1
|
Madabeni A, Bortoli M, Nogara PA, Ribaudo G, Dalla Tiezza M, Flohé L, Rocha JBT, Orian L. 50 Years of Organoselenium Chemistry, Biochemistry and Reactivity: Mechanistic Understanding, Successful and Controversial Stories. Chemistry 2024; 30:e202403003. [PMID: 39304519 PMCID: PMC11639659 DOI: 10.1002/chem.202403003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
In 1973, two major discoveries changed the face of selenium chemistry: the identification of the first mammal selenoenzyme, glutathione peroxidase 1, and the discovery of the synthetic utility of the so-called selenoxide elimination. While the chemical mechanism behind the catalytic activity of glutathione peroxidases appears to be mostly unveiled, little is known about the mechanisms of other selenoproteins and, for some of them, even the function lies in the dark. In chemistry, the capacity of organoselenides of catalyzing hydrogen peroxide activation for the practical manipulation of organic functional groups has been largely explored, and some mechanistic details have been clearly elucidated. As a paradox, despite the long-standing experience in the field, the nature of the active oxidant in various reactions still remains matter of debate. While many successes characterize these fields, the pharmacological use of organoselenides still lacks any true application, and while some organoselenides were found to be non-toxic and safe to use, to date no therapeutically approved use was granted. In this review, some fundamental and chronologically aligned topics spanning organoselenium biochemistry, chemistry and pharmacology are discussed, focusing on the current mechanistic picture describing their activity as either bioactive compounds or catalysts.
Collapse
Affiliation(s)
- Andrea Madabeni
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - Marco Bortoli
- Department of Chemistry and Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloOslo0315Norway
| | - Pablo A. Nogara
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul)Av. Leonel de Moura Brizola, 250196418-400Bagé, RSBrasil
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaViale Europa 1125123BresciaItaly
| | - Marco Dalla Tiezza
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - Leopold Flohé
- Department of Molecular MedicineUniversity of PadovaItaly
- Departamento de BioquímicaUniversidad de la RepúblicaMontevideoUruguay
| | - João B. T. Rocha
- Departamento de BioquímicaUniversidade Federaldo Rio Grande do Sul (UFRGS)90035-003Porto Alegre, RSBrazil
| | - Laura Orian
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
2
|
Puppala A, Sosa D, Castillo Suchkou J, French R, Dobosz-Bartoszek M, Kiernan K, Simonović M. Human selenocysteine synthase, SEPSECS, has evolved to optimize binding of a tRNA-based substrate. Nucleic Acids Res 2024; 52:13368-13385. [PMID: 39385655 PMCID: PMC11602143 DOI: 10.1093/nar/gkae875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
The evolution of the genetic code to incorporate selenocysteine (Sec) enabled the development of a selenoproteome in all domains of life. O-phosphoseryl-tRNASec selenium transferase (SepSecS) catalyzes the terminal reaction of Sec synthesis on tRNASec in archaea and eukaryotes. Despite harboring four equivalent active sites, human SEPSECS binds no more than two tRNASec molecules. Though, the basis for this asymmetry remains poorly understood. In humans, an acidic, C-terminal, α-helical extension precludes additional tRNA-binding events in two of the enzyme monomers, stabilizing the SEPSECS•tRNASec complex. However, the existence of a helix exclusively in vertebrates raised questions about the evolution of the tRNA-binding mechanism in SEPSECS and the origin of its C-terminal extension. Herein, using a comparative structural and phylogenetic analysis, we show that the tRNA-binding motifs in SEPSECS are poorly conserved across species. Consequently, in contrast to mammalian SEPSECS, the archaeal ortholog cannot bind unacylated tRNASec and requires an aminoacyl group. Moreover, the C-terminal α-helix 16 is a mammalian innovation, and its absence causes aggregation of the SEPSECS•tRNASec complex at low tRNA concentrations. Altogether, we propose SEPSECS evolved a tRNASec binding mechanism as a crucial functional and structural feature, allowing for additional levels of regulation of Sec and selenoprotein synthesis.
Collapse
Affiliation(s)
- Anupama K Puppala
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dylan Sosa
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer Castillo Suchkou
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Rachel L French
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Malgorzata Dobosz-Bartoszek
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kaitlyn A Kiernan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
3
|
Sarkar UD, Rana M, Chakrapani H. Phenacylselenoesters allow facile selenium transfer and hydrogen selenide generation. Chem Sci 2024; 15:19315-19321. [PMID: 39568918 PMCID: PMC11575540 DOI: 10.1039/d4sc05788k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024] Open
Abstract
Hydrogen selenide (H2Se) is a precursor to several selenium-containing biomolecules and is emerging as an important redox-active species in biology, with yet to be completely characterized roles. Tools that reliably generate H2Se are key to achieving a better understanding of selenium biology. Here, we report the design, synthesis and evaluation of phenacylselenoesters as sources of H2Se. These compounds are prepared in two steps from commercial compounds, some are crystalline solids, and all are stable during storage. In the presence of esterase and a thiol in pH 7.4 buffer, these compounds produce H2Se, with half-lives of 5-20 min. We developed a colorimetric assay for the detection of gaseous H2Se by trapping it as zinc selenide (ZnSe), which is then converted to lead selenide (PbSe), which serves as a convenient visual indicator for this gas. The major organic products that are formed in nearly quantitative yields are relatively benign ketones and carboxylic acids. We provide evidence for these donors producing a thioselenide, a key intermediate in biological selenium metabolism. Finally, we compared sulfur and selenium transfer, both critical processes in cells. Phenacylthiol is relatively stable to cleavage by a thiol, and requires a sulfurtransferase enzyme to produce a persulfide and H2S. By contrast, the selenium analogue reacted with a thiol in the absence of this enzyme to produce H2Se. This result underscores the greater lability of the C-Se bond as compared with a C-S bond, and may have implications in biological selenium transfer. Together, phenacylselenoesters are easy to prepare, stable and generate H2Se under mild and biocompatible conditions. We anticipate that these will be valuable additions to the growing selenium redox toolbox.
Collapse
Affiliation(s)
- Utsav Dey Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Maharashtra India
| | - Mahima Rana
- Department of Chemistry, Indian Institute of Science Education and Research Pune Maharashtra India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune Maharashtra India
| |
Collapse
|
4
|
Deng Y, Wang JX, Ghosh B, Lu Y. Enzymatic CO 2 reduction catalyzed by natural and artificial Metalloenzymes. J Inorg Biochem 2024; 259:112669. [PMID: 39059175 DOI: 10.1016/j.jinorgbio.2024.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
The continuously increasing level of atmospheric CO2 in the atmosphere has led to global warming. Converting CO2 into other carbon compounds could mitigate its atmospheric levels and produce valuable products, as CO2 also serves as a plentiful and inexpensive carbon feedstock. However, the inert nature of CO2 poses a major challenge for its reduction. To meet the challenge, nature has evolved metalloenzymes using transition metal ions like Fe, Ni, Mo, and W, as well as electron-transfer partners for their functions. Mimicking these enzymes, artificial metalloenzymes (ArMs) have been designed using alternative protein scaffolds and various metallocofactors like Ni, Co, Re, Rh, and FeS clusters. Both the catalytic efficiency and the scope of CO2-reduction product of these ArMs have been improved over the past decade. This review first focuses on the natural metalloenzymes that directly reduce CO2 by discussing their structures and active sites, as well as the proposed reaction mechanisms. It then introduces the common strategies for electrochemical, photochemical, or photoelectrochemical utilization of these native enzymes for CO2 reduction and highlights the most recent advancements from the past five years. We also summarize principles of protein design for bio-inspired ArMs, comparing them with native enzymatic systems and outlining challenges and opportunities in enzymatic CO2 reduction.
Collapse
Affiliation(s)
- Yunling Deng
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Jing-Xiang Wang
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Barshali Ghosh
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
5
|
Kleikamp HBC, Palacios PA, Kofoed MVW, Papacharalampos G, Bentien A, Nielsen JL. The Selenoproteome as a Dynamic Response Mechanism to Oxidative Stress in Hydrogenotrophic Methanogenic Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6637-6646. [PMID: 38580315 PMCID: PMC11025550 DOI: 10.1021/acs.est.3c07725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Methanogenesis is a critical process in the carbon cycle that is applied industrially in anaerobic digestion and biogas production. While naturally occurring in diverse environments, methanogenesis requires anaerobic and reduced conditions, although varying degrees of oxygen tolerance have been described. Microaeration is suggested as the next step to increase methane production and improve hydrolysis in digestion processes; therefore, a deeper understanding of the methanogenic response to oxygen stress is needed. To explore the drivers of oxygen tolerance in methanogenesis, two parallel enrichments were performed under the addition of H2/CO2 in an environment without reducing agents and in a redox-buffered environment by adding redox mediator 9,10-anthraquinone-2,7-disulfonate disodium. The cellular response to oxidative conditions is mapped using proteomic analysis. The resulting community showed remarkable tolerance to high-redox environments and was unperturbed in its methane production. Next to the expression of pathways to mitigate reactive oxygen species, the higher redox potential environment showed an increased presence of selenocysteine and selenium-associated pathways. By including sulfur-to-selenium mass shifts in a proteomic database search, we provide the first evidence of the dynamic and large-scale incorporation of selenocysteine as a response to oxidative stress in hydrogenotrophic methanogenesis and the presence of a dynamic selenoproteome.
Collapse
Affiliation(s)
- Hugo B. C. Kleikamp
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Paola A. Palacios
- Department
of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Michael V. W. Kofoed
- Department
of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Georgios Papacharalampos
- Department
of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Anders Bentien
- Department
of Biological and Chemical Engineering, Aarhus University, Åbogade 40, 8200 Aarhus, Denmark
| | - Jeppe L. Nielsen
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| |
Collapse
|
6
|
Rees J, Sarangi G, Cheng Q, Floor M, Andrés AM, Oliva Miguel B, Villà-Freixa J, Arnér ESJ, Castellano S. Ancient Loss of Catalytic Selenocysteine Spurred Convergent Adaptation in a Mammalian Oxidoreductase. Genome Biol Evol 2024; 16:evae041. [PMID: 38447079 PMCID: PMC10958145 DOI: 10.1093/gbe/evae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Selenocysteine, the 21st amino acid specified by the genetic code, is a rare selenium-containing residue found in the catalytic site of selenoprotein oxidoreductases. Selenocysteine is analogous to the common cysteine amino acid, but its selenium atom offers physical-chemical properties not provided by the corresponding sulfur atom in cysteine. Catalytic sites with selenocysteine in selenoproteins of vertebrates are under strong purifying selection, but one enzyme, glutathione peroxidase 6 (GPX6), independently exchanged selenocysteine for cysteine <100 million years ago in several mammalian lineages. We reconstructed and assayed these ancient enzymes before and after selenocysteine was lost and up to today and found them to have lost their classic ability to reduce hydroperoxides using glutathione. This loss of function, however, was accompanied by additional amino acid changes in the catalytic domain, with protein sites concertedly changing under positive selection across distant lineages abandoning selenocysteine in glutathione peroxidase 6. This demonstrates a narrow evolutionary range in maintaining fitness when sulfur in cysteine impairs the catalytic activity of this protein, with pleiotropy and epistasis likely driving the observed convergent evolution. We propose that the mutations shared across distinct lineages may trigger enzymatic properties beyond those in classic glutathione peroxidases, rather than simply recovering catalytic rate. These findings are an unusual example of adaptive convergence across mammalian selenoproteins, with the evolutionary signatures possibly representing the evolution of novel oxidoreductase functions.
Collapse
Affiliation(s)
- Jasmin Rees
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Division of Biosciences, University College London, London, UK
| | - Gaurab Sarangi
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Floor
- Department of Biosciences, Faculty of Sciences and Technology, Universitat de Vic—Universitat Central de Catalunya, Vic, Spain
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Aida M Andrés
- Division of Biosciences, University College London, London, UK
| | - Baldomero Oliva Miguel
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Villà-Freixa
- Department of Biosciences, Faculty of Sciences and Technology, Universitat de Vic—Universitat Central de Catalunya, Vic, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Vic, Spain
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary
| | - Sergi Castellano
- Great Ormond Street Institute of Child Health, University College London, London, UK
- UCL Genomics, University College London, London, UK
| |
Collapse
|
7
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
8
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
9
|
Moreno D, Omosebi A, Jeon BW, Abad K, Kim YH, Thompson J, Liu K. Electrochemical CO2 conversion to formic acid using engineered enzymatic catalysts in a batch reactor. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
10
|
Laun K, Duffus BR, Wahlefeld S, Katz S, Belger D, Hildebrandt P, Mroginski MA, Leimkühler S, Zebger I. Infrared Spectroscopy Elucidates the Inhibitor Binding Sites in a Metal-Dependent Formate Dehydrogenase. Chemistry 2022; 28:e202201091. [PMID: 35662280 PMCID: PMC9804402 DOI: 10.1002/chem.202201091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Indexed: 01/05/2023]
Abstract
Biological carbon dioxide (CO2 ) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO2 at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO2 and charged as formate. We employed infrared (IR) spectroscopy in combination with density functional theory (DFT) and inhibition kinetics. One distinct inhibitory molecule was found to bind to either a non-competitive or a competitive binding site in the secondary coordination sphere of the active site. Site-directed mutagenesis of key amino acid residues in the vicinity of the bis-MGD cofactor revealed changes in both non-competitive and competitive binding, whereby the inhibitor is in case of the latter interaction presumably bound between the cofactor and the adjacent Arg587.
Collapse
Affiliation(s)
- Konstantin Laun
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Benjamin R. Duffus
- Institut für Biochemie und BiologieMolekulare EnzymologieUniversität PotsdamKarl-Liebknecht-Strasse 24–2514476PotsdamGermany
| | - Stefan Wahlefeld
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
- Institut für Technische BiokatalyseTechnische Universität HamburgDenickestr. 1521073HamburgGermany
| | - Sagie Katz
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Dennis Belger
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Peter Hildebrandt
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Maria Andrea Mroginski
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Silke Leimkühler
- Institut für Biochemie und BiologieMolekulare EnzymologieUniversität PotsdamKarl-Liebknecht-Strasse 24–2514476PotsdamGermany
| | - Ingo Zebger
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| |
Collapse
|
11
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
12
|
Chung CZ, Söll D, Krahn N. Using selenocysteine-specific reporters to screen for efficient tRNA Sec variants. Methods Enzymol 2022; 662:63-93. [PMID: 35101219 DOI: 10.1016/bs.mie.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The unique properties of selenocysteine (Sec) have generated an interest in the scientific community to site-specifically incorporate Sec into a protein of choice. Current technologies have rewired the natural Sec-specific translation factor-dependent selenoprotein biosynthesis pathway by harnessing the canonical elongation factor (EF-Tu) to simplify the requirements for Sec incorporation in Escherichia coli. This strategy is versatile and can be applied to Sec incorporation at any position in a protein of interest. However, selenoprotein production is still limited by yield and serine misincorporation. This protocol outlines a method in E. coli to design and optimize tRNA libraries which can be selected and screened for by the use of Sec-specific intein-based reporters. This provides a fast and simple way to engineer tRNAs with enhanced Sec-incorporation ability.
Collapse
Affiliation(s)
- Christina Z Chung
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States.
| | - Natalie Krahn
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
13
|
Alpdağtaş S, Turunen O, Valjakka J, Binay B. The challenges of using NAD +-dependent formate dehydrogenases for CO 2 conversion. Crit Rev Biotechnol 2021; 42:953-972. [PMID: 34632901 DOI: 10.1080/07388551.2021.1981820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In recent years, CO2 reduction and utilization have been proposed as an innovative solution for global warming and the ever-growing energy and raw material demands. In contrast to various classical methods, including chemical, electrochemical, and photochemical methods, enzymatic methods offer a green and sustainable option for CO2 conversion. In addition, enzymatic hydrogenation of CO2 into platform chemicals could be used to produce economically useful hydrogen storage materials, making it a win-win strategy. The thermodynamic and kinetic stability of the CO2 molecule makes its utilization a challenging task. However, Nicotine adenine dinucleotide (NAD+)-dependent formate dehydrogenases (FDHs), which have high selectivity and specificity, are attractive catalysts to overcome this issue and convert CO2 into fuels and renewable chemicals. It is necessary to improve the stability, cofactor necessity, and CO2 conversion efficiency of these enzymes, such as by combining them with appropriate hybrid systems. However, metal-independent, NAD+-dependent FDHs, and their CO2 reduction activity have received limited attention to date. This review outlines the CO2 reduction ability of these enzymes as well as their properties, reaction mechanisms, immobilization strategies, and integration with electrochemical and photochemical systems for the production of formic acid or formate. The biotechnological applications of FDH, future perspectives, barriers to CO2 reduction with FDH, and aspects that must be further developed are briefly summarized. We propose that constructing hybrid systems that include NAD+-dependent FDHs is a promising approach to convert CO2 and strengthen the sustainable carbon bio-economy.
Collapse
Affiliation(s)
- Saadet Alpdağtaş
- Department of Biology, Van Yuzuncu Yil University, Tusba, Turkey
| | - Ossi Turunen
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jarkko Valjakka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
14
|
Leo F, Schwarz FM, Schuchmann K, Müller V. Capture of carbon dioxide and hydrogen by engineered Escherichia coli: hydrogen-dependent CO 2 reduction to formate. Appl Microbiol Biotechnol 2021; 105:5861-5872. [PMID: 34331557 PMCID: PMC8390402 DOI: 10.1007/s00253-021-11463-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022]
Abstract
In times of global climate change and the fear of dwindling resources, we are facing different considerable challenges such as the replacement of fossil fuel-based energy carriers with the coincident maintenance of the increasing energy supply of our growing world population. Therefore, CO2 capturing and H2 storing solutions are urgently needed. In this study, we demonstrate the production of a functional and biotechnological interesting enzyme complex from acetogenic bacteria, the hydrogen-dependent CO2 reductase (HDCR), in the well-known model organism Escherichia coli. We identified the metabolic bottlenecks of the host organisms for the production of the HDCR enzyme complex. Here we show that the recombinant expression of a heterologous enzyme complex transforms E. coli into a whole-cell biocatalyst for hydrogen-driven CO2 reduction to formate without the need of any external co-factors or endogenous enzymes in the reaction process. This shifts the industrial platform organism E. coli more and more into the focus as biocatalyst for CO2-capturing and H2-storage. KEY POINTS: • A functional HDCR enzyme complex was heterologously produced in E. coli. • The metabolic bottlenecks for HDCR production were identified. • HDCR enabled E. coli cell to capture and store H2 and CO2 in the form of formate.
Collapse
Affiliation(s)
- Felix Leo
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439, Frankfurt am Main, Germany
| | - Fabian M Schwarz
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439, Frankfurt am Main, Germany
| | - Kai Schuchmann
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439, Frankfurt am Main, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Kivenson V, Paul BG, Valentine DL. An Ecological Basis for Dual Genetic Code Expansion in Marine Deltaproteobacteria. Front Microbiol 2021; 12:680620. [PMID: 34335502 PMCID: PMC8318568 DOI: 10.3389/fmicb.2021.680620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Marine benthic environments may be shaped by anthropogenic and other localized events, leading to changes in microbial community composition evident decades after a disturbance. Marine sediments in particular harbor exceptional taxonomic diversity and can shed light on distinctive evolutionary strategies. Genetic code expansion is a strategy that increases the structural and functional diversity of proteins in cells, by repurposing stop codons to encode non-canonical amino acids: pyrrolysine (Pyl) and selenocysteine (Sec). Here, we report both a study of the microbiome at a deep sea industrial waste dumpsite and an unanticipated discovery of codon reassignment in its most abundant member, with potential ramifications for interpreting microbial interactions with ocean-dumped wastes. The genomes of abundant Deltaproteobacteria from the sediments of a deep-ocean chemical waste dump site have undergone genetic code expansion. Pyl and Sec in these organisms appear to augment trimethylamine (TMA) and one-carbon metabolism, representing an increased metabolic versatility. The inferred metabolism of these sulfate-reducing bacteria places them in competition with methylotrophic methanogens for TMA, a contention further supported by earlier isotope tracer studies and reanalysis of metatranscriptomic studies. A survey of genomic data further reveals a broad geographic distribution of a niche group of similarly specialized Deltaproteobacteria, including at sulfidic sites in the Atlantic Ocean, Gulf of Mexico, Guaymas Basin, and North Sea, as well as in terrestrial and estuarine environments. These findings reveal an important biogeochemical role for specialized Deltaproteobacteria at the interface of the carbon, nitrogen, selenium, and sulfur cycles, with their niche adaptation and ecological success potentially augmented by genetic code expansion.
Collapse
Affiliation(s)
- Veronika Kivenson
- Interdepartmental Graduate Program in Marine Science, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Blair G. Paul
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - David L. Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
16
|
Evans RM, Krahn N, Murphy BJ, Lee H, Armstrong FA, Söll D. Selective cysteine-to-selenocysteine changes in a [NiFe]-hydrogenase confirm a special position for catalysis and oxygen tolerance. Proc Natl Acad Sci U S A 2021; 118:e2100921118. [PMID: 33753519 PMCID: PMC8020662 DOI: 10.1073/pnas.2100921118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In [NiFe]-hydrogenases, the active-site Ni is coordinated by four cysteine-S ligands (Cys; C), two of which are bridging to the Fe(CO)(CN)2 fragment. Substitution of a single Cys residue by selenocysteine (Sec; U) occurs occasionally in nature. Using a recent method for site-specific Sec incorporation into proteins, each of the four Ni-coordinating cysteine residues in the oxygen-tolerant Escherichia coli [NiFe]-hydrogenase-1 (Hyd-1) has been replaced by U to identify its importance for enzyme function. Steady-state solution activity of each Sec-substituted enzyme (on a per-milligram basis) is lowered, although this may reflect the unquantified presence of recalcitrant inactive/immature/misfolded forms. Protein film electrochemistry, however, reveals detailed kinetic data that are independent of absolute activities. Like native Hyd-1, the variants have low apparent KMH2 values, do not produce H2 at pH 6, and display the same onset overpotential for H2 oxidation. Mechanistically important differences were identified for the C576U variant bearing the equivalent replacement found in native [NiFeSe]-hydrogenases, its extreme O2 tolerance (apparent KMH2 and Vmax [solution] values relative to native Hyd-1 of 0.13 and 0.04, respectively) implying the importance of a selenium atom in the position cis to the site where exogenous ligands (H-, H2, O2) bind. Observation of the same unusual electrocatalytic signature seen earlier for the proton transfer-defective E28Q variant highlights the direct role of the chalcogen atom (S/Se) at position 576 close to E28, with the caveat that Se is less effective than S in facilitating proton transfer away from the Ni during H2 oxidation by this enzyme.
Collapse
Affiliation(s)
- Rhiannon M Evans
- Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | - Bonnie J Murphy
- Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Harrison Lee
- Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Fraser A Armstrong
- Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom;
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511;
- Department of Chemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
17
|
Johnstone MA, Nelson SJ, O'Leary C, Self WT. Exploring the selenium-over-sulfur substrate specificity and kinetics of a bacterial selenocysteine lyase. Biochimie 2021; 182:166-176. [PMID: 33444662 DOI: 10.1016/j.biochi.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 11/15/2022]
Abstract
Selenium is a vital micronutrient in many organisms. While traces are required for microbial utilization, excess amounts are toxic; thus, selenium can be regarded as a biological double-edged sword. Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation into selenoproteins reveals a highly discriminate process that is not completely understood. We have identified SclA, a NifS-like protein in the nosocomial pathogen, Enterococcus faecalis, and characterized its enzymatic activity and specificity for l-selenocysteine over l-cysteine. It is known that Asp-146 is required for selenocysteine specificity in the human selenocysteine lyase. Thus, using computational biology, we compared the bacterial and mammalian enzymes and identified His-100, an Asp-146 ortholog in SclA, and generated site-directed mutants in order to study the residue's potential role in the l-selenocysteine discrimination mechanism. The proteins were overexpressed, purified, and characterized for their biochemical properties. All mutants exhibited varying Michaelis-Menten behavior towards l-selenocysteine, but His-100 was not found to be essential for this activity. Additionally, l-cysteine acted as a competitive inhibitor of all enzymes with higher affinity than l-selenocysteine. Finally, we discovered that SclA exhibited low activity with l-cysteine as a poor substrate regardless of mutations. We conclude that His-100 is not required for l-selenocysteine specificity, underscoring the inherent differences in discriminatory mechanisms between bacterial NifS-like proteins and mammalian selenocysteine lyases.
Collapse
Affiliation(s)
- Michael A Johnstone
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Samantha J Nelson
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Christine O'Leary
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - William T Self
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
18
|
Hao C, Lam HHN. Quantitative Proteomics Reveals UGA-Independent Misincorporation of Selenocysteine throughout the Escherichia coli Proteome. J Proteome Res 2020; 20:212-221. [PMID: 33253578 DOI: 10.1021/acs.jproteome.0c00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selenocysteine is cotranslationally inserted into polypeptide chains by recoding the stop codon UGA. However, selenocysteine has also been found to be misincorporated into a small number of proteins displacing cysteines in previous studies, but such misincorporation has not yet been examined at the proteome level thoroughly. We performed label-free quantitative proteomics analysis on Escherichia coli grown in a high-selenium medium to obtain a fuller picture of selenocysteine misincorporation in its proteome. We found 139 misincorporation sites, including 54 recurred in all biological replicates, suggesting that some cysteine sites are more prone to be misincorporated than others. However, sequence and evolutionary conservation analysis showed no clear pattern among these misincorporation sites. We hypothesize that misincorporations occur randomly throughout the proteome, but the degradation rate of such misincorporated proteins varies depending on the impact of the misincorporation on protein function and stability, leading to the differential detectability of misincorporated sites by proteomics. Our hypothesis is further supported by two observations: (1) cells cultured with severely limited sulfur still retained a substantial proportion of normal cysteine counterparts of all of the found misincorporated proteins and (2) proteins involved in protein folding and proteolysis were highly upregulated in high-selenium culture.
Collapse
Affiliation(s)
- Chunlin Hao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Henry H N Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
19
|
Mintmier B, McGarry JM, Bain DJ, Basu P. Kinetic consequences of the endogenous ligand to molybdenum in the DMSO reductase family: a case study with periplasmic nitrate reductase. J Biol Inorg Chem 2020; 26:13-28. [PMID: 33131003 DOI: 10.1007/s00775-020-01833-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022]
Abstract
The molybdopterin enzyme family catalyzes a variety of substrates and plays a critical role in the cycling of carbon, nitrogen, arsenic, and selenium. The dimethyl sulfoxide reductase (DMSOR) subfamily is the most diverse family of molybdopterin enzymes and the members of this family catalyze a myriad of reactions that are important in microbial life processes. Enzymes in the DMSOR family can transform multiple substrates; however, quantitative information about the substrate preference is sparse, and, more importantly, the reasons for the substrate selectivity are not clear. Molybdenum coordination has long been proposed to impact the catalytic activity of the enzyme. Specifically, the molybdenum-coordinating residue may tune substrate preference. As such, molybdopterin enzyme periplasmic nitrate reductase (Nap) is utilized as a vehicle to understand the substrate preference and delineate the kinetic underpinning of the differences imposed by exchanging the molybdenum ligands. To this end, NapA from Campylobacter jejuni has been heterologously overexpressed, and a series of variants, where the molybdenum coordinating cysteine has been replaced with another amino acid, has been produced. The kinetic properties of these variants are discussed and compared with those of the native enzyme, providing quantitative information to understand the function of the molybdenum-coordinating residue.
Collapse
Affiliation(s)
- Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, IN, 46202, USA
| | - Jennifer M McGarry
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, IN, 46202, USA
| | - Daniel J Bain
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
20
|
Robinson W, Bassegoda A, Blaza JN, Reisner E, Hirst J. Understanding How the Rate of C-H Bond Cleavage Affects Formate Oxidation Catalysis by a Mo-Dependent Formate Dehydrogenase. J Am Chem Soc 2020; 142:12226-12236. [PMID: 32551568 PMCID: PMC7366381 DOI: 10.1021/jacs.0c03574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 12/21/2022]
Abstract
Metal-dependent formate dehydrogenases (FDHs) catalyze the reversible conversion of formate into CO2, a proton, and two electrons. Kinetic studies of FDHs provide key insights into their mechanism of catalysis, relevant as a guide for the development of efficient electrocatalysts for formate oxidation as well as for CO2 capture and utilization. Here, we identify and explain the kinetic isotope effect (KIE) observed for the oxidation of formate and deuterioformate by the Mo-containing FDH from Escherichia coli using three different techniques: steady-state solution kinetic assays, protein film electrochemistry (PFE), and pre-steady-state stopped-flow methods. For each technique, the Mo center of FDH is reoxidized at a different rate following formate oxidation, significantly affecting the observed kinetic behavior and providing three different viewpoints on the KIE. Steady-state turnover in solution, using an artificial electron acceptor, is kinetically limited by diffusional intermolecular electron transfer, masking the KIE. In contrast, interfacial electron transfer in PFE is fast, lifting the electron-transfer rate limitation and manifesting a KIE of 2.44. Pre-steady-state analyses using stopped-flow spectroscopy revealed a KIE of 3 that can be assigned to the C-H bond cleavage step during formate oxidation. We formalize our understanding of FDH catalysis by fitting all the data to a single kinetic model, recreating the condition-dependent shift in rate-limitation of FDH catalysis between active-site chemical catalysis and regenerative electron transfer. Furthermore, our model predicts the steady-state and time-dependent concentrations of catalytic intermediates, providing a valuable framework for the design of future mechanistic experiments.
Collapse
Affiliation(s)
- William
E. Robinson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Arnau Bassegoda
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, U.K.
| | - James N. Blaza
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, U.K.
| | - Erwin Reisner
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Judy Hirst
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, U.K.
| |
Collapse
|
21
|
Rohwerder T, Rohde MT, Jehmlich N, Purswani J. Actinobacterial Degradation of 2-Hydroxyisobutyric Acid Proceeds via Acetone and Formyl-CoA by Employing a Thiamine-Dependent Lyase Reaction. Front Microbiol 2020; 11:691. [PMID: 32351493 PMCID: PMC7176365 DOI: 10.3389/fmicb.2020.00691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
The tertiary branched short-chain 2-hydroxyisobutyric acid (2-HIBA) has been associated with several metabolic diseases and lysine 2-hydroxyisobutyrylation seems to be a common eukaryotic as well as prokaryotic post-translational modification in proteins. In contrast, the underlying 2-HIBA metabolism has thus far only been detected in a few microorganisms, such as the betaproteobacterium Aquincola tertiaricarbonis L108 and the Bacillus group bacterium Kyrpidia tusciae DSM 2912. In these strains, 2-HIBA can be specifically activated to the corresponding CoA thioester by the 2-HIBA-CoA ligase (HCL) and is then isomerized to 3-hydroxybutyryl-CoA in a reversible and B12-dependent mutase reaction. Here, we demonstrate that the actinobacterial strain Actinomycetospora chiangmaiensis DSM 45062 degrades 2-HIBA and also its precursor 2-methylpropane-1,2-diol via acetone and formic acid by employing a thiamine pyrophosphate-dependent lyase. The corresponding gene is located directly upstream of hcl, which has previously been found only in operonic association with the 2-hydroxyisobutyryl-CoA mutase genes in other bacteria. Heterologous expression of the lyase gene from DSM 45062 in E. coli established a 2-hydroxyisobutyryl-CoA lyase activity in the latter. In line with this, analysis of the DSM 45062 proteome reveals a strong induction of the lyase-HCL gene cluster on 2-HIBA. Acetone is likely degraded via hydroxylation to acetol catalyzed by a MimABCD-related binuclear iron monooxygenase and formic acid appears to be oxidized to CO2 by selenium-dependent dehydrogenases. The presence of the lyase-HCL gene cluster in isoprene-degrading Rhodococcus strains and Pseudonocardia associated with tropical leafcutter ant species points to a role in degradation of biogenic short-chain ketones and highly branched organic compounds.
Collapse
Affiliation(s)
- Thore Rohwerder
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Maria-Teresa Rohde
- Institut für Chemie - Biophysikalische Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jessica Purswani
- Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|
22
|
Oliveira AR, Mota C, Mourato C, Domingos RM, Santos MFA, Gesto D, Guigliarelli B, Santos-Silva T, Romão MJ, Cardoso Pereira IA. Toward the Mechanistic Understanding of Enzymatic CO2 Reduction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00086] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Cristiano Mota
- UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Cláudia Mourato
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Renato M. Domingos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Marino F. A. Santos
- UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Diana Gesto
- UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Bruno Guigliarelli
- Aix Marseille Université, CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille 13402, France
| | - Teresa Santos-Silva
- UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria João Romão
- UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Inês A. Cardoso Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
23
|
Wangen JR, Green R. Stop codon context influences genome-wide stimulation of termination codon readthrough by aminoglycosides. eLife 2020; 9:52611. [PMID: 31971508 PMCID: PMC7089771 DOI: 10.7554/elife.52611] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Stop codon readthrough (SCR) occurs when the ribosome miscodes at a stop codon. Such readthrough events can be therapeutically desirable when a premature termination codon (PTC) is found in a critical gene. To study SCR in vivo in a genome-wide manner, we treated mammalian cells with aminoglycosides and performed ribosome profiling. We find that in addition to stimulating readthrough of PTCs, aminoglycosides stimulate readthrough of normal termination codons (NTCs) genome-wide. Stop codon identity, the nucleotide following the stop codon, and the surrounding mRNA sequence context all influence the likelihood of SCR. In comparison to NTCs, downstream stop codons in 3′UTRs are recognized less efficiently by ribosomes, suggesting that targeting of critical stop codons for readthrough may be achievable without general disruption of translation termination. Finally, we find that G418-induced miscoding alters gene expression with substantial effects on translation of histone genes, selenoprotein genes, and S-adenosylmethionine decarboxylase (AMD1). Many genes provide a set of instructions needed to build a protein, which are read by structures called ribosomes through a process called translation. The genetic information contains a short, coded instruction called a stop codon which marks the end of the protein. When a ribosome finds a stop codon it should stop building and release the protein it has made. Ribosomes do not always stop at stop codons. Certain chemicals can actually prevent ribosomes from detecting stop codons correctly, and aminoglycosides are drugs that have exactly this effect. Aminoglycosides can be used as antibiotics at low doses because they interfere with ribosomes in bacteria, but at higher doses they can also prevent ribosomes from detecting stop codons in human cells. When ribosomes do not stop at a stop codon this is called readthrough. There are different types of stop codons and some are naturally more effective at stopping ribosomes than others. Wangen and Green have now examined the effect of an aminoglycoside called G418 on ribosomes in human cells grown in the laboratory. The results showed how ribosomes interacted with genetic information and revealed that certain stop codons are more affected by G418 than others. The stop codon and other genetic sequences around it affect the likelihood of readthrough. Wangen and Green also showed that sequences that encourage translation to stop are more common in the area around stop codons. These findings highlight an evolutionary pressure driving more genes to develop strong stop codons that resist readthrough. Despite this, some are still more affected by drugs like G418 than others. Some genetic conditions, like cystic fibrosis, result from incorrect stop codons in genes. Drugs that promote readthrough specifically in these genes could be useful new treatments.
Collapse
Affiliation(s)
- Jamie R Wangen
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
24
|
Probing the Structure of [NiFeSe] Hydrogenase with QM/MM Computations. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The geometry and vibrational behavior of selenocysteine [NiFeSe] hydrogenase isolated from Desulfovibrio vulgaris Hildenborough have been investigated using a hybrid quantum mechanical (QM)/ molecular mechanical (MM) approach. Structural models have been built based on the three conformers identified in the recent crystal structure resolved at 1.3 Å from X-ray crystallography. In the models, a diamagnetic Ni2+ atom was modeled in combination with both Fe2+ and Fe3+ to investigate the effect of iron oxidation on geometry and vibrational frequency of the nonproteic ligands, CO and CN-, coordinated to the Fe atom. Overall, the QM/MM optimized geometries are in good agreement with the experimentally resolved geometries. Analysis of computed vibrational frequencies, in comparison with experimental Fourier-transform infrared (FTIR) frequencies, suggests that a mixture of conformers as well as Fe2+ and Fe3+ oxidation states may be responsible for the acquired vibrational spectra.
Collapse
|
25
|
Duffus BR, Schrapers P, Schuth N, Mebs S, Dau H, Leimkühler S, Haumann M. Anion Binding and Oxidative Modification at the Molybdenum Cofactor of Formate Dehydrogenase from Rhodobacter capsulatus Studied by X-ray Absorption Spectroscopy. Inorg Chem 2019; 59:214-225. [PMID: 31814403 DOI: 10.1021/acs.inorgchem.9b01613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formate dehydrogenase (FDH) enzymes are versatile catalysts for CO2 conversion. The FDH from Rhodobacter capsulatus contains a molybdenum cofactor with the dithiolene functions of two pyranopterin guanine dinucleotide molecules, a conserved cysteine, and a sulfido group bound at Mo(VI). In this study, we focused on metal oxidation state and coordination changes in response to exposure to O2, inhibitory anions, and redox agents using X-ray absorption spectroscopy (XAS) at the Mo K-edge. Differences in the oxidative modification of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor relative to samples prepared aerobically without inhibitor, such as variations in the relative numbers of sulfido (Mo═S) and oxo (Mo═O) bonds, were observed in the presence of azide (N3-) or cyanate (OCN-). Azide provided best protection against O2, resulting in a quantitatively sulfurated cofactor with a displaced cysteine ligand and optimized formate oxidation activity. Replacement of the cysteine ligand by a formate (HCO2-) ligand at the molybdenum in active enzyme is compatible with our XAS data. Cyanide (CN-) inactivated the enzyme by replacing the sulfido ligand at Mo(VI) with an oxo ligand. Evidence that the sulfido group may become protonated upon molybdenum reduction was obtained. Our results emphasize the role of coordination flexibility at the molybdenum center during inhibitory and catalytic processes of FDH enzymes.
Collapse
Affiliation(s)
- Benjamin R Duffus
- Institut für Biochemie und Biologie, Molekulare Enzymologie , Universität Potsdam , Karl-Liebknecht Strasse 24-25 , 14476 Potsdam , Germany
| | - Peer Schrapers
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Nils Schuth
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Stefan Mebs
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Holger Dau
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Silke Leimkühler
- Institut für Biochemie und Biologie, Molekulare Enzymologie , Universität Potsdam , Karl-Liebknecht Strasse 24-25 , 14476 Potsdam , Germany
| | - Michael Haumann
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| |
Collapse
|
26
|
Sumner SE, Markley RL, Kirimanjeswara GS. Role of Selenoproteins in Bacterial Pathogenesis. Biol Trace Elem Res 2019; 192:69-82. [PMID: 31489516 PMCID: PMC6801102 DOI: 10.1007/s12011-019-01877-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
The trace element selenium is an essential micronutrient that plays an important role in maintaining homeostasis of several tissues including the immune system of mammals. The vast majority of the biological functions of selenium are mediated via selenoproteins, proteins which incorporate the selenium-containing amino acid selenocysteine. Several bacterial infections of humans and animals are associated with decreased levels of selenium in the blood and an adjunct therapy with selenium often leads to favorable outcomes. Many pathogenic bacteria are also capable of synthesizing selenocysteine suggesting that selenoproteins may have a role in bacterial physiology. Interestingly, the composition of host microbiota is also regulated by dietary selenium levels. Therefore, bacterial pathogens, microbiome, and host immune cells may be competing for a limited supply of selenium. Elucidating how selenium, in particular selenoproteins, may regulate pathogen virulence, microbiome diversity, and host immune response during a bacterial infection is critical for clinical management of infectious diseases.
Collapse
Affiliation(s)
- Sarah E Sumner
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rachel L Markley
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Girish S Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
27
|
Finney AJ, Lowden R, Fleszar M, Albareda M, Coulthurst SJ, Sargent F. The plant pathogen Pectobacterium atrosepticum contains a functional formate hydrogenlyase-2 complex. Mol Microbiol 2019; 112:1440-1452. [PMID: 31420965 PMCID: PMC7384014 DOI: 10.1111/mmi.14370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
Abstract
Pectobacterium atrosepticum SCRI1043 is a phytopathogenic Gram-negative enterobacterium. Genomic analysis has identified that genes required for both respiration and fermentation are expressed under anaerobic conditions. One set of anaerobically expressed genes is predicted to encode an important but poorly understood membrane-bound enzyme termed formate hydrogenlyase-2 (FHL-2), which has fascinating evolutionary links to the mitochondrial NADH dehydrogenase (Complex I). In this work, molecular genetic and biochemical approaches were taken to establish that FHL-2 is fully functional in P. atrosepticum and is the major source of molecular hydrogen gas generated by this bacterium. The FHL-2 complex was shown to comprise a rare example of an active [NiFe]-hydrogenase-4 (Hyd-4) isoenzyme, itself linked to an unusual selenium-free formate dehydrogenase in the final complex. In addition, further genetic dissection of the genes encoding the predicted membrane arm of FHL-2 established surprisingly that the majority of genes encoding this domain are not required for physiological hydrogen production activity. Overall, this study presents P. atrosepticum as a new model bacterial system for understanding anaerobic formate and hydrogen metabolism in general, and FHL-2 function and structure in particular.
Collapse
Affiliation(s)
- Alexander J Finney
- School of Natural & Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.,School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Rebecca Lowden
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Michal Fleszar
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Marta Albareda
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Spain
| | | | - Frank Sargent
- School of Natural & Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.,School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
28
|
Zeida A, Trujillo M, Ferrer-Sueta G, Denicola A, Estrin DA, Radi R. Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols. Chem Rev 2019; 119:10829-10855. [PMID: 31498605 DOI: 10.1021/acs.chemrev.9b00371] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs. To finish, we describe and discuss the current views on the activities of thiol-based peroxidases in peroxide-mediated redox signaling processes.
Collapse
Affiliation(s)
| | | | | | | | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , 2160 Buenos Aires , Argentina
| | | |
Collapse
|
29
|
Finney AJ, Sargent F. Formate hydrogenlyase: A group 4 [NiFe]-hydrogenase in tandem with a formate dehydrogenase. Adv Microb Physiol 2019; 74:465-486. [PMID: 31126535 DOI: 10.1016/bs.ampbs.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogenase enzymes are currently under the international research spotlight due to emphasis on biologically produced hydrogen as one potential energy carrier to relinquish the requirement for 'fossil fuel' derived energy. Three major classes of hydrogenase exist in microbes all able to catalyze the reversible oxidation of dihydrogen to protons and electrons. These classes are defined by their active site metal content: [NiFe]-; [FeFe]- and [Fe]-hydrogenases. Of these the [NiFe]-hydrogenases have links to ancient forms of metabolism, utilizing hydrogen as the original source of reductant on Earth. This review progresses to highlight the Group 4 [NiFe]-hydrogenase enzymes that preferentially generate hydrogen exploiting various partner enzymes or ferredoxin, while in some cases translocating ions across biological membranes. Specific focus is paid to Group 4A, the Formate hydrogenlyase complexes. These are the combination of a six or nine subunit [NiFe]-hydrogenase with a soluble formate dehydrogenase to derived electrons from formate oxidation for proton reduction. The incidence, physiology, structure and biotechnological application of these complexes will be explored with attention on Escherichia coli Formate Hydrogenlyase-1 (FHL-1).
Collapse
Affiliation(s)
- Alexander J Finney
- Devonshire Centre for Biosystems Science & Engineering, School of Natural & Environmental Sciences, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, England, United Kingdom
| | - Frank Sargent
- Devonshire Centre for Biosystems Science & Engineering, School of Natural & Environmental Sciences, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, England, United Kingdom
| |
Collapse
|
30
|
Niks D, Hille R. Molybdenum- and tungsten-containing formate dehydrogenases and formylmethanofuran dehydrogenases: Structure, mechanism, and cofactor insertion. Protein Sci 2019; 28:111-122. [PMID: 30120799 PMCID: PMC6295890 DOI: 10.1002/pro.3498] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
Abstract
An overview is provided of the molybdenum- and tungsten-containing enzymes that catalyze the interconversion of formate and CO2 , focusing on common structural and mechanistic themes, as well as a consideration of the manner in which the mature Mo- or W-containing cofactor is inserted into apoprotein.
Collapse
Affiliation(s)
- Dimitri Niks
- Department of BiochemistryUniversity of CaliforniaRiverside
| | - Russ Hille
- Department of BiochemistryUniversity of CaliforniaRiverside
| |
Collapse
|
31
|
Schuchmann K, Chowdhury NP, Müller V. Complex Multimeric [FeFe] Hydrogenases: Biochemistry, Physiology and New Opportunities for the Hydrogen Economy. Front Microbiol 2018; 9:2911. [PMID: 30564206 PMCID: PMC6288185 DOI: 10.3389/fmicb.2018.02911] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/13/2018] [Indexed: 12/03/2022] Open
Abstract
Hydrogenases are key enzymes of the energy metabolism of many microorganisms. Especially in anoxic habitats where molecular hydrogen (H2) is an important intermediate, these enzymes are used to expel excess reducing power by reducing protons or they are used for the oxidation of H2 as energy and electron source. Despite the fact that hydrogenases catalyze the simplest chemical reaction of reducing two protons with two electrons it turned out that they are often parts of multimeric enzyme complexes catalyzing complex chemical reactions with a multitude of functions in the metabolism. Recent findings revealed multimeric hydrogenases with so far unknown functions particularly in bacteria from the class Clostridia. The discovery of [FeFe] hydrogenases coupled to electron bifurcating subunits solved the enigma of how the otherwise highly endergonic reduction of the electron carrier ferredoxin can be carried out and how H2 production from NADH is possible. Complexes of [FeFe] hydrogenases with formate dehydrogenases revealed a novel enzymatic coupling of the two electron carriers H2 and formate. These novel hydrogenase enzyme complex could also contribute to biotechnological H2 production and H2 storage, both processes essential for an envisaged economy based on H2 as energy carrier.
Collapse
Affiliation(s)
- Kai Schuchmann
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Nilanjan Pal Chowdhury
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Volker Müller
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
32
|
Maroney MJ, Hondal RJ. Selenium versus sulfur: Reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic Biol Med 2018; 127:228-237. [PMID: 29588180 PMCID: PMC6158117 DOI: 10.1016/j.freeradbiomed.2018.03.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 12/16/2022]
Abstract
This review highlights the contributions of Jean Chaudière to the field of selenium biochemistry. Chaudière was the first to recognize that one of the main reasons that selenium in the form of selenocysteine is used in proteins is due to the fact that it strongly resists permanent oxidation. The foundations for this important concept was laid down by Al Tappel in the 1960's and even before by others. The concept of oxygen tolerance first recognized in the study of glutathione peroxidase was further advanced and refined by those studying [NiFeSe]-hydrogenases, selenosubtilisin, and thioredoxin reductase. After 200 years of selenium research, work by Marcus Conrad and coworkers studying glutathione peroxidase-4 has provided definitive evidence for Chaudière's original hypothesis (Ingold et al., 2018) [36]. While the reaction of selenium with oxygen is readily reversible, there are many other examples of this phenomenon of reversibility. Many reactions of selenium can be described as "easy in - easy out". This is due to the strong nucleophilic character of selenium to attack electrophiles, but then this reaction can be reversed due to the strong electrophilic character of selenium and the weakness of the selenium-carbon bond. Several examples of this are described.
Collapse
Affiliation(s)
- Michael J Maroney
- Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts, Life Sciences Laboratories, 240 Thatcher Road, Room N373, Amherst, MA 01003-9364, United States
| | - Robert J Hondal
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States.
| |
Collapse
|
33
|
Vargas-Rodriguez O, Englert M, Merkuryev A, Mukai T, Söll D. Recoding of the selenocysteine UGA codon by cysteine in the presence of a non-canonical tRNA Cys and elongation factor SelB. RNA Biol 2018; 15:471-479. [PMID: 29879865 PMCID: PMC6103700 DOI: 10.1080/15476286.2018.1474074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/01/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022] Open
Abstract
In many organisms, the UGA stop codon is recoded to insert selenocysteine (Sec) into proteins. Sec incorporation in bacteria is directed by an mRNA element, known as the Sec-insertion sequence (SECIS), located downstream of the Sec codon. Unlike other aminoacyl-tRNAs, Sec-tRNASec is delivered to the ribosome by a dedicated elongation factor, SelB. We recently identified a series of tRNASec-like tRNA genes distributed across Bacteria that also encode a canonical tRNASec. These tRNAs contain sequence elements generally recognized by cysteinyl-tRNA synthetase (CysRS). While some of these tRNAs contain a UCA Sec anticodon, most have a GCA Cys anticodon. tRNASec with GCA anticodons are known to recode UGA codons. Here we investigate the clostridial Desulfotomaculum nigrificans tRNASec-like tRNACys, and show that this tRNA is acylated by CysRS, recognized by SelB, and capable of UGA recoding with Cys in Escherichia coli. We named this non-canonical group of tRNACys as 'tRNAReC' (Recoding with Cys). We performed a comprehensive survey of tRNAReC genes to establish their phylogenetic distribution, and found that, in a particular lineage of clostridial Pelotomaculum, the Cys identity elements of tRNAReC had mutated. This novel tRNA, which contains a UCA anticodon, is capable of Sec incorporation in E. coli, albeit with lower efficiency relative to Pelotomaculum tRNASec. We renamed this unusual tRNASec derived from tRNAReC as 'tRNAReU' (Recoding with Sec). Together, our results suggest that tRNAReC and tRNAReU may serve as safeguards in the production of selenoproteins and - to our knowledge - they provide the first example of programmed codon-anticodon mispairing in bacteria.
Collapse
Affiliation(s)
- Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Anna Merkuryev
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
34
|
Blum JM, Su Q, Ma Y, Valverde-Pérez B, Domingo-Félez C, Jensen MM, Smets BF. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2O production. Environ Microbiol 2018; 20:1623-1640. [DOI: 10.1111/1462-2920.14063] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Jan-Michael Blum
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Qingxian Su
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Yunjie Ma
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Borja Valverde-Pérez
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Carlos Domingo-Félez
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Marlene Mark Jensen
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Barth F. Smets
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| |
Collapse
|
35
|
Fu X, Söll D, Sevostyanova A. Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli. RNA Biol 2018; 15:461-470. [PMID: 29447106 DOI: 10.1080/15476286.2018.1440876] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Selenocysteine (Sec), a rare genetically encoded amino acid with unusual chemical properties, is of great interest for protein engineering. Sec is synthesized on its cognate tRNA (tRNASec) by the concerted action of several enzymes. While all other aminoacyl-tRNAs are delivered to the ribosome by the elongation factor Tu (EF-Tu), Sec-tRNASec requires a dedicated factor, SelB. Incorporation of Sec into protein requires recoding of the stop codon UGA aided by a specific mRNA structure, the SECIS element. This unusual biogenesis restricts the use of Sec in recombinant proteins, limiting our ability to study the properties of selenoproteins. Several methods are currently available for the synthesis selenoproteins. Here we focus on strategies for in vivo Sec insertion at any position(s) within a recombinant protein in a SECIS-independent manner: (i) engineering of tRNASec for use by EF-Tu without the SECIS requirement, and (ii) design of a SECIS-independent SelB route.
Collapse
Affiliation(s)
- Xian Fu
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| | - Dieter Söll
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA.,b Department of Chemistry , Yale University , New Haven , CT , USA
| | - Anastasia Sevostyanova
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| |
Collapse
|
36
|
Lazard M, Dauplais M, Blanquet S, Plateau P. Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic cells. Biomol Concepts 2018; 8:93-104. [PMID: 28574376 DOI: 10.1515/bmc-2017-0007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022] Open
Abstract
Selenium is an essential trace element due to its incorporation into selenoproteins with important biological functions. However, at high doses it is toxic. Selenium toxicity is generally attributed to the induction of oxidative stress. However, it has become apparent that the mode of action of seleno-compounds varies, depending on its chemical form and speciation. Recent studies in various eukaryotic systems, in particular the model organism Saccharomyces cerevisiae, provide new insights on the cytotoxic mechanisms of selenomethionine and selenocysteine. This review first summarizes current knowledge on reactive oxygen species (ROS)-induced genotoxicity of inorganic selenium species. Then, we discuss recent advances on our understanding of the molecular mechanisms of selenocysteine and selenomethionine cytotoxicity. We present evidences indicating that both oxidative stress and ROS-independent mechanisms contribute to selenoamino acids cytotoxicity. These latter mechanisms include disruption of protein homeostasis by selenocysteine misincorporation in proteins and/or reaction of selenols with protein thiols.
Collapse
|
37
|
Schwarz FM, Schuchmann K, Müller V. Hydrogenation of CO 2 at ambient pressure catalyzed by a highly active thermostable biocatalyst. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:237. [PMID: 30186365 PMCID: PMC6119302 DOI: 10.1186/s13068-018-1236-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/22/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Replacing fossil fuels as energy carrier requires alternatives that combine sustainable production, high volumetric energy density, easy and fast refueling for mobile applications, and preferably low risk of hazard. Molecular hydrogen (H2) has been considered as promising alternative; however, practical application is struggling because of the low volumetric energy density and the explosion hazard when stored in large amounts. One way to overcome these limitations is the transient conversion of H2 into other chemicals with increased volumetric energy density and lower risk hazard, for example so-called liquid organic hydrogen carriers such as formic acid/formate that is obtained by hydrogenation of CO2. Many homogenous and heterogenous chemical catalysts have been described in the past years, however, often requiring high pressures and temperatures. Recently, the first biocatalyst for this reaction has been described opening the route to a biotechnological alternative for this conversion. RESULTS The hydrogen-dependent CO2 reductase (HDCR) is a highly active biocatalyst for storing H2 in the form of formic acid/formate by reversibly catalyzing the hydrogenation of CO2. We report the identification, isolation, and characterization of the first thermostable HDCR operating at temperatures up to 70 °C. The enzyme was isolated from the thermophilic acetogenic bacterium Thermoanaerobacter kivui and displays exceptionally high activities in both reaction directions, substantially exceeding known chemical catalysts. CO2 hydrogenation is catalyzed at mild conditions with a turnover frequency of 9,556,000 h-1 (specific activity of 900 µmol formate min-1 mg-1) and the reverse reaction, H2 + CO2 release from formate, is catalyzed with a turnover frequency of 9,892,000 h-1 (930 µmol H2 min-1 mg-1). The HDCR of T. kivui consists of a [FeFe] hydrogenase subunit putatively coupled to a tungsten-dependent CO2 reductase/formate dehydrogenase subunit by an array of iron-sulfur clusters. CONCLUSIONS The discovery of the first thermostable HDCR provides a promising biological alternative for a chemically challenging reaction and might serve as model for the better understanding of catalysts able to efficiently reduce CO2. The catalytic activity for reversible CO2 hydrogenation of this enzyme is the highest activity known for bio- and chemical catalysts and requiring only ambient temperatures and pressures. The thermostability provides more flexibility regarding the process parameters for a biotechnological application.
Collapse
Affiliation(s)
- Fabian M. Schwarz
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Kai Schuchmann
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
38
|
Bertagnolli AD, Padilla CC, Glass JB, Thamdrup B, Stewart FJ. Metabolic potential and
in situ
activity of marine Marinimicrobia bacteria in an anoxic water column. Environ Microbiol 2017; 19:4392-4416. [DOI: 10.1111/1462-2920.13879] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 11/29/2022]
Affiliation(s)
| | - Cory C. Padilla
- School of Biological SciencesGeorgia Institute of TechnologyAtlanta GA USA
| | - Jennifer B. Glass
- School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlanta GA USA
| | - Bo Thamdrup
- Department of Biology and Nordic Center for Earth Evolution (NordCEE)University of Southern DenmarkOdense Denmark
| | - Frank J. Stewart
- School of Biological SciencesGeorgia Institute of TechnologyAtlanta GA USA
| |
Collapse
|
39
|
Robinson W, Bassegoda A, Reisner E, Hirst J. Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase. J Am Chem Soc 2017; 139:9927-9936. [PMID: 28635274 PMCID: PMC5532686 DOI: 10.1021/jacs.7b03958] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 12/26/2022]
Abstract
Molybdenum-containing formate dehydrogenase H from Escherichia coli (EcFDH-H) is a powerful model system for studies of the reversible reduction of CO2 to formate. However, the mechanism of FDH catalysis is currently under debate, and whether the primary Mo coordination sphere remains saturated or one of the ligands dissociates to allow direct substrate binding during turnover is disputed. Herein, we describe how oxidation-state-dependent changes at the active site alter its inhibitor binding properties. Using protein film electrochemistry, we show that formate oxidation by EcFDH-H is inhibited strongly and competitively by N3-, OCN-, SCN-, NO2-, and NO3-, whereas CO2 reduction is inhibited only weakly and not competitively. During catalysis, the Mo center cycles between the formal Mo(VI)═S and Mo(IV)-SH states, and by modeling chronoamperometry data recorded at different potentials and substrate and inhibitor concentrations, we demonstrate that both formate oxidation and CO2 reduction are inhibited by selective inhibitor binding to the Mo(VI)═S state. The strong dependence of inhibitor-binding affinity on both Mo oxidation state and inhibitor electron-donor strength indicates that inhibitors (and substrates) bind directly to the Mo center. We propose that inhibitors bind to the Mo following dissociation of a selenocysteine ligand to create a vacant coordination site for catalysis and close by considering the implications of our data for the mechanisms of formate oxidation and CO2 reduction.
Collapse
Affiliation(s)
- William
E. Robinson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Arnau Bassegoda
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, U.K.
| | - Erwin Reisner
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Judy Hirst
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, U.K.
| |
Collapse
|
40
|
Maia LB, Moura I, Moura JJ. Molybdenum and tungsten-containing formate dehydrogenases: Aiming to inspire a catalyst for carbon dioxide utilization. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Crystal structures of the human elongation factor eEFSec suggest a non-canonical mechanism for selenocysteine incorporation. Nat Commun 2016; 7:12941. [PMID: 27708257 PMCID: PMC5059743 DOI: 10.1038/ncomms12941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/17/2016] [Indexed: 01/07/2023] Open
Abstract
Selenocysteine is the only proteinogenic amino acid encoded by a recoded in-frame UGA codon that does not operate as the canonical opal stop codon. A specialized translation elongation factor, eEFSec in eukaryotes and SelB in prokaryotes, promotes selenocysteine incorporation into selenoproteins by a still poorly understood mechanism. Our structural and biochemical results reveal that four domains of human eEFSec fold into a chalice-like structure that has similar binding affinities for GDP, GTP and other guanine nucleotides. Surprisingly, unlike in eEF1A and EF-Tu, the guanine nucleotide exchange does not cause a major conformational change in domain 1 of eEFSec, but instead induces a swing of domain 4. We propose that eEFSec employs a non-canonical mechanism involving the distinct C-terminal domain 4 for the release of the selenocysteinyl-tRNA during decoding on the ribosome.
Collapse
|
42
|
Abstract
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute of Biology/Microbiology, Martin Luther University, Halle-Wittenberg, 06120 Halle, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
43
|
Mukai T, Englert M, Tripp HJ, Miller C, Ivanova NN, Rubin EM, Kyrpides NC, Söll D. Facile Recoding of Selenocysteine in Nature. Angew Chem Int Ed Engl 2016; 55:5337-41. [PMID: 26991476 PMCID: PMC4833512 DOI: 10.1002/anie.201511657] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 12/22/2022]
Abstract
Selenocysteine (Sec or U) is encoded by UGA, a stop codon reassigned by a Sec-specific elongation factor and a distinctive RNA structure. To discover possible code variations in extant organisms we analyzed 6.4 trillion base pairs of metagenomic sequences and 24 903 microbial genomes for tRNA(Sec) species. As expected, UGA is the predominant Sec codon in use. We also found tRNA(Sec) species that recognize the stop codons UAG and UAA, and ten sense codons. Selenoprotein synthesis programmed by UAG in Geodermatophilus and Blastococcus, and by the Cys codon UGU in Aeromonas salmonicida was confirmed by metabolic labeling with (75) Se or mass spectrometry. Other tRNA(Sec) species with different anticodons enabled E. coli to synthesize active formate dehydrogenase H, a selenoenzyme. This illustrates the ease by which the genetic code may evolve new coding schemes, possibly aiding organisms to adapt to changing environments, and show the genetic code is much more flexible than previously thought.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - H James Tripp
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, 94598, USA
| | - Corwin Miller
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Natalia N Ivanova
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, 94598, USA
| | - Edward M Rubin
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, 94598, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, 94598, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
44
|
Hartmann T, Schrapers P, Utesch T, Nimtz M, Rippers Y, Dau H, Mroginski MA, Haumann M, Leimkühler S. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C–H Bond Cleavage and Oxygen Atom Transfer Reactions. Biochemistry 2016; 55:2381-9. [DOI: 10.1021/acs.biochem.6b00002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tobias Hartmann
- Department
of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476 Potsdam, Germany
| | - Peer Schrapers
- Institute
of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Tillmann Utesch
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni135, 10623 Berlin, Germany
| | - Manfred Nimtz
- Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Yvonne Rippers
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni135, 10623 Berlin, Germany
| | - Holger Dau
- Institute
of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Maria Andrea Mroginski
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni135, 10623 Berlin, Germany
| | - Michael Haumann
- Institute
of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Silke Leimkühler
- Department
of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
45
|
Abstract
The authors were asked by the Editors of ACS Chemical Biology to write an article titled "Why Nature Chose Selenium" for the occasion of the upcoming bicentennial of the discovery of selenium by the Swedish chemist Jöns Jacob Berzelius in 1817 and styled after the famous work of Frank Westheimer on the biological chemistry of phosphate [Westheimer, F. H. (1987) Why Nature Chose Phosphates, Science 235, 1173-1178]. This work gives a history of the important discoveries of the biological processes that selenium participates in, and a point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur. This analysis shows that redox chemistry is the largest chemical difference between the two chalcogens. This difference is very large for both one-electron and two-electron redox reactions. Much of this difference is due to the inability of selenium to form π bonds of all types. The outer valence electrons of selenium are also more loosely held than those of sulfur. As a result, selenium is a better nucleophile and will react with reactive oxygen species faster than sulfur, but the resulting lack of π-bond character in the Se-O bond means that the Se-oxide can be much more readily reduced in comparison to S-oxides. The combination of these properties means that replacement of sulfur with selenium in nature results in a selenium-containing biomolecule that resists permanent oxidation. Multiple examples of this gain of function behavior from the literature are discussed.
Collapse
Affiliation(s)
- Hans J. Reich
- University of Wisconsin—Madison, Department of Chemistry, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Robert J. Hondal
- University of Vermont, Department of Biochemistry, 89 Beaumont Ave, Given Laboratory, Room B413, Burlington, Vermont 05405, United States
| |
Collapse
|
46
|
Mukai T, Englert M, Tripp HJ, Miller C, Ivanova NN, Rubin EM, Kyrpides NC, Söll D. [Facile Recoding of Selenocysteine in Nature]. ACTA ACUST UNITED AC 2016; 128:5423-5427. [PMID: 27440945 DOI: 10.1002/ange.201511657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry Yale University, New Haven, CT 06520 (USA)
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry Yale University, New Haven, CT 06520 (USA)
| | - H James Tripp
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598 (USA)
| | - Corwin Miller
- Department of Molecular Biophysics and Biochemistry Yale University, New Haven, CT 06520 (USA)
| | - Natalia N Ivanova
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598 (USA)
| | - Edward M Rubin
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598 (USA)
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598 (USA)
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry Yale University, New Haven, CT 06520 (USA); Department of Chemistry, Yale University, New Haven, CT 06520 (USA)
| |
Collapse
|
47
|
Abstract
Selenophosphate synthetase, the selD gene product from Escherichia coli, is one of the enzymes required for the synthesis and specific insertion of selenocysteine into proteins directed by the TGA codon. Selenophosphate synthetases have been isolated from or are thought to be present in most organisms; however, the best characterized selenophosphate synthetase is from E. coli, in which both in vivo and in vitro studies have been performed. Leinfelder and coworkers showed that an E. coli mutant lacking an intact selD gene fails to incorporate Se into both the selenocysteine-containing enzyme formate dehydrogenase (FDH) and tRNA species that normally contain 2-selenouridine residues at the wobble position. Thus, this study strongly implicated selenophosphate as playing a major role in E. coli selenium metabolic pathways. The selenophosphate synthetase reaction requires some form of reduced selenium such as hydrogen selenide (HSe-) and ATP as substrates to generate a stoichiometric amount of SePO3, AMP, and orthophosphate. Studies of selenophosphate inhibition have provided further insight into the mechanism of selenophosphate synthetase. An assay by which AMP formation is measured in the absence of selenide showed that selenophosphate synthetase catalyzes hydrolysis of ATP to AMP and two orthophosphates in an uncoupled reaction. The sequencing of selenophosphate synthetase genes from various organisms reveals several conserved regions in the gene product. Recent investigations into the mechanism of selenophosphate synthetase have revealed a property of selenophosphate synthetase not previously observed. In samples of purified selenophosphate synthetase, an unusual optical absorption spectrum is seen.
Collapse
|
48
|
Abstract
About 50 years ago, research on the biological function of the element selenium was initiated by the report of J. Pinsent that generation of formate dehydrogenase activity by Escherichia coli requires the presence of both selenite and molybdate in the growth medium. In nature, selenium is predominantly associated with sulfur minerals, the Se/S ratios of which vary widely depending on the geological formation. Because of the chemical similarity between the two elements, selenium can intrude into the sulfur pathway at high Se/S ratios and can be statistically incorporated into polypeptides. The central macromolecule for the synthesis and incorporation of selenocysteine is a specialized tRNA, designated tRNASec. It is the product of the selC (previously fdhC) gene. tRNASec fulfils a multitude of functions, which are based on its unique structural properties, compared to canonical elongator RNAs. tRNASec possesses the discriminator base G73 and the identity elements of serine-specific tRNA isoacceptors. The conversion of seryl-tRNASec into selenocysteyl-tRNASec is catalyzed by selenocysteine synthase, the product of the selA gene (previously the fdhA locus, which was later shown to harbor two genes, selA and selB). The crucial element for the regulation is a putative secondary structure at the 5' end of the untranslated region of the selAB mRNA. The generation and analysis of transcriptional and translational reporter gene fusions of selA and selB yield an expression pattern identical to that obtained by measuring the actual amounts of SelA and SelB proteins.
Collapse
|
49
|
Ling J, O'Donoghue P, Söll D. Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nat Rev Microbiol 2015; 13:707-721. [PMID: 26411296 DOI: 10.1038/nrmicro3568] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genetic code, initially thought to be universal and immutable, is now known to contain many variations, including biased codon usage, codon reassignment, ambiguous decoding and recoding. As a result of recent advances in the areas of genome sequencing, biochemistry, bioinformatics and structural biology, our understanding of genetic code flexibility has advanced substantially in the past decade. In this Review, we highlight the prevalence, evolution and mechanistic basis of genetic code variations in microorganisms, and we discuss how this flexibility of the genetic code affects microbial physiology.
Collapse
Affiliation(s)
- Jiqiang Ling
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|
50
|
Zore OV, Pattammattel A, Gnanaguru S, Kumar CV, Kasi RM. Bienzyme–Polymer–Graphene Oxide Quaternary Hybrid Biocatalysts: Efficient Substrate Channeling under Chemically and Thermally Denaturing Conditions. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00958] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Omkar V. Zore
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Institute of Materials Science, U-3136, University of Connecticut, Storrs, Connecticut 06269-3069, United States
| | - Ajith Pattammattel
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Shailaja Gnanaguru
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Challa V. Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Institute of Materials Science, U-3136, University of Connecticut, Storrs, Connecticut 06269-3069, United States
- Department
of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, United States
| | - Rajeswari M. Kasi
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Institute of Materials Science, U-3136, University of Connecticut, Storrs, Connecticut 06269-3069, United States
| |
Collapse
|