1
|
Cunningham DL, Sarhan AR, Creese AJ, Larkins KPB, Zhao H, Ferguson HR, Brookes K, Marusiak AA, Cooper HJ, Heath JK. Differential responses to kinase inhibition in FGFR2-addicted triple negative breast cancer cells: a quantitative phosphoproteomics study. Sci Rep 2020; 10:7950. [PMID: 32409632 PMCID: PMC7224374 DOI: 10.1038/s41598-020-64534-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Fibroblast Growth Factor (FGF) dependent signalling is frequently activated in cancer by a variety of different mechanisms. However, the downstream signal transduction pathways involved are poorly characterised. Here a quantitative differential phosphoproteomics approach, SILAC, is applied to identify FGF-regulated phosphorylation events in two triple- negative breast tumour cell lines, MFM223 and SUM52, that exhibit amplified expression of FGF receptor 2 (FGFR2) and are dependent on continued FGFR2 signalling for cell viability. Comparative Gene Ontology proteome analysis revealed that SUM52 cells were enriched in proteins associated with cell metabolism and MFM223 cells enriched in proteins associated with cell adhesion and migration. FGFR2 inhibition by SU5402 impacts a significant fraction of the observed phosphoproteome of these cells. This study expands the known landscape of FGF signalling and identifies many new targets for functional investigation. FGF signalling pathways are found to be flexible in architecture as both shared, and divergent, responses to inhibition of FGFR2 kinase activity in the canonical RAF/MAPK/ERK/RSK and PI3K/AKT/PDK/mTOR/S6K pathways are identified. Inhibition of phosphorylation-dependent negative-feedback pathways is observed, defining mechanisms of intrinsic resistance to FGFR2 inhibition. These findings have implications for the therapeutic application of FGFR inhibitors as they identify both common and divergent responses in cells harbouring the same genetic lesion and pathways of drug resistance.
Collapse
Affiliation(s)
- Debbie L Cunningham
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Adil R Sarhan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Medical Laboratory Techniques, Nasiriyah Technical Institute, Southern Technical University, Nasiriyah, 6400, Iraq
| | - Andrew J Creese
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Immunocore, 101 Park Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Hongyan Zhao
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Harriet R Ferguson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Katie Brookes
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Anna A Marusiak
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, 02-097, Warszawa, Poland
| | - Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - John K Heath
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
2
|
Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites. Proc Natl Acad Sci U S A 2019; 116:21256-21261. [PMID: 31578252 DOI: 10.1073/pnas.1906768116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important messenger molecule for diverse cellular processes. H2O2 oxidizes proteinaceous cysteinyl thiols to sulfenic acid, also known as S-sulfenylation, thereby affecting the protein conformation and functionality. Although many proteins have been identified as S-sulfenylation targets in plants, site-specific mapping and quantification remain largely unexplored. By means of a peptide-centric chemoproteomics approach, we mapped 1,537 S-sulfenylated sites on more than 1,000 proteins in Arabidopsis thaliana cells. Proteins involved in RNA homeostasis and metabolism were identified as hotspots for S-sulfenylation. Moreover, S-sulfenylation frequently occurred on cysteines located at catalytic sites of enzymes or on cysteines involved in metal binding, hinting at a direct mode of action for redox regulation. Comparison of human and Arabidopsis S-sulfenylation datasets provided 155 conserved S-sulfenylated cysteines, including Cys181 of the Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE4 (AtMAPK4) that corresponds to Cys161 in the human MAPK1, which has been identified previously as being S-sulfenylated. We show that, by replacing Cys181 of recombinant AtMAPK4 by a redox-insensitive serine residue, the kinase activity decreased, indicating the importance of this noncatalytic cysteine for the kinase mechanism. Altogether, we quantitatively mapped the S-sulfenylated cysteines in Arabidopsis cells under H2O2 stress and thereby generated a comprehensive view on the S-sulfenylation landscape that will facilitate downstream plant redox studies.
Collapse
|
3
|
Tokmakov AA, Akino K, Iguchi S, Iwasaki T, Stefanov VE, Sato KI. Autophosphorylation of MAP kinase disables the MAPK pathway in apoptotic Xenopus eggs. Biochem Biophys Res Commun 2019; 517:140-145. [PMID: 31320137 DOI: 10.1016/j.bbrc.2019.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 11/26/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are involved in the regulation of various cellular processes, including cell survival and apoptosis. Here, we report that Xenopus p42 MAPK becomes phosphorylated in apoptotic eggs, however this modification does not activate the enzyme. Using phosphorylation residue-specific antibodies, we demonstrate that this modification occurs on the Tyr residue in the MAPK activation segment, pinpointing the autophosphorylation mechanism. Notably, MAPK phosphorylation in apoptotic Xenopus eggs coincides with prominent intracellular acidification accompanying apoptosis in these cells. Furthermore, autophosphorylation of recombinant Xenopus MAPK is stimulated and phosphorylation of a protein substrate is inhibited under low pH conditions. Thus, acidic intracellular conditions inactivate MAPK and effectively disable the MAPK-mediated survival pathway in the apoptotic eggs. Given that cell acidification is a rather common feature of apoptosis, we hypothesize that stimulation of MAPK autophosphorylation and shutdown of the MAPK pathway may represent universal traits of apoptotic cell death.
Collapse
Affiliation(s)
| | - Kousuke Akino
- Graduate School of Science Faculty of Science, Kobe University, Japan
| | - Sho Iguchi
- Biosignal Research Center, Kobe University, Japan
| | - Tetsushi Iwasaki
- Graduate School of Science Faculty of Science, Kobe University, Japan; Biosignal Research Center, Kobe University, Japan
| | - Vasily E Stefanov
- Department of Biochemistry, Saint Petersburg State University, Russia
| | - Ken-Ichi Sato
- Faculty of Life Sciences, Kyoto Sangyo University, Japan
| |
Collapse
|
4
|
Phillips T, Tio CW, Omerza G, Rimal A, Lokareddy RK, Cingolani G, Winter E. RNA Recognition-like Motifs Activate a Mitogen-Activated Protein Kinase. Biochemistry 2018; 57:6878-6887. [PMID: 30452242 DOI: 10.1021/acs.biochem.8b01032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Smk1 is a mitogen-activated protein kinase (MAPK) family member in the yeast Saccharomyces cerevisiae that controls the postmeiotic program of spore formation. Ssp2 is a meiosis-specific protein that activates Smk1 and triggers the autophosphorylation of its activation loop. A fragment of Ssp2 that is sufficient to activate Smk1 contains two segments that resemble RNA recognition motifs (RRMs). Mutations in either of these motifs eliminated Ssp2's ability to activate Smk1. In contrast, deletions and insertions within the segment linking the RRM-like motifs only partially reduced the activity of Ssp2. Moreover, when the two RRM-like motifs were expressed as separate proteins in bacteria, they activated Smk1. We also find that both motifs can be cross-linked to Smk1 and that at least one of the motifs binds near the ATP-binding pocket of the MAPK. These findings demonstrate that motifs related to RRMs can directly activate protein kinases.
Collapse
Affiliation(s)
- Timothy Phillips
- Department of Biochemistry and Molecular Biology , Thomas Jefferson University , Philadelphia , Pennsylvania 19107 , United States
| | - Chong Wai Tio
- Department of Biochemistry and Molecular Biology , Thomas Jefferson University , Philadelphia , Pennsylvania 19107 , United States
| | - Gregory Omerza
- Department of Biochemistry and Molecular Biology , Thomas Jefferson University , Philadelphia , Pennsylvania 19107 , United States
| | - Abhimannyu Rimal
- Department of Biochemistry and Molecular Biology , Thomas Jefferson University , Philadelphia , Pennsylvania 19107 , United States
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology , Thomas Jefferson University , Philadelphia , Pennsylvania 19107 , United States
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology , Thomas Jefferson University , Philadelphia , Pennsylvania 19107 , United States
| | - Edward Winter
- Department of Biochemistry and Molecular Biology , Thomas Jefferson University , Philadelphia , Pennsylvania 19107 , United States
| |
Collapse
|
5
|
Patel A, Dey N, Chaudhuri S, Pal A. Molecular and biochemical characterization of a Vigna mungo MAP kinase associated with Mungbean Yellow Mosaic India Virus infection and deciphering its role in restricting the virus multiplication. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:127-140. [PMID: 28716408 DOI: 10.1016/j.plantsci.2017.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Yellow Mosaic Disease caused by the begomovirus Mungbean Yellow Mosaic India Virus (MYMIV) severely affects many economically important legumes. Recent investigations in Vigna mungo - MYMIV incompatible interaction identified a MAPK homolog in the defense signaling pathway. An important branch of immunity involves phosphorylation by evolutionary conserved Mitogen-activated protein kinases (MAPK) that transduce signals of pathogen invasion to downstream molecules leading to diverse immune responses. However, most of the knowledge of MAPKs is derived from model crops, and functions of these versatile kinases are little explored in legumes. Here we report characterization of a MAP kinase (VmMAPK1), which was induced upon MYMIV-inoculation in resistant V. mungo. Phylogenetic analysis revealed that VmMAPK1 is closely related to other plant-stress-responsive MAPKs. Both mRNA and protein of VmMAPK1 were accumulated upon MYMIV infection. The VmMAPK1 protein localized in the nucleus as well as cytoplasm and possessed phosphorylation activity in vitro. A detailed biochemical characterization of purified recombinant VmMAPK1 demonstrated an intramolecular mechanism of autophosphorylation and self-catalyzed phosphate incorporation on both threonine and tyrosine residues. The Vmax and Km values of recombinant VmMAPK1 for ATP were 6.292nmol/mg/min and 0.7978μM, respectively. Furthermore, the ability of VmMAPK1 to restrict MYMIV multiplication was validated by its ectopic expression in transgenic tobacco. Importantly, overexpression of VmMAPK1 resulted in the considerable upregulation of defense-responsive marker PR genes. Thus, the present data suggests the critical role of VmMAPK1 in suppressing MYMIV multiplication presumably through SA-mediated signaling pathway and inducing PR genes establishing the significant implications in understanding MAP kinase gene function during Vigna-MYMIV interaction; and hence paves the way for introgression of resistance in leguminous crops susceptible to MYMIV.
Collapse
Affiliation(s)
- Anju Patel
- Division of Plant Biology, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Nrisingha Dey
- Division of Gene Function and Regulation, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata 700054, India.
| |
Collapse
|
6
|
Abstract
ERK1 and ERK2 (ERK1/2) are the primary effector kinases of the RAS-RAF-MEK-ERK signaling pathway. A variety of substrates and regulatory partners associate with ERK1/2 through distinct D-peptide- and DEF-docking sites on their kinase domains. While understanding of D-peptides that bind to ERK1/2 has become increasingly clear over the last decade, only more recently have structures of proteins interacting with other binding sites on ERK1/2 become available. PEA-15 is a 130-residue ERK1/2 regulator that engages both the D-peptide- and DEF-docking sites of ERK kinases, and directly sequesters the ERK2 activation loop in various different phosphorylation states. Here we describe the methods used to derive crystallization-grade complexes of ERK2-PEA-15, which may also be adapted for other regulators that associate with the activation loop of ERK1/2.
Collapse
Affiliation(s)
- Johannes F Weijman
- Biochemistry Department, Otago School of Medical Sciences, University of Otago, 56, 710 Cumberland St., Dunedin, 9054, New Zealand
| | - Stefan J Riedl
- Cell Death and Survival Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter D Mace
- Biochemistry Department, Otago School of Medical Sciences, University of Otago, 56, 710 Cumberland St., Dunedin, 9054, New Zealand.
| |
Collapse
|
7
|
Activation of the Smk1 mitogen-activated protein kinase by developmentally regulated autophosphorylation. Mol Cell Biol 2012. [PMID: 23207907 DOI: 10.1128/mcb.00973-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Smk1 is a meiosis-specific mitogen-activated protein kinase (MAPK) in Saccharomyces cerevisiae that controls spore morphogenesis. Similar to other MAPKs, it is controlled by dual phosphorylation of its T-X-Y activation motif. However, Smk1 is not phosphorylated by a prototypical MAPK kinase. Here, we show that the T residue in Smk1's activation motif is phosphorylated by the cyclin-dependent kinase (CDK)-activating kinase, Cak1. The Y residue is autophosphorylated in an independent intramolecular reaction that requires the meiosis-specific protein Ssp2. Although both SMK1 and SSP2 are expressed as middle-meiosis-specific genes, Smk1 protein starts to accumulate before Ssp2. Thus, Smk1 exists in a low-activity (pT) form early in sporulation and a high-activity (pT/pY) form later in the program. Ssp2 must be present when Smk1 is being produced to activate the autophosphorylation reaction, suggesting that Ssp2 acts through a transitional intermediate form of Smk1. These findings provide a mechanistic explanation for how Smk1 activity thresholds are generated. They demonstrate that intramolecular autophosphorylation of MAPKs can be regulated and suggest new mechanisms for coupling MAPK outputs to developmental programs.
Collapse
|
8
|
Kim SH, Oikawa T, Kyozuka J, Wong HL, Umemura K, Kishi-Kaboshi M, Takahashi A, Kawano Y, Kawasaki T, Shimamoto K. The bHLH Rac Immunity1 (RAI1) Is Activated by OsRac1 via OsMAPK3 and OsMAPK6 in Rice Immunity. PLANT & CELL PHYSIOLOGY 2012; 53:740-54. [PMID: 22437844 DOI: 10.1093/pcp/pcs033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Rac/Rop GTPase OsRac1 plays an essential role in rice immunity. However, the regulatory genes acting downstream of OsRac1 are largely unknown. We focused on the RAI1 gene, which is up-regulated in suspension cells expressing a constitutively active form of OsRac1. RAI1 encodes a putative basic helix-loop-helix transcription factor. A microarray analysis of cells transformed with an inducible RAI1 construct showed increased expression of PAL1 and OsWRKY19 genes after induction, suggesting that these genes are regulated by RAI1. This was confirmed using RAI1 T-DNA activation-tagged and RNA interference lines. The PAL1 and OsWRKY19 genes were also up-regulated by sphingolipid and chitin elicitors, and the RAI1 activation-tagged plants had increased resistance to a rice blast fungus. These results indicated that RAI1 is involved in defense responses in rice. RAI1 interacted with OsMAPK3 and OsMAPK6 proteins in vivo and in vitro. Also, RAI1 was phosphorylated by OsMAPK3/6 and OsMKK4-dd in vitro. Overexpression of OsMAPK6 and/or OsMAPK3 together with OsMKK4-dd increased PAL1 and OsWRKY19 expression in rice protoplasts. Therefore, the regulation of PAL1 and OsWRKY19 expression by RAI1 could be controlled via an OsMKK4-OsMAPK3/6 cascade. Co-immunoprecipitation assays indicated that OsMAPK3 and OsRac1 occur in the same complex as OsMAPK6. Taken together, our results indicate that RAI1 could be regulated by OsRac1 through an OsMAPK3/6 cascade. In this study, we have identified RAI1 as the first transcription factor acting downstream of OsRac1. This work will help us to understand the immune system regulated by OsRac1 in rice and its orthologs in other plant species.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
A muscle-specific p38 MAPK/Mef2/MnSOD pathway regulates stress, motor function, and life span in Drosophila. Dev Cell 2011; 21:783-95. [PMID: 22014527 DOI: 10.1016/j.devcel.2011.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 07/06/2011] [Accepted: 09/09/2011] [Indexed: 12/30/2022]
Abstract
Molecular mechanisms that concordantly regulate stress, life span, and aging remain incompletely understood. Here, we demonstrate that in Drosophila, a p38 MAP kinase (p38K)/Mef2/MnSOD pathway is a coregulator of stress and life span. Hence, overexpression of p38K extends life span in a MnSOD-dependent manner, whereas inhibition of p38K causes early lethality and precipitates age-related motor dysfunction and stress sensitivity, that is rescued through muscle-restricted (but not neuronal) add-back of p38K. Additionally, mutations in p38K are associated with increased protein carbonylation and Nrf2-dependent transcription, while adversely affecting metabolic response to hypoxia. Mechanistically, p38K modulates expression of the mitochondrial MnSOD enzyme through the transcription factor Mef2, and predictably, perturbations in MnSOD modify p38K-dependent phenotypes. Thus, our results uncover a muscle-restricted p38K-Mef2-MnSOD signaling module that influences life span and stress, distinct from the insulin/JNK/FOXO pathway. We propose that potentiating p38K might be instrumental in restoring the mitochondrial detoxification machinery and combating stress-induced aging.
Collapse
|
10
|
Nemoto K, Seto T, Takahashi H, Nozawa A, Seki M, Shinozaki K, Endo Y, Sawasaki T. Autophosphorylation profiling of Arabidopsis protein kinases using the cell-free system. PHYTOCHEMISTRY 2011; 72:1136-44. [PMID: 21477822 DOI: 10.1016/j.phytochem.2011.02.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/19/2011] [Accepted: 02/24/2011] [Indexed: 05/20/2023]
Abstract
Protein phosphorylation is one of the main process in the signal transduction pathway. In recent years, there has been increasing attention to plant phosphorylation signaling and many laboratories are trying to elucidate pathways using various approaches. Although more than 1000 protein kinase (PK) genes have been annotated in the Arabidopsis genome, biochemical characterization of those PKs is limited. In this work, we demonstrate high-throughput profiling of serine/threonine autophosphorylation activity by a combination of the 759N-terminal biotinylated proteins library, produced using a wheat germ cell-free protein production system, and a commercially available luminescence system. Luminescent analysis revealed that 179 of the 759 PKs had autophosphorylation activity. From these 179 PKs, 67 of the most active PKs were analyzed to determine their function using the PlantP database. This analysis revealed that 35 (53%) of the proteins were classified as non-transmembrane protein kinases, and 15 (23%) were receptor-like protein kinases. Additionally, PKs from Group 4.4-MAP3K, Group 1.6, Group 4.5-MAPK/CDC/CK2/GSK kinases and Group 1.10-receptor like cytoplasmic kinases contained the highest percentage of autophosphorylated activity. Next, to get a better overview of the annotated 67 PKs, we used the gene ontology annotation search on the TAIR website to classify the 67 PKs into functional category. As a result, some of these PKs may be involved in phospho-signaling pathways such as signal transduction, stress response, and the regulation of cell division. Information from this study may shed light on many unknown plant PKs. This study will be a basis for understanding the function of PKs in phosphorylation network for future research.
Collapse
Affiliation(s)
- Keiichirou Nemoto
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wu W, Mehta H, Chakrabarty K, Booth JL, Duggan ES, Patel KB, Ballard JD, Coggeshall KM, Metcalf JP. Resistance of human alveolar macrophages to Bacillus anthracis lethal toxin. THE JOURNAL OF IMMUNOLOGY 2009; 183:5799-806. [PMID: 19812208 DOI: 10.4049/jimmunol.0803406] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The etiologic agent of inhalational anthrax, Bacillus anthracis, produces virulence toxins that are important in the disease pathogenesis. Current studies suggest that mouse and human macrophages are susceptible to immunosuppressive effects of one of the virulence toxins, lethal toxin (LT). Thus a paradigm has emerged that holds that the alveolar macrophage (AM) does not play a significant role in the innate immune response to B. anthracis or defend against the pathogen as it is disabled by LT. This is inconsistent with animal models and autopsy studies that show minimal disease at the alveolar surface. We examined whether AM are immunosuppressed by LT. We found that human AM were relatively resistant to LT-mediated innate immune cytokine suppression, MEK cleavage, and induction of apoptosis as compared with mouse RAW 264.7 macrophages. Mouse AM and murine bone marrow-derived macrophages were also relatively resistant to LT-mediated apoptosis despite intermediate sensitivity to MEK cleavage. The binding component of LT, protective Ag, does not attach to human AM, although it did bind to mouse AM, murine bone marrow-derived macrophages, and RAW 264.7 macrophages. Human AM do not produce significant amounts of the protective Ag receptor anthrax toxin receptor 1 (TEM8/ANTXR1) and anthrax toxin receptor 2 (CMG2/ANTXR2). Thus, mature and differentiated AM are relatively resistant to the effects of LT as compared with mouse RAW 264.7 macrophages. AM resistance to LT may enhance clearance of the pathogen from the alveolar surface and explain why this surface is relatively free of B. anthracis in animal models and autopsy studies.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hu R, Shen G, Yerramilli UR, Lin W, Xu C, Nair S, Kong ANT. In vivo pharmacokinetics, activation of MAPK signaling and induction of phase II/III drug metabolizing enzymes/transporters by cancer chemopreventive compound BHA in the mice. Arch Pharm Res 2006; 29:911-20. [PMID: 17121188 DOI: 10.1007/bf02973914] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phenolic antioxidant butylated hydroxyanisole (BHA) is a commonly used food preservative with broad biological activities, including protection against chemical-induced carcinogenesis, acute toxicity of chemicals, modulation of macromolecule synthesis and immune response, induction of phase II detoxifying enzymes, as well as its undesirable potential tumor-promoting activities. Understanding the molecular basis underlying these diverse biological actions of BHA is thus of great importance. Here we studied the pharmacokinetics, activation of signaling kinases and induction of phase II/III drug metabolizing enzymes/transporter gene expression by BHA in the mice. The peak plasma concentration of BHA achieved in our current study after oral administration of 200 mg/kg BHA was around 10 microM. This in vivo concentration might offer some insights for the many in vitro cell culture studies on signal transduction and induction of phase II genes using similar concentrations. The oral bioavailability (F) of BHA was about 43% in the mice. In the mouse liver, BHA induced the expression of phase II genes including NQO-1, HO-1, gamma-GCS, GST-pi and UGT 1A6, as well as some of the phase III transporter genes, such as MRP1 and Slcolb2. In addition, BHA activated distinct mitogen-activated protein kinases (MAPKs), c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), as well as p38, suggesting that the MAPK pathways may play an important role in early signaling events leading to the regulation of gene expression including phase II drug metabolizing and some phase III drug transporter genes. This is the first study to demonstrate the in vivo pharmacokinetics of BHA, the in vivo activation of MAPK signaling proteins, as well as the in vivo induction of Phase II/III drug metabolizing enzymes/transporters in the mouse livers.
Collapse
Affiliation(s)
- Rong Hu
- Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Lerea KM, Venjara AY, Olson SC, Kelly MR. Threonine phosphorylation of integrin beta3 in calyculin A-treated platelets is selectively sensitive to 5'-iodotubercidin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:185-91. [PMID: 17052767 DOI: 10.1016/j.bbamcr.2006.08.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 08/23/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
Exposure of platelets to toxins (calyculin A or okadaic acid) that inhibit protein serine/threonine phosphatases types 1 and 2A, at concentrations that block aggregatory and secretory responses, results in the phosphorylation of several platelet proteins including integrin beta(3). Since protein phosphorylation represents a balance between kinase and phosphatase activities, this increase in phosphorylation reflects either the removal of phosphatases that oppose constitutively active kinases known to reside in the platelet (e.g., casein kinase 2) or the activation of endogenous kinases. In this study, we demonstrate that the addition of calyculin A promotes the activation of several endogenous platelet protein kinases, including p42/44(mapk), p38(mapk), Akt/PKB, and LKB1. Using a pharmacologic approach, we assessed whether inhibition of these and other enzymes block phosphorylation of beta(3). Inhibitors of p38(mapk), casein kinase, AMP kinase, protein kinase C, and calcium-calmodulin-dependent kinases did not block phosphorylation of beta(3) on thr(753). In contrast, 5'-iodotubercidin, at 50 muM, blocks beta(3) phosphorylation without affecting the efficacy of calyculin A to inhibit platelet aggregation and spreading. These data dissociate threonine phosphorylation of beta(3) molecules and inhibition of platelet responses by protein phosphatase inhibitors.
Collapse
Affiliation(s)
- Kenneth M Lerea
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | |
Collapse
|
14
|
Song D, Chen J, Song F, Zheng Z. A novel rice MAPK gene, OsBIMK2, is involved in disease-resistance responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:587-96. [PMID: 16755461 DOI: 10.1055/s-2006-924149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascades play important roles in transmission of extracellular signals to the downstream effector proteins through a mechanism of protein phosphorylation. In this study, we isolated and identified a novel rice MAPK gene, OSBIMK2 ( ORYZAE SATIVA L. BTH-Induced MAP Kinase 2). The OSBIMK2 encodes a 506 amino acid protein with molecular weight of 63 kD. The recombinant OSBIMK2 expressed in ESCHERICHIA COLI showed an autophosphorylation activity IN VITRO. OSBIMK2 is a single-copy gene in the rice genome. Expression of OSBIMK2 was activated upon treatment with benzothiadiazole (BTH), which is capable of inducing disease resistance in rice. Expression of OsBIMK2 was also up-regulated during early stage after inoculation with MAGNAPORTHE GRISEA in BTH-treated rice seedlings and during an incompatible interaction between M. GRISEA and a blast-resistant rice genotype. Over-expression of the rice OSBIMK2 gene in transgenic tobacco resulted in an enhanced disease resistance against tomato mosaic virus and a fungal pathogen, ALTERNARIA ALTERNATA. These results suggest that OSBIMK2 plays a role in disease resistance responses.
Collapse
Affiliation(s)
- D Song
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310029, PR China
| | | | | | | |
Collapse
|
15
|
Mishra NS, Tuteja R, Tuteja N. Signaling through MAP kinase networks in plants. Arch Biochem Biophys 2006; 452:55-68. [PMID: 16806044 DOI: 10.1016/j.abb.2006.05.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 05/04/2006] [Accepted: 05/05/2006] [Indexed: 01/01/2023]
Abstract
Protein phosphorylation is the most important mechanism for controlling many fundamental cellular processes in all living organisms including plants. A specific class of serine/threonine protein kinases, the mitogen-activated protein kinases (MAP kinases) play a central role in the transduction of various extra- and intracellular signals and are conserved throughout eukaryotes. These generally function via a cascade of networks, where MAP kinase (MAPK) is phosphorylated and activated by MAPK kinase (MAPKK), which itself is activated by MAPKK kinase (MAPKKK). Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as response to various stresses. In plants, MAP kinases are represented by multigene families and are organized into a complex network for efficient transmission of specific stimuli. Putative plant MAP kinase cascades have been postulated based on experimental analysis of in vitro interactions between specific MAP kinase components. These cascades have been tested in planta following expression of epitope-tagged kinases in protoplasts. It is known that signaling for cell division and stress responses in plants are mediated through MAP kinases and even auxin, ABA and possibly ethylene and cytokinin also utilize a MAP kinase pathway. Most of the biotic (pathogens and pathogen-derived elicitors) including wounding and abiotic stresses (salinity, cold, drought, and oxidative) can induce defense responses in plants through MAP kinase pathways. In this article we have covered the historical background, biochemical assay, activation/inactivation, and targets of MAP kinases with emphasis on plant MAP kinases and the responses regulated by them. The cross-talk between plant MAP kinases is also discussed to bring out the complexity within this three-component module.
Collapse
Affiliation(s)
- Neeti Sanan Mishra
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
16
|
Fu Z, Schroeder MJ, Shabanowitz J, Kaldis P, Togawa K, Rustgi AK, Hunt DF, Sturgill TW. Activation of a nuclear Cdc2-related kinase within a mitogen-activated protein kinase-like TDY motif by autophosphorylation and cyclin-dependent protein kinase-activating kinase. Mol Cell Biol 2005; 25:6047-64. [PMID: 15988018 PMCID: PMC1168834 DOI: 10.1128/mcb.25.14.6047-6064.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Male germ cell-associated kinase (MAK) and intestinal cell kinase (ICK) are nuclear Cdc2-related kinases with nearly identical N-terminal catalytic domains and more divergent C-terminal noncatalytic domains. The catalytic domain is also related to mitogen-activated protein kinases (MAPKs) and contains a corresponding TDY motif. Nuclear localization of ICK requires subdomain XI and interactions of the conserved Arg-272, but not kinase activity or, surprisingly, any of the noncatalytic domain. Further, nuclear localization of ICK is required for its activation. ICK is activated by dual phosphorylation of the TDY motif. Phosphorylation of Tyr-159 in the TDY motif requires ICK autokinase activity but confers only basal kinase activity. Full activation requires additional phosphorylation of Thr-157 in the TDY motif. Coexpression of ICK with constitutively active MEK1 or MEK5 fails to increase ICK phosphorylation or activity, suggesting that MEKs are not involved. ICK and MAK are related to Ime2p in budding yeast, and cyclin-dependent protein kinase-activating kinase Cak1p has been placed genetically upstream of Ime2p. Recombinant Cak1p phosphorylates Thr-157 in the TDY motif of recombinant ICK and activates its activity in vitro. Coexpression of ICK with wild-type CAK1 but not kinase-inactive CAK1 in cells also increases ICK phosphorylation and activity. Our studies establish ICK as the prototype for a new group of MAPK-like kinases requiring dual phosphorylation at TDY motifs.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Pharmacology and Internal Medicine, University of Virginia School, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908-0735, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zeng H, Fei H, Levitan IB. The slowpoke channel binding protein Slob from Drosophila melanogaster exhibits regulatable protein kinase activity. Neurosci Lett 2004; 365:33-8. [PMID: 15234468 DOI: 10.1016/j.neulet.2004.04.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 04/08/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
The slowpoke channel binding protein Slob from Drosophila melanogaster contains a putative protein kinase domain within its amino acid sequence. We find that Slob exhibits weak and barely detectable protein kinase activity in vitro, as evidenced by autophosphorylation and by phosphorylation of exogenously added histone as substrate. The phosphorylation of histone is enhanced markedly when Slob is pretreated with the catalytic subunit of cyclic AMP-dependent protein kinase (PKAc). Mass spectrometric and mutational analysis demonstrates that the major site of phosphorylation by PKAc within Slob is serine 54. The enhancement of Slob kinase activity by PKAc pretreatment is eliminated when serine 54 in Slob is mutated to alanine (S54A). Furthermore, Slob kinase activity is enhanced in an S54E mutant that mimics phosphorylation at serine 54, and there is no further enhancement of S54E Slob kinase activity by pretreatment with PKAc. The results are consistent with the hypothesis that Slob exhibits regulatable protein kinase activity, whose activity is enhanced by phosphorylation at serine 54.
Collapse
Affiliation(s)
- Haoyu Zeng
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
18
|
Wiese M, Kuhn D, Grünfelder CG. Protein kinase involved in flagellar-length control. EUKARYOTIC CELL 2003; 2:769-77. [PMID: 12912896 PMCID: PMC178386 DOI: 10.1128/ec.2.4.769-777.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During its life cycle, the parasitic protozoon Leishmania mexicana differentiates from a flagellated form, the promastigote, to an amastigote form carrying a rudimentary flagellum. Besides biochemical changes, this process involves a change in overall cell morphology including flagellar shortening. A mitogen-activated protein kinase kinase homologue designated LmxMKK was identified in a homology screening and found to be critically involved in the regulation of flagellar assembly and cell size. LmxMKK is exclusively expressed in the promastigote stage and is likely to be regulated by posttranslational mechanisms such as phosphorylation. A deletion mutant for the single-copy gene revealed motile flagella dramatically reduced in length and lacking the paraflagellar rod, a structure adjacent to the axoneme in kinetoplastid flagella. Moreover, a fraction of the cells showed perturbance of the axonemal structure. Complementation of the deletion mutant with the wild-type gene restored typical promastigote morphology. We propose that LmxMKK influences anterograde intraflagellar transport to maintain flagellar length in Leishmania promastigotes; as such, it is the first protein kinase known to be involved in organellar assembly.
Collapse
Affiliation(s)
- Martin Wiese
- Parasitology Section, Bernhard-Nocht-Institute for Tropical Medicine, D-20359 Hamburg, Germany.
| | | | | |
Collapse
|
19
|
Madec E, Stensballe A, Kjellström S, Cladière L, Obuchowski M, Jensen ON, Séror SJ. Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis. J Mol Biol 2003; 330:459-72. [PMID: 12842463 DOI: 10.1016/s0022-2836(03)00579-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have shown recently that PrkC, which is involved in developmental processes in Bacillus subtilis, is a Ser/Thr kinase with features of the receptor kinase family of eukaryotic Hanks kinases. In this study, we expressed and purified from Escherichia coli the cytoplasmic domain of PrkC containing the kinase and a short juxtamembrane region. This fragment, which we designate PrkCc, undergoes autophosphorylation in E.coli. PrkCc is further autophosphorylated in vitro, apparently through a trans-kinase, intermolecular reaction. PrkC also displays kinase activity with myelin basic protein. Using high mass accuracy electrospray tandem mass spectrometry (LC-MS/MS) and nanoelectrospray tandem mass spectrometry, we identified seven phosphorylated threonine and one serine residue in PrkCc. All the corresponding residues were replaced by systematic site-directed mutagenesis and the purified mutant proteins were tested for in vitro kinase activity. Single and multiple replacement of four threonine residues, clustered between residues 162 and 167 in a putative activation loop, substantially reduced kinase activity and the effect was clearly additive. Replacement of the other three threonine residues, clustered between residues 290 and 320, had relatively little effect on activity. In contrast, substitution of Ser214, which is conserved in closely related receptor kinase-like bacterial proteins, independently affected activity and may represent a novel regulatory mechanism. When projected onto a 3D structure of PrkC modelled on the structure of known Hanks kinases, the first cluster of phospho-threonine residues falls precisely in the activation loop, controlling the access of substrate and ATP to the catalytic site of many eukaryotic receptor kinases, whereas the second cluster is located in the juxtamembrane region. These results indicate that regulation of PrkC kinase activity (and presumably autophosphorylation) includes a conserved activation loop mechanism. The juxtamembrane phospho-threonine residues may be essential, for example for the recruitment of other proteins necessary for a PrkC signalling cascade or for coupling to other signalling pathways. This is the first structure-function analysis of a bacterial receptor-like kinase of the Hanks family.
Collapse
Affiliation(s)
- Edwige Madec
- Institut de Génétique et Microbiologie, Bât. 409, UMR CNRS 8621, Université Paris-Sud, 91405 Orsay cedex, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Chen LY, Zuraw BL, Zhao M, Liu FT, Huang S, Pan ZK. Involvement of protein tyrosine kinase in Toll-like receptor 4-mediated NF-kappa B activation in human peripheral blood monocytes. Am J Physiol Lung Cell Mol Physiol 2003; 284:L607-13. [PMID: 12495941 DOI: 10.1152/ajplung.00116.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacterial lipopolysaccharide (LPS) is a powerful activator of the innate immune system. Exposure to LPS induces an inflammatory reaction in the lung mediated primarily by human blood monocytes and alveolar macrophages, which release an array of inflammatory chemokines and cytokines including IL-8, TNF-alpha, IL-1beta, and IL-6. The signaling mechanisms utilized by LPS to stimulate the release of cytokines and chemokines are still incompletely understood. Pretreatment with the protein tyrosine kinase-specific inhibitors genistein and herbimycin A effectively blocked LPS-induced NF-kappaB activation as well as IL-8 gene expression in human peripheral blood monocytes. However, when genistein was added 2 min after the addition of LPS, no inhibition was observed. Utilizing a coimmunoprecipitation assay, we further showed that LPS-stimulated tyrosine phosphorylation of Toll-like receptor 4 (TLR4) may be involved in downstream signaling events induced by LPS. These findings provide evidence that LPS-induced NF-kappaB activation and IL-8 gene expression use a signaling pathway requiring protein tyrosine kinase and that such regulation may occur through tyrosine phosphorylation of TLR4.
Collapse
Affiliation(s)
- Ling-Yu Chen
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla 92037, California 92121, USA
| | | | | | | | | | | |
Collapse
|
21
|
Lev S, Horwitz BA. A mitogen-activated protein kinase pathway modulates the expression of two cellulase genes in Cochliobolus heterostrophus during plant infection. THE PLANT CELL 2003; 15:835-44. [PMID: 12671080 PMCID: PMC152332 DOI: 10.1105/tpc.010546] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Accepted: 02/06/2003] [Indexed: 05/18/2023]
Abstract
Conserved eukaryotic signaling elements play an important role in the development of fungal pathogens on their hosts. Chk1, a mitogen-activated protein kinase (MAPK), functions in virulence, mating, and sporulation of the maize leaf pathogen Cochliobolus heterostrophus. Suppression subtractive hybridization was used to identify fungal genes whose expression on the host plant is affected in chk1 deletion mutants. Two of the genes isolated in this screen were predicted to encode cellulolytic enzymes: a cellobiohydrolase, CBH7, and an endoglucanase, EG6. Expression of EG6 and CBH7 was followed by the fusion of their upstream regulatory regions to the coding sequence of the green fluorescent protein. Induction of both genes began at the onset of invasive growth and reached its maximal extent during leaf necrosis. Furthermore, EG6 was induced preferentially within necrotic lesions. Disruption of MAPK CHK1 resulted in a delay in the penetration of hyphae into the leaf and a concomitant delay in the induction of expression of both cellulase genes. In saprophytic culture, the absence of Chk1 resulted in a marked delay in the induction of CBH7 expression by crystalline cellulose. EG6 was expressed at a basal level in culture, and this expression was found to depend strictly on Chk1. Thus, the Chk1 MAPK signaling pathway is involved in the regulation of two cellulase-encoding genes and is necessary for their timely induction by environmental signals.
Collapse
Affiliation(s)
- Sophie Lev
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
22
|
Ge B, Xiong X, Jing Q, Mosley JL, Filose A, Bian D, Huang S, Han J. TAB1beta (transforming growth factor-beta-activated protein kinase 1-binding protein 1beta ), a novel splicing variant of TAB1 that interacts with p38alpha but not TAK1. J Biol Chem 2003; 278:2286-93. [PMID: 12429732 DOI: 10.1074/jbc.m210918200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitogen-activated protein kinases (MAPKs) play an important role in a variety of biological processes. Activation of MAPKs is mediated by phosphorylation on specific regulatory tyrosine and threonine sites. We have recently found that activation of p38alpha MAPK can be carried out not only by its upstream MAPK kinases (MKKs) but also by p38alpha autophosphorylation. p38alpha autoactivation requires an interaction of p38alpha with TAB1 (transforming growth factor-beta-activated protein kinase 1-binding protein 1). The autoactivation mechanism of p38alpha has been found to be important in cellular responses to a number of physiologically relevant stimuli. Here, we report the characterization of a splicing variant of TAB1, TAB1beta. TAB1 and TAB1beta share the first 10 exons. The 11th and 12th exons of TAB1 were spliced out in TAB1beta, and an extra exon, termed exon beta, downstream of exons 11 and 12 in the genome was used as the last exon in TAB1beta. The mRNA of TAB1beta was expressed in all cell lines examined. The TAB1beta mRNA encodes a protein with an identical sequence to TAB1 except the C-terminal 69 amino acids were replaced with an unrelated 27-amino acid sequence. Similar to TAB1, TAB1beta interacts with p38alpha but not other MAPKs and stimulates p38alpha autoactivation. Different from TAB1, TAB1beta does not bind or activate TAK1. Inhibition of TAB1beta expression with RNA interference in MDA231 breast cancer cells resulted in the reduction of basal activity of p38alpha and invasiveness of MDA231 cells, suggesting that TauAlphaBeta1beta is involved in regulating p38alpha activity in physiological conditions.
Collapse
Affiliation(s)
- Baoxue Ge
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch RJ, Luo Y, Han J. MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science 2002; 295:1291-4. [PMID: 11847341 DOI: 10.1126/science.1067289] [Citation(s) in RCA: 414] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphorylation of mitogen-activated protein kinases (MAPKs) on specific tyrosine and threonine sites by MAP kinase kinases (MAPKKs) is thought to be the sole activation mechanism. Here, we report an unexpected activation mechanism for p38alpha MAPK that does not involve the prototypic kinase cascade. Rather it depends on interaction of p38alpha with TAB1 [transforming growth factor-beta-activated protein kinase 1 (TAK1)-binding protein 1] leading to autophosphorylation and activation of p38alpha. We detected formation of a TRAF6-TAB1-p38alpha complex and showed stimulus-specific TAB1-dependent and TAB1-independent p38alpha activation. These findings suggest that alternative activation pathways contribute to the biological responses of p38alpha to various stimuli.
Collapse
Affiliation(s)
- Baoxue Ge
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Himpel S, Panzer P, Eirmbter K, Czajkowska H, Sayed M, Packman LC, Blundell T, Kentrup H, Grötzinger J, Joost HG, Becker W. Identification of the autophosphorylation sites and characterization of their effects in the protein kinase DYRK1A. Biochem J 2001; 359:497-505. [PMID: 11672423 PMCID: PMC1222170 DOI: 10.1042/0264-6021:3590497] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein kinases of the DYRK ('dual-specificity tyrosine-regulated kinase') family are characterized by a conserved Tyr-Xaa-Tyr motif (Tyr-319-Tyr-321) in a position exactly corresponding to the activation motif of the mitogen-activated protein kinase (MAP kinase) family (Thr-Xaa-Tyr). In a molecular model of the catalytic domain of DYRK1A, the orientation of phosphorylated Tyr-321 is strikingly similar to that of Tyr-185 in the known structure of the activated MAP kinase, extracellular-signal-regulated kinase 2. Consistent with our model, substitution of Tyr-321 but not of Tyr-319 by phenylalanine markedly reduced the enzymic activity of recombinant DYRK1A expressed in either Escherichia coli or mammalian cells. Direct identification of phosphorylated residues by tandem MS confirmed that Tyr-321, but not Tyr-319, was phosphorylated. When expressed in COS-7 cells, DYRK1A was found to be fully phosphorylated on Tyr-321. A catalytically inactive mutant of DYRK1A contained no detectable phosphotyrosine, indicating that Tyr-321 is autophosphorylated by DYRK1A. MS identified Tyr-111 and Ser-97 as additional autophosphorylation sites in the non-catalytic N-terminal domain of bacterially expressed DYRK1A. Enzymic activity was not affected in the DYRK1A-Y111F mutant. The present experimental data and the molecular model indicate that the activity of DYRK1A is dependent on the autophosphorylation of a conserved tyrosine residue in the activation loop.
Collapse
Affiliation(s)
- S Himpel
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät der RWTH Aachen, Wendlingweg 2, D-52057 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The mitogen-activated protein kinase (MAP kinase) signal transduction cascades are routes through which eukaryotic cells deliver extracellular messages to the cytosol and nucleus. These signalling pathways direct cell division, cellular differentiation, metabolism, and both biotic and abiotic stress responses. In plants, MAP kinases and the upstream components of the cascades are represented by multigene families, organized into different pathways which are stimulated and interact in complex ways. Experimental strategies for the analysis of MAP kinase cascades include the yeast two-hybrid system; using this approach in vitro interactions between specific MAP kinase cascade components have been analysed and putative plant cascades postulated. Transient transformation of protoplasts with epitope-tagged kinases has allowed cascades to be tested in planta. There is clear evidence for the involvement of MAP kinases in plant cell division and in the regulation of auxin signalling. Biotic (pathogens and pathogen-derived elicitors from fungi, bacteria and viruses) and abiotic stresses including wounding, mechanical stimulation, cold, drought and ozone can elicit defence responses in plants through MAP kinase pathways. There are data suggesting that ABA signalling utilizes a MAP kinase pathway, and probably ethylene and perhaps cytokinins do so also. The objective of this paper is to review this rapidly advancing field. Contents Summary 67 I. Introduction 68 II. Background 68 III. MAP kinase targets and targeting specificity 69 IV. Assays and inhibitors 70 V. Two well characterized MAP kinase pathways, Hog1 and Sevenless 71 VI. MAP kinases in plants 73 VII. MAP kinases and cell division 76 VIII. MAP kinases and plant hormones 76 IX. MAP kinase and abiotic stress 78 X. MAP kinase and biotic stress 80 XI. Future perspectives for MAP kinase research in plants 83 Acknowledgements 84 References 84.
Collapse
Affiliation(s)
- Peter C Morris
- Heriot-Watt University, Department of Biological Sciences, Riccarton, Edinburgh, EH14 4AS
| |
Collapse
|
26
|
Abe MK, Kahle KT, Saelzler MP, Orth K, Dixon JE, Rosner MR. ERK7 is an autoactivated member of the MAPK family. J Biol Chem 2001; 276:21272-9. [PMID: 11287416 DOI: 10.1074/jbc.m100026200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular signal-regulated kinase 7 (ERK7) shares significant sequence homology with other members of the ERK family of signal transduction proteins, including the signature TEY activation motif. However, ERK7 has several distinguishing characteristics. Unlike other ERKs, ERK7 has been shown to have significant constitutive activity in serum-starved cells, which is not increased further by extracellular stimuli that typically activate other members of the mitogen-activated protein kinase (MAPK) family. On the other hand, ERK7's activation state and kinase activity appear to be regulated by its ability to utilize ATP and the presence of its extended C-terminal region. In this study, we investigated the mechanism of ERK7 activation. The results suggest that 1) MAPK kinase (MEK) inhibitors do not suppress ERK7 kinase activity; 2) intramolecular autophosphorylation is sufficient for activation of ERK7 in the absence of an upstream MEK; and 3) multiple regions of the C-terminal domain of ERK7 regulate its kinase activity. Taken together, these results indicate that autophosphorylation is sufficient for ERK7 activation and that the C-terminal domain regulates its kinase activity through multiple interactions.
Collapse
Affiliation(s)
- M K Abe
- Department of Pediatrics, Ben May Institute for Cancer Research and the University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
27
|
Matsui T, Tanihara K, Date T. Expression of unphosphorylated form of human double-stranded RNA-activated protein kinase in Escherichia coli. Biochem Biophys Res Commun 2001; 284:798-807. [PMID: 11396973 DOI: 10.1006/bbrc.2001.5039] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interferon (IFN)-inducible, double-stranded (dsRNA)-activated protein kinase (PKR) is a key mediator of the antiviral and antiproliferative effects of IFN. PKR is present within cells in a latent state. In response to binding dsRNA, the enzyme becomes activated, causing autophosphorylation and an increase in specific kinase activity. In order to study PKR and its inhibitors, a large amount of the enzyme in its latent, unphosphorylated state is required. When PKR is fused to glutathione S-transferase (GST-PKR) and the fusion protein is expressed in Escherichia coli, the PKR obtained is fully activated by autophosphorylation. Therefore, we have developed an expression plasmid in which both GST-PKR and bacteriophage lambda protein phosphatase (lambda-PPase) genes were placed downstream of a T7 promoter. After induction of expression, unphosphorylated GST-PKR was obtained in good yield, and purified to near homogeneity. The purified enzyme has dsRNA-dependent activation and phosphorylates the translation initiation factor eIF2 alpha. Using the recombinant protein, we analyzed the inhibition mechanisms of two viral inhibitors, vaccinia virus K3L protein and adenovirus virus-associated RNA I (VAI RNA). K3L inhibited both autophosphorylation of PKR and phosphorylation of eIF2 alpha, whereas VAI RNA inhibited only autophosphorylation. The separation of autophosphorylation and catalytic activity shows that the recombinant PKR is useful in analyzing the functions of PKR, its inhibitors, and its regulatory molecules. The coexpression system of protein kinase with lambda-PPase described here will be applicable to obtaining unphosphorylated and unactivated forms of other protein kinases.
Collapse
Affiliation(s)
- T Matsui
- Department of Biochemistry, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | | | | |
Collapse
|
28
|
Affiliation(s)
- J E Ferrell
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332, USA
| |
Collapse
|
29
|
Alonso G, Ambrosino C, Jones M, Nebreda AR. Differential activation of p38 mitogen-activated protein kinase isoforms depending on signal strength. J Biol Chem 2000; 275:40641-8. [PMID: 11010976 DOI: 10.1074/jbc.m007835200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have investigated the ability of the mitogen-activated protein kinase (MAPK) kinase MKK6 to activate different members of the p38 subfamily of MAPKs and found that some MKK6 mutants can efficiently activate p38alpha but not p38gamma. In contrast, a constitutively active MKK6 mutant activated both p38 MAPK isoforms to similar extents. The same results were obtained upon co-expression in Xenopus oocytes and in vitro using either MKK6 immunoprecipitates from transfected cells or bacterially produced recombinant proteins. We also found that the preferential activation of p38alpha by MKK6 correlated with more efficient binding of MKK6 to p38alpha than to p38gamma. Furthermore, increasing concentrations of constitutively active MKK6 differentially activated either p38alpha alone (low MKK6 activity) or both p38alpha and p38gamma (high MKK6 activity), both in vitro and in injected oocytes. The determinants for selectivity are located at the carboxyl-terminal lobe of p38 MAPKs but do not correspond to the activation loop or common docking sequences. We also showed that different stimuli can induce different levels of endogenous MKK6 activity that correlate with differential activation of p38 MAPKs. Our results suggest that the level of MKK6 activity triggered by a given stimulus may determine the pattern of downstream p38 MAPK activation in the particular response.
Collapse
Affiliation(s)
- G Alonso
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
30
|
Huang Y, Li H, Gupta R, Morris PC, Luan S, Kieber JJ. ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. PLANT PHYSIOLOGY 2000; 122:1301-10. [PMID: 10759527 PMCID: PMC58966 DOI: 10.1104/pp.122.4.1301] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/1999] [Accepted: 11/23/1999] [Indexed: 05/18/2023]
Abstract
The modulation of mitogen-activated protein kinase (MAPK) activity regulates many intracellular signaling processes. In animal and yeast cells, MAP kinases are activated via phosphorylation by the dual-specificity kinase MEK (MAP kinase kinase). Several plant homologs of MEK and MAPK have been identified, but the biochemical events underlying the activation of plant MAPKs remain unknown. We describe the in vitro activation of an Arabidopsis homolog of MAP kinase, ATMPK4. ATMPK4 was phosphorylated in vitro by an Arabidopsis MEK homolog, AtMEK1. This phosphorylation occurred principally on threonine (Thr) residues and resulted in elevated ATMPK4 kinase activity. A second Arabidopsis MEK isoform, ATMAP2Kalpha, failed to phosphorylate ATMPK4 in vitro. Tyr dephosphorylation by the Arabidopsis Tyr-specific phosphatase AtPTP1 resulted in an almost complete loss of ATMPK4 activity. Immunoprecipitates of Arabidopsis extracts with anti-ATMPK4 antibodies displayed myelin basic protein kinase activity that was sensitive to treatment with AtPTP1. These results demonstrate that a plant MEK can phosphorylate and activate MAPK, and that Tyr phosphorylation is critical for the catalytic activity of MAPK in plants. Surprisingly, in contrast to the animal enzymes, AtMEK1 may not be a dual-specificity kinase but, rather, the required Tyr phosphorylation on ATMPK4 may result from autophosphorylation.
Collapse
Affiliation(s)
- Y Huang
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | | | |
Collapse
|
31
|
Norman ED, Thiels E, Barrionuevo G, Klann E. Long-term depression in the hippocampus in vivo is associated with protein phosphatase-dependent alterations in extracellular signal-regulated kinase. J Neurochem 2000; 74:192-8. [PMID: 10617120 DOI: 10.1046/j.1471-4159.2000.0740192.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is growing evidence that activation of either protein kinases or protein phosphatases determines the type of plasticity observed after different patterns of hippocampal stimulation. Because activation of the extracellular signal-regulated kinase (ERK) has been shown to be necessary for long-term potentiation, we investigated the regulation of ERK in long-term depression (LTD) in the adult hippocampus in vivo. We found that ERK immunoreactivity was decreased following the induction of LTD and that this decrease required NMDA receptor activation. The LTD-associated decrease in ERK immunoreactivity could be simulated in vitro via incubation of either purified ERK2 or hippocampal homogenates with either protein phosphatase 1 or protein phosphatase 2A. The protein phosphatase-dependent decrease in ERK immunoreactivity was inhibited by microcystin. Intrahippocampal administration of the protein phosphatase inhibitor okadaic acid blocked the LTD-associated decrease in ERK2, but not ERK1, immunoreactivity. Collectively, these data demonstrate that protein phosphatases can decrease ERK immunoreactivity and that such a decrease occurs with ERK2 during LTD. These observations provide the first demonstration of a biochemical alteration of ERK in LTD.
Collapse
Affiliation(s)
- E D Norman
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
32
|
Hayashi K, Igarashi H, Ogawa M, Sakaguchi N. Activity and substrate specificity of the murine STK2 Serine/Threonine kinase that is structurally related to the mitotic regulator protein NIMA of Aspergillus nidulans. Biochem Biophys Res Commun 1999; 264:449-56. [PMID: 10529384 DOI: 10.1006/bbrc.1999.1536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We isolated a murine STK2 (mSTK2) cDNA that is homologous to murine Nek1 serine/threonine kinase, a family member related to the cell cycle regulator kinase NIMA of Aspergillus nidulans. Structural comparison demonstrated that the kinase domain of mSTK2 is highly similar to NIMA/Nek family but the C-terminal region is not similar to any proteins except for human STK2 (hSTK2). Similarly to Nek1, mSTK2 is expressed ubiquitously among various organs and is upregulated in the testis. The expression and localization of mSTK2 are not associated with the cell cycle progression of mitogen-activated lymphocyte and DNA-transfected fibroblast. The substrate specificity of mSTK2 is similar to NIMA, but the phosphorylation is observed exclusively upon threonine residues rather than serine. The mSTK2 is shown to be a new member of the NIMA/Nek family with similar substrate specificity, which might participate in a different role from NIMA kinase involved in the cell cycle regulation.
Collapse
Affiliation(s)
- K Hayashi
- Department of Immunology, Kumamoto University School of Medicine, 2-2-1, Honjo, Kumamoto, 860-0811, Japan
| | | | | | | |
Collapse
|
33
|
Yu R, Lei W, Mandlekar S, Weber MJ, Der CJ, Wu J, Kong AN. Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals. J Biol Chem 1999; 274:27545-52. [PMID: 10488090 DOI: 10.1074/jbc.274.39.27545] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are activated by diverse extracellular signals and participate in the regulation of an array of cellular programs. In this study, we investigated the roles of MAPKs in the induction of phase II detoxifying enzymes by chemicals. Treatment of human hepatoma (HepG2) and murine hepatoma (Hepa1c1c7) cells with tert-butylhydroquinone (tBHQ) or sulforaphane (SUL), two potent phase II enzyme inducers, stimulated the activity of extracellular signal-regulated protein kinase 2 (ERK2) but not c-Jun N-terminal kinase 1. tBHQ and SUL also activated MAPK kinase. Inhibition of MAPK kinase with its inhibitor, PD98059, abolished ERK2 activation and impaired the induction of quinone reductase, a phase II detoxifying enzyme, and antioxidant response element (ARE)-linked reporter gene by tBHQ and SUL. Overexpression of a dominant-negative mutant of ERK2 also attenuated tBHQ and SUL induction of ARE reporter gene activity. Interestingly, although expression of Ras and its mutant forms showed distinct effects on basal ARE reporter gene activity, they did not affect the activation of reporter gene by the inducers. Furthermore, a dominant-negative mutant of Ras had little effect on ERK2 activation by tBHQ and SUL, implicating a Ras-independent mechanism. Indeed, both tBHQ and SUL were able to stimulate Raf-1 kinase activity in vivo as well as in vitro. Thus, our results indicate that the induction of ARE-dependent phase II detoxifying enzymes is mediated by a MAPK pathway, which may involve direct activation of Raf-1 by the inducers.
Collapse
Affiliation(s)
- R Yu
- Department of Pharmaceutics and Pharmacodynamics, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Douziech N, Calvo E, Lainé J, Morisset J. Activation of MAP kinases in growth responsive pancreatic cancer cells. Cell Signal 1999; 11:591-602. [PMID: 10433520 DOI: 10.1016/s0898-6568(99)00030-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The implication of MAP kinases in the proliferation control of pancreatic cancer cells is still unknown. This study was undertaken to examine the contribution of the p44/p42 and p38 MAP kinases in the mitogenic response to epidermal growth factor (EGF) and bombesin in human pancreatic cancer cells, MIA PaCa-2 and PANC-1. Data indicate that EGF and bombesin stimulated growth of both cell lines. In MIA PaCa-2 cells, EGF and bombesin stimulated the in gel activation of p38 while p44/p42 kinases exhibited high basal activity and no response to stimuli. Growth and p38 activation were inhibited by genistein, wortmannin, PD98059 and SB203580, specific inhibitors of tyrosine kinase, phosphatidylinositol 3-kinase, MEK-1 and p38 kinases, respectively. In PANC-1 cells, EGF and bombesin stimulated p42 in gel activation; p44 remained highly activated and unresponsive to stimuli and p38 did not respond. Stimulated growth and p42 activation were inhibited by genistein, wortmannin and PD98059. Estimation of MAPK activities with a specific anti-active MAP kinase antibody indicated, however, that EGF increased the intensity of the bands corresponding to p42 and p44 MAP kinases in both cell lines, indicating that the mitogenic factor can regulate MAP kinase activity. Data also pointed out that ATP is sufficient to increase MAP kinase activity within the in gel assay technique and may thus explain the discrepancies existing between the in gel assay data and those obtained with the anti-active MAP kinase antibody.
Collapse
Affiliation(s)
- N Douziech
- Dept. Médecine, Faculté de Médecine, Université de Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
35
|
Toshima J, Tanaka T, Mizuno K. Dual specificity protein kinase activity of testis-specific protein kinase 1 and its regulation by autophosphorylation of serine-215 within the activation loop. J Biol Chem 1999; 274:12171-6. [PMID: 10207045 DOI: 10.1074/jbc.274.17.12171] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TESK1 (testis-specific protein kinase 1) is a protein kinase with a structure composed of an N-terminal protein kinase domain and a C-terminal proline-rich domain. Whereas the 3.6-kilobase TESK1 mRNA is expressed predominantly in the testis, a faint 2.5-kilobase TESK1 mRNA is expressed ubiquitously. The kinase domain of TESK1 contains in the catalytic loop in subdomain VIB an unusual DLTSKN sequence, which is not related to the consensus sequence of either serine/threonine kinases or tyrosine kinases. In this study, we show that TESK1 has kinase activity with dual specificity on both serine/threonine and tyrosine residues. In an in vitro kinase reaction, the kinase domain of TESK1 underwent autophosphorylation on serine and tyrosine residues and catalyzed phosphorylation of histone H3 and myelin basic protein on serine, threonine, and tyrosine residues. Site-directed mutagenesis analyses revealed that Ser-215 within the "activation loop" of the kinase domain is the site of serine autophosphorylation of TESK1. Replacement of Ser-215 by alanine almost completely abolished serine autophosphorylation and histone H3 kinase activities. In contrast, replacement of Ser-215 by glutamic acid abolished serine autophosphorylation activity but retained histone H3 kinase activity. These results suggest that autophosphorylation of Ser-215 is an important step to positively regulate the kinase activity of TESK1.
Collapse
Affiliation(s)
- J Toshima
- Department of Biology, Faculty of Science, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
36
|
Smith JA, Poteet-Smith CE, Malarkey K, Sturgill TW. Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J Biol Chem 1999; 274:2893-8. [PMID: 9915826 DOI: 10.1074/jbc.274.5.2893] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione S-transferase (GST)-fusion proteins containing the carboxyl-terminal tails of three p90 ribosomal S6 kinase (RSK) isozymes (RSK1, RSK2, and RSK3) interacted with extracellular signal-regulated kinase (ERK) but not c-Jun-NH2-kinase (JNK) or p38 mitogen-activated protein kinase (MAPK). Within the carboxyl-terminal residues of the RSK isozymes is a region of high conservation corresponding to residues 722LAQRRVRKLPSTTL735 in RSK1. Truncation of the carboxyl-terminal 9 residues, 727VRKLPSTTL735, completely eliminated the interaction of the GST-RSK1 fusion protein with purified recombinant ERK2, whereas the truncation of residues 731PSTTL735 had no effect on the interaction with purified ERK2. ERK1 and ERK2 co-immunoprecipitated with hemagglutinin-tagged wild type RSK2 (HA-RSK2) in BHK cell cytosol. However, ERK did not co-immunoprecipitate with HA-RSK2((1-729)), a mutant missing the carboxyl-terminal 11 amino acids, similar to the minimal truncation that eliminated in vitro interaction of ERK with the GST-RSK1 fusion protein. Kinase activity of HA-RSK2 increased 6-fold in response to insulin. HA-RSK2((1-729)) had a similar basal kinase activity to that of HA-RSK2 but was not affected by insulin treatment. Immunoprecipitated HA-RSK2 and HA-RSK2((1-729)) could be activated to the same extent in vitro by active ERK2, demonstrating that HA-RSK2((1-729)) was properly folded. These data suggest that the conserved region of the RSK isozymes (722LAQRRVRKL730 of RSK1) provides for a specific ERK docking site approximately 150 amino acids carboxyl-terminal to the nearest identified ERK phosphorylation site (Thr573). Complex formation between RSK and ERK is essential for the activation of RSK by ERK in vivo. Comparison of the docking site of RSK with the carboxyl-terminal tails of other MAPK-activated kinases reveals putative docking sites within each of these MAPK-targeted kinases. The number and placement of lysine and arginine residues within the conserved region correlate with specificity for activation by ERK and p38 MAPKs in vivo.
Collapse
Affiliation(s)
- J A Smith
- Howard Hughes Medical Institute and the Markey Center for Cell Signaling, Department of Medicine and Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
37
|
Tokmakov AA, Sato K, Konaka K, Fukami Y. Inhibition of MAPK pathway by a synthetic peptide corresponding to the activation segment of MAPK. Biochem Biophys Res Commun 1998; 252:214-9. [PMID: 9813172 DOI: 10.1006/bbrc.1998.9628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitogen-activated protein kinase (MAPK) is activated by phosphorylation within its activation segment. Upon phosphorylation, the activation segment refolds to provide the active conformation of the enzyme. We reported previously that a phosphorylation-sensitive secondary structure could be formed in a 26-amino-acid long synthetic peptide corresponding to the activation segment of Xenopus MAPK, termed IDA (Inter-DFG-APE) MAPK peptide (Tokmakov, A. A., et al. 1997, Biochem. Biophys. Res. Commun. 236, 243-247). Here, we show that unphosphorylated IDA MAPK peptide can inhibit in vitro both MAPK and MAPK kinase activities with the inhibition constants of 82 and 18 microM, respectively. Phosphorylated forms of the peptide were of little effect. IDA MAPK peptide did not inhibit significantly the activity of some other protein kinases, including MAPK homologue p38 kinase, suggesting the specificity for MAPK and MAPK kinase. Microinjection of unphosphorylated IDA MAPK peptide into immature Xenopus oocytes significantly suppressed progesterone-induced oocyte maturation by inhibiting activation of both MAPK and maturation promoting factor. Similar inhibition of maturation was registered upon oocyte treatment with another specific inhibitor of MAPK pathway, PD098059. These results depict IDA MAPK peptide as a selective inhibitor of the MAPK pathway that can be used for the investigations of MAPK-mediated signaling.
Collapse
Affiliation(s)
- A A Tokmakov
- Biosignal Research Center, Kobe University, Nada, Kobe, 657-8501, Japan.
| | | | | | | |
Collapse
|
38
|
Zecevic M, Catling AD, Eblen ST, Renzi L, Hittle JC, Yen TJ, Gorbsky GJ, Weber MJ. Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J Cell Biol 1998; 142:1547-58. [PMID: 9744883 PMCID: PMC2141767 DOI: 10.1083/jcb.142.6.1547] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/1998] [Revised: 07/23/1998] [Indexed: 02/07/2023] Open
Abstract
To investigate possible involvement of the mitogen-activated protein (MAP) kinases ERK1 and ERK2 (extracellular signal-regulated kinases) in somatic cell mitosis, we have used indirect immunofluorescence with a highly specific phospho-MAP kinase antibody and found that a portion of the active MAP kinase is localized at kinetochores, asters, and the midbody during mitosis. Although the aster labeling was constant from the time of nuclear envelope breakdown, the kinetochore labeling first appeared at early prometaphase, started to fade during chromosome congression, and then disappeared at midanaphase. At telophase, active MAP kinase localized at the midbody. Based on colocalization and the presence of a MAP kinase consensus phosphorylation site, we identified the kinetochore motor protein CENP-E as a candidate mitotic substrate for MAP kinase. CENP-E was phosphorylated in vitro by MAP kinase on sites that are known to regulate its interactions with microtubules and was found to associate in vivo preferentially with the active MAP kinase during mitosis. Therefore, the presence of active MAP kinase at specific mitotic structures and its interaction with CENP-E suggest that MAP kinase could play a role in mitosis at least in part by altering the ability of CENP-E to mediate interactions between chromosomes and microtubules.
Collapse
Affiliation(s)
- M Zecevic
- Department of Microbiology and Cancer Center, University of Virginia, Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Engelman JA, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz DS, Lisanti MP. Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett 1998; 428:205-11. [PMID: 9654135 DOI: 10.1016/s0014-5793(98)00470-0] [Citation(s) in RCA: 319] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The p42/44 mitogen-activated protein (MAP)-kinase cascade is a well-established signal transduction pathway that is initiated at the cell surface and terminates within the nucleus. More specifically, receptor tyrosine kinases can indirectly activate Raf, which in turn leads to activation of MEK and ERK and ultimately phosphorylation of Elk, a nuclear transcription factor. Recent reports have suggested that some members of p42/44 MAP kinase cascade can be sequestered within plasmalemmal caveolae in vivo. For example, morphological studies have directly shown that ERK-1/2 is concentrated in plasma membrane caveolae in vivo using immunoelectron microscopy. In addition, constitutive activation of the p42/44 MAP kinase cascade is sufficient to reversibly down-regulate caveolin-1 mRNA and protein expression. However, the functional relationship between the p42/44 MAP kinase cascade and caveolins remains unknown. Here, we examine the in vivo role of caveolins in regulating signaling along the MAP kinase cascade. We find that co-expression with caveolin 1 dramatically inhibits signaling from EGF-R, Raf, MEK-1 and ERK-2 to the nucleus. Using a variety of caveolin-1 deletion mutants, we mapped this in vivo inhibitory activity to caveolin-1 residues 32-95. Peptides derived from this region of caveolin 1 also inhibit the in vitro kinase activity of purified MEK-1 and ERK-2. Thus, we show here that caveolin-1 expression can inhibit signal transduction from the p42/44 MAP kinase cascade both in vitro and in vivo. Taken together with previous data, our results also suggest that a novel form of reciprocal negative regulation exists between p42/44 MAP kinase activation and caveolin-1 protein expression, i.e. up-regulation of caveolin-1 protein expression down-modulates p42/44 MAP kinase activity (this report) and up-regulation of p42/44 MAP kinase activity down-regulates caveolin-1 mRNA and protein expression.
Collapse
Affiliation(s)
- J A Engelman
- Department of Molecular Pharmacology and The Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Menice CB, Hulvershorn J, Adam LP, Wang CA, Morgan KG. Calponin and mitogen-activated protein kinase signaling in differentiated vascular smooth muscle. J Biol Chem 1997; 272:25157-61. [PMID: 9312127 DOI: 10.1074/jbc.272.40.25157] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Contraction of smooth muscle cells is generally assumed to require Ca2+/calmodulin-dependent phosphorylation of the 20-kDa myosin light chains. However, we report here that in the absence of extracellular calcium, phenylephrine induces a contraction of freshly isolated ferret aorta cells in the absence of increases in intracellular ionized calcium or light chain phosphorylation levels but in the presence of activation of mitogen-activated protein kinase. A protein at 36 kDa co-immunoprecipitated with the mitogen-activated protein kinase and was identified as the actin-binding protein, calponin, by immunoblot. An overlay assay further confirmed an interaction between the kinase and calponin, even though the kinase did not phosphorylate calponin in vitro. Calponin also co-immunoprecipitated from smooth muscle cells with protein kinase C-epsilon. High resolution digital confocal studies indicated that calponin redistributes to the cell membrane during phenylephrine stimulation at a time when mitogen-activated protein kinase and protein kinase C-epsilon are targeted to the plasmalemma. These results suggest a role for calponin as a signaling molecule, possibly an adapter protein, linking the targeting of mitogen-activated protein kinase and protein kinase C-epsilon to the surface membrane.
Collapse
Affiliation(s)
- C B Menice
- Signal Transduction Group, Boston Biomedical Research Institute, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
41
|
Burack WR, Sturgill TW. The activating dual phosphorylation of MAPK by MEK is nonprocessive. Biochemistry 1997; 36:5929-33. [PMID: 9166761 DOI: 10.1021/bi970535d] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Activation of mitogen-activated protein kinases (MAPKs), also known as extracellular-signal-regulated kinases (ERKs), by MAPK/extracellular protein kinase kinases (MEKs) requires phosphorylation at two sites. The first step in MAPK activation by MEK must be the formation of a MEK x MAPK enzyme-substrate complex, followed by phosphorylation producing monophosphorylated MAPK (pMAPK). Subsequently, one of two events may occur. (1) MEK catalyzes the second and fully activating phosphorylation of MAPK, producing ppMAPK (a processive mechanism). (2) The complex of MEK x pMAPK dissociates before the second phosphorylation occurs, full activation requiring a reassociation of pMAPK with MEK (a nonprocessive or distributive mechanism). Simulations indicate that these two mechanisms predict different kinetics of MAPK activation. Specifically, the nonprocessive mechanism predicts that there will be a paradoxical decrease in the rate of MAPK activation as the MAPK concentration is increased. The present study uses p42 MAPK, also known as ERK2, and MEK1 as representatives of their respective classes of enzymes. We find that increasing the ERK2 concentration decreases the rate of activation by a mechanism which does not involve inhibition of MEK1 function. The accumulation of the active, doubly phosphorylated ERK2 (ppERK2) was directly assessed using a phosphorylation-state-specific antibody. The rate of accumulation of ppERK2 is decreased by increasing the ERK2 concentration. Therefore, the mechanism of ERK2 activation by MEK1 in vitro is nonprocessive.
Collapse
Affiliation(s)
- W R Burack
- Department of Pathology, and Howard Hughes Medical Institute, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | |
Collapse
|
42
|
Jiang Y, Li Z, Schwarz EM, Lin A, Guan K, Ulevitch RJ, Han J. Structure-function studies of p38 mitogen-activated protein kinase. Loop 12 influences substrate specificity and autophosphorylation, but not upstream kinase selection. J Biol Chem 1997; 272:11096-102. [PMID: 9111004 DOI: 10.1074/jbc.272.17.11096] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several mitogen-activated protein kinase (MAPK) cascades have been identified in eukaryotic cells. The activation of MAPKs is carried out by distinct MAPK kinases (MEKs or MKKs), and individual MAPKs have different substrate preferences. Here we have examined how amino acid sequences encompassing the dual phosphorylation motif located in the loop 12 linker (L12) between kinase subdomains VII and VIII and the length and amino acid sequence of L12 influence autophosphorylation, substrate specificity, and upstream kinase selectivity for the MAPK p38. Conversion of L12 of p38 to an "ERK-like" structure was accomplished in several ways: (i) by replacing glycine with glutamate in the dual phosphorylation site, (ii) by placing a six-amino acid sequence present in L12 of ERK (but absent in p38) into p38, and (iii) by mutations of amino acid residues in loop 12. Two predominant effects were noted: (i) the Xaa residue in the dual phosphorylation motif Thr-Xaa-Tyr as well as the length of L12 influence p38 substrate specificity, and (ii) the length of L12 plays a major role in controlling autophosphorylation. In contrast, these modifications do not result in any change in the selection of p38 by individual MAPK kinases.
Collapse
Affiliation(s)
- Y Jiang
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Guthridge CJ, Eidlen D, Arend WP, Gutierrez-Hartmann A, Smith MF. Lipopolysaccharide and Raf-1 kinase regulate secretory interleukin-1 receptor antagonist gene expression by mutually antagonistic mechanisms. Mol Cell Biol 1997; 17:1118-28. [PMID: 9032239 PMCID: PMC231837 DOI: 10.1128/mcb.17.3.1118] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Lipopolysaccharide (LPS) treatment of monocytic cells has been shown to activate the Raf-1/mitogen-activated protein kinase (MAPK) signaling pathway and to increase secretory interleukin-1 receptor antagonist (sIL-1Ra) gene expression. The significance of the activation of the Raf-1/MAPK signaling pathway to LPS regulation of sIL-1Ra gene expression, however, has not been determined. This study addresses the role of the Raf-1/MAPK signaling pathway in regulation of sIL-1Ra gene expression by LPS. Cotransfection of the murine macrophage cell line RAW 264.7 with a 294-bp sIL-1Ra promoter/luciferase construct (pRA-294-luc) and a constitutively active Raf-1 kinase expression vector (pRSV-Raf-BXB) resulted in induction of sIL-1Ra promoter activity, indicating that Raf-1, like LPS, can regulate sIL-1Ra promoter activity. An in vitro MAPK analysis indicated that both LPS treatment and pRSV-Raf-BXB transfection of RAW 264.7 cells increases p42 MAPK activity. An in vitro Raf-1 kinase assay, however, failed to detect LPS-induced Raf-1 kinase activity in RAW 264.7 cells, suggesting that in RAW 264.7 cells, Raf-1 kinase is not an activating component of the LPS signaling pathway regulating MAPK activity or sIL-1Ra promoter activity. This observation was supported by results from transfection studies which demonstrated that expression of a dominant-inhibitory Raf-1 mutant in RAW 264.7 cells does not inhibit LPS-induced MAPK activity or sIL-1Ra promoter activity, indicating that LPS-induced sIL-1Ra promoter activation occurs independent of the Raf-1/MAPK signaling pathway. In additional studies, cotransfection of RAW 264.7 cells with pRA-294-luc and increasing amounts of pRSV-Raf-BXB caused a dose-dependent inhibition of LPS-induced sIL-1Ra promoter activity, indicating that the role of the Raf-1 pathway in the regulation of sIL-1Ra promoter activity by LPS is as an antagonizer. Interestingly, LPS treatment of RAW 264.7 cells, cotransfected with pRA-294-luc and pRSV-Raf-BXB, also inhibited pRSV-Raf-BXB-induced sIL-1Ra promoter activity, suggesting that inductions of sIL-1Ra promoter activity by LPS and Raf-1 actually occur by mutually antagonistic mechanisms. In support of this conclusion, sIL-1Ra promoter mapping studies indicated that LPS and Raf-1 responses localized to different regions of the sIL-1Ra promoter. Further studies demonstrated that mutual antagonism between the LPS and Raf-1 kinase pathways is not promoter specific, as the same phenomenon is observed in assays using a c-fos enhancer/thymidine kinase promoter/luciferase construct (pc-fos-TK81-luc). Additionally, mutual antagonism with regard to sIL-1Ra promoter activity also was observed between the LPS and MEK kinase pathways, indicating that mutual antagonism can occur in more than one MAPK activation pathway.
Collapse
Affiliation(s)
- C J Guthridge
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
44
|
Deak JC, Templeton DJ. Regulation of the activity of MEK kinase 1 (MEKK1) by autophosphorylation within the kinase activation domain. Biochem J 1997; 322 ( Pt 1):185-92. [PMID: 9078260 PMCID: PMC1218175 DOI: 10.1042/bj3220185] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
MEK kinase 1 (MEKK1) shares sequence identity with the yeast kinases Ste11 and Byr2, and is capable of phosphorylation and activation of both mitogen-activated protein/extracellular signal-related protein kinase (MAP/ERK) kinase (MEK) and stress-activated protein kinase (SAPK)/ERK kinase (SEK) in vitro. In vivo, however, MEKK1 predominantly activates the SEK/SAPK kinase cascade. Mechanisms of activation of MEKK1 are unclear. We have identified a major site of autophosphorylation (Thr-575) within the 'activation loop' of MEKK1 between the kinase subdomains VII and VIII. Phosphatase treatment of a constitutively active MEKK1 decreased kinase activity by 59%. Dephosphorylated T575 was rapidly re-(auto)phosphorylated by MEKK1. Mutation of T575 to alanine decreased MEKK1 transphosphorylation activity with a SEK substrate to approx. 30% of wild-type. Mutation of a second threonine residue (Thr-587) to alanine eliminated the phosphorylation of MEK or SEK substrate but not autophosphorylation. MEKK1 autophosphorylation is an intramolecular reaction because active MEKK1 cannot transphosphorylate a kinase-inactive MEKK1. Inactive MEKK1 was not phosphorylated on Thr-575 within cells, suggesting that the phosphorylation of Thr-575 in vivo results from autophosphorylation rather than phosphorylation by an upstream kinase. Autoactivation of MEKK1 via autophosphorylation of Thr-575 might be an immediate response to initial kinase activation through non-phosphorylation mechanisms.
Collapse
Affiliation(s)
- J C Deak
- Institute of Pathology, Case Western Reserve University, Cleveland OH 44106, USA
| | | |
Collapse
|
45
|
Li J, Assmann SM. An Abscisic Acid-Activated and Calcium-Independent Protein Kinase from Guard Cells of Fava Bean. THE PLANT CELL 1996; 8:2359-2368. [PMID: 12239380 PMCID: PMC161358 DOI: 10.1105/tpc.8.12.2359] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) regulation of stomatal aperture is known to involve both Ca2+-dependent and Ca2+-independent signal transduction pathways. Electrophysiological studies suggest that protein phosphorylation is involved in ABA action in guard cells. Using biochemical approaches, we identified an ABA-activated and Ca2+- independent protein kinase (AAPK) from guard cell protoplasts of fava bean. Autophosphorylation of AAPK was rapidly (~1 min) activated by ABA in a Ca2+- independent manner. ABA-activated autophosphorylation of AAPK occurred on serine but not on tyrosine residues and appeared to be guard cell specific. AAPK phosphorylated histone type III-S on serine and threonine residues, and its activity toward histone type III-S was markedly stimulated in ABA-treated guard cell protoplasts. Our results suggest that AAPK may play an important role in the Ca2+-independent ABA signaling pathways of guard cells.
Collapse
Affiliation(s)
- J. Li
- Department of Biology and Plant Physiology Program, Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
46
|
Tokmakov AA, Sahara S, Sato K, Nishida E, Fukami Y. Phosphoregulatory tyrosine of Xenopus mitogen-activated protein kinase is out of the reach of the enzyme catalytic center after autophosphorylation. Biochemical evidence for conformational changes upon phosphorylation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:322-9. [PMID: 8917426 DOI: 10.1111/j.1432-1033.1996.00322.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Autophosphorylation of the recombinant mitogen-activated protein kinase (MAPK) from Xenopus laevis has been studied to detect the conformational changes in the region of regulatory phosphorylation upon enzyme activation. Slow autophosphorylation of Xenopus MAPK occurred predominantly on tyrosine, the major phosphoregulatory site of MAPKs, through an intramolecular mechanism and was accompanied by a low magnitude stimulation of the catalytic activity towards an exogenous substrate, myelin basic protein. Autophosphorylated but not unphosphorylated enzyme was shown to interact with the protein substrate. In contrast to the previously reported reversibility of many tyrosine kinase reactions, the tyrosine phosphorylation of Xenopus MAPK was found to be irreversible in the presence of high ADP concentrations, although ADP could competitively inhibit both autophosphorylation and myelin basic protein phosphorylation. We concluded, therefore, that the phosphoregulatory tyrosine is no more accessible to an intramolecular phosphotransferase reaction and is out of the reach of the enzyme catalytic center after phosphorylation. The conformational changes in the region of regulatory phosphorylation resulted in a reduced immunoprecipitation of autophosphorylated and MAPK-kinase-phosphorylated forms of the enzyme by a polyclonal antibody raised against a synthetic peptide corresponding to residues 173-197 of Xenopus MAPK which includes the sites of regulatory phosphorylation. The reduced recognition was not due to the phosphorylation itself, since the antibody efficiently immunoprecipitated SDS-denatured forms of the phosphorylated enzyme. The antibody was not a neutralizing antibody, allowing unphosphorylated MAPK to undergo autophosphorylation while in the immune complex. However, autophosphorylation caused a release of phosphorylated enzyme from the immune complex, suggesting that dramatic conformational changes, which could even overcome the antibody constraints, took place in the phosphoregulatory region of MAPK upon enzyme activation.
Collapse
Affiliation(s)
- A A Tokmakov
- Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | |
Collapse
|
47
|
Cohen DM. Urea-inducible Egr-1 transcription in renal inner medullary collecting duct (mIMCD3) cells is mediated by extracellular signal-regulated kinase activation. Proc Natl Acad Sci U S A 1996; 93:11242-7. [PMID: 8855340 PMCID: PMC38314 DOI: 10.1073/pnas.93.20.11242] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Urea (200-400 milliosmolar) activates transcription, translation of, and trans-activation by the immediate-early gene transcription factor Egr-1 in a renal epithelial cell-specific fashion. The effect at the transcriptional level has been attributed to multiple serum response elements and their adjacent Ets motifs located within the Egr-1 promoter. Elk-1, a principal ternary complex factor and Ets domain-containing protein, is a substrate of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. In the renal medullary mIMCD3 cell line, urea (200-400 milliosmolar) activated both ERK1 and ERK2 as determined by in-gel kinase assay and immune-complex kinase assay of epitope-tagged] ERK1 and ERK2. Importantly, urea did not affect abundance of either ERK. Urea-inducible Egr-1 transcription was a consequence of ERK activation because the ERK-specific inhibitor, PD98059, abrogated transcription from the murine Egr-1 promoter in a luciferase reported gene assay. In addition, activators of protein kinase A, including forskolin and 8-Br-cAMP, which are known to inhibit ERK-mediated events, also inhibited urea-inducible Egr-1 transcription. Furthermore, urea-inducible activation of the physiological ERK substrate and transcription factor, Elk-1, was demonstrated through transient cotransfection of a chimeric Elk-1/GAL4 expression plasmid and a GAL4-driven luciferase reporter plasmid. Taken together, these data indicate that, in mIMCD3 cells, urea activates ERKs and the ERK substrate, Elk-1, and that ERK inhibition abrogates urea-inducible Egr-1 transcription. These data are consistent with a model of urea-inducible renal medullary gene expression wherein sequential activation of ERKs and Elk-1 results in increased transcription of Egr-1 through serum response element/Ets motifs.
Collapse
Affiliation(s)
- D M Cohen
- Division of Nephrology, Oregon Health Sciences University, Portland, USA
| |
Collapse
|
48
|
Ottensmeier C, Swanson L, Strobel T, Druker B, Niloff J, Cannistra SA. Absence of constitutive EGF receptor activation in ovarian cancer cell lines. Br J Cancer 1996; 74:446-52. [PMID: 8695362 PMCID: PMC2074650 DOI: 10.1038/bjc.1996.379] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Previous investigators have noted that certain ovarian cancer cell lines secrete and respond to transforming growth factor-alpha (TGF-alpha), suggesting that endogenous activation of the epidermal growth factor (EGF) receptor through autocrine or paracrine mechanisms might contribute to the proliferative response. In order to determine whether autocrine stimulation was partly responsible for the proliferative response in ovarian cancer, we investigated whether the EGF receptor expressed by ovarian cancer cell lines was constitutively activated as assessed by the presence of tyrosine phosphorylation. A specific anti-phosphotyrosine antibody was used in conjunction with an immunoblotting technique in order to detect EGF receptor phosphorylation in ovarian cancer cell lines in the absence and presence of exogenous EGF. The effects of neutralising anti-EGF receptor antibody on the proliferation of ovarian cancer cell lines was also examined. We found no evidence for constitutive tyrosine phosphorylation of the p170 EGF receptor in eight epithelial ovarian cancer cell lines tested, although each line demonstrated inducible phosphorylation in response to exogenous EGF. The absence of constitutive EGF receptor activation was also noted when cells were grown under high density conditions, thus excluding a role for membrane-bound EGF or TGF-alpha in this process. Media conditioned by five ovarian cancer cell lines, as well as malignant ascites obtained from 12 different ovarian cancer patients, were not capable of stimulating EGF receptor phosphorylation. Finally, the proliferation of ovarian cancer cell lines was not significantly inhibited in the presence of neutralising anti-EGF receptor antibody. These data suggest that EGF receptor activation through autocrine pathways is not a major mechanism for the growth of many ovarian cancer cell lines. Other pathways of signal transduction which bypass the requirement for EGF receptor activation may be important in the proliferation for ovarian cancer cells. Such EGF receptor-independent pathways may limit the effectiveness of strategies designed to inhibit ovarian cancer cell growth through disruption of EGF receptor function.
Collapse
Affiliation(s)
- C Ottensmeier
- Division of Neoplastic Disease Mechanisms, Dana-Farber Cancer Institute, Boston MA 02115, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
In a prior study, we have shown that stable transfection of expression plasmids for protein kinases C beta 1 (PKC beta 1) or PKC beta 2 into differentiated colon cancer cells led to elevated levels of PKC beta 1 or PKC beta 2 protein and PKC beta kinase activities in the transfectants, without altering PKC alpha levels. PKC gamma is not found in these cells, so the major modulation was in PKC beta. PKC beta transfectant cells exhibited blocked differentiation, increased growth rate in athymic mice, and restoration of the basic fibroblast growth factor response pathway. In this study, we have extended the analysis of these PKC beta transfectants to the mitogen-activated protein kinase ERK3. Analysis of cell lysates on the mitogen-activated protein kinase substrate myelin basic protein by in gel kinase assay showed increased activity at 63 kDa, the size of ERK3, in each of two PKC beta 1 and each of two PKC beta 2 transfectants compared with the vector control transfectant. ERK3 was expressed at equal abundance in PKC beta 1, PKC beta 2, and control transfectant cells as demonstrated by Western blotting and by immunoprecipitation with anti-ERK3 monoclonal antibody. However, a > 10-fold increase in ERK3 activity in each PKC beta transfectant was shown by immunoprecipitation with anti-ERK3 monoclonal antibody followed by either immune complex kinase assay or by in gel kinase assay. Thus, while overexpression of transfected PKC beta does not lead to overexpression of ERK3, it does lead to constitutive activation of ERK3. A causal link between PKC beta overexpression and ERK3 activation was established because 12-O-tetradecanoylphorbol-13-acetate treatment down-regulated both PKC and ERK3 activities in both PKC beta 1 transfectants. ERK3 activity was found in nuclear and membrane fractions in each PKC beta transfectant, in contrast to controls, perhaps accounting for constitutive activation of ERK3 in cells with elevated levels of PKC beta 1 or PKC beta 2.
Collapse
Affiliation(s)
- S Sauma
- Laboratory of Gastrointestinal Tumor Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
50
|
Abstract
Mitogen-activated protein kinase and one of its targets, pp90rsk (ribosomal S6 kinase [RSK]), represent two serine/threonine kinases in the Ras-activated signalling cascade that are capable of directly regulating gene expression. pp90rsk has been shown to have two highly conserved and distinct catalytic domains. However, whether both domains are active and which domain is responsible for its various identified phosphotransferase activities have not been determined. Here we demonstrate that the N-terminal domain is responsible for its phosphotransferase activity towards a variety of substrates which contain an RXXS motif at the site of in vitro phosphorylation, including serum response factor, c-Fos, Nur77, and the 40S ribosomal protein S6. We also provide evidence that the C-terminal domain is catalytically active and can be further activated by mitogen-activated protein kinase phosphorylation.
Collapse
Affiliation(s)
- T L Fisher
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|