1
|
Sakamaki JI, Mizushima N. Cell biology of protein-lipid conjugation. Cell Struct Funct 2023; 48:99-112. [PMID: 37019684 PMCID: PMC10721952 DOI: 10.1247/csf.23016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Protein-lipid conjugation is a widespread modification involved in many biological processes. Various lipids, including fatty acids, isoprenoids, sterols, glycosylphosphatidylinositol, sphingolipids, and phospholipids, are covalently linked with proteins. These modifications direct proteins to intracellular membranes through the hydrophobic nature of lipids. Some of these membrane-binding processes are reversible through delipidation or by reducing the affinity to membranes. Many signaling molecules undergo lipid modification, and their membrane binding is important for proper signal transduction. The conjugation of proteins to lipids also influences the dynamics and function of organellar membranes. Dysregulation of lipidation has been associated with diseases such as neurodegenerative diseases. In this review, we first provide an overview of diverse forms of protein-lipid conjugation and then summarize the catalytic mechanisms, regulation, and roles of these modifications.Key words: lipid, lipidation, membrane, organelle, protein modification.
Collapse
Affiliation(s)
- Jun-ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Wang QQ, He K, Aleem MT, Long S. Prenyl Transferases Regulate Secretory Protein Sorting and Parasite Morphology in Toxoplasma gondii. Int J Mol Sci 2023; 24:ijms24087172. [PMID: 37108334 PMCID: PMC10138696 DOI: 10.3390/ijms24087172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Protein prenylation is an important protein modification that is responsible for diverse physiological activities in eukaryotic cells. This modification is generally catalyzed by three types of prenyl transferases, which include farnesyl transferase (FT), geranylgeranyl transferase (GGT-1) and Rab geranylgeranyl transferase (GGT-2). Studies in malaria parasites showed that these parasites contain prenylated proteins, which are proposed to play multiple functions in parasites. However, the prenyl transferases have not been functionally characterized in parasites of subphylum Apicomplexa. Here, we functionally dissected functions of three of the prenyl transferases in the Apicomplexa model organism Toxoplasma gondii (T. gondii) using a plant auxin-inducible degron system. The homologous genes of the beta subunit of FT, GGT-1 and GGT-2 were endogenously tagged with AID at the C-terminus in the TIR1 parental line using a CRISPR-Cas9 approach. Upon depletion of these prenyl transferases, GGT-1 and GGT-2 had a strong defect on parasite replication. Fluorescent assay using diverse protein markers showed that the protein markers ROP5 and GRA7 were diffused in the parasites depleted with GGT-1 and GGT-2, while the mitochondrion was strongly affected in parasites depleted with GGT-1. Importantly, depletion of GGT-2 caused the stronger defect to the sorting of rhoptry protein and the parasite morphology. Furthermore, parasite motility was observed to be affected in parasites depleted with GGT-2. Taken together, this study functionally characterized the prenyl transferases, which contributed to an overall understanding of protein prenylation in T. gondii and potentially in other related parasites.
Collapse
Affiliation(s)
- Qiang-Qiang Wang
- National Key Laboratory of Veterinary Public Health Security, School of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kai He
- National Key Laboratory of Veterinary Public Health Security, School of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Muhammad-Tahir Aleem
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA
| | - Shaojun Long
- National Key Laboratory of Veterinary Public Health Security, School of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
4
|
Suazo KF, Jeong A, Ahmadi M, Brown C, Qu W, Li L, Distefano MD. Metabolic labeling with an alkyne probe reveals similarities and differences in the prenylomes of several brain-derived cell lines and primary cells. Sci Rep 2021; 11:4367. [PMID: 33623102 PMCID: PMC7902609 DOI: 10.1038/s41598-021-83666-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Protein prenylation involves the attachment of one or two isoprenoid group(s) onto cysteine residues positioned near the C-terminus. This modification is essential for many signal transduction processes. In this work, the use of the probe C15AlkOPP for metabolic labeling and identification of prenylated proteins in a variety of cell lines and primary cells is explored. Using a single isoprenoid analogue, 78 prenylated protein groups from the three classes of prenylation substrates were identified including three novel prenylation substrates in a single experiment. Applying this method to three brain-related cell lines including neurons, microglia, and astrocytes showed substantial overlap (25%) in the prenylated proteins identified. In addition, some unique prenylated proteins were identified in each type. Eight proteins were observed exclusively in neurons, five were observed exclusively in astrocytes and three were observed exclusively in microglia, suggesting their unique roles in these cells. Furthermore, inhibition of farnesylation in primary astrocytes revealed the differential responses of farnesylated proteins to an FTI. Importantly, these results provide a list of 19 prenylated proteins common to all the cell lines studied here that can be monitored using the C15AlkOPP probe as well as a number of proteins that were observed in only certain cell lines. Taken together, these results suggest that this chemical proteomic approach should be useful in monitoring the levels and exploring the underlying role(s) of prenylated proteins in various diseases.
Collapse
Affiliation(s)
- Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mina Ahmadi
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Caroline Brown
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Apken LH, Oeckinghaus A. The RAL signaling network: Cancer and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:21-105. [PMID: 34074494 DOI: 10.1016/bs.ircmb.2020.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The RAL proteins RALA and RALB belong to the superfamily of small RAS-like GTPases (guanosine triphosphatases). RAL GTPases function as molecular switches in cells by cycling through GDP- and GTP-bound states, a process which is regulated by several guanine exchange factors (GEFs) and two heterodimeric GTPase activating proteins (GAPs). Since their discovery in the 1980s, RALA and RALB have been established to exert isoform-specific functions in central cellular processes such as exocytosis, endocytosis, actin organization and gene expression. Consequently, it is not surprising that an increasing number of physiological functions are discovered to be controlled by RAL, including neuronal plasticity, immune response, and glucose and lipid homeostasis. The critical importance of RAL GTPases for oncogenic RAS-driven cellular transformation and tumorigenesis still attracts most research interest. Here, RAL proteins are key drivers of cell migration, metastasis, anchorage-independent proliferation, and survival. This chapter provides an overview of normal and pathological functions of RAL GTPases and summarizes the current knowledge on the involvement of RAL in human disease as well as current therapeutic targeting strategies. In particular, molecular mechanisms that specifically control RAL activity and RAL effector usage in different scenarios are outlined, putting a spotlight on the complexity of the RAL GTPase signaling network and the emerging theme of RAS-independent regulation and relevance of RAL.
Collapse
Affiliation(s)
- Lisa H Apken
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany.
| |
Collapse
|
6
|
Statins decrease the expression of c-Myc protein in cancer cell lines. Mol Cell Biochem 2020; 476:743-755. [PMID: 33070276 DOI: 10.1007/s11010-020-03940-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
Statins are potent inhibitors of the mevalonate/cholesterol biosynthetic pathway and are widely prescribed for the prevention of cardiovascular diseases. Here, we carried out a comprehensive analysis of the effects of three statins, simvastatin, atorvastatin, and lovastatin, on six different cancer cell lines that include a P-glycoprotein-expressing, multidrug resistant variant of an ovarian cancer cell line. Incubation of all cancer cell lines with statins resulted in suppression of cell proliferation without inducing apoptotic cell death. The cell proliferation arrest could be reversed upon transfer of cells to statin-free growth media as well as by the supplementation of the growth media with mevalonate. Further analysis suggested that statins induced cell cycle arrest at G0/G1 phase in four cancer cell lines and the loss of c-Myc protein in three cancer cell lines. The c-Myc expression and the progression of cell division cycle were restored upon the addition of mevalonate to the culture media containing statins. Finally, cells incubated with statins contained an increased level of phosphorylated histone H2AX, an observation previously correlated to cellular senescence. Together, these data demonstrate that statins inhibit the mevalonate pathway which is tightly coupled to oxidative branch of the pentose phosphate pathway, c-Myc expression, cell division cycle progression, and cellular senescence. Implications of these observations in the application of statins as cancer therapeutics are discussed.
Collapse
|
7
|
Ashok S, Hildebrandt ER, Ruiz CS, Hardgrove DS, Coreno DW, Schmidt WK, Hougland JL. Protein Farnesyltransferase Catalyzes Unanticipated Farnesylation and Geranylgeranylation of Shortened Target Sequences. Biochemistry 2020; 59:1149-1162. [PMID: 32125828 DOI: 10.1021/acs.biochem.0c00081] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein prenylation is a posttranslational modification involving the attachment of a C15 or C20 isoprenoid group to a cysteine residue near the C-terminus of the target substrate by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I (GGTase-I), respectively. Both of these protein prenyltransferases recognize a C-terminal "CaaX" sequence in their protein substrates, but recent studies in yeast- and mammalian-based systems have demonstrated FTase can also accept sequences that diverge in length from the canonical four-amino acid motif, such as the recently reported five-amino acid C(x)3X motif. In this work, we further expand the substrate scope of FTase by demonstrating sequence-dependent farnesylation of shorter three-amino acid "Cxx" C-terminal sequences using both genetic and biochemical assays. Strikingly, biochemical assays utilizing purified mammalian FTase and Cxx substrates reveal prenyl donor promiscuity leading to both farnesylation and geranylgeranylation of these sequences. These findings expand the substrate pool of sequences that can be potentially prenylated, further refine our understanding of substrate recognition by FTase and GGTase-I, and suggest the possibility of a new class of prenylated proteins within proteomes.
Collapse
Affiliation(s)
- Sudhat Ashok
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emily R Hildebrandt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Colby S Ruiz
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Daniel S Hardgrove
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - David W Coreno
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Walter K Schmidt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
8
|
Degirmenci U, Wang M, Hu J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells 2020; 9:E198. [PMID: 31941155 PMCID: PMC7017232 DOI: 10.3390/cells9010198] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The RAS/RAF/MEK/ERK (MAPK) signaling cascade is essential for cell inter- and intra-cellular communication, which regulates fundamental cell functions such as growth, survival, and differentiation. The MAPK pathway also integrates signals from complex intracellular networks in performing cellular functions. Despite the initial discovery of the core elements of the MAPK pathways nearly four decades ago, additional findings continue to make a thorough understanding of the molecular mechanisms involved in the regulation of this pathway challenging. Considerable effort has been focused on the regulation of RAF, especially after the discovery of drug resistance and paradoxical activation upon inhibitor binding to the kinase. RAF activity is regulated by phosphorylation and conformation-dependent regulation, including auto-inhibition and dimerization. In this review, we summarize the recent major findings in the study of the RAS/RAF/MEK/ERK signaling cascade, particularly with respect to the impact on clinical cancer therapy.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Mei Wang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
9
|
Ahmadi M, Suazo KF, Distefano MD. Optimization of Metabolic Labeling with Alkyne-Containing Isoprenoid Probes. Methods Mol Biol 2019; 2009:35-43. [PMID: 31152393 DOI: 10.1007/978-1-4939-9532-5_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein prenylation, found in eukaryotes, is a posttranslational modification in which one or two isoprenoid groups are added to the C terminus of selected proteins using either a farnesyl group or a geranylgeranyl group. Prenylation facilitates protein localization mainly to the plasma membrane where the prenylated proteins, including small GTPases, mediate signal transduction pathways. Changes in the level of prenylated proteins may serve a critical function in a variety of diseases. Metabolic labeling using modified isoprenoid probes followed by enrichment and proteomic analysis allows the identities and levels of prenylated proteins to be investigated. In this protocol, we illustrate how the conditions for metabolic labeling are optimized to maximize probe incorporation in HeLa cells through a combination of in-gel fluorescence and densitometric analysis.
Collapse
Affiliation(s)
- Mina Ahmadi
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
10
|
Mukhtar YM, Adu-Frimpong M, Xu X, Yu J. Biochemical significance of limonene and its metabolites: future prospects for designing and developing highly potent anticancer drugs. Biosci Rep 2018; 38:BSR20181253. [PMID: 30287506 PMCID: PMC6239267 DOI: 10.1042/bsr20181253] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 01/04/2023] Open
Abstract
Monocyclic monoterpenes have been recognized as useful pharmacological ingredients due to their ability to treat numerous diseases. Limonene and perillyl alcohol as well as their metabolites (especially perillic acid and its methyl ester) possess bioactivities such as antitumor, antiviral, anti-inflammatory, and antibacterial agents. These therapeutic properties have been well documented. Based on the aforementioned biological properties of limonene and its metabolites, their structural modification and development into effective drugs could be rewarding. However, utilization of these monocyclic monoterpenes as scaffolds for the design and developments of more effective chemoprotective agents has not received the needed attention by medicinal scientists. Recently, some derivatives of limonene metabolites have been synthesized. Nonetheless, there have been no thorough studies on their pharmacokinetic and pharmacodynamic properties as well as their inhibition against isoprenylation enzymes. In this review, recent research progress in the biochemical significance of limonene and its metabolites was summarized with emphasis on their antitumor effects. Future prospects of these bioactive monoterpenes for drug design and development are also highlighted.
Collapse
Affiliation(s)
- Yusif M Mukhtar
- Department of Pharmaceutics and Tissue Engineering, School of pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, P.R. China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics and Tissue Engineering, School of pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, P.R. China
- Department of Basic and Biomedical Sciences, College of Health and Well-Being, P. O. Box 9, Kintampo, Ghana
| | - Ximing Xu
- Department of Pharmaceutics and Tissue Engineering, School of pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics and Tissue Engineering, School of pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, P.R. China
| |
Collapse
|
11
|
Suazo KF, Hurben AK, Liu K, Xu F, Thao P, Sudheer C, Li L, Distefano MD. Metabolic Labeling of Prenylated Proteins Using Alkyne-Modified Isoprenoid Analogues. ACTA ACUST UNITED AC 2018; 10:e46. [PMID: 30058775 DOI: 10.1002/cpch.46] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein prenylation involves the attachment of a farnesyl or geranylgeranyl group onto a cysteine residue located near the C-terminus of a protein, recognized via a specific prenylation motif, and results in the formation of a thioether bond. To identify putative prenylated proteins and investigate changes in their levels of expression, metabolic labeling and subsequent bioorthogonal labeling has become one of the methods of choice. In that strategy, synthetic analogues of biosynthetic precursors for post-translational modification bearing bioorthogonal functionality are added to the growth medium from which they enter cells and become incorporated into proteins. Subsequently, the cells are lysed and proteins bearing the analogues are then covalently modified using selective chemical reagents that react via bioorthogonal processes, allowing a variety of probes for visualization or enrichment to be attached for subsequent analysis. Here, we describe protocols for synthesizing several different isoprenoid analogues and describe how they are metabolically incorporated into mammalian cells, and the incorporation into prenylated proteins visualized via in-gel fluorescence analysis. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Alexander K Hurben
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Kevin Liu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Feng Xu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Pa Thao
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Ch Sudheer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
12
|
Procter L, Grose C, Esposito D. Production of authentic geranylgeranylated KRAS4b using an engineered baculovirus system. Protein Expr Purif 2018; 151:99-105. [PMID: 29936133 DOI: 10.1016/j.pep.2018.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022]
Abstract
Protein prenylation is a vital eukaryotic post-translational modification which permits interaction of proteins with cellular membranes. Prenylated proteins are involved in a number of human diseases, and play a major role in cancers driven by the oncogene KRAS, which is normally farnesylated. In cases where the farnesylation machinery is inhibited, however, KRAS eludes inactivation by using an alternative prenylation pathway in which the protein is geranylgeranylated. In order to study this alternative prenylation, large quantities of accurately processed protein are required. We have developed a system to permit high-yield production of geranylgeranylated KRAS which utilizes an engineered baculovirus system. The development of this system helped to elucidate a potential metabolic bottleneck in insect cell production that should enable better production of any geranylgeranylated proteins using this system.
Collapse
Affiliation(s)
- Lauren Procter
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD, 21702, USA
| | - Carissa Grose
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD, 21702, USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD, 21702, USA.
| |
Collapse
|
13
|
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol 2018; 53:279-310. [PMID: 29718780 PMCID: PMC6101676 DOI: 10.1080/10409238.2018.1458070] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate-isoprenoid-cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein-protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer's disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Angela Jeong
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
| | | | - W. Gibson Wood
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Mark D. Distefano
- Departments of Chemistry,University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
14
|
Diaz-Rodriguez V, Hsu ET, Ganusova E, Werst ER, Becker JM, Hrycyna CA, Distefano MD. a-Factor Analogues Containing Alkyne- and Azide-Functionalized Isoprenoids Are Efficiently Enzymatically Processed and Retain Wild-Type Bioactivity. Bioconjug Chem 2017; 29:316-323. [PMID: 29188996 PMCID: PMC5824361 DOI: 10.1021/acs.bioconjchem.7b00648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Protein
prenylation is a post-translational modification that involves
the addition of one or two isoprenoid groups to the C-terminus of
selected proteins using either farnesyl diphosphate or geranylgeranyl
diphosphate. Three crucial enzymatic steps are involved in the processing
of prenylated proteins to yield the final mature product. The farnesylated
dodecapeptide, a-factor, is particularly useful for studies
of protein prenylation because it requires the identical three-step
process to generate the same C-terminal farnesylated cysteine methyl
ester substructure present in larger farnesylated proteins. Recently,
several groups have developed isoprenoid analogs bearing azide and
alkyne groups that can be used in metabolic labeling experiments.
Those compounds have proven useful for profiling prenylated proteins
and also show great promise as tools to study how the levels of prenylated
proteins vary in different disease models. Herein, we describe the
preparation and use of prenylated a-factor analogs, and
precursor peptides, to investigate two key questions. First, a-factor analogues containing modified isoprenoids were prepared
to evaluate whether the non-natural lipid group interferes with the
biological activity of the a-factor. Second, a-factor-derived precursor peptides were synthesized to evaluate whether
they can be efficiently processed by the yeast proteases Rce1 and
Ste24 as well as the yeast methyltransferase Ste14 to yield mature a-factor analogues. Taken together, the results reported here
indicate that metabolic labeling experiments with azide- and alkyne-functionalized
isoprenoids can yield prenylated products that are fully processed
and biologically functional. Overall, these observations suggest that
the isoprenoids studied here that incorporate bio-orthogonal functionality
can be used in metabolic labeling experiments without concern that
they will induce undesired physiological changes that may complicate
data interpretation.
Collapse
Affiliation(s)
- Veronica Diaz-Rodriguez
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Erh-Ting Hsu
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Elena Ganusova
- Department of Microbiology, University of Tennessee , Circle Park Drive, Knoxville, Tennessee 37996, United States
| | - Elena R Werst
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee , Circle Park Drive, Knoxville, Tennessee 37996, United States
| | - Christine A Hrycyna
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Subramani PA, Narala VR, Michael RD, Lomada D, Reddy MC. Molecular docking and simulation of Curcumin with Geranylgeranyl Transferase1 (GGTase1) and Farnesyl Transferase (FTase). Bioinformation 2015; 11:248-53. [PMID: 26124569 PMCID: PMC4464541 DOI: 10.6026/97320630011248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/23/2022] Open
Abstract
Protein prenylation is a posttranslational modification that is indispensable for translocation of membrane GTPases like Ras, Rho, Ras etc. Proteins of Ras family undergo farnesylation by FTase while Rho family goes through geranylgeranylation by GGTase1. There is only an infinitesimal difference in signal recognition between FTase and GGTase1. FTase inhibitors mostly end up selecting the cells with mutated Ras proteins that have acquired affinity towards GGTase1 in cancer microcosms. Therefore, it is of interest to identify GGTase1 and FTase dual inhibitors using the docking tool AutoDock Vina. Docking data show that curcumin (from turmeric) has higher binding affinity to GGTase1 than that of established peptidomimetic GGTase1 inhibitors (GGTI) such as GGTI-297, GGTI-298, CHEMBL525185. Curcumin also interacts with FTase with binding energy comparable to co-crystalized compound 2-[3-(3-ethyl-1-methyl-2-oxo-azepan-3-yl)-phenoxy]-4-[1-amino-1-(1-methyl-1h-imidizol-5-yl)-ethyl]-benzonitrile (BNE). The docked complex was further simulated for 10 ns using molecular dynamics simulation for stability. Thus, the molecular basis for curcumin binding to GGTase1 and FTase is reported.
Collapse
Affiliation(s)
- Parasuraman Aiya Subramani
- Centre for Fish Immunology, School of Life Sciences, Vels University, Pallavaram, Chennai-600117, India ; Department of Zoology, Yogi Vemana University, Kadapa
| | | | - R Dinakaran Michael
- Centre for Fish Immunology, School of Life Sciences, Vels University, Pallavaram, Chennai-600117, India
| | | | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India-516003
| |
Collapse
|
16
|
Thippanna M, Subramani PA, Lomada D, Narala VR, Reddy MC. A Homology Based Model and Virtual Screening of Inhibitors for Human Geranylgeranyl Transferase 1 (GGTase1). Bioinformation 2014; 9:973-7. [PMID: 24391360 PMCID: PMC3867650 DOI: 10.6026/97320630009973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 11/25/2013] [Indexed: 12/23/2022] Open
Abstract
Protein prenylation is a post translational modification that is indispensable for Ras–Rho mediated tumorigenesis. In mammals,
three enzymes namely protein farnesyltransferase (FTase), geranylgeranyl transferase1 (GGTase1), and geranylgeranyl transferase2
(GGTase2) were found to be involved in this process. Usually proteins of Ras family will be farnesylated by FTase, Rho family will
be geranylgeranylated by GGTase1. GGTase2 is exclusive for geranylgeranylating Rab protein family. FTase inhibitors such as FTI-
277 are potent anti-cancer agents in vitro. In vivo, mutated Ras proteins can either improve their affinity for FTase active site or
undergo geranylgeranylation which confers resistance and no activity of FTase inhibitors. This led to the development of GGTase1
inhibitors. A well-defined 3-D structure of human GGTase1 protein is lacking which impairs its in silico and rational designing of
inhibitors. A 3-D structure of human GGTase1 was constructed based on primary sequence available and homology modeling to
which pubchem molecules library was virtually screened through AutoDock Vina. Our studies show that natural compounds
Camptothecin (-8.2 Kcal/mol), Curcumin (-7.3 Kcal/mol) have higher binding affinities to GGTase-1 than that of established
peptidomimetic GGTase-1 inhibitors such as GGTI-297 (-7.5 Kcal/mol), GGTI-298 (-7.5 Kcal/mol), CHEMBL525185 (-7.2
Kcal/mol).
Collapse
Affiliation(s)
| | | | - Dakshayani Lomada
- Departments of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh, India-516 003
| | | | | |
Collapse
|
17
|
cAMP signaling regulates platelet myosin light chain (MLC) phosphorylation and shape change through targeting the RhoA-Rho kinase-MLC phosphatase signaling pathway. Blood 2013; 122:3533-45. [PMID: 24100445 DOI: 10.1182/blood-2013-03-487850] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP)-dependent signaling modulates platelet shape change through unknown mechanisms. We examined the effects of cAMP signaling on platelet contractile machinery. Prostaglandin E1 (PGE1)-mediated inhibition of thrombin-stimulated shape change was accompanied by diminished phosphorylation of myosin light chain (MLC). Since thrombin stimulates phospho-MLC through RhoA/Rho-associated, coiled-coil containing protein kinase (ROCK)-dependent inhibition of MLC phosphatase (MLCP), we examined the effects of cAMP on this pathway. Thrombin stimulated the membrane localization of RhoA and the formation of a signaling complex of RhoA/ROCK2/myosin phosphatase-targeting subunit 1 (MYPT1). This resulted in ROCK-mediated phosphorylation of MYPT1 on threonine 853 (thr(853)), the disassociation of the catalytic subunit protein phosphatase 1δ (PP1δ) from MYPT1 and inhibition of basal MLCP activity. Treatment of platelets with PGE1 prevented thrombin-induced phospho-MYPT1-thr(853) in a protein kinase A (PKA)-dependent manner. Examination of the molecular mechanisms revealed that PGE1 induced the phosphorylation of RhoA on serine(188) through a pathway requiring cAMP and PKA. This event inhibited the membrane relocalization of RhoA, prevented the association of RhoA with ROCK2 and MYPT1, attenuated the dissociation of PP1δ from MYPT1, and thereby restored basal MLCP activity leading to a decrease in phospho-MLC. These data reveal a new mechanism by which the cAMP-PKA signaling pathway regulates platelet function.
Collapse
|
18
|
Baba TT, Ohara-Nemoto Y, Miyazaki T, Nemoto TK. Involvement of geranylgeranylation of Rho and Rac GTPases in adipogenic and RANKL expression, which was inhibited by simvastatin. Cell Biochem Funct 2013; 31:652-9. [DOI: 10.1002/cbf.2951] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/20/2012] [Accepted: 12/11/2012] [Indexed: 01/29/2023]
Affiliation(s)
- T. T. Baba
- Department of Oral Molecular Biology; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Y. Ohara-Nemoto
- Department of Oral Molecular Biology; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - T. Miyazaki
- Department of Cell Biology; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - T. K. Nemoto
- Department of Oral Molecular Biology; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| |
Collapse
|
19
|
Hougland JL, Lamphear CL, Scott SA, Gibbs RA, Fierke CA. Context-dependent substrate recognition by protein farnesyltransferase. Biochemistry 2010; 48:1691-701. [PMID: 19199818 DOI: 10.1021/bi801710g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prenylation is a posttranslational modification whereby C-terminal lipidation leads to protein localization to membranes. A C-terminal "Ca(1)a(2)X" sequence has been proposed as the recognition motif for two prenylation enzymes, protein farnesyltransferase (FTase) and protein geranylgeranyltransferase type I. To define the parameters involved in recognition of the a(2) residue, we performed structure-activity analysis which indicates that FTase discriminates between peptide substrates based on both the hydrophobicity and steric volume of the side chain at the a(2) position. For nonpolar side chains, the dependence of the reactivity on side chain volume at this position forms a pyramidal pattern with a maximal activity near the steric volume of valine. This discrimination occurs at a step in the kinetic mechanism that is at or before the farnesylation step. Furthermore, a(2) selectivity is also affected by the identity of the adjacent X residue, leading to context-dependent substrate recognition. Context-dependent a(2) selectivity suggests that FTase recognizes the sequence downstream of the conserved cysteine as a set of two or three cooperative, interconnected recognition elements as opposed to three independent amino acids. These findings expand the pool of proposed FTase substrates in cells. A better understanding of the molecular recognition of substrates performed by FTase will aid in both designing new FTase inhibitors as therapeutic agents and characterizing proteins involved in prenylation-dependent cellular pathways.
Collapse
Affiliation(s)
- James L Hougland
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
20
|
Mizrahi A, Berdichevsky Y, Casey PJ, Pick E. A prenylated p47phox-p67phox-Rac1 chimera is a Quintessential NADPH oxidase activator: membrane association and functional capacity. J Biol Chem 2010; 285:25485-99. [PMID: 20529851 DOI: 10.1074/jbc.m110.113779] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The superoxide-generating NADPH oxidase complex of resting phagocytes includes cytochrome b(559), a membrane-associated heterodimer composed of two subunits (Nox2 and p22(phox)), and four cytosolic proteins (p47(phox), p67(phox), Rac, and p40(phox)). Upon stimulation, the cytosolic components translocate to the membrane, as the result of a series of interactions among the cytosolic components and among the cytosolic components and cytochrome b(559) and its phospholipid environment. We described the construction of a tripartite chimera (trimera) consisting of strategic domains of p47(phox), p67(phox), and Rac1, in which interactions among cytosolic components were replaced by fusion (Berdichevsky, Y., Mizrahi, A., Ugolev, Y., Molshanski-Mor, S., and Pick, E. (2007) J. Biol. Chem. 282, 22122-22139). We now fused green fluorescent protein (GFP) to the N terminus of the trimera and found the following. 1) The GFP-p47(phox)-p67(phox)-Rac1 trimera activates the oxidase in amphiphile-dependent and -independent (anionic phospholipid-enriched membrane) cell-free systems. 2) Geranylgeranylation of the GFP-trimera makes it a potent oxidase activator in unmodified (native) membranes and in the absence of amphiphile. 3) Prenylated GFP-trimera binds spontaneously to native membranes (as assessed by gel filtration and in-line fluorometry), forming a tight complex capable of NADPH-dependent, activator-independent superoxide production at rates similar to those measured in canonical cell-free systems. 4) Prenylation of the GFP-trimera supersedes completely the dependence of oxidase activation on the p47(phox) phox homology domain and, partially, on the Rac1 polybasic domain, but the requirement for Trp(193) in p47(phox) persists. Prenylated GFP-p47(phox)-p67(phox)-Rac1 trimera acts as a quintessential single molecule oxidase activator of potential use in high throughput screening of inhibitors.
Collapse
Affiliation(s)
- Ariel Mizrahi
- Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
21
|
Le Calvez PB, Scott CJ, Migaud ME. Multisubstrate adduct inhibitors: drug design and biological tools. J Enzyme Inhib Med Chem 2010; 24:1291-318. [PMID: 19912064 DOI: 10.3109/14756360902843809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In drug discovery, different methods exist to create new inhibitors possessing satisfactory biological activity. The multisubstrate adduct inhibitor (MAI) approach is one of these methods, which consists of a covalent combination between analogs of the substrate and the cofactor or of the multiple substrates used by the target enzyme. Adopted as the first line of investigation for many enzymes, this method has brought insights into the enzymatic mechanism, structure, and inhibitory requirements. In this review, the MAI approach, applied to different classes of enzyme, is reported from the point of view of biological activity.
Collapse
|
22
|
Klawitter J, Shokati T, Moll V, Christians U, Klawitter J. Effects of lovastatin on breast cancer cells: a proteo-metabonomic study. Breast Cancer Res 2010; 12:R16. [PMID: 20205716 PMCID: PMC2879560 DOI: 10.1186/bcr2485] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/29/2010] [Accepted: 03/05/2010] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Statins are cholesterol-lowering drugs with pleiotropic activities including inhibition of isoprenylation and reduction of signals driving cell proliferation and survival responses. METHODS In this study we evaluated the effects of lovastatin acid and lactone on breast cancer MDAMB231 and MDAMB468 cells using a combination of proteomic and metabonomic profiling techniques. RESULTS Lovastatin inhibited proliferation of breast cancer cell lines. MDAMB231 cells were more sensitive to its effects, and in most cases lovastatin acid showed more potency towards the manipulation of protein expression than lovastatin lactone. Increased expression of Rho inhibitor GDI-2 stabilized the non-active Ras homolog gene family member A (RhoA) leading to a decreased expression of its active, membrane-bound form. Its downstream targets cofilin, CDC42 and G3BP1 are members of the GTPase family affected by lovastatin. Our data indicated that lovastatin modulated the E2F1-pathway through the regulation of expression of prohibitin and retinoblastoma (Rb). This subsequently leads to changes of E2F-downstream targets minichromosome maintenance protein 7 (MCM7) and MutS homolog 2 (MSH2). Lovastatin also regulated the AKT-signaling pathway. Increased phosphatase and tensin homolog (PTEN) and decreased DJ-1 expression lead to a down-regulation of the active pAkt. Lovastatin's involvement in the AKT-signaling pathway was confirmed by an upregulation of its downstream target, tumor progressor NDRG1. Metabolic consequences to lovastatin exposure included suppression of glycolytic and Krebs cycle activity, and lipid biosynthesis. CONCLUSIONS The combination of proteomics and metabonomics enabled us to identify several key targets essential to the antitumor activity of lovastatin. Our results imply that lovastatin has the potential to reduce the growth of breast cancer cells.
Collapse
Affiliation(s)
- Jelena Klawitter
- Department of Anesthesiology, Clinical Research and Development, University of Colorado-Denver, 12401 East 17th Avenue, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
23
|
Yang Z, Xiao H, Jin H, Koo PT, Tsang DJ, Yang CS. Synergistic actions of atorvastatin with gamma-tocotrienol and celecoxib against human colon cancer HT29 and HCT116 cells. Int J Cancer 2010; 126:852-63. [PMID: 19626588 DOI: 10.1002/ijc.24766] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synergistic actions of atorvastatin (ATST) with gamma-tocotrienol (gamma-TT) and celecoxib (CXIB) were studied in human colon cancer cell lines HT29 and HCT116. The synergistic inhibition of cell growth by ATST and gamma-TT was demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and isobologram analysis. delta-TT exhibited a similar inhibitory action when combined with ATST. Mevalonate and geranylgeranyl pyrophosphate eliminated most of the growth inhibitory effect of ATST, but only marginally decreased that of gamma-TT; whereas farnesyl pyrophosphate and squalene exhibited little effect on the inhibitory action of ATST and gamma-TT, indicating protein geranylgeranylation, but not farnesylation are involved in the inhibition of colon cancer cell growth. Both mevalonate and squalene restored the cellular cholesterol level that was reduced by ATST treatment, but only mevalonate eliminated the cell growth inhibitory effect, suggesting that the cholesterol level in cells does not play an essential role in inhibiting cancer cell growth. Protein level of HMG-CoA reductase increased after ATST treatment, and the presence of gamma-TT attenuated the elevated level of HMG-CoA reductase. ATST also decreased membrane-bound RhoA, possibly due to a reduced level of protein geranylgeranylation; addition of gamma-TT enhanced this effect. The mediation of HMG-CoA reductase and RhoA provides a possible mechanism for the synergistic action of ATST and gamma-TT. The triple combination of ATST, gamma-TT and CXIB showed a synergistic inhibition of cancer cell growth in MTT assays. The synergistic action of these three compounds was also illustrated by their induction of G(0)/G(1) phase cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Zhihong Yang
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | | | | |
Collapse
|
24
|
Sane KM, Mynderse M, Lalonde DT, Dean IS, Wojtkowiak JW, Fouad F, Borch RF, Reiners JJ, Gibbs RA, Mattingly RR. A novel geranylgeranyl transferase inhibitor in combination with lovastatin inhibits proliferation and induces autophagy in STS-26T MPNST cells. J Pharmacol Exp Ther 2010; 333:23-33. [PMID: 20086055 DOI: 10.1124/jpet.109.160192] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prenylation inhibitors have gained increasing attention as potential therapeutics for cancer. Initial work focused on inhibitors of farnesylation, but more recently geranylgeranyl transferase inhibitors (GGTIs) have begun to be evaluated for their potential antitumor activity in vitro and in vivo. In this study, we have developed a nonpeptidomimetic GGTI, termed GGTI-2Z [(5-nitrofuran-2-yl)methyl-(2Z,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenyl 4-chlorobutyl(methyl)phosphoramidate], which in combination with lovastatin inhibits geranylgeranyl transferase I (GGTase I) and GGTase II/RabGGTase, without affecting farnesylation. The combination treatment results in a G(0)/G(1) arrest and synergistic inhibition of proliferation of cultured STS-26T malignant peripheral nerve sheath tumor cells. We also show that the antiproliferative activity of drugs in combination occurs in the context of autophagy. The combination treatment also induces autophagy in the MCF10.DCIS model of human breast ductal carcinoma in situ and in 1c1c7 murine hepatoma cells, where it also reduces proliferation. At the same time, there is no detectable toxicity in normal immortalized Schwann cells. These studies establish GGTI-2Z as a novel geranylgeranyl pyrophosphate derivative that may work through a new mechanism involving the induction of autophagy and, in combination with lovastatin, may serve as a valuable paradigm for developing more effective strategies in this class of antitumor therapeutics.
Collapse
Affiliation(s)
- Komal M Sane
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hougland JL, Hicks KA, Hartman HL, Kelly RA, Watt TJ, Fierke CA. Identification of novel peptide substrates for protein farnesyltransferase reveals two substrate classes with distinct sequence selectivities. J Mol Biol 2010; 395:176-90. [PMID: 19878682 PMCID: PMC2916699 DOI: 10.1016/j.jmb.2009.10.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
Abstract
Prenylation is a posttranslational modification essential for the proper localization and function of many proteins. Farnesylation, the attachment of a 15-carbon farnesyl group near the C-terminus of protein substrates, is catalyzed by protein farnesyltransferase (FTase). Farnesylation has received significant interest as a target for pharmaceutical development, and farnesyltransferase inhibitors are in clinical trials as cancer therapeutics. However, as the total complement of prenylated proteins is unknown, the FTase substrates responsible for farnesyltransferase inhibitor efficacy are not yet understood. Identifying novel prenylated proteins within the human proteome constitutes an important step towards understanding prenylation-dependent cellular processes. Based on sequence preferences for FTase derived from analysis of known farnesylated proteins, we selected and screened a library of small peptides representing the C-termini of 213 human proteins for activity with FTase. We identified 77 novel FTase substrates that exhibit multiple-turnover (MTO) reactivity within this library; our library also contained 85 peptides that can be farnesylated by FTase only under single-turnover (STO) conditions. Based on these results, a second library was designed that yielded an additional 29 novel MTO FTase substrates and 45 STO substrates. The two classes of substrates exhibit different specificity requirements. Efficient MTO reactivity correlates with the presence of a nonpolar amino acid at the a(2) position and a Phe, Met, or Gln at the terminal X residue, consistent with the proposed Ca(1)a(2)X sequence model. In contrast, the sequences of the STO substrates vary significantly more at both the a(2) and the X residues and are not well described by current farnesylation algorithms. These results improve the definition of prenyltransferase substrate specificity, test the efficacy of substrate algorithms, and provide valuable information about therapeutic targets. Finally, these data illuminate the potential for in vivo regulation of prenylation through modulation of STO versus MTO peptide reactivity with FTase.
Collapse
Affiliation(s)
- James L. Hougland
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine A. Hicks
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Heather L. Hartman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Rebekah A. Kelly
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Terry J. Watt
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
26
|
Jabbour E, Kantarjian H, Cortes J. Clinical Activity of Farnesyl Transferase Inhibitors in Hematologic Malignancies: Possible Mechanisms of Action. Leuk Lymphoma 2009; 45:2187-95. [PMID: 15512806 DOI: 10.1080/10428190412331272677] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Farnesyl transferase inhibitors (FTIs) are a novel class of anti-cancer agents that competitively inhibit farnesyl protein transferase (FTase). Initially developed to inhibit the prenylation necessary for Ras activation, their mechanism of action seems to be more complex, involving other proteins unrelated to Ras. FTIs have been developed and tested across a wide range of human cancers. At least 3 agents within this family have been investigated in hematologic malignancies. These are tipifarnib (R115777, Zarnestra), lonafarnib (SCH66336, Sarasar), both of which are orally administered, and BMS-214662, which is given intravenously. Preliminary results from clinical trials demonstrate enzyme target inhibition, a favorable toxicity profile and promising efficacy. Ongoing studies will better determine their mechanism of action and the role of combination with other agents, defining their place in the therapeutic arsenal of hematologic disorders.
Collapse
Affiliation(s)
- Elias Jabbour
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
27
|
McIntosh JA, Donia MS, Schmidt EW. Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat Prod Rep 2009; 26:537-59. [PMID: 19642421 PMCID: PMC2975598 DOI: 10.1039/b714132g] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Ribosomally synthesized bacterial natural products rival the nonribosomal peptides in their structural and functional diversity. The last decade has seen substantial progress in the identification and characterization of biosynthetic pathways leading to ribosomal peptide natural products with new and unusual structural motifs. In some of these cases, the motifs are similar to those found in nonribosomal peptides, and many are constructed by convergent or even paralogous enzymes. Here, we summarize the major structural and biosynthetic categories of ribosomally synthesized bacterial natural products and, where applicable, compare them to their homologs from nonribosomal biosynthesis.
Collapse
Affiliation(s)
- John A. McIntosh
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| | - Mohamed S. Donia
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| |
Collapse
|
28
|
Abstract
The RAS gene product is normally a membrane-localized G protein (N-Ras, K-Ras and H-Ras) of 21 kDa classically described as a molecular off/on switch. It is inactive when bound to guanosine diphosphate and active when bound to GTP. When mutated, the gene produces an abnormal protein resistant to GTP hydrolysis by GTPase, resulting in a constitutively active GTP-bound protein that stimulates a critical network of signal transduction pathways that lead to cellular proliferation, survival and differentiation. At least three downstream effector pathways have been described, including Raf/MEK/ERK, PI3K/AKT and RalGDS, but they are not completely understood. Ras pathways are also important downstream effectors of several receptor tyrosine kinases localized in the cell membrane, most notably the BCR-ABL fusion protein seen in patients with Philadelphia chromosome positive chronic myelogenous leukemia. An important consideration in designing strategies to block Ras stimulatory effect is that Ras proteins are synthesized in the cytosol, but require post-translational modifications and attachment to anchor proteins or membrane binding sites in the cell membrane to be biologically active. Farnesyl transferase inhibitors (FTIs) are probably the best-studied class of Ras inhibitors in hematologic malignancies. They block the enzyme farnesyl-transferase (FTase), which is essential for post-translational modification. However, it has been observed that the Ras proteins also can be geranylgeranylated in the presence of FTIs, thus allowing membrane localization and activation, which limits their effectiveness. It is now hypothesized that their mechanism of action may be through FTase inhibition involving other signal transduction pathways. S-trans, trans-farnesylthiosalicylic acid, which was first designed as a prenylated protein methyltransferase inhibitor, has shown in vitro activity against all activated Ras proteins by dislodging them from their membrane-anchoring sites. Here, Ras biology, its signaling pathways and its implications as a therapeutic target in hematologic malignancies are reviewed.
Collapse
Affiliation(s)
- Yesid Alvarado
- University of Texas MD Anderson Cancer Center, Department of Leukemia, Box 428, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | |
Collapse
|
29
|
Nakao Y, Fusetani N. Enzyme inhibitors from marine invertebrates. JOURNAL OF NATURAL PRODUCTS 2007; 70:689-710. [PMID: 17362037 DOI: 10.1021/np060600x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Marine invertebrates are rich sources of small molecules with unique chemical skeletons and potent bioactivities. Historically, such compounds were discovered mainly through the use of assays for phenotype-oriented activities, such as cytotoxicity or antimicrobial effects. More recently, target-oriented searches for bioactive substances, as exemplified by enzyme inhibitors, have become much more common, given a growing need for small-molecule inhibitors essential for studies of complex processes at the interface of chemistry and biology. In this review, selected enzyme inhibitors from marine invertebrates are presented.
Collapse
Affiliation(s)
- Yoichi Nakao
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | | |
Collapse
|
30
|
Protein Prenylation: An (Almost) Comprehensive Overview on Discovery History, Enzymology, and Significance in Physiology and Disease. MONATSHEFTE FUR CHEMIE 2006. [DOI: 10.1007/s00706-006-0534-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Wada Y, Sugiyama J, Okano T, Fukada Y. GRK1 and GRK7: unique cellular distribution and widely different activities of opsin phosphorylation in the zebrafish rods and cones. J Neurochem 2006; 98:824-37. [PMID: 16787417 DOI: 10.1111/j.1471-4159.2006.03920.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinal cone cells exhibit distinctive photoresponse with a more restrained sensitivity to light and a more rapid shutoff kinetics than those of rods. To understand the molecular basis for these characteristics of cone responses, we focused on the opsin deactivation process initiated by G protein-coupled receptor kinase (GRK) 1 and GRK7 in the zebrafish, an animal model suitable for studies on retinal physiology and biochemistry. Screening of the ocular cDNAs identified two homologs for each of GRK1 (1A and 1B) and GRK7 (7-1 and 7-2), and they were classified into three GRK subfamilies, 1 A, 1B and 7 by phylogenetic analysis. In situ hybridization and immunohistochemical studies localized both GRK1B and GRK7-1 in the cone outer segments and GRK1A in the rod outer segments. The opsin/GRKs molar ratio was estimated to be 569 in the rod and 153 in the cone. The recombinant GRKs phosphorylated light-activated rhodopsin, and the Vmax value of the major cone subtype, GRK7-1, was 32-fold higher than that of the rod kinase, GRK1A. The reinforced activity of the cone kinase should provide a strengthened shutoff mechanism of the light-signaling in the cone and contribute to the characteristics of the cone responses by reducing signal amplification efficiency.
Collapse
Affiliation(s)
- Yasutaka Wada
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
32
|
Pais JE, Bowers KE, Stoddard AK, Fierke CA. A continuous fluorescent assay for protein prenyltransferases measuring diphosphate release. Anal Biochem 2006; 345:302-11. [PMID: 16143290 DOI: 10.1016/j.ab.2005.07.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 07/22/2005] [Accepted: 07/29/2005] [Indexed: 11/20/2022]
Abstract
Protein farnesyltransferase and protein geranylgeranyltransferase type I catalyze the transfer of a 15- and a 20-carbon prenyl group, respectively, from a prenyl diphosphate to a cysteine residue at the carboxyl terminus of target proteins, with the concomitant release of diphosphate. Common substrates include oncogenic Ras proteins, which are implicated in up to 30% of all human cancers, making prenyltransferases a viable target for chemotherapeutic drugs. A coupled assay has been developed to measure the rate constant of diphosphate (PPi) dissociation during the prenyltransferase reaction under both single and multiple turnover conditions. In this assay, the PPi group produced in the prenyltransferase reaction is rapidly cleaved by inorganic pyrophosphatase to form phosphate (Pi), which is then bound by a coumarin-labeled phosphate binding protein from Escherichia coli, resulting in a fluorescence increase. The observed rate constant for PPi release is equal to the rate constant of prenylation of the peptide, as measured by other assays, so that this nonradioactive assay can be used to measure prenyltransferase activity under either single or multiple turnover conditions. This assay can be adapted for high-throughput screening for potential prenyltransferase substrates and inhibitors.
Collapse
Affiliation(s)
- June E Pais
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
33
|
Singh SB, Kelly R, Guan Z, Polishook JD, Domrowski AW, Collado J, Gonzalez A, Pelaez F, Register E, Kelly TM, Bonfiglio C, Williamson JM. New fungal metabolite geranylgeranyltransferase inhibitors with antifungal activity. Nat Prod Res 2005; 19:739-47. [PMID: 16317828 DOI: 10.1080/1478641042000334715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Geranylgeranyltransferase I (GGTase I) catalyzes the post-translational transfer of lyophilic diterpenoid geranylgeranyl to the cysteine residue of proteins terminating with a CaaX motif such as Rho1p and Cdc42p. It has been shown that GGTase I activity is essential for viability of Saccharomyces cerevisiae and hence its inhibition is a potential antifungal target. From natural product screening, a number of azaphilones including one novel analog were isolated as broad-spectrum inhibitors of GGTase I. Isolation, structure elucidation, GGTase I inhibitory activities and antifungal activities of these compounds are described.
Collapse
Affiliation(s)
- Sheo B Singh
- Merck Research laboratories, P.O. Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rokosz LL, Huang CY, Reader JC, Stauffer TM, Chelsky D, Sigal NH, Ganguly AK, Baldwin JJ. Surfing the piperazine core of tricyclic farnesyltransferase inhibitors. Bioorg Med Chem Lett 2005; 15:5537-43. [PMID: 16202593 DOI: 10.1016/j.bmcl.2005.08.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/22/2005] [Accepted: 08/25/2005] [Indexed: 11/28/2022]
Abstract
In order to fully explore structure-activity relationships at the 1- and 2-positions of the piperazine core of tricyclic farnesyltransferase inhibitors, an 11,718-member ECLiPS library was synthesized and screened in a farnesyltransferase scintillation proximity assay. A detailed description of the library and analyses of the screening data will be provided.
Collapse
Affiliation(s)
- Laura L Rokosz
- Pharmacopeia, PO Box 5350, Princeton, NJ 08543-5350, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Current systemic cytotoxic therapies for cancer are limited by their nonspecific mechanism of action, unwanted toxicities on normal tissues and short-term efficacy due to the emergence of drug resistance. However, identification of the molecular abnormalities in cancer, in particular the key proteins involved in abnormal cell growth, has resulted in various signal transduction inhibitor drugs being developed as new treatment strategies against the disease. Protein farnesyltransferase inhibitors (FTIs) were originally designed to target the Ras signal transduction pathway, although it is now clear that several other intracellular proteins are dependent on post-translational farnesylation (addition of a 15-carbon farnesyl moiety) for their function. Preclinical data revealed that although FTIs inhibit the growth of ras-transformed cells, they are also potent inhibitors of a wide range of cancer cell lines, many of which contain wild type ras. While understanding the mechanism of action of FTIs remains an important research goal, three different FTIs have entered clinical development. Several Phase I trials with each drug have explored different schedules for prolonged administration, and dose-limiting toxicities (DLTs) have varied from myelosuppression, gastrointestinal toxicity and neuropathy. Evidence for anticancer efficacy has come from a number of Phase II studies, not necessarily in tumour types containing ras mutations, which were the initial target for these drugs. Perhaps the most promising use for FTIs will be in combination with conventional cytotoxic drugs, based on preclinical data suggesting synergy, particularly with the taxanes. Clinical combination studies are in progress, and larger Phase II/III clinical trials are planned to see if FTIs can add to the efficacy of conventional therapies.
Collapse
Affiliation(s)
- Julia E Head
- Section of Medicine, Institute of Cancer Research, Sutton, Surrey, SM2 5PT, UK
| | | |
Collapse
|
36
|
|
37
|
Affiliation(s)
- Alex A Adjei
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
38
|
Reid TS, Terry KL, Casey PJ, Beese LS. Crystallographic Analysis of CaaX Prenyltransferases Complexed with Substrates Defines Rules of Protein Substrate Selectivity. J Mol Biol 2004; 343:417-33. [PMID: 15451670 DOI: 10.1016/j.jmb.2004.08.056] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 08/13/2004] [Accepted: 08/18/2004] [Indexed: 11/26/2022]
Abstract
Post-translational modifications are essential for the proper function of many proteins in the cell. The attachment of an isoprenoid lipid (a process termed prenylation) by protein farnesyltransferase (FTase) or geranylgeranyltransferase type I (GGTase-I) is essential for the function of many signal transduction proteins involved in growth, differentiation, and oncogenesis. FTase and GGTase-I (also called the CaaX prenyltransferases) recognize protein substrates with a C-terminal tetrapeptide recognition motif called the Ca1a2X box. These enzymes possess distinct but overlapping protein substrate specificity that is determined primarily by the sequence identity of the Ca1a2X motif. To determine how the identity of the Ca1a2X motif residues and sequence upstream of this motif affect substrate binding, we have solved crystal structures of FTase and GGTase-I complexed with a total of eight cognate and cross-reactive substrate peptides, including those derived from the C termini of the oncoproteins K-Ras4B, H-Ras and TC21. These structures suggest that all peptide substrates adopt a common binding mode in the FTase and GGTase-I active site. Unexpectedly, while the X residue of the Ca1a2X motif binds in the same location for all GGTase-I substrates, the X residue of FTase substrates can bind in one of two different sites. Together, these structures outline a series of rules that govern substrate peptide selectivity; these rules were utilized to classify known protein substrates of CaaX prenyltransferases and to generate a list of hypothetical substrates within the human genome.
Collapse
Affiliation(s)
- T Scott Reid
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
39
|
Vigushin DM, Mirsaidi N, Brooke G, Sun C, Pace P, Inman L, Moody CJ, Coombes RC. Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo. Med Oncol 2004; 21:21-30. [PMID: 15034210 DOI: 10.1385/mo:21:1:21] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Accepted: 11/05/2003] [Indexed: 11/11/2022]
Abstract
Gliotoxin is a natural mycotoxin with immunosuppressive and antimicrobial activity. Inhibition of farnesyltransferase (IC50 80 microM) and geranylgeranyltransferase I (IC50 17 microM) stimulated interest in the potential antitumor activity of this epidithiodioxopiperazine. Gliotoxin inhibited proliferation of six breast cancer cell lines in culture with mean +/- SD IC50 289 +/- 328 microM (range 38-985 microM); intracellular farnesylation of Lamin B and geranylgeranylation of Rap1A were inhibited in a dose-dependent manner. In randomized controlled studies using the N-methyl-N-nitrosourea rat mammary carcinoma model, gliotoxin had pronounced antitumor activity in vitro and little systemic toxicity when administered to 10 animals at 10 mg/kg by subcutaneous injection weekly for 4 wk compared with 10 controls. Single doses up to 25 mg/kg were well tolerated. The present studies confirm that gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with pronounced antitumor activity and favorable toxicity profile against breast cancer in vitro and in vivo.
Collapse
Affiliation(s)
- D M Vigushin
- Department of Cancer Medicine, 6th Floor MRC Cyclotron Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hartman HL, Bowers KE, Fierke CA. Lysine beta311 of protein geranylgeranyltransferase type I partially replaces magnesium. J Biol Chem 2004; 279:30546-53. [PMID: 15131129 DOI: 10.1074/jbc.m403469200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein geranylgeranyltransferase type I (GGTase I) catalyzes the attachment of a geranylgeranyl lipid group near the carboxyl terminus of protein substrates. Unlike protein farnesyltransferase (FTase) and protein geranylgeranyltransferase type II, which require both Zn(II) and Mg(II) for maximal turnover, GGTase I turnover is dependent only on Zn(II). In FTase, the magnesium ion is coordinated by aspartate beta352 and the diphosphate of farnesyl diphosphate to stabilize the developing charge in the transition state (Pickett, J. S., Bowers, K. E., and Fierke, C. A. (2003) J. Biol. Chem. 278, 51243-51250). In GGTase I, lysine beta311 is substituted for this aspartate and is proposed to replace the catalytic function of Mg(II) (Taylor, J. S., Reid, T. S., Terry, K. L., Casey, P. J., and Beese, L. S. (2003) EMBO J. 22, 5963-5974). Here we demonstrate that the prenylation rate constant catalyzed by wild type GGTase I (k(chem) = 0.18 +/- 0.02 s(-1)) is not dependent on Mg(II), is approximately 20-fold slower than the maximal rate constant catalyzed by FTase, and has a single pKa of 6.4 +/- 0.1, likely reflecting deprotonation of the peptide thiol. Mutation of lysine beta311 in GGTase I to alanine (Kbeta311A) or aspartate (Kbeta311D) decreases the k(chem) in the absence of magnesium 9-41-fold without significantly affecting the binding affinity of either substrate. Furthermore, the geranylgeranylation rate constant is enhanced by the addition of Mg(II) for Kbeta311A and Kbeta311D GGTase I 2-5-fold compared with wild type GGTase I with K(Mg) of 140 +/- 10 mm and 6.4 +/- 0.8 mm, respectively. These results demonstrate that lysine beta311 of GGTase I partially replaces the catalytic function of Mg(II) observed in FTase.
Collapse
Affiliation(s)
- Heather L Hartman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | |
Collapse
|
41
|
Taylor JS, Reid TS, Terry KL, Casey PJ, Beese LS. Structure of mammalian protein geranylgeranyltransferase type-I. EMBO J 2004; 22:5963-74. [PMID: 14609943 PMCID: PMC275430 DOI: 10.1093/emboj/cdg571] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protein geranylgeranyltransferase type-I (GGTase-I), one of two CaaX prenyltransferases, is an essential enzyme in eukaryotes. GGTase-I catalyzes C-terminal lipidation of >100 proteins, including many GTP- binding regulatory proteins. We present the first structural information for mammalian GGTase-I, including a series of substrate and product complexes that delineate the path of the chemical reaction. These structures reveal that all protein prenyltransferases share a common reaction mechanism and identify specific residues that play a dominant role in determining prenyl group specificity. This hypothesis was confirmed by converting farnesyltransferase (15-C prenyl substrate) into GGTase-I (20-C prenyl substrate) with a single point mutation. GGTase-I discriminates against farnesyl diphosphate (FPP) at the product turnover step through the inability of a 15-C FPP to displace the 20-C prenyl-peptide product. Understanding these key features of specificity is expected to contribute to optimization of anti-cancer and anti-parasite drugs.
Collapse
Affiliation(s)
- Jeffrey S Taylor
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
42
|
Singh SB, Zink DL, Doss GA, Polishook JD, Ruby C, Register E, Kelly TM, Bonfiglio C, Williamson JM, Kelly R. Citrafungins A and B, Two New Fungal Metabolite Inhibitors of GGTase I with Antifungal Activity. Org Lett 2004; 6:337-40. [PMID: 14748587 DOI: 10.1021/ol0361249] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure: see text] Screening of natural products extracts led to the discovery of citrafungins A and B, two new fungal metabolites of the alkylcitrate family that are inhibitors of GGTase I of various pathogenic fungal species with IC(50) values of 2.5-15 microM. These compounds exhibited antifungal activities with MIC values of 0.40-55 microM. The isolation, structure elucidation, relative and absolute stereochemistry, and biological activities of citrafungins are described.
Collapse
Affiliation(s)
- Sheo B Singh
- Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Covalent attachment of lipophilic moieties to proteins influences interaction with membranes and membrane microdomains, as well as signal transduction. The most common forms of fatty acylation include modification of the N-terminal glycine of proteins by N-myristoylation and/or attachment of palmitate to internal cysteine residues. Protein prenylation involves attachment of farnesyl or geranylgeranyl moieties via thio-ether linkage to cysteine residues at or near the C-terminus. Attachment of each of these lipophilic groups is catalyzed by a distinct enzyme or set of enzymes: N-myristoyl transferase for N-myristoylation, palmitoyl acyl transferases for palmitoylation, and farnesyl or geranylgeranyl transferases for prenylation. The distinct nature of the lipid modification determines the strength of membrane interaction of the modified protein as well as the specificity of membrane targeting. Clusters of basic residues can also synergize with the lipophilic group to promote membrane binding and targeting. The final destination of the modified protein is influenced by multiple factors, including the localization of the modifying enzymes, protein/protein interactions, and the lipid composition of the acceptor membrane. In particular, much interest has been focused on the ability of fatty acylated proteins to preferentially partition into membrane rafts, subdomains of the plasma membrane that are enriched in cholesterol and glycosphingolipids. Lipid raft localization is necessary for efficient signal transduction in a wide variety of systems, including signaling by T and B cell receptors, Ras, and growth factor receptors. However, certain membrane subdomains, such as caveolae, can serve as reservoirs for inactive signaling proteins. Heterogeneity in the types of membrane subdomains, as well as in the types of lipophilic groups that are attached to proteins, provide an additional level of complexity in the regulation of signaling by membrane bound proteins.
Collapse
Affiliation(s)
- Marilyn D Resh
- Member and Professor, Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| |
Collapse
|
44
|
Vigushin DM, Brooke G, Willows D, Coombes RC, Moody CJ. Pyrazino[1,2- a ]indole-1,4-diones, simple analogues of gliotoxin, as selective inhibitors of geranylgeranyltransferase I. Bioorg Med Chem Lett 2003; 13:3661-3. [PMID: 14552752 DOI: 10.1016/j.bmcl.2003.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Some pyrazino[1,2-a]indole-1,4-diones, structurally simplified analogues of the natural mycotoxin gliotoxin, have been synthesised and investigated as inhibitors of prenyltransferases; one compound, 3-acetylthio-9-methoxy-2-methyl-2,3-dihydropyrazino[1,2-a]indole-1,4-dione 10 shows slightly greater selectivity (8-fold) for geranylgeranyltransferase type I (GGTase I) than gliotoxin itself.
Collapse
Affiliation(s)
- David M Vigushin
- Department of Cancer Medicine, 6th Floor MRC Cyclotron Building, Imperial College of Science, Technology and Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | |
Collapse
|
45
|
Gu JL, Lu W, Xia C, Wu X, Liu M. Regulation of hematopoietic-specific G-protein Galpha15 and Galpha16 by protein kinase C. J Cell Biochem 2003; 88:1101-11. [PMID: 12647293 DOI: 10.1002/jcb.10455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterotrimeric G proteins mediate cell growth and differentiation by coupling cell surface receptors to intracellular effector enzymes. The G-protein alpha subunit, Galpha(16), and its murine homologue Galpha(15), are expressed specifically in hematopoietic cells and their expression is highly regulated during differentiation of normal and leukemic cells. In this study, we examined the phosphorylation of Galpha(15)/Galpha(16) and its role in receptor and effector coupling. We observed a PMA-stimulated intact cell phosphorylation of Galpha(15) in COS7 cells transfected with Galpha(15) and protein kinase Calpha (PKCalpha), and phosphorylation of endogenous Galpha(16) in HL60 cells. We also showed that peptides derived from the two G-proteins were phosphorylated in vitro using purified brain PKC. Furthermore, we identified the putative phosphorylation site and showed that mutation or deletion of this PKC phosphorylation site inhibited phospholipase C (PLC) activation. The behavior of double mutants with the constitutively active G-protein mutation (QL-mutant) and mutation in the putative phosphorylation site suggests that the phosphorylation site of Galpha(15/16) is essential for receptor-coupled activation of PLC, but not for direct interaction of the G-protein with PLC-beta.
Collapse
Affiliation(s)
- Jennifer L Gu
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
46
|
Chakrabarti D, Da Silva T, Barger J, Paquette S, Patel H, Patterson S, Allen CM. Protein farnesyltransferase and protein prenylation in Plasmodium falciparum. J Biol Chem 2002; 277:42066-73. [PMID: 12194969 DOI: 10.1074/jbc.m202860200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Comparison of the malaria parasite and mammalian protein prenyltransferases and their cellular substrates is important for establishing this enzyme as a target for developing antimalarial agents. Nineteen heptapeptides differing only in their carboxyl-terminal amino acid were tested as alternative substrates of partially purified Plasmodium falciparum protein farnesyltransferase. Only NRSCAIM and NRSCAIQ serve as substrates, with NRSCAIM being the best. Peptidomimetics, FTI-276 and GGTI-287, inhibit the transferase with IC(50) values of 1 and 32 nm, respectively. Incubation of P. falciparum-infected erythrocytes with [(3)H]farnesol labels 50- and 22-28-kDa proteins, whereas [(3)H]geranylgeraniol labels only 22-28-kDa proteins. The 50-kDa protein is shown to be farnesylated, whereas the 22-28-kDa proteins are geranylgeranylated, irrespective of the labeling prenol. Protein labeling is inhibited more than 50% by either 5 microm FTI-277 or GGTI-298. The same concentration of inhibitors also inhibits parasite growth from the ring stage by 50%, decreases expression of prenylated proteins as measured with prenyl-specific antibody, and inhibits parasite differentiation beyond the trophozoite stage. Furthermore, differentiation specific prenylation of P. falciparum proteins is demonstrated. Protein labeling is detected predominantly during the trophozoite to schizont and schizont to ring transitions. These results demonstrate unique properties of protein prenylation in P. falciparum: a limited specificity of the farnesyltransferase for peptide substrates compared with mammalian enzymes, the ability to use farnesol to label both farnesyl and geranylgeranyl moieties on proteins, differentiation specific protein prenylation, and the ability of peptidomimetic prenyltransferase inhibitors to block parasite differentiation.
Collapse
Affiliation(s)
- Debopam Chakrabarti
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando 32816, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Advances in our understanding of the molecular pathways and genetic mutations that control tumor cell proliferation and metastasis present an opportunity to develop novel, mechanism-based therapeutic strategies. Ras mutations are the most frequently activated oncogenes in human tumors, with over 30% expressing ras mutations. Molecular dissection of the signaling pathway and the mechanisms of ras anchorage, post-translational modification, and downstream effector signaling of ras now under intensive investigation will help us to design additional methods for ras-directed therapy in an effort to reach an optimal treatment for human tumors that will most likely comprise a combination of modalities targeted at the different underlying genetic defects. The successes and limitations of ras-targeted therapies must be viewed in light of the increasing understanding of the complexity of the ras-signaling pathway. Only now are we beginning to discover the many functions of this integrated pathway, such as the differences between the actions of various ras isoforms that may affect our choice of therapeutic approach. Many of these Ras therapeutic targets have shown success in preclinical studies, and some have shown efficacy in clinical trials with minimal toxicities. Compounds that block ras-transforming activity without affecting normal ras function seem more attractive for the future development of ras-targeted therapy. FTIs may partially fulfill such requirements. Based on their specific, novel, and mechanism-based action; minimal toxicity; and encouraging responses in clinical trials, the development of Ras therapeutic targets as single agents or in combination with conventional chemotherapy and radiotherapy should be pursued.
Collapse
Affiliation(s)
- Irene M Ghobrial
- Division of Medical Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | | |
Collapse
|
48
|
Nishimura S, Matsunaga S, Shibazaki M, Suzuki K, Harada N, Naoki H, Fusetani N. Corticatic acids D and E, polyacetylenic geranylgeranyltransferase type I inhibitors, from the marine sponge Petrosia corticata. JOURNAL OF NATURAL PRODUCTS 2002; 65:1353-1356. [PMID: 12350165 DOI: 10.1021/np020080f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two new polyacetylenic acids, corticatic acids D (2) and E (3), have been isolated from the marine sponge Petrosia corticata along with the known corticatic acid A (1) as geranylgeranyltransferase type I (GGTase I) inhibitors. Their structures were elucidated on the basis of spectroscopic and chemical methods. Compounds 1-3 inhibited GGTase I from Candida albicans with IC(50) values of 1.9-7.3 microM.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Protein farnesylation catalysed by the enzyme farnesyl protein transferase involves the addition of a 15-carbon farnesyl group to conserved amino acid residues at the carboxyl terminus of certain proteins. Protein substrates of farnesyl transferase include several G-proteins, which are critical intermediates of cell signalling and cytoskeletal organisation such as Ras, Rho, PxF and lamins A and B. Activated Ras proteins trigger a cascade of phosphorylation events through sequential activation of the PI3 kinase/AKT pathway, which is critical for cell survival, and the Raf/Mek/Erk kinase pathway that has been implicated in cell proliferation. Ras mutations which encode for constitutively activated proteins are found in 30% of human cancers. Because farnesylation of Ras is required for its transforming and proliferative activity, the farnesyl protein transferase inhibitors were designed as anticancer agents to abrogate Ras function. However, current evidence suggests that the anticancer activity of the farnesyl transferase inhibitors may not be simply due to Ras inhibition. This review will discuss available clinical data on three of these agents that are currently undergoing clinical trials.
Collapse
Affiliation(s)
- P Haluska
- Department of Internal Medicine, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
50
|
Gorzalczany Y, Alloul N, Sigal N, Weinbaum C, Pick E. A prenylated p67phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox: conversion of a pagan NADPH oxidase to monotheism. J Biol Chem 2002; 277:18605-10. [PMID: 11896062 DOI: 10.1074/jbc.m202114200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the superoxide-generating NADPH oxidase of phagocytes is the result of the assembly of a membrane-localized flavocytochrome (cytochrome b(559)) with the cytosolic components p47(phox), p67(phox), and the small GTPase Rac. Activation can be reproduced in an in vitro system in which cytochrome b(559)-containing membranes are mixed with cytosolic components in the presence of an anionic amphiphile. We proposed that the essential event in activation is the interaction between p67(phox) and cytochrome b(559) and that Rac and p47(phox) serve as carriers for p67(phox) to the membrane. When prenylated, Rac can fulfill the carrier function by itself, supporting oxidase activation by p67(phox) in the absence of p47(phox) and amphiphile. We now show that a single chimeric protein, consisting of residues 1-212 of p67(phox) and full-length Rac1 (residues 1-192), prenylated in vitro and exchanged to GTP, becomes a potent oxidase activator in the absence of any other component or stimulus. Oxidase activation by prenylated chimera p67(phox) (1-212)-Rac1 (1-192) is accompanied by its spontaneous association with membranes. Prenylated chimeras p67(phox) (1-212)-Rac1 (178-192) and p67(phox) (1-212)-Rac1 (189-192), containing specific C-terminal regions of Rac1, are inactive; the activity of the first but not of the second chimera can be rescued by supplementation with exogenous nonprenylated Rac1-GTP. An analysis of prenylated p67(phox)-Rac1 chimeras suggests that the basic requirements for oxidase activation are: (i) a "two signals" membrane-localizing motif present in Rac, comprising the prenyl group and a C-terminal polybasic sequence and (ii) an intrachimeric or extrachimeric protein-protein interaction between p67(phox) and Rac1, causing a conformational change in the "activation domain" in p67(phox).
Collapse
Affiliation(s)
- Yara Gorzalczany
- Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|