1
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|
2
|
Duru AD, Sun R, Allerbring EB, Chadderton J, Kadri N, Han X, Peqini K, Uchtenhagen H, Madhurantakam C, Pellegrino S, Sandalova T, Nygren PÅ, Turner SJ, Achour A. Tuning antiviral CD8 T-cell response via proline-altered peptide ligand vaccination. PLoS Pathog 2020; 16:e1008244. [PMID: 32365082 PMCID: PMC7224568 DOI: 10.1371/journal.ppat.1008244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/14/2020] [Accepted: 04/11/2020] [Indexed: 12/16/2022] Open
Abstract
Viral escape from CD8+ cytotoxic T lymphocyte responses correlates with disease progression and represents a significant challenge for vaccination. Here, we demonstrate that CD8+ T cell recognition of the naturally occurring MHC-I-restricted LCMV-associated immune escape variant Y4F is restored following vaccination with a proline-altered peptide ligand (APL). The APL increases MHC/peptide (pMHC) complex stability, rigidifies the peptide and facilitates T cell receptor (TCR) recognition through reduced entropy costs. Structural analyses of pMHC complexes before and after TCR binding, combined with biophysical analyses, revealed that although the TCR binds similarly to all complexes, the p3P modification alters the conformations of a very limited amount of specific MHC and peptide residues, facilitating efficient TCR recognition. This approach can be easily introduced in peptides restricted to other MHC alleles, and can be combined with currently available and future vaccination protocols in order to prevent viral immune escape.
Collapse
Affiliation(s)
- Adil Doganay Duru
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
- NSU Cell Therapy Institute & Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Eva B. Allerbring
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Jesseka Chadderton
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Australia
| | - Nadir Kadri
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Xiao Han
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Kaliroi Peqini
- DISFARM, Dipartimento di Scienze Farmaceutiche, Sezinone Chimica Generale e Organica, Università degli Studi, Milano, Italy
| | - Hannes Uchtenhagen
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Chaithanya Madhurantakam
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
- Structural and Molecular Biology Laboratory, Department of Biotechnology, TERI, School of Advanced Studies, New Delhi, India
| | - Sara Pellegrino
- DISFARM, Dipartimento di Scienze Farmaceutiche, Sezinone Chimica Generale e Organica, Università degli Studi, Milano, Italy
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Per-Åke Nygren
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Stephen J. Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Australia
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
3
|
Abstract
Selfishness is pervasive and manifests at all scales of biology, from societies, to individuals, to genetic elements within a genome. The relentless struggle to seek evolutionary advantages drives perpetual cycles of adaptation and counter-adaptation, commonly referred to as Red Queen interactions. In this review, we explore insights gleaned from molecular and genetic studies of such genetic conflicts, both extrinsic (between genomes) and intrinsic (within genomes or cells). We argue that many different characteristics of selfish genetic elements can be distilled into two types of advantages: an over-replication advantage (e.g. mobile genetic elements in genomes) and a transmission distortion advantage (e.g. meiotic drivers in populations). These two general categories may help classify disparate types of selfish genetic elements.
Collapse
Affiliation(s)
- Richard N McLaughlin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA .,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
4
|
Abstract
The family Arenaviridae currently comprises over 20 viral species, each of them associated with a main rodent species as the natural reservoir and in one case possibly phyllostomid bats. Moreover, recent findings have documented a divergent group of arenaviruses in captive alethinophidian snakes. Human infections occur through mucosal exposure to aerosols or by direct contact of abraded skin with infectious materials. Arenaviruses merit interest both as highly tractable experimental model systems to study acute and persistent infections and as clinically important human pathogens including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa and Argentine hemorrhagic fevers (AHFs), respectively, for which there are no FDA-licensed vaccines, and current therapy is limited to an off-label use of ribavirin (Rib) that has significant limitations. Arenaviruses are enveloped viruses with a bi-segmented negative strand (NS) RNA genome. Each genome segment, L (ca 7.3 kb) and S (ca 3.5 kb), uses an ambisense coding strategy to direct the synthesis of two polypeptides in opposite orientation, separated by a noncoding intergenic region (IGR). The S genomic RNA encodes the virus nucleoprotein (NP) and the precursor (GPC) of the virus surface glycoprotein that mediates virus receptor recognition and cell entry via endocytosis. The L genome RNA encodes the viral RNA-dependent RNA polymerase (RdRp, or L polymerase) and the small (ca 11 kDa) RING finger protein Z that has functions of a bona fide matrix protein including directing virus budding. Arenaviruses were thought to be relatively stable genetically with intra- and interspecies amino acid sequence identities of 90-95 % and 44-63 %, respectively. However, recent evidence has documented extensive arenavirus genetic variability in the field. Moreover, dramatic phenotypic differences have been documented among closely related LCMV isolates. These data provide strong evidence of viral quasispecies involvement in arenavirus adaptability and pathogenesis. Here, we will review several aspects of the molecular biology of arenaviruses, phylogeny and evolution, and quasispecies dynamics of arenavirus populations for a better understanding of arenavirus pathogenesis, as well as for the development of novel antiviral strategies to combat arenavirus infections.
Collapse
Affiliation(s)
- Esteban Domingo
- Campus de Cantoblanco, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Peter Schuster
- The Santa Fe Institute, Santa Fe, NM, USA and Institut f. Theoretische Chemie, Universität Wien, Vienna, Austria
| |
Collapse
|
5
|
Differential Recognition of Influenza A Viruses by M158-66 Epitope-Specific CD8+ T Cells Is Determined by Extraepitopic Amino Acid Residues. J Virol 2015; 90:1009-22. [PMID: 26537686 DOI: 10.1128/jvi.02439-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Natural influenza A virus infections elicit both virus-specific antibody and CD4(+) and CD8(+) T cell responses. Influenza A virus-specific CD8(+) cytotoxic T lymphocytes (CTLs) contribute to clearance of influenza virus infections. Viral CTL epitopes can display variation, allowing influenza A viruses to evade recognition by epitope-specific CTLs. Due to functional constraints, some epitopes, like the immunodominant HLA-A*0201-restricted matrix protein 1 (M158-66) epitope, are highly conserved between influenza A viruses regardless of their subtype or host species of origin. We hypothesized that human influenza A viruses evade recognition of this epitope by impairing antigen processing and presentation by extraepitopic amino acid substitutions. Activation of specific T cells was used as an indication of antigen presentation. Here, we show that the M158-66 epitope in the M1 protein derived from human influenza A virus was poorly recognized compared to the M1 protein derived from avian influenza A virus. Furthermore, we demonstrate that naturally occurring variations at extraepitopic amino acid residues affect CD8(+) T cell recognition of the M158-66 epitope. These data indicate that human influenza A viruses can impair recognition by M158-66-specific CTLs while retaining the conserved amino acid sequence of the epitope, which may represent a yet-unknown immune evasion strategy for influenza A viruses. This difference in recognition may have implications for the viral replication kinetics in HLA-A*0201 individuals and spread of influenza A viruses in the human population. The findings may aid the rational design of universal influenza vaccines that aim at the induction of cross-reactive virus-specific CTL responses. IMPORTANCE Influenza viruses are an important cause of acute respiratory tract infections. Natural influenza A virus infections elicit both humoral and cellular immunity. CD8(+) cytotoxic T lymphocytes (CTLs) are directed predominantly against conserved internal proteins and confer cross-protection, even against influenza A viruses of various subtypes. In some CTL epitopes, mutations occur that allow influenza A viruses to evade recognition by CTLs. However, the immunodominant HLA-A*0201-restricted M158-66 epitope does not tolerate mutations without loss of viral fitness. Here, we describe naturally occurring variations in amino acid residues outside the M158-66 epitope that influence the recognition of the epitope. These results provide novel insights into the epidemiology of influenza A viruses and their pathogenicity and may aid rational design of vaccines that aim at the induction of CTL responses.
Collapse
|
6
|
Wang Y, Takao Y, Harada M, Yutani S, Ide T, Sata M, Itoh K, Yamada A. New Epitope Peptides Derived from Hepatitis C Virus (HCV) 2a Which Have the Capacity to Induce Cytotoxic T Lymphocytes in HLA-A2+HCV-Infected Patients. Microbiol Immunol 2013; 50:857-65. [PMID: 17116980 DOI: 10.1111/j.1348-0421.2006.tb03861.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because cytotoxic T lymphocytes (CTLs) play an important role in the specific immunotherapy of hepatitis C virus (HCV) infection, a series of CTL epitopes has been defined from HCV genotype 1a or 1b protein. Here, we attempted to identify HCV2a-derived epitopes that are capable of inducing HLA-A2-restricted and peptide-specific CTLs. Peripheral blood mononuclear cells (PBMCs) of HLA-A2+ HCV2ainfected patients or healthy donors were stimulated in vitro with each of the HCV2a-derived peptides, which were prepared based on the HLA-A2-binding motif, and their peptide-specific and HLA-A2-restricted cytotoxicities were examined. The HCV2a 432-441, HCV2a 716-724, and HCV2a 2251-2260 peptides were found to efficiently induce peptide-specific CTLs from the PBMCs of HLA-A2+ HCV2ainfected patients. Cytotoxicity was mainly mediated by CD8+ T cells in a HLA class I-restricted manner. These results indicate that the HCV2a 432-441, HCV2a 716-724, and HCV2a 2251-2260 peptides might be applicable for peptide-based immunotherapy of HLA-A2+ HCV2a-infected patients.
Collapse
Affiliation(s)
- Yi Wang
- Cancer Vaccine Development Division, Kurume University Research Center for Innovative Cancer Therapy, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Agranovich A, Maman Y, Louzoun Y. Viral proteome size and CD8+ T cell epitope density are correlated: the effect of complexity on selection. INFECTION GENETICS AND EVOLUTION 2013; 20:71-7. [PMID: 23954420 PMCID: PMC7106205 DOI: 10.1016/j.meegid.2013.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022]
Abstract
We analyze the relation between viral complexity and their adaptation to the host immune system. Viruses with few proteins and low number of nucleotides remove more CD8+ T cell epitopes. Within a virus, short proteins (with fewer amino acids) adapt better than long ones. The relation between total size and adaptation is host specific. Complexity limits genetic adaptation in the high-mutation rate strong selection regime.
The relation between the complexity of organisms and proteins and their evolution rates has been discussed in the context of multiple generic models. The main robust claim from most such models is the negative relation between complexity and the accumulation rate of mutations. Viruses accumulate escape mutations in their epitopes to avoid detection and destruction of their host cell by CD8+ T cells. The extreme regime of immune escape, namely, strong selection and high mutation rate, provide an opportunity to extend and validate the existing models of relation between complexity and evolution rate as proposed by Fisher and Kimura. Using epitope prediction algorithms to compute the epitopes presented on the most frequent human HLA alleles in over 100 fully sequenced human viruses, and over 900 non-human viruses, we here study the correlation between viruses/proteins complexity (as measured by the number of proteins in the virus and the length of each protein, respectively) and the rate of accumulation of escape mutation. The latter is evaluated by measuring the normalized epitope density of viral proteins. If the virus/protein complexity prevents the accumulation of escape mutations, the epitope density is expected to be positively correlated with both the number of proteins in the virus and the length of proteins. We show that such correlations are indeed observed for most human viruses. For non-human viruses the correlations were much less significant, indicating that the correlation is indeed induced by human HLA molecules.
Collapse
Affiliation(s)
- Alexandra Agranovich
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yaakov Maman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yoram Louzoun
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel
- Corresponding author. Tel.: +972 3 5317610; fax: +972 3 7384057.
| |
Collapse
|
8
|
Zapata JC, Salvato MS. Arenavirus variations due to host-specific adaptation. Viruses 2013; 5:241-78. [PMID: 23344562 PMCID: PMC3564120 DOI: 10.3390/v5010241] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 01/08/2023] Open
Abstract
Arenavirus particles are enveloped and contain two single-strand RNA genomic segments with ambisense coding. Genetic plasticity of the arenaviruses comes from transcription errors, segment reassortment, and permissive genomic packaging, and results in their remarkable ability, as a group, to infect a wide variety of hosts. In this review, we discuss some in vitro studies of virus genetic and phenotypic variation after exposure to selective pressures such as high viral dose, mutagens and antivirals. Additionally, we discuss the variation in vivo of selected isolates of Old World arenaviruses, particularly after infection of different animal species. We also discuss the recent emergence of new arenaviruses in the context of our observations of sequence variations that appear to be host-specific.
Collapse
Affiliation(s)
- Juan C Zapata
- Institute of Human Virology-School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | |
Collapse
|
9
|
Moreno H, Grande-Pérez A, Domingo E, Martín V. Arenaviruses and lethal mutagenesis. Prospects for new ribavirin-based interventions. Viruses 2012; 4:2786-805. [PMID: 23202505 PMCID: PMC3509673 DOI: 10.3390/v4112786] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 01/05/2023] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) has contributed to unveil some of the molecular mechanisms of lethal mutagenesis, or loss of virus infectivity due to increased mutation rates. Here we review these developments, and provide additional evidence that ribavirin displays a dual mutagenic and inhibitory activity on LCMV that can be relevant to treatment designs. Using 5-fluorouracil as mutagenic agent and ribavirin either as inhibitor or mutagen, we document an advantage of a sequential inhibitor-mutagen administration over the corresponding combination treatment to achieve a low LCMV load in cell culture. This advantage is accentuated in the concentration range in which ribavirin acts mainly as an inhibitor, rather than as mutagen. This observation reinforces previous theoretical and experimental studies in supporting a sequential inhibitor-mutagen administration as a possible antiviral design. Given recent progress in the development of new inhibitors of arenavirus replication, our results suggest new options of ribavirin-based anti-arenavirus treatments.
Collapse
Affiliation(s)
- Héctor Moreno
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco 28049, Madrid, Spain; (H.M.); (E.D.)
| | - Ana Grande-Pérez
- Área de Genética, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071, Málaga, Spain;
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco 28049, Madrid, Spain; (H.M.); (E.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA), Carretera de Algete a El Casar s/n, 28130 Valdeolmos, Madrid, Spain;
| |
Collapse
|
10
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
11
|
Agranovich A, Vider-Shalit T, Louzoun Y. Optimal viral immune surveillance evasion strategies. Theor Popul Biol 2011; 80:233-43. [PMID: 21925527 DOI: 10.1016/j.tpb.2011.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 12/12/2022]
Abstract
Following cell entry, viruses can be detected by cytotoxic T lymphocytes. These cytotoxic T lymphocytes can induce host cell apoptosis and prevent the propagation of the virus. Viruses with fewer epitopes have a higher survival probability, and are selected through evolution. However, mutations have a fitness cost and on evolutionary periods viruses maintain some epitopes. The number of epitopes in each viral protein is a balance between the selective advantage of having fewer epitopes and the reduced fitness following the epitope removing mutations. We discuss a bioinformatic analysis of the number of epitopes in various viral proteins and propose an optimization framework to explain these numbers. We show, using a genomic analysis and a theoretical optimization framework, that a critical factor affecting the number of presented epitopes is the expression stage in the viral life cycle of the gene coding for the protein. The early expression of epitopes can lead to the destruction of the host cell before budding can take place. We show that a lower number of epitopes is expected in early proteins even if late proteins have a much higher copy number.
Collapse
Affiliation(s)
- Alexandra Agranovich
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | |
Collapse
|
12
|
Chen M, Lan S, Ou R, Price GE, Jiang H, de la Torre JC, Moskophidis D. Genomic and biological characterization of aggressive and docile strains of lymphocytic choriomeningitis virus rescued from a plasmid-based reverse-genetics system. J Gen Virol 2008; 89:1421-1433. [PMID: 18474558 DOI: 10.1099/vir.0.83464-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arenaviruses include several causative agents of haemorrhagic fever disease in humans. In addition, the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a superb model for the study of virus-host interactions, including the basis of viral persistence and associated diseases. There is little understanding about the molecular mechanisms concerning the regulation and specific role of viral proteins in modulating arenavirus-host cell interactions either associated with an acute or persistent infection, and associated disease. Here, we report the genomic and biological characterization of LCMV strains 'Docile' (persistent) and 'Aggressive' (not persistent) recovered from cloned cDNA via reverse genetics. Our results confirmed that the cloned viruses accurately recreated the in vivo phenotypes associated with the corresponding natural Docile and Aggressive viral isolates. In addition, we provide evidence that the ability of the Docile strain to persist is determined by the nature of both S and L RNA segments. Thus, our findings provide the foundation for studies aimed at gaining a detailed understanding of viral determinants of LCMV persistence in its natural host, which may aid in the development of vaccines to prevent or treat the diseases caused by arenaviruses in humans.
Collapse
Affiliation(s)
- Minjie Chen
- Center for Molecular Chaperones/Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Shuiyun Lan
- Center for Molecular Chaperones/Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Rong Ou
- Center for Molecular Chaperones/Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Graeme E Price
- Center for Molecular Chaperones/Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Hong Jiang
- Center for Molecular Chaperones/Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Juan Carlos de la Torre
- Molecular Integrative Neuroscience Department (MIND), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Demetrius Moskophidis
- Center for Molecular Chaperones/Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, GA 30912, USA
| |
Collapse
|
13
|
Schneidewind A, Brockman MA, Yang R, Adam RI, Li B, Le Gall S, Rinaldo CR, Craggs SL, Allgaier RL, Power KA, Kuntzen T, Tung CS, LaBute MX, Mueller SM, Harrer T, McMichael AJ, Goulder PJR, Aiken C, Brander C, Kelleher AD, Allen TM. Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication. J Virol 2007; 81:12382-93. [PMID: 17804494 PMCID: PMC2169010 DOI: 10.1128/jvi.01543-07] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human leukocyte antigen (HLA)-B27-positive subjects are uncommon in their ability to control infection with human immunodeficiency virus type 1 (HIV-1). However, late viral escape from a narrowly directed immunodominant Gag-specific CD8(+) T-lymphocyte (CTL) response has been linked to AIDS progression in these individuals. Identifying the mechanism of the immune-mediated control may provide critical insights into HIV-1 vaccine development. Here, we illustrate that the CTL escape mutation R(264)K in the HLA-B27-restricted KK10 epitope in the capsid resulted in a significant defect in viral replication in vitro. The R(264)K variant was impaired in generating late reverse transcription products, indicating that replication was blocked at a postentry step. Notably, the R(264)K mutation was associated in vivo with the development of a rare secondary mutation, S(173)A, which restored viral replication in vitro. Furthermore, infectivity of the R(264)K variant was rescued by the addition of cyclosporine A or infection of a cyclophilin A-deficient cell line. These data demonstrate a severe functional defect imposed by the R(264)K mutation during an early step in viral replication that is likely due to the inability of this variant to replicate efficiently in the presence of normal levels of cyclophilin A. We conclude that the impact of the R(264)K substitution on capsid structure constrains viral escape and enables long-term maintenance of the dominant CTL response against B27-KK10, providing an explanation for the protective effect of HLA-B27 during HIV infection.
Collapse
Affiliation(s)
- Arne Schneidewind
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vider-Shalit T, Fishbain V, Raffaeli S, Louzoun Y. Phase-dependent immune evasion of herpesviruses. J Virol 2007; 81:9536-45. [PMID: 17609281 PMCID: PMC1951411 DOI: 10.1128/jvi.02636-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 06/22/2007] [Indexed: 12/14/2022] Open
Abstract
Viruses employ various modes to evade immune detection. Two possible evasion modes are a reduction of the number of epitopes presented and the mimicry of host epitopes. The immune evasion efforts are not uniform among viral proteins. The number of epitopes in a given viral protein and the similarity of the epitopes to host peptides can be used as a measure of the viral attempts to hide this protein. Using bioinformatics tools, we here present a genomic analysis of the attempts of four human herpesviruses (herpes simplex virus type 1-human herpesvirus 1, Epstein-Barr virus-human herpesvirus 4, human cytomegalovirus-human herpesvirus 5, and Kaposi's sarcoma-associated herpesvirus-human herpesvirus 8) and one murine herpesvirus (murine herpesvirus 68) to escape from immune detection. We determined the full repertoire of CD8 T-lymphocyte epitopes presented by each viral protein and show that herpesvirus proteins present many fewer epitopes than expected. Furthermore, the epitopes that are presented are more similar to host epitopes than are random viral epitopes, minimizing the immune response. We defined a score for the size of the immune repertoire (the SIR score) based on the number of epitopes in a protein. The numbers of epitopes in proteins expressed in the latent and early phases of infection were significantly smaller than those in proteins expressed in the lytic phase in all tested viruses. The latent and immediate-early epitopes were also more similar to host epitopes than were lytic epitopes. A clear trend emerged from the analysis. In general, herpesviruses demonstrated an effort to evade immune detection. However, within a given herpesvirus, proteins expressed in phases critical to the fate of infection (e.g., early lytic and latent) evaded immune detection more than all others. The application of the SIR score to specific proteins allows us to quantify the importance of immune evasion and to detect optimal targets for immunotherapy and vaccine development.
Collapse
|
15
|
Chao DL, Davenport MP, Forrest S, Perelson AS. The effects of thymic selection on the range of T cell cross-reactivity. Eur J Immunol 2006; 35:3452-9. [PMID: 16285012 PMCID: PMC1857316 DOI: 10.1002/eji.200535098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Based on the results of a computational model of thymic selection, we propose a mechanism that produces the observed wide range of T cell cross-reactivity. The model suggests that the cross-reactivity of a T cell that survives thymic selection is correlated with its affinity for self peptides. In order to survive thymic selection, a T cell with low affinity for all self peptides expressed in the thymus must have high affinity for major histocompatibility complex (MHC), which makes it highly cross-reactive. A T cell with high affinity for any self peptide must have low MHC affinity to survive selection, which makes it highly specific for its cognate peptide. Our model predicts that (1) positive selection reduces by only 17% the number of T cells that can detect any given foreign peptide, even though it eliminates over 95% of pre-selection cells; (2) negative selection decreases the average cross-reactivity of the pre-selection repertoire by fivefold; and (3) T cells responding to foreign peptides similar to self peptides will have a lower average cross-reactivity than cells responding to epitopes dissimilar to self.
Collapse
Affiliation(s)
- Dennis L Chao
- Fred Hutchinson Cancer Research Center, Seattle, USA
| | | | | | | |
Collapse
|
16
|
Lu HY, Zeng Z, Xu XY, Zhang NL, Yu M, Gong WB. Mutations in surface and polymerase gene of chronic hepatitis B patients with coexisting HBsAg and anti-HBs. World J Gastroenterol 2006; 12:4219-23. [PMID: 16830379 PMCID: PMC4087378 DOI: 10.3748/wjg.v12.i26.4219] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the clinical significance and presence of mutations in the surface (S) and overlapping polymerase gene of hepatitis B patients with coexisting HBsAg and anti-HBs.
METHODS: Twenty-three patients with chronic hepatitis B were studied. Of the 23 patients, 11 were both positive for hepatitis B virus (HBV) surface antigen (HBsAg) and antibody to HBV surface antigen (anti-HBs), 12 were negative for anti-HBs while positive for HBsAg. DNA was extracted from 200 μL serum of the patients. Nucleotide of the surface and overlapping polymerase gene from HBV-infected patients was amplified by PCR, and the PCR products were sequenced.
RESULTS: Forty-one mutations were found within the surface gene protein of HBV in 15 patients (10 with coexisting HBsAg and anti-HBs). Six (14.6%) out of 41 mutations were located at “α” determinant region in 5 patients (4 positive for HBsAg and anti-HBs). Eleven mutations (26.8%) occurred in the downstream or upstream of “α” determinant region. Lamivudine (LMV)-selected mutations were found in three patients who developed anti-HBs, which occurred in amino acid positions (196, 198, 199) of the surface protein and in YMDD motif (M204I/V) of the polymerase protein simultaneously. Presence of these mutations did not relate to changes in ALT and HBV DNA levels.
CONCLUSION: Besides mutations in the “α” deter-minant region, mutations at downstream or upstream of the “α” determinant region may contribute to the development of anti-HBs. These mutations do not block the replicating competency of HBV in the presence of high titer of anti-HBs.
Collapse
Affiliation(s)
- Hai-Ying Lu
- Department of Infectious Diseases, Peking University First Hospital, Beijing 100034, China.
| | | | | | | | | | | |
Collapse
|
17
|
Quiñones-Mateu ME, Arts EJ. Virus fitness: concept, quantification, and application to HIV population dynamics. Curr Top Microbiol Immunol 2006; 299:83-140. [PMID: 16568897 DOI: 10.1007/3-540-26397-7_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Viral fitness has been broadly studied during the past three decades, mainly to test evolutionary models and population theories difficult to analyze and interpret with more complex organisms. More recent studies, however, are focused in the role of fitness on viral transmission, pathogenesis, and drug resistance. Here, we used human immunodeficiency virus (HIV) as one of the most relevant models to evaluate the importance of viral quasispecies and fitness in HIV evolution, population dynamics, disease progression, and potential clinical implications.
Collapse
Affiliation(s)
- M E Quiñones-Mateu
- Department of Molecular Genetics, Section Virology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NN10, Cleveland, OH 44195, USA.
| | | |
Collapse
|
18
|
Sevilla N, de la Torre JC. Arenavirus diversity and evolution: quasispecies in vivo. Curr Top Microbiol Immunol 2006; 299:315-35. [PMID: 16568904 PMCID: PMC7120374 DOI: 10.1007/3-540-26397-7_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Arenaviruses exist as viral quasispecies due to the high mutation rates of the low-fidelity viral RNA-dependent RNA polymerase (RdRp). This genomic heterogeneity is advantageous to the population, allowing for adaptation to rapidly changing environments that present varying types and degrees of selective pressure. The significant variation in biological properties observed among lymphocytic choriomeningitis virus (LCMV) strains, the prototypic arenavirus, indicates to what extent a quasispecies dynamics may play a role in arenavirus adaptability and pathogenesis. Several aspects of arenavirus variability and its contribution to pathogenesis will be discussed.
Collapse
Affiliation(s)
- N Sevilla
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
19
|
Kazim SN, Sarin SK, Sharma BC, Khan LA, Hasnain SE. Characterization of naturally occurring and Lamivudine-induced surface gene mutants of hepatitis B virus in patients with chronic hepatitis B in India. Intervirology 2006; 49:152-60. [PMID: 16428891 DOI: 10.1159/000089376] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 05/23/2005] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Besides vaccine escape or immune escape hepatitis B virus (HBV) mutants, naturally occurring and drug-induced mutations have been reported in the surface gene (S-gene) of HBV. AIM To investigate the frequency and profile of naturally occurring S-gene mutants and the influence of long-term lamivudine therapy in patients with chronic hepatitis B (CHB). MATERIALS AND METHODS 57 patients with histologically proven CHB, on lamivudine 100 mg/day for more than 24 months, were included. Viral DNA was extracted at baseline and from on-therapy serum samples. The region encoding the complete major hydrophilic region (MHR) and flanking regions (nucleotides 425-840) of major S-gene that overlapped with the viral polymerase was PCR amplified and sequenced. End-of-therapy response (ETR) was assessed. RESULTS Two (3.5%) patients had naturally occurring HBV mutants, sP127S and sS143L seen in the 'a' determinant of the S-gene. Following lamivudine therapy, 14 of 57 (24.5%) patients developed 16 types of S-gene mutations (sP120S, sA128V, sS143L, sW182St., sT189I, sV190A, sS193L, sI195M, sW196L, sW196St., sS207R, sI208T, sS210E, sF219S, sF220L and sC221G). Thirteen (81.2%) of these mutations emerged downstream to the MHR. Nine of 16 types of S-gene mutations observed with lamivudine therapy were also associated with the corresponding changes in the polymerase gene. Baseline viral DNA was significantly higher (2,093 vs. 336 pg/ml; p < 0.05) among patients developing S-gene mutants and the ETR in them was significantly lower [3 of 16 (18.8%) vs. 17 of 41 (41.5%); p < 0.05]. CONCLUSIONS Naturally occurring S-gene mutations are uncommon and are restricted to the 'a' determinant region. Mutations develop in about a quarter of the patients on lamivudine therapy, mostly downstream to the MHR. They may contribute to non-response to the antiviral therapy.
Collapse
Affiliation(s)
- Syed Naqui Kazim
- Department of Gastroenterology, G.B. Pant Hospital, New Delhi, India
| | | | | | | | | |
Collapse
|
20
|
Chen W, McCluskey J. Immunodominance and Immunodomination: Critical Factors in Developing Effective CD8+ T‐Cell–Based Cancer Vaccines. Adv Cancer Res 2006; 95:203-47. [PMID: 16860659 DOI: 10.1016/s0065-230x(06)95006-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The focusing of cellular immunity toward one, or just a few, antigenic determinant, even during immune responses to complex microorganisms or antigens, is known as immunodominance. Although described in many systems, the mechanisms of determinant immunodominance are only just beginning to be appreciated, especially in relation to the interplay between T cells of differing specificities and the interactions between T cells and the antigen-presenting cells (APCs). The outcome of these cellular interactions can lead to a form of immune suppression of one specificity by another-described as "immunodomination". The specific and detailed mechanisms involved in this process are now partly defined. A full understanding of all the factors that control immunodominance and influence immunodomination will help us to develop better viral and cancer vaccines.
Collapse
Affiliation(s)
- Weisan Chen
- T Cell Laboratory, Ludwig Institute for Cancer Research, Austin Health, Heidelberg, VIC 3084, Australia
| | | |
Collapse
|
21
|
Grande-Pérez A, Gómez-Mariano G, Lowenstein PR, Domingo E. Mutagenesis-induced, large fitness variations with an invariant arenavirus consensus genomic nucleotide sequence. J Virol 2005; 79:10451-9. [PMID: 16051837 PMCID: PMC1182645 DOI: 10.1128/jvi.79.16.10451-10459.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 05/09/2005] [Indexed: 11/20/2022] Open
Abstract
Enhanced mutagenesis may result in RNA virus extinction, but the molecular events underlying this process are not well understood. Here we show that 5-fluorouracil (FU)-induced mutagenesis of the arenavirus lymphocytic choriomeningitis virus (LCMV) resulted in preextinction populations whose consensus genomic nucleotide sequence remained unaltered. Furthermore, fitness recovery passages in the absence of FU, or alternate virus passages in the presence and absence of FU, led to profound differences in the capacity of LCMV to produce progeny, without modification of the consensus genomic sequence. Molecular genetic analysis failed to produce evidence of hypermutated LCMV genomes. The results suggest that low-level mutagenesis to enrich the viral population with defector, interfering genomes harboring limited numbers of mutations may mediate the loss of infectivity that accompanies viral extinction.
Collapse
Affiliation(s)
- Ana Grande-Pérez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Sandalova T, Michaëlsson J, Harris RA, Odeberg J, Schneider G, Kärre K, Achour A. A structural basis for CD8+ T cell-dependent recognition of non-homologous peptide ligands: implications for molecular mimicry in autoreactivity. J Biol Chem 2005; 280:27069-75. [PMID: 15845547 DOI: 10.1074/jbc.m500927200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Molecular mimicry of self-epitopes by viral antigens is one possible pathogenic mechanism underlying induction of autoimmunity. A self-epitope, mDBM, derived from mouse dopamine beta-mono-oxygenase (KALYDYAPI) sharing 44% sequence identity with the lymphocytic choriomeningitis virus-derived immunodominant epitope gp33 (KAVYNFATC/M), has previously been identified as a cross-reactive self-ligand, presentation of which results in autoimmunity. A rat peptide homologue, rDBM (KALYNYAPI, 56% identity to gp33), which displayed similar properties to mDBM, has also been identified. We herein report the crystal structure of H-2Db.rDBM and a comparison with the crystal structures of the cross-reactive H-2Db.gp33 and non-cross-reactive H-2Db.gp33 (V3L) escape variant (KALYNFATM, 88% identity to gp33). Despite the large sequence disparity, rDBM and gp33 peptides are presented in nearly identical manners by H-2Db, with a striking juxtaposition of the central sections of both peptides from residues p3 to p7. The structural similarity provides H-2Db in complex with either a virus-derived or a dopamine beta-mono-oxygenase-derived peptide with a shared antigenic identity that conserves the positioning of the heavy chain and peptide residues that interact with the T cell receptor (TCR). This stands in contrast to the structure of H-2Db.gp33 (V3L), in which a single conserved mutation, also present in rDBM, induces large movements of both the peptide backbone and the side chains that interact with the TCR. The TCR-interacting surfaces of the H-2Db.rDBM and H-2Db.gp33 major histocompatibility complexes are very similar with regard to shape, topology, and charge distribution, providing a structural basis for CD8 T cell activation by molecular mimicry and potential subsequent development of autoreactivity.
Collapse
Affiliation(s)
- Tatyana Sandalova
- Department of Medical Biochemistry and Biophysics, Microbiology and Tumor Biology Center, and Strategic Research Center IRIS for Studies of Integrated Recognition in the Immune System, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Lassa virus is a RNA virus belonging to the family of Arenaviridae. It was discovered as the causative agent of a hemorrhagic fever--Lassa fever--about 30 years ago. Lassa fever is endemic in West Africa and is estimated to affect some 100,000 people annually. Great progress in the understanding of the life cycle of arenaviruses, including Lassa virus, has been made in recent years. New insights have been gained in the pathogenesis and molecular epidemiology of Lassa fever, and state-of the-art technologies for diagnosing this life-threatening disease have been developed. The intention of this review is to summarize in particular the recent literature on Lassa virus and Lassa fever. Several aspects ranging from basic research up to clinical practice and laboratory diagnosis are discussed and linked together.
Collapse
Affiliation(s)
- Stephan Günther
- Department of Virology, Bernhard-Nocht-Institute of Tropical Medicine, Hamburg, Germany.
| | | |
Collapse
|
24
|
Timm J, Lauer GM, Kavanagh DG, Sheridan I, Kim AY, Lucas M, Pillay T, Ouchi K, Reyor LL, Schulze zur Wiesch J, Gandhi RT, Chung RT, Bhardwaj N, Klenerman P, Walker BD, Allen TM. CD8 epitope escape and reversion in acute HCV infection. J Exp Med 2004; 200:1593-604. [PMID: 15611288 PMCID: PMC2212005 DOI: 10.1084/jem.20041006] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the setting of acute hepatitis C virus (HCV) infection, robust HCV-specific CD8+ cytotoxic T lymphocyte (CTL) responses are associated with initial control of viremia. Despite these responses, 70-80% of individuals develop persistent infection. Although viral escape from CD8 responses has been illustrated in the chimpanzee model of HCV infection, the effect of CD8 selection pressure on viral evolution and containment in acute HCV infection in humans remains unclear. Here, we examined viral evolution in an immunodominant human histocompatibility leukocyte antigen (HLA)-B8-restricted NS3 epitope in subjects with acute HCV infection. Development of mutations within the epitope coincided with loss of strong ex vivo tetramer and interferon gamma enzyme-linked immunospot responses, and endogenous expression of variant NS3 sequences suggested that the selected mutations altered processing and presentation of the variant epitope. Analysis of NS3 sequences from 30 additional chronic HCV-infected subjects revealed a strong association between sequence variation within this region and expression of HLA-B8, supporting reproducible allele-specific selection pressures at the population level. Interestingly, transmission of an HLA-B8-associated escape mutation to an HLA-B8 negative subject resulted in rapid reversion of the mutation. Together, these data indicate that viral escape from CD8+ T cell responses occurs during human HCV infection and that acute immune selection pressure is of sufficient magnitude to influence HCV evolution.
Collapse
Affiliation(s)
- Joerg Timm
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Bldg. 149, 13th St., Rm. 6618 B, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bartholdy C, Stryhn A, Christensen JP, Thomsen AR. Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection. THE JOURNAL OF IMMUNOLOGY 2004; 173:6284-93. [PMID: 15528367 DOI: 10.4049/jimmunol.173.10.6284] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Induction of a monospecific antiviral CD8+ T cell response may pose a risk to the host due to the narrow T cell response induced. At the individual level, this may result in selection of CD8+ T cell escape variants, particularly during chronic viral infection. Second, prior immunization toward a single dominant epitope may suppress the response to other viral epitopes, and this may lead to increased susceptibility to reinfection with escape variants circulating in the host population. To address these issues, we induced a memory response consisting solely of monospecific, CD8+ T cells by use of DNA vaccines encoding immunodominant epitopes of lymphocytic choriomeningitis virus (LCMV). We analyzed the spectrum of the CD8+ T cell response and the susceptibility to infection in H-2(b) and H-2(d) mice. Priming for a monospecific, CD8+ T cell response did not render mice susceptible to viral variants. Thus, vaccinated mice were protected against chronic infection with LCMV, and no evidence indicating biologically relevant viral escape was obtained. In parallel, a broad and sustained CD8+ T cell response was generated upon infection, and in H-2(d) mice epitope spreading was observed. Even after acute LCMV infection, DNA vaccination did not significantly impair naturally induced immunity. Thus, the response to the other immunogenic epitopes was not dramatically suppressed in DNA-immunized mice undergoing normal immunizing infection, and the majority of mice were protected against rechallenge with escape variants. These findings underscore that a monospecific vaccine may induce efficient protective immunity given the right set of circumstances.
Collapse
MESH Headings
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Cells, Cultured
- Chronic Disease
- Cytotoxicity, Immunologic
- Disease Susceptibility/immunology
- Dose-Response Relationship, Immunologic
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Genetic Variation/immunology
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Immunologic Memory
- Lymphocytic Choriomeningitis/immunology
- Lymphocytic Choriomeningitis/prevention & control
- Lymphocytic choriomeningitis virus/genetics
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Secondary Prevention
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Christina Bartholdy
- Institute of Medical Microbiology and Immunology, Panum Institute, University of Copenhagen, 3C Blegdamsvej, DK-2200 Copenhagen, Denmark
| | | | | | | |
Collapse
|
26
|
Velloso LM, Michaëlsson J, Ljunggren HG, Schneider G, Achour A. Determination of Structural Principles Underlying Three Different Modes of Lymphocytic Choriomeningitis Virus Escape from CTL Recognition. THE JOURNAL OF IMMUNOLOGY 2004; 172:5504-11. [PMID: 15100292 DOI: 10.4049/jimmunol.172.9.5504] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphocytic choriomeningitis virus infection of H-2(b) mice generates a strong CD8(+) CTL response mainly directed toward three immunodominant epitopes, one of which, gp33, is presented by both H-2D(b) and H-2K(b) MHC class I molecules. This CTL response acts as a selective agent for the emergence of viral escape variants. These variants generate altered peptide ligands (APLs) that, when presented by class I MHC molecules, antagonize CTL recognition and ultimately allow the virus to evade the cellular immune response. The emergence of APLs of the gp33 epitope is particularly advantageous for LCMV, as it allows viral escape in the context of both H-2D(b) and H-2K(b) MHC class I molecules. We have determined crystal structures of three different APLs of gp33 in complex with both H-2D(b) and H-2K(b). Comparison between these APL/MHC structures and those of the index gp33 peptide/MHC reveals the structural basis for three different strategies used by LCMV viral escape mutations: 1) conformational changes in peptide and MHC residues that are potential TCR contacts, 2) impairment of APL binding to the MHC peptide binding cleft, and 3) introduction of subtle changes at the TCR/pMHC interface, such as the removal of a single hydroxyl group.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Animals
- Antigen Presentation/genetics
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Crystallography, X-Ray
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Glycoproteins/chemistry
- Glycoproteins/genetics
- Glycoproteins/immunology
- H-2 Antigens/chemistry
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- Leucine/genetics
- Lymphocytic choriomeningitis virus/genetics
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Phenylalanine/genetics
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Conformation
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Structure-Activity Relationship
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Tyrosine/genetics
- Valine/genetics
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Lucas Malard Velloso
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
27
|
Yang OO, Sarkis PTN, Ali A, Harlow JD, Brander C, Kalams SA, Walker BD. Determinant of HIV-1 mutational escape from cytotoxic T lymphocytes. J Exp Med 2003; 197:1365-75. [PMID: 12743169 PMCID: PMC2193781 DOI: 10.1084/jem.20022138] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
CD8+ class I-restricted cytotoxic T lymphocytes (CTLs) usually incompletely suppress HIV-1 in vivo, and while analogous partial suppression induces antiretroviral drug-resistance mutations, epitope escape mutations are inconsistently observed. However, escape mutation depends on the net balance of selective pressure and mutational fitness costs, which are poorly understood and difficult to study in vivo. Here we used a controlled in vitro system to evaluate the ability of HIV-1 to escape from CTL clones, finding that virus replicating under selective pressure rapidly can develop phenotypic resistance associated with genotypic changes. Escape varied between clones recognizing the same Gag epitope or different Gag and RT epitopes, indicating the influence of the T cell receptor on pressure and fitness costs. Gag and RT escape mutations were monoclonal intra-epitope substitutions, indicating limitation by fitness constraints in structural proteins. In contrast, escape from Nef-specific CTL was more rapid and consistent, marked by a polyclonal mixture of epitope point mutations and upstream frameshifts. We conclude that incomplete viral suppression by CTL can result in rapid emergence of immune escape, but the likelihood is strongly determined by factors influencing the fitness costs of the particular epitope targeted and the ability of responding CTL to recognize specific epitope variants.
Collapse
Affiliation(s)
- Otto O Yang
- Division of Infectious Diseases, 37-121 CHS, UCLA Medical Center, 10833 LeConte Ave., Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Achour A, Michaëlsson J, Harris RA, Odeberg J, Grufman P, Sandberg JK, Levitsky V, Kärre K, Sandalova T, Schneider G. A structural basis for LCMV immune evasion: subversion of H-2D(b) and H-2K(b) presentation of gp33 revealed by comparative crystal structure.Analyses. Immunity 2002; 17:757-68. [PMID: 12479822 DOI: 10.1016/s1074-7613(02)00478-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LCMV infection of H-2(b) mice generates a CD8(+) CTL response mainly directed toward three immunodominant epitopes. One of these, gp33, is presented by both H-2D(b) and H-2K(b) MHC class I molecules. The virus can escape immune recognition in the context of both these MHC class I molecules through single mutations of the peptide. In order to understand the underlying structural mechanism, we determined the crystal structures of both complexes. The structures reveal that the peptide is presented in two diametrically opposed manners by H-2D(b) and H-2K(b), with residues used as anchor positions in one MHC class I molecule interacting with the TCR in the other. Importantly, the peptide's N-terminal residue p1K protrudes from the binding cleft in H-2K(b). We present structural evidence that explains the functional consequences of single mutations found in escape variants.
Collapse
Affiliation(s)
- Adnane Achour
- Microbiology and Tumor Biology Center, Karolinska Institutet, Royal School of Technology, S-106 91 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Oldstone MBA. Biology and pathogenesis of lymphocytic choriomeningitis virus infection. Curr Top Microbiol Immunol 2002; 263:83-117. [PMID: 11987822 DOI: 10.1007/978-3-642-56055-2_6] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- M B A Oldstone
- Division of Virology, Department of Neuropharmacology, Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
30
|
Sevilla N, Domingo E, de la Torre JC. Contribution of LCMV towards deciphering biology of quasispecies in vivo. Curr Top Microbiol Immunol 2002; 263:197-220. [PMID: 11987815 DOI: 10.1007/978-3-642-56055-2_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- N Sevilla
- Department of Neuropharmacology, Scripps Research Institute, 10550 North Torrey Pines Road, IMM-6, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
31
|
Lucas M, Karrer U, Lucas A, Klenerman P. Viral escape mechanisms--escapology taught by viruses. Int J Exp Pathol 2001; 82:269-86. [PMID: 11703537 PMCID: PMC2517780 DOI: 10.1046/j.1365-2613.2001.00204.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Accepted: 07/24/2001] [Indexed: 01/12/2023] Open
Abstract
Viruses have 'studied' immunology over millions of years of coevolution with their hosts. During this ongoing education they have developed countless mechanisms to escape from the host's immune system. To illustrate the most common strategies of viral immune escape we have focused on two murine models of persistent infection, lymphocytic choriomeningitis virus (LCMV) and murine cytomegalovirus (MCMV). LCMV is a fast replicating small RNA virus with a genome prone to mutations. Therefore, LCMV escapes from the immune system mainly by two strategies: 'speed' and 'shape change'. At the opposite extreme, MCMV is a large, complex DNA virus with a more rigid genome and thus the strategies used by LCMV are no option. However, MCMV has the coding capacity for additional genes which interfere specifically with the immune response of the host. These escape strategies have been described as 'camouflage' and 'sabotage'. Using these simple concepts we describe the spectrum of viral escapology, giving credit not only to the researchers who uncovered this fascinating area of immunology but also to the viruses themselves, who still have a few lessons to teach.
Collapse
Affiliation(s)
- M Lucas
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK.
| | | | | | | |
Collapse
|
32
|
Wahl LM, Bittner B, Nowak MA. Immunological transitions in response to antigenic mutation during viral infection. Int Immunol 2000; 12:1371-80. [PMID: 11007754 DOI: 10.1093/intimm/12.10.1371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antigenic variation is an important factor in viral persistence and disease progression. We analyze immunological changes which occur in response to antigenic mutation during chronic viral infection. Using an established model of viral and immune system dynamics, we determine which qualitative shifts in the immune response can be elicited by the appearance of a new mutant. We find that antigenic mutation can cause dramatic shifts in the magnitude and type of anti-viral immune response. For example, the appearance of a mutant can elicit a new immune response which recognizes the original viral strain. We also find that novel strains of the virus which replicate more slowly than existing viral strains are able to invade and survive, even when the immune system is capable of mounting an immune response against the mutant.
Collapse
Affiliation(s)
- L M Wahl
- Theoretical Biology, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA
| | | | | |
Collapse
|
33
|
Fonseca DP, Joosten D, Snippe H, Verheul AF. Evaluation of T-cell responses to peptides and lipopeptides with MHC class I binding motifs derived from the amino acid sequence of the 19-kDa lipoprotein of Mycobacterium tuberculosis. Mol Immunol 2000; 37:413-22. [PMID: 11090876 DOI: 10.1016/s0161-5890(00)00066-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cytotoxic T-lymphocyte (CTL) epitopes on the 19-kDa lipoprotein from Mycobacterium tuberculosis were identified by the use of lipopeptides and their cytokine profile studied. Selection of candidate CTL epitopes was based on synthetic peptides derived from the amino acid sequence of the 19-kDa lipoprotein showing major histocompatibility complex class I (MHC-I) binding motifs (H-2D(b) and H-2L(d)). Their ability to up-regulate and stabilize MHC-I molecules on the mouse lymphoma cell line RMA-S was studied. Similar studies were performed with peptides, in which the anchor amino acid of the H-2D(b) MHC-I motif was replaced by alanine. Three out of five peptides with H-2D(b) or H-2L(d) binding motifs and their corresponding lipopeptides as well, up-regulated and stabilized the H-2D(b) molecules on RMA-S cells. Replacement of the anchor amino acid residues of the H-2D(b) MHC-I motif by alanine revealed that the anchor amino acid asparagine at position 5, contributed more to binding of peptide to H-2D(b) molecules than leucine at position 11. The closely related lipopeptides LP19c and LP19d, in combination with incomplete Freund's adjuvant (IFA), induced CTL responses in C57BL/6 (H-2(b)) mice. These CTLs could recognize the naturally processed antigen, i.e. the 19-kDa antigen protein produced and processed by the EX-19 cell line. The capacity of the various lipopeptides to induce CTL correlated well with the ability of the (lipo)peptide to up-regulate and to stabilize H-2D(b) molecules. Lipopeptide LP19c primed spleen cells showed a T helper type one profile after in vitro stimulation with P19c and P19d 19 kDa peptides. The approach to characterize presumptive 19-kDa CTL epitopes might lead to selection of promising CTL epitopes, which can be applied in the development of subunit tuberculosis vaccines.
Collapse
Affiliation(s)
- D P Fonseca
- Eijkman-Winkler Institute for Microbiology, Infectious Diseases and Inflammation, University Medical Center, Rm. G04.614, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Kawana A, Tomiyama H, Takiguchi M, Shioda T, Nakamura T, Iwamoto A. Accumulation of specific amino acid substitutions in HLA-B35-restricted human immunodeficiency virus type 1 cytotoxic T lymphocyte epitopes. AIDS Res Hum Retroviruses 1999; 15:1099-107. [PMID: 10461830 DOI: 10.1089/088922299310395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HLA is one of the genetic factors that influence the clinical course of HIV-1 infection, and patients with HLA-B35 are prone to rapid disease progression. Nine viral epitopes that are recognized by cytotoxic T lymphocytes (CTLs) in an HLA-B35-restricted manner were determined. To examine how HIV-1 sequences are selected by CTLs in vivo, we sequenced the nine CTL epitopes of the virus in patient plasma. Here we show that certain amino acid substitutions at three epitopes were observed with significantly higher frequency in HLA-B35-positive patients than in HLA-B35-negative patients. By performing experiments with CTL clones established from the HLA-B35-positive patients, it was determined that one of the three substitutions was probably an escape mutation. However, concerning the other two epitopes, representative CTL clones killed target cells pulsed with mutant peptides as efficiently as those pulsed with wild-type peptides, suggesting that CTLs that can be established in vitro are not functioning properly in vivo. Amino acid sequence drift in all HLA-B35-restricted epitopes was rare during the observation period (1 year). Our results may have relevance in understanding the rapid clinical progression in HLA-B35-positive patients.
Collapse
Affiliation(s)
- A Kawana
- Department of Infectious Diseases, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Zinkernagel RM, Planz O, Ehl S, Battegay M, Odermatt B, Klenerman P, Hengartner H. General and specific immunosuppression caused by antiviral T-cell responses. Immunol Rev 1999; 168:305-15. [PMID: 10399082 DOI: 10.1111/j.1600-065x.1999.tb01300.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Immunosuppression caused by the non-cytopathic lymphocytic choriomeningitis virus (LCMV) (an RNA virus) is mediated by antiviral cytotoxic T cells that destroy LCMV-infected cells, also of the immune system. While this immunopathological destruction of antigen-presenting cells, macrophages and follicular dendritic cells and of some CD4+ T cells causes general immunosuppression and impairs immune response to third party antigens, it also enhances exhaustion/deletion of LCMV-specific CD8+ T-cell responses. LCMV seems in addition to infect neutralizing antibody-producing B cells via the specific receptor; immunopathological LCMV specific CD8+ T-cell-mediated elimination of these infected B cells (but not of uninfected internal virus antigen-specific B cells) causes a highly specific immunosuppression that delays neutralizing antibody responses and thereby enhances virus persistence. Both generalized and specific immunosuppression by CD8+ T-cell-mediated immunopathology may be involved in human infections with HIV, hepatitis B virus or hepatitis C virus.
Collapse
|
36
|
Gallimore A, Hombach J, Dumrese T, Rammensee HG, Zinkernagel RM, Hengartner H. A protective cytotoxic T cell response to a subdominant epitope is influenced by the stability of the MHC class I/peptide complex and the overall spectrum of viral peptides generated within infected cells. Eur J Immunol 1998; 28:3301-11. [PMID: 9808199 DOI: 10.1002/(sici)1521-4141(199810)28:10<3301::aid-immu3301>3.0.co;2-q] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study identifies instability of MHC class I/peptide complexes and intermolecular competition for MHC class I presentation as factors responsible for the subdominance of cytotoxic T lymphocyte (CTL) epitopes. This evidence is based on the characterization of a new CTL epitope derived from the glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV). This epitope, peptide GP117-125 (GP117) is presented to T cells by the mouse MHC class I molecule, H-2Db. In short-term experiments induction of GP117-specific CTL by vaccination rendered C57BL/6 mice only partially resistant to infection with wild-type LCMV (LCMV-WE) but completely resistant to challenge with a previously described LCMV variant. The variant virus, LCMV-8.7B23, bears point mutations within both known LCMV-GP, H-2 Db-restricted epitopes GP33-41 (GP33) and GP276-286 (GP276) resulting in a valine to leucine change at position 35 in peptide GP33 (V35L) and an asparagine to serine change at position 280 in peptide GP276 (N280S). Although variant peptide GP33/V35L stimulates a weak CTL response, GP276/N280S does not. Elution of peptide GP117 from both LCMV-WE- and LCMV-8.7B23-infected cells revealed that the difference in the capacity of GP117-specific CTL to protect against LCMV-WE and the virus variant LCMV-8.7B23 was due to differences in the level of GP117 presentation on the surface of both types of cells. Thus, it appears that the protective capacity of CTL specific for the subdominant epitope GP117 is influenced by the extent of presentation of other immunodominant peptide epitopes present within infected cells.
Collapse
Affiliation(s)
- A Gallimore
- Institute of Experimental Immunology, Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
37
|
Martin S, Bevan MJ. Transient alteration of T cell fine specificity by a strong primary stimulus correlates with T cell receptor down-regulation. Eur J Immunol 1998; 28:2991-3002. [PMID: 9808168 PMCID: PMC2782384 DOI: 10.1002/(sici)1521-4141(199810)28:10<2991::aid-immu2991>3.0.co;2-b] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
P14 mice expressing a transgenic TCR specific for the lymphocytic choriomeningitis virus glycoprotein p33 epitope were used to study the induction of CTL effector activity by a variety of ligands. Surprisingly, p33 variants which are weaker agonists for the P14 TCR than the wild-type p33 peptide were able to induce more potent effectors with a broader range of cytolytic specificity. Similarly, low concentrations of p33 were more effective than higher concentrations. These results correlated with no or only moderate TCR down-regulation by variants of p33 and low p33 concentrations. This phenotype observed after 18 h of culture was transient as progressive restoration of reactivity was observed at 42 or 66 h in the cultures stimulated with high p33 concentrations and this correlated with recovery of TCR surface levels. TCR down-regulation was blocked by src family kinase inhibitors. These findings indicate that the specificity of a T cell can be fine-tuned by the nature of the primary stimulus correlating with surface TCR level and imply an important role for src family kinases in the differential regulation of surface TCR levels upon TCR engagement by different ligand/MHC complexes.
Collapse
Affiliation(s)
- S Martin
- Department of Immunology and Howard Hughes Medical Institute, University of Washington, Seattle 98195-7370, USA
| | | |
Collapse
|
38
|
Borrow P, Shaw GM. Cytotoxic T-lymphocyte escape viral variants: how important are they in viral evasion of immune clearance in vivo? Immunol Rev 1998; 164:37-51. [PMID: 9795762 PMCID: PMC7165923 DOI: 10.1111/j.1600-065x.1998.tb01206.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although viral variants which are not recognized by epitope-specific cytotoxic T lymphocytes (CTL) have been shown to arise during a number of persistent virus infections, in many cases their significance remains controversial: it has been argued that the immune response is sufficiently plastic to contain their replication. In this review, we describe the mechanisms by which amino acid changes in viral proteins may affect epitope recognition by virus-specific CTL, and discuss the viral and immunological basis for the emergence of viral variants bearing such amino acid changes during infection. We then consider the impact that viral variation may have on the host CTL response and its ability to contain virus replication. We argue that the emergence of a viral variant demonstrates that it must have an in vivo replicative advantage, and that as such, the variant must tip the balance between virus replication and immune control somewhat in favor of the virus. Further, we suggest that although the immune response can evolve to recognize new viral epitopes, the CTL generated following such evolution frequently have a reduced ability to contain virus replication. We conclude that this escape mechanism likely does make a significant contribution to persistence/pathogenesis during a number of different virus infections.
Collapse
Affiliation(s)
- P Borrow
- Edward Jenner Institute for Vaccine Research, Compton, Newbury, Berkshire, UK.
| | | |
Collapse
|
39
|
Klenerman P, Zinkernagel RM. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 1998; 394:482-5. [PMID: 9697771 DOI: 10.1038/28860] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Some viruses, including human immunodeficiency virus (HIV) and hepatitis B virus (HBV) in humans, and lymphocytic choriomeningitis virus (LCMV) in mice, are initially controlled by cytotoxic T lymphocytes (CTLs), but may subsequently escape through mutation of the relevant T-cell epitope. Some of these mutations preserve the normal binding to major histocompatibility complex class I molecules, but present an altered surface to the T-cell antigen receptor. The exact role of these so-called altered peptide ligands in vivo is not clear. Here we report that mice primed with LCMV-WE strain respond to a subsequent infection by WE-derived CTL epitope variants with a CTL response directed against the initial epitope rather than against the new variant epitope. This phenomenon of 'original antigenic sin' was initially described in influenza and is an asymmetric pattern of protective antibody crossreactivity determined by exposure to previously existing strains, which may therefore extend to some CTL responses. Original antigenic sin by CTL leads to impaired clearance of variant viruses infecting the same individual and so may enhance the immune escape of mutant viruses evolving in an individual host.
Collapse
Affiliation(s)
- P Klenerman
- Institute for Experimental Immunology, University Hospital, Zurich, Switzerland
| | | |
Collapse
|
40
|
Brander C, Hartman KE, Trocha AK, Jones NG, Johnson RP, Korber B, Wentworth P, Buchbinder SP, Wolinsky S, Walker BD, Kalams SA. Lack of strong immune selection pressure by the immunodominant, HLA-A*0201-restricted cytotoxic T lymphocyte response in chronic human immunodeficiency virus-1 infection. J Clin Invest 1998; 101:2559-66. [PMID: 9616227 PMCID: PMC508845 DOI: 10.1172/jci2405] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Despite detailed analysis of the HIV-1-specific cytotoxic T lymphocyte response by various groups, its relation to viral load and viral sequence variation remains controversial. We analyzed HLA-A*0201 restricted cytotoxic T lymphocyte responses in 17 HIV-1-infected individuals with viral loads ranging from < 400 to 221,000 HIV RNA molecules per milliliter of plasma. In 13 out of 17 infected subjects, CTL responses against the SLYNTVATL epitope (p17 Gag; aa 77-85) were detectable, whereas two other HLA-A*0201 restricted epitopes (ILKEPVHGV, IV9; and VIYQYMDDL, VL9) were only recognized by six and five individuals out of 17 individuals tested, respectively. Naturally occurring variants of the SL9 epitope were tested for binding to HLA-A*0201 and for recognition by specific T cell clones generated from five individuals. Although these variants were widely recognized, they differed by up to 10,000-fold in terms of variant peptide concentrations required for lysis of target cells. A comparison of viral sequences derived from 10 HLA-A*0201-positive individuals to sequences obtained from 11 HLA-A*0201-negative individuals demonstrated only weak evidence for immune selective pressure and thus question the in vivo efficacy of immunodominant CTL responses present during chronic HIV-1 infection.
Collapse
Affiliation(s)
- C Brander
- AIDS Research Center and Infectious Disease Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Weidt G, Utermöhlen O, Heukeshoven J, Lehmann-Grube F, Deppert W. Relationship Among Immunodominance of Single CD8+ T Cell Epitopes, Virus Load, and Kinetics of Primary Antiviral CTL Response. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.6.2923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The primary CTL response of BALB/c mice infected with the lymphocytic choriomeningitis (LCM) virus strain WE is directed exclusively against one major epitope, n118, whereas a viral variant, ESC, that does not express n118 induces CTL against minor epitopes. We identified one minor epitope, g283, that induces primary lytic activity in ESC-infected mice. Infections of mice with WE and ESC were used to study the hierarchical control of a T cell response. Presentation of minor epitopes is not reduced in WE-infected cells. Generation of CTL against n118 does not suppress the generation of minor epitope-specific CTL systemically, as mice coinfected with WE and ESC developed CTL against n118 and g283. However, elimination of ESC and development of minor epitope-specific CTL in ESC infection were slower than elimination of WE and development of CTL against n118. CD8+ T cells against the minor epitope were activated in ESC and WE infection, but did not expand in the latter to show lytic activity in a primary response. We explain the absence of minor epitope-specific lytic activity in WE infection by the fast reduction of virus load due to the early developing n118-specific CTL. Immunodominance of CTL epitopes in primary virus infections thus can be explained as a kinetic phenomenon composed of 1) expansion of CD8+ T cells specific for individual epitopes, 2) stimulatory effect of virus load, and 3) negative feedback control on virus load by the fastest CTL population.
Collapse
Affiliation(s)
- Gunnar Weidt
- Heinrich Pette Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | - Olaf Utermöhlen
- Heinrich Pette Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | - Jochen Heukeshoven
- Heinrich Pette Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | - Fritz Lehmann-Grube
- Heinrich Pette Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | - Wolfgang Deppert
- Heinrich Pette Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| |
Collapse
|
42
|
Abstract
We examine simple mathematical models to investigate the circumstances under which the dynamics of cytotoxic T-lymphocyte (CTL) activation and differentiation may result in the loss of virus specific CD8+ cells, a process known as CTL exhaustion. We distinguish between two general classes of viruses: (i) viruses infecting cells that are not involved in the immune response; and (ii) viruses infecting antigen presenting cells (APCs) and helper cells. The models specify host and viral properties that lead to CTL exhaustion and indicate that this phenomenon is only likely to be observed with viruses infecting APCs and helper cells. Moreover, it is found that for such viruses, a high rate of replication and a low degree of cytopathogenicity promote the exhaustion of the CTL response. In addition, a high initial virus load and a low CD4+ cell count promote the occurrence of CTL exhaustion. These conclusions are discussed with reference to empirical data on lymphocytic choriomeningitis virus and on human immunodeficiency virus.
Collapse
Affiliation(s)
- D Wodarz
- University Hospital Zurich, Institute of Experimental Immunology, Switzerland
| | | | | |
Collapse
|
43
|
Rajnavölgyi E, Horváth A, Gogolák P, Tóth GK, Fazekas G, Fridkin M, Pecht I. Characterizing immunodominant and protective influenza hemagglutinin epitopes by functional activity and relative binding to major histocompatibility complex class II sites. Eur J Immunol 1997; 27:3105-14. [PMID: 9464794 DOI: 10.1002/eji.1830271205] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study the analysis of functional activity and major histocompatibility complex (MHC) binding of two adjacent MHC class II-restricted epitopes, located in the C-terminal 306-329 region of human influenza A virus hemagglutinin 1 subunit (HA1) conserved with subtype sequences and not affected by antigenic drift, was undertaken to explore the hierarchy of local immunodominance. The functional activity of two T cell hybridomas of the memory/effector Th1 phenotype in combination with in vivo immunization studies provided a good tool for investigating the functional characteristics of the T cell response. The in vitro binding assays performed with a series of overlapping, N-terminal biotinylated peptides covering the 306-341 sequence enabled us to compare the relative binding efficiency of peptides, comprising two distinct epitopes of this region, to I-Ed expressed on living antigen-presenting cells. Our studies revealed that (i) immunization of BALB/c mice with the 306-329 H1 or H2 peptides resulted in the activation and proliferation of T cells recognizing both the 306-318 and the 317-329 epitopes, while the 306-329 H3 peptide elicits predominantly 306-318-specific T cells, (ii) the 317-329 HA1 epitope of the H1 and H2 but not the H3 sequence is recognized by T cells and is available for recognition not only in the 317-329 peptide but also in the extended 306-329 or 306-341 peptides, (iii) the 306-318 and the 317-329 hemagglutinin peptides encompassing the H1, H2 but not the H3 sequence bind with an apparently similar affinity to and therefore compete for I-Ed binding sites, and (iv) the 317-341, the 317-329 peptides and their truncated analogs show subtype-dependent differences in MHC binding and those with lower binding capacity represent the H3 subtype sequences. These results demonstrate that differences in the binding capacity of peptides comprising two non-overlapping epitopes located in the C-terminal 306-329 region of HA1 of all three subtype-specific sequences to MHC class II provide a rationale for the local and also for the previously observed in vivo immunodominance of the 306-318 region over the 317-329 epitope in the H3 but not in the H1 or H2 sequences. In good correlation with the results of the binding and functional inhibition assays, these data demonstrate that in the H1 and H2 subtypes both regions are available for T cell recognition, they compete for the same restriction element with an apparently similar binding efficiency and, therefore, function as co-dominant epitopes. Due to the stabilizing effect of the fusion peptide, peptides comprising the 306-341 or 317-341 H1 sequences are highly immunogenic and elicit a protective immune response which involves the production of antibodies and interleukin-2 and tumor necrosis factor producing effector Th1 cells both directed against the 317-329 region. Based on the similarity of the I-Ed and HLA-DR1 peptide binding grooves and motifs, these results suggest that amino acid substitutions inserted to the H3 subtype sequence during viral evolution can modify the relative MHC binding capacity and invert the local hierarchy of immunodominance of two closely situated epitopes that are able to bind to the same MHC class II molecule.
Collapse
Affiliation(s)
- E Rajnavölgyi
- Department of Immunology, L. Eötvös University, Göd, Hungary.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Mounting evidence suggests that the early dissemination of HIV in human beings evokes an immune response that is responsible for containment of the infection during the long symptom-free period. Loss of this immune control coincides with a final escalation of the viraemia and the terminal failure of the immune system. Other studies imply that pre-emptive vaccination of monkeys with attenuated forms of simian immunodeficiency virus (SIV) produces a substantial degree of resistance to superinfection with fully virulent viruses. Here we consider how observations from natural and experimental systems might influence thought as to what is required to produce safe induced immunity against HIV. We concentrate on three questions: what is the nature of the immune response that contains the infection? How does this response fail? How could a vaccine enhance protective immunity so that it exceeds the efficacy of this natural response?
Collapse
Affiliation(s)
- C R Bangham
- Department of Immunology, Imperial College School of Medicine, St Mary's Hospital, London, UK
| | | |
Collapse
|
45
|
Chang KM, Rehermann B, McHutchison JG, Pasquinelli C, Southwood S, Sette A, Chisari FV. Immunological significance of cytotoxic T lymphocyte epitope variants in patients chronically infected by the hepatitis C virus. J Clin Invest 1997; 100:2376-85. [PMID: 9410918 PMCID: PMC508436 DOI: 10.1172/jci119778] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study was performed to test the hypothesis that cytotoxic T lymphocyte (CTL) selection of hepatitis C virus (HCV) escape variants plays a role in HCV persistence. The peripheral blood CTL responsiveness of patients with well-established chronic hepatitis C to a panel of 10 prototype HCV peptides (genotype 1a) was compared with the corresponding sequences encoded by the infecting viruses in each patient. Variant viral peptide sequences were threefold more frequent in the presence of a CTL response than in its absence, and CTL responses were detected nearly twice as often in association with variant rather than with prototype viral peptide sequences. Furthermore, over half of the patients were infected with potential CTL escape variants that contained nonimmunogenic and noncross-reactive variant peptides many of which displayed reduced HLA-binding affinity. Surprisingly, follow up analysis over a period of up to 46 mo revealed that, in contrast to the relatively high frequency of escape variants initially observed, the subsequent emergence rate of CTL escape variants was very low. Interestingly, the one escape variant that was detected proved to be a CTL antagonist. Collectively, these observations suggest that CTL selection of epitope variants may have occurred in these patients before their entrance into the study and that it may have played a role in HCV persistence. The low apparent rate of ongoing CTL selection in chronically infected patients, however, suggests that if CTL escape occurs during HCV infection it is probably an early event.
Collapse
Affiliation(s)
- K M Chang
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Klenerman P, Zinkernagel RM. What can we learn about human immunodeficiency virus infection from a study of lymphocytic choriomeningitis virus? Immunol Rev 1997; 159:5-16. [PMID: 9416499 DOI: 10.1111/j.1600-065x.1997.tb01003.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of cytotoxic T lymphocytes (CTL) in human immunodeficiency virus (HIV) infection remains elusive. Since the discovery 10 years ago of high levels of specific CTL in this disease, some have argued that they play an important role in virus control, others that they drive disease progression through destruction of T helper cells, and others still that they play no obvious role at all. By contrast, the central role of CTL in murine lymphocytic choriomeningitis virus (LCMV) infection has been very clearly worked out through the use of in vivo depletion and adoptive transfer experiments, as well as knockout and transgenic mice. To interpret the possible roles for CTL in HIV, we have therefore made a comparison between what is known about CTL and their interaction with virus-infected cells in these two infections. This illustrates a potential critical role for these cells in both control of HIV replication and immune-mediated pathology, but one that is highly dependent on virus dose, distribution and dynamics.
Collapse
Affiliation(s)
- P Klenerman
- Institute for Experimental Immunology, University Hospital, Zurich, Switzerland.
| | | |
Collapse
|
47
|
Zinkernagel RM. Zelluläre Immunerkennung und biologische Rolle der Haupttransplantationsantigene (Nobel-Vortrag). Angew Chem Int Ed Engl 1997. [DOI: 10.1002/ange.19971091805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Rowland-Jones S, Tan R, McMichael A. Role of cellular immunity in protection against HIV infection. Adv Immunol 1997. [PMID: 9238512 DOI: 10.1016/s0065-2776(08)60745-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- S Rowland-Jones
- Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | | | | |
Collapse
|
49
|
Abstract
Viruses that persist in infected hosts must evolve successful strategies to avoid recognition by the immune system. The primary player in antiviral immune surveillance is the CD8+ cytotoxic T lymphocyte (CTL), and the battle drawn between the CTLs and viruses is the focus of this review. In this struggle, viruses can follow multiple distinct pathways. For example, DNA viruses often adopt the strategy of encoding proteins that interfere with the immune response along routes of antigen presentation. Such interference prevents the viral peptide from binding to the major histocompatibility complex (MHC) class I glycoprotein; therefore, no virus-MHC complex forms for recognition by antiviral CTLs. RNA viruses, having fewer genes, generate swarms of quasispecies that can contain mutated viral proteins. When such mutants occur in viral peptides presented to the MHC protein or the residue recognized by the CTL receptor, CTL recognition and activation fail. If, instead, the mutation occurs in the viral peptide flanking sequence, the infected cell may not process the viral peptide from the cytosol to the endoplasmic reticulum. Viruses can also directly or indirectly attack dendritic cells and CD4+ or CD8+ T lymphocytes, other routes that interfere with immune functions. Dendritic cells are the primary professional antigen-presenting cells and are critical for the activation of CTL responses. CD4+ T lymphocytes provide help for long-term CD8+ CTL activity and are necessary for its maintenance. Consequently, interference with either dendritic or CD4+ cell types constitutes yet another way that viruses can disable the immune response and persistently infect their host.
Collapse
Affiliation(s)
- M B Oldstone
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
50
|
Abstract
Cytotoxic T lymphocytes (CTL) play a crucial role in the attempt to control infection with human immunodeficiency virus (HIV). Variation in epitopes recognized by CTL is common and frequently offers potential escape routes for mutant virus. Proof of escape, however, requires demonstration of increased frequency of virus particles or provirus that carry the escape sequence. There are now several recorded examples of virus variants that escape from CTL and are then selected. Most dramatic are those in which the CTL response has been dominated by CTL recognizing a single epitope that has suddenly changed, resulting in escape to fixation. This has been seen both early and late in the infection, leaving no doubt that escape occurs. Such escape is likely to be favored when the antiviral CTL response is oligoclonal and focused on a small number of immunodominant epitopes. The heterogeneous CTL response seen in many HIV-infected patients may result from successive waves of virus escape followed by new CTL responses specific for subdominant epitopes. Mutant virus can escape by several different routes, including failure of the mutated peptide to bind to the presenting HLA molecule and altered interactions with T cell receptors (TCR), including antagonism.
Collapse
Affiliation(s)
- A J McMichael
- Nuffield Department of Medicine, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom. andrew.mcmichael%
| | | |
Collapse
|