) receptors in the nuclear fraction. Immunofluorescence and immunoelectron microscopy studies localized type-1 and type-3 IP(3) receptors in the nucleus with type-1 receptors preferentially localized in the inner nuclear membrane. Type-2 IP(3) receptor was confined to the sarcoplasmic reticulum. Isolated nuclei responded to IP(3) with rapid and transient Ca(2+) concentration elevations, which were inhibited by known blockers of IP(3) signals. Similar results were obtained with isolated nuclei from the 1B5 cell line, which does not express ryanodine receptors but releases nuclear Ca(2+) in an IP(3)-dependent manner. Nuclear Ca(2+) increases triggered by IP(3) evoked phosphorylation of cAMP response element binding protein with kinetics compatible with sequential activation. These results support the idea that Ca(2+) signals, mediated by nuclear IP(3) receptors in muscle cells, are part of a distinct Ca(2+) release component that originates in the nucleus and probably participates in gene regulation mediated by cAMP response element binding protein.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Calcium/metabolism
- Calcium Channels/biosynthesis
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/physiology
- Cell Nucleus/metabolism
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/metabolism
- Fluorometry
- Immunohistochemistry
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Microscopy, Confocal
- Microscopy, Immunoelectron
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Nuclear Envelope/metabolism
- Phosphorylation
- Protein Binding
- Protein Isoforms
- Rats
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- Cesar Cárdenas
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 7, Chile
| | | | | | | | | | | |
Collapse
|
41
|
Benech JC, Escande C, Sotelo JR. Relationship between RNA synthesis and the Ca2+-filled state of the nuclear envelope store. Cell Calcium 2005; 38:101-9. [PMID: 16054686 DOI: 10.1016/j.ceca.2005.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 05/15/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
RNA synthesis and ATP-dependent (45)Ca(2+) uptake were measured simultaneously in isolated nuclear fraction of rat liver nuclei. Maximal level of RNA synthesis was obtained under ATP-dependent (45)Ca(2+)-uptake conditions (1 microM free [Ca(2+)] and 1 mM ATP in the bathing solution). This experimental condition was defined as "stimulated nuclei" condition. ATP-dependent (45)Ca(2+) uptake was inhibited using different strategies including: (a) eliminating Ca(2+) (1 mM EGTA); (b) lowering the ATP concentration; (c) modifying nuclear envelope membranes Ca(2+) permeability (Ca(2+) ionophores); or (d) inhibiting the nuclear Ca(2+) pump (thapsigargin and 3',3'',5',5''-tetraiodophenolsulfonephthalein). Under all the above conditions, RNA synthesis was lower than in "stimulated nuclei" condition. In the presence of ionomycin, RNA synthesis was significantly higher at 500 nM free [Ca(2+)], as compared with RNA synthesis in a Ca(2+)-free medium or at 1muM free [Ca(2+)]. However, even in such condition (500 nM free [Ca(2+)]), RNA synthesis was lower than RNA synthesis obtained in "stimulated nuclei" condition. We suggest two components for the effect of Ca(2+) on RNA synthesis: (A) a direct effect of nucleoplasmic [Ca(2+)]; and (B) an effect dependent on the accumulation of Ca(2+) in the nuclear envelope store mediated by the SERCA nuclear Ca(2+) pump.
Collapse
Affiliation(s)
- Juan Claudio Benech
- Laboratorio de Proteínas y Acidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable. Av. Italia 3318, Montevideo, Uruguay.
| | | | | |
Collapse
|
42
|
Marrache AM, Gobeil F, Zhu T, Chemtob S. Intracellular signaling of lipid mediators via cognate nuclear G protein-coupled receptors. ACTA ACUST UNITED AC 2005; 12:63-72. [PMID: 16036317 DOI: 10.1080/10623320590933815] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Platelet-activating factor (PAF) and lysophosphatidic acid (LPA) are ubiquitous lipid mediators that play important roles in inflammation, cardiovascular homeostasis, and immunity and are also known to modulate gene expression of specific proinflammatory genes. The mechanism of action of these phospholipids is thought to be primarily dependent on their specific plasma membrane receptors belonging to the superfamily of G protein-coupled receptors (GPCRs). However, increasing evidence suggests the existence of a functional intracellular GPCR population. It has been suggested that immediate effects are mediated by cell surface receptors, whereas long-term responses are mediated by intracellular receptors. PAF and LPA(1) receptors localize at the cell nucleus of cerebral microvascular endothelial cells of newborn pig, rat hepatocytes, and cells overexpressing each receptor, and stimulation of isolated nuclei reveal biological functions, including transcriptional regulation of major genes, namely cylooxygenase-2 and inducible nitric oxide synthase. This mini review focuses on the nuclear localization and signaling of GPCRs, recognizing PAF and LPA phospholipids as ligands. Theories on how nuclear PAF and LPA1 receptors activate gene transcription and nuclear localization pathways are discussed. Intracrine signaling for lipid mediators uncover novel pathways to elicit their effects; moreover, intracellular GPCRs constitute a distinctive mode of action for gene regulation.
Collapse
|
43
|
Koopman WJH, Willems PHGM, Oosterhof A, van Kuppevelt TH, Gielen SCAM. Amplitude modulation of nuclear Ca2+ signals in human skeletal myotubes: A possible role for nuclear Ca2+ buffering. Cell Calcium 2005; 38:141-52. [PMID: 16054687 DOI: 10.1016/j.ceca.2005.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 05/17/2005] [Accepted: 06/02/2005] [Indexed: 11/20/2022]
Abstract
Video-rate confocal microscopy of Indo-1-loaded human skeletal myotubes was used to assess the relationship between the changes in sarcoplasmic ([Ca(2+)](S)) and nuclear ([Ca(2+)](N)) Ca(2+) concentration during low- and high-frequency electrostimulation. A single stimulus of 10 ms duration transiently increased [Ca(2+)] in both compartments with the same time of onset. Rate and amplitude of the [Ca(2+)] rise were significantly lower in the nucleus (4.0- and 2.5-fold, respectively). Similarly, [Ca(2+)](N) decayed more slowly than [Ca(2+)](S) (mono-exponential time constants of 6.1 and 2.5 s, respectively). After return of [Ca(2+)] to the prestimulatory level, a train of 10 stimuli was applied at a frequency of 1 Hz. The amplitude of the first [Ca(2+)](S) transient was 25% lower than that of the preceding single transient. Thereafter, [Ca(2+)](S) increased stepwise to a maximum that equalled that of the single transient. Similarly, the amplitude of the first [Ca(2+)](N) transient was 20% lower than that of the preceding single transient. In contrast to [Ca(2+)](S), [Ca(2+)](N) then increased to a maximum that was 2.3-fold higher than that of the single transient and equalled that of [Ca(2+)](S). In the nucleus, and to a lesser extent in the sarcoplasm, [Ca(2+)] decreased faster at the end of the stimulus train than after the preceding single stimulus (time constants of 3.3 and 2.1 s, respectively). To gain insight into the molecular principles underlying the shaping of the nuclear Ca(2+) signal, a 3-D mathematical model was constructed. Intriguingly, quantitative modelling required the inclusion of a satiable nuclear Ca(2+) buffer. Alterations in the concentration of this putative buffer had dramatic effects on the kinetics of the nuclear Ca(2+) signal. This finding unveils a possible mechanism by which the skeletal muscle can adapt to changes in physiological demand.
Collapse
Affiliation(s)
- Werner J H Koopman
- Department of 160 Biochemistry NCMLS, Radboud University Nijmegen Medical Center, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Huh YH, Yoo JA, Bahk SJ, Yoo SH. Distribution profile of inositol 1,4,5-trisphosphate receptor isoforms in adrenal chromaffin cells. FEBS Lett 2005; 579:2597-603. [PMID: 15862296 DOI: 10.1016/j.febslet.2005.03.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/21/2005] [Accepted: 03/22/2005] [Indexed: 01/09/2023]
Abstract
Given the importance of inositol 1,4,5-trisphosphate receptor (IP(3)R)/Ca(2+) channels in the control of intracellular Ca(2+) concentrations, we determined the relative concentrations of the IP(3)R isoforms in subcellular organelles, based on serially sectioned electron micrographs. The endoplasmic reticulum (ER) was estimated to contain 15-20% of each of the three IP(3)R isoforms while secretory granules contained 58-69%. The nucleus contained approximately 15% each of IP(3)R-1 and -2, but 25% of IP(3)R-3, whereas the plasma membrane contained approximately 1% or less of each. These suggested that secretory granules, the nucleus and ER are at the center of IP(3)-dependent intracellular Ca(2+) control mechanisms in chromaffin cells.
Collapse
Affiliation(s)
- Yang Hoon Huh
- National Creative Research Initiative Center for Secretory Granule Research, and Department of Biochemistry, Inha University College of Medicine, Jung Gu, Incheon, Republic of Korea
| | | | | | | |
Collapse
|
45
|
Bare DJ, Kettlun CS, Liang M, Bers DM, Mignery GA. Cardiac Type 2 Inositol 1,4,5-Trisphosphate Receptor. J Biol Chem 2005; 280:15912-20. [PMID: 15710625 DOI: 10.1074/jbc.m414212200] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type 2 inositol 1,4,5-trisphosphate receptor (InsP(3)R2) was identified previously as the predominant isoform in cardiac ventricular myocytes. Here we reported the subcellular localization of InsP(3)R2 to the cardiomyocyte nuclear envelope (NE). The other major known endo/sarcoplasmic reticulum calcium-release channel (ryanodine receptor) was not localized to the NE, indicating functional segregation of these channels and possibly a unique role for InsP(3)R2 in regulating nuclear calcium dynamics. Immunoprecipitation experiments revealed that the NE InsP(3)R2 associates with Ca(2+)/calmodulin-dependent protein kinase IIdelta (CaMKIIdelta), the major isoform expressed in cardiac myocytes. Recombinant InsP(3)R2 and CaMKIIdelta(B) also co-immunoprecipitated after co-expression in COS-1 cells. Additionally, the amino-terminal 1078 amino acids of the InsP(3)R2 were sufficient for interaction with CaMKIIdelta(B) and associated upon mixing following separate expression. CaMKII can also phosphorylate InsP(3)R2, as demonstrated by (32)P labeling. Incorporation of CaMKII-treated InsP(3)R2 into planar lipid bilayers revealed that InsP(3)-mediated channel open probability is significantly reduced ( approximately 11 times) by phosphorylation via CaMKII. We concluded that the InsP(3)R2 and CaMKIIdelta likely represent two central components of a multiprotein signaling complex, and this raises the possibility that calcium release via InsP(3)R2 in the myocyte NE may activate local CaMKII signaling, which may feedback on InsP(3)R2 function.
Collapse
Affiliation(s)
- Dan J Bare
- Department of Physiology and Cardiovascular Institute, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Nuclear calcium signalling has been a controversial battlefield for many years and the question of how permeable the nuclear pore complexes (NPCs) are to Ca2+ has been the subject of a particularly hot dispute. Recent data from isolated nuclei suggest that the NPCs are open even after depletion of the Ca2+ store in the nuclear envelope. Other research has suggested that a new Ca2+ -releasing messenger, nicotinic acid adenine dinucleotide phosphate (NAADP), can liberate Ca2+ only from acidic organelles, probably lysosomes, rather than from the traditional Ca2+ store in the endoplasmic reticulum (ER). Recent work indicates that NAADP can release Ca2+ from the nuclear envelope (NE), which has a thapsigargin-sensitive, ER-type Ca2+ store. NAADP acts in a manner similar to inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] or cyclic ADP-ribose (cADPR): all three messengers are equally able to reduce the Ca2+ concentration inside the NE and this is associated with a transient rise in the nucleoplasmic Ca2+ concentration. The NE contains ryanodine receptors (RyRs) and Ins(1,4,5)P3 receptors [Ins(1,4,5)P3Rs], and these can be activated separately and independently: the RyRs by either NAADP or cADPR, and the Ins(1,4,5)P3Rs by Ins(1,4,5)P3.
Collapse
Affiliation(s)
- Oleg Gerasimenko
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Crown Street, L69 3BX, UK.
| | | |
Collapse
|
47
|
Mammen A, Simpson PJ, Mamman A, Simpson JP, Nighorn A, Imanishi Y, Palczewski K, Ronnett GV, Moon C. Hippocalcin in the olfactory epithelium: a mediator of second messenger signaling. Biochem Biophys Res Commun 2004; 322:1131-9. [PMID: 15336960 DOI: 10.1016/j.bbrc.2004.07.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Indexed: 01/28/2023]
Abstract
Intracellular Ca2+ plays an important role in a variety of second messenger cascades. The function of Ca2+ is mediated, in part, by Ca2+-binding proteins such as calmodulin, calretinin, calbindin, neurocalcin, recoverin, and visinin-like proteins (VILIPs). These proteins are highly expressed in rat olfactory receptor neurons (ORNs) and are localized to distinct intracellular regions. In the present study, we have identified another Ca2+-binding protein, hippocalcin, in the rat olfactory epithelium (OE). Olfactory/brain hippocalcin shows high sequence homology with hippocalcins expressed in mice and humans. Hippocalcin was predominantly localized to the olfactory cilia, the site of the initial events of olfactory signal transduction, and was found to regulate the activity of ciliary adenylate cyclases (ACs) and particulate guanylyl cyclases (GCs) in a Ca2+-dependent manner. These data indicate that hippocalcin is expressed in rat ORNs, and is likely to regulate second messenger cascades in a Ca2+-dependent manner.
Collapse
Affiliation(s)
- Alex Mammen
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Xiong TC, Jauneau A, Ranjeva R, Mazars C. Isolated plant nuclei as mechanical and thermal sensors involved in calcium signalling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:12-21. [PMID: 15361137 DOI: 10.1111/j.1365-313x.2004.02184.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Calcium signals in the nucleus elicit downstream effects that are distinct from those of cytosolic calcium signals. In the present work, we have evaluated the ability of plant nuclei to sense stimuli directly and to convert them into calcium changes. We show that individual mechanical stimulation of isolated nuclei elicits a single calcium transient at acidic pHs, whereas a series of stimulations leads to oscillations whose frequency reflects that of the stimuli. Conversely, at alkaline pHs, nuclei respond to temperature but not to stretch. The stretch- and the temperature-activated processes differ by their sensitivity to pharmacological drugs known to affect ion channel activities in animal cells. Our data demonstrate that isolated nuclei are able to gauge physical parameters of their environment. This might have a profound influence on the functioning of calcium-dependent processes known to control a large array of molecular events in the nucleus.
Collapse
Affiliation(s)
- Tou Cheu Xiong
- UMR CNRS-UPS 5546, Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP 17 Auzeville, 27 Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | | | | | | |
Collapse
|
49
|
Brandizzi F, Irons SL, Evans DE. The plant nuclear envelope: new prospects for a poorly understood structure. THE NEW PHYTOLOGIST 2004; 163:227-246. [PMID: 33873618 DOI: 10.1111/j.1469-8137.2004.01118.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The nuclear envelope (NE) is one of the least characterized cellular structures in plant cells. In particular, knowledge of its dynamic behaviour during the cell cycle and of its protein composition is limited. This review summarizes current views on the plant NE and highlights fundamental differences with other organisms. We also introduce the power of new technology available to investigate the NE and how this has already begun to revolutionize our knowledge of the biology of the plant NE. Contents Summary 227 I. Introduction 227 II. The membranes of the nuclear envelope 228 III. Functions of the nuclear envelope 231 IV. Proteins associated with the nuclear envelope 236 V. New tools for studying the nuclear envelope 239 VI. Conclusions and future prospects 241 Acknowledgements 242 References 242.
Collapse
Affiliation(s)
- Federica Brandizzi
- Biology Department, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E2
| | - Sarah L Irons
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - David E Evans
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
50
|
Parker AKT, Gergely FV, Taylor CW. Targeting of Inositol 1,4,5-Trisphosphate Receptors to the Endoplasmic Reticulum by Multiple Signals within Their Transmembrane Domains. J Biol Chem 2004; 279:23797-805. [PMID: 15033979 DOI: 10.1074/jbc.m402098200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most inositol 1,4,5-trisphosphate receptors (IP3R) are expressed in the endoplasmic reticulum (ER), where their precise distribution underlies the spatially complex Ca2+ signals evoked by extracellular stimuli. The signals that target IP3R to the ER or, less commonly, to other membranes are unknown. We expressed yellow fluorescent protein-tagged fragments of type 1 IP3R alone or fused with a plasma membrane protein to establish the determinants of ER targeting in COS-7 cells. By using a combination of confocal imaging and glycoprotein analyses, we demonstrated that any pair of the six transmembrane domains (TMD) linked by a luminal loop retains the protein within the ER, and when attached to a plasma membrane protein (ICAM-1), prevents it from reaching the medial Golgi. TMD1 or TMD2 alone were accumulated in mitochondria, whereas TMD5 and TMD6 were retained in ER, but were unable to prevent ICAM from reaching the plasma membrane. We conclude that IP3R are targeted to the ER membrane only after synthesis of TMDs 1 and 2, and that after co-translational insertion of the remaining TMDs, redundant retention signals present in any pair of TMD retain IP3R in the ER.
Collapse
Affiliation(s)
- Andrew K T Parker
- Department of Pharmacology and Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | | | | |
Collapse
|