1
|
Gonzalez M, Clayton S, Wauson E, Christian D, Tran QK. Promotion of nitric oxide production: mechanisms, strategies, and possibilities. Front Physiol 2025; 16:1545044. [PMID: 39917079 PMCID: PMC11799299 DOI: 10.3389/fphys.2025.1545044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
The discovery of nitric oxide (NO) and the role of endothelial cells (ECs) in its production has revolutionized medicine. NO can be produced by isoforms of NO synthases (NOS), including the neuronal (nNOS), inducible (iNOS), and endothelial isoforms (eNOS), and via the non-classical nitrate-nitrite-NO pathway. In particular, endothelium-derived NO, produced by eNOS, is essential for cardiovascular health. Endothelium-derived NO activates soluble guanylate cyclase (sGC) in vascular smooth muscle cells (VSMCs), elevating cyclic GMP (cGMP), causing vasodilation. Over the past four decades, the importance of this pathway in cardiovascular health has fueled the search for strategies to enhance NO bioavailability and/or preserve the outcomes of NO's actions. Currently approved approaches operate in three directions: 1) providing exogenous NO, 2) promoting sGC activity, and 3) preventing degradation of cGMP by inhibiting phosphodiesterase 5 activity. Despite clear benefits, these approaches face challenges such as the development of nitrate tolerance and endothelial dysfunction. This highlights the need for sustainable options that promote endogenous NO production. This review will focus on strategies to promote endogenous NO production. A detailed review of the mechanisms regulating eNOS activity will be first provided, followed by a review of strategies to promote endogenous NO production based on the levels of available preclinical and clinical evidence, and perspectives on future possibilities.
Collapse
Affiliation(s)
| | | | | | | | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, West Des Moines, IA, United States
| |
Collapse
|
2
|
Chen L, Bai H, Zhao J, Zhang P, Zhang X, Kong D, Dong C, Zhang W. Lipid emulsion attenuates vasodilation by decreasing intracellular calcium and nitric oxide in vascular endothelial cells. Heliyon 2024; 10:e37353. [PMID: 39296045 PMCID: PMC11408769 DOI: 10.1016/j.heliyon.2024.e37353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Lipid emulsion (LE), a widely used parenteral nutrition, exhibits a well-documented ability to reverse the vasodilatory effects induced by acetylcholine in blood vessels. However, the specific mechanisms underlying this action are not yet fully understood. This study aimed to elucidate the mechanism by which LE reverses vasodilation in vitro through dose-response curve experiments, calcium imaging, and fluorescence assays. The results revealed a significant attenuation of acetylcholine (Ach)-induced vasodilation in rat thoracic aortic rings following LE exposure. In human aortic endothelial cells, pretreatment with LE significantly suppressed ATP-induced calcium elevation. This suppression persisted even after elimination of extracellular calcium with a calcium chelator. Moreover, LE pre-exposure reduced the intracellular calcium concentration ([Ca2+]i) elevation in endothelial cells following cyclopiazonic acid (CPA) treatment, suggesting enhanced endoplasmic reticulum (ER) calcium reuptake. Additionally, nitric oxide (NO) fluorescence assays showed a decrease in NO production upon ATP stimulation post-LE pretreatment of endothelial cells. Taken together, these results indicate that the reversal of vasodilation by LE may involve enhanced ER calcium uptake, leading to a reduction in intracellular calcium concentration and suppression of NO (key vasodilatory agent) synthesis.
Collapse
Affiliation(s)
- Ling Chen
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
- Nursing Department, The Fourth Hospital of Hebei Medical University, China
| | - Hui Bai
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, China
| | - Jing Zhao
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| | - Panpan Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| | - Xinhua Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| | - Dezhi Kong
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| | - Changzheng Dong
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang, Hebei Province, 050000, China
| | - Wei Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| |
Collapse
|
3
|
Hu X, Li Y, Cao Y, Shi F, Shang L. The role of nitric oxide synthase/ nitric oxide in infection-related cancers: Beyond antimicrobial activity. Biochim Biophys Acta Rev Cancer 2024; 1879:189156. [PMID: 39032540 DOI: 10.1016/j.bbcan.2024.189156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
As a free radical and endogenous effector molecule, mammalian endogenous nitric oxide (NO) is mainly derived from nitric oxide synthase (NOS) via L-arginine. NO participates in normal physiological reactions and provides immune responses to prevent the invasion of foreign bacteria. However, NO also has complex and contradictory biological effects. Abnormal NO signaling is involved in the progression of many diseases, such as cancer. In the past decades, cancer research has been closely linked with NOS/ NO, and many tumors with poor prognosis are associated with high expression of NOS. In this review, we give a overview of the biological effects of NOS/ NO. Then we focus on the oncogenic role of iNOS/ NO in HPV, HBV, EBV and H. pylori related tumors. In fact, there is growing evidence that iNOS could be used as a potential therapeutic target in cancer therapy. We emphasize that the pro-tumor effect of NOS/ NO is greater than the anti-tumor effect.
Collapse
Affiliation(s)
- Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
4
|
Sharma P, Verma PK, Sood S, Yousuf R, Kumar A, Raina R, Shabbir MA, Bhat ZF. Protective Effect of Quercetin and Ginger ( Zingiber officinale) Extract against Dimethoate Potentiated Fluoride-Induced Nephrotoxicity in Rats. Foods 2023; 12:foods12091899. [PMID: 37174437 PMCID: PMC10177764 DOI: 10.3390/foods12091899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to determine the potential of quercetin and Zingiber officinale (ZO) Roscoe extract to alleviate the renal damage induced by dimethoate (DM) and fluoride (F-) alone and by their combined exposure in rats. A total of 54 adult Wistar rats were randomly allocated to nine groups (n = 6). A sub-lethal dose of DM (1/10th of the median lethal dose) was administered by oral gavage alone and along with F- (4.5 ppm, three-fold the permissible limit) in their drinking water continuously for 28 days. Chromatographical analysis revealed the presence of quercetin, curcumin, and other phytochemicals with strong antioxidant properties in ZO-rhizome extract. Severe changes were observed in the levels of the renal biomarkers and histoarchitecture after co-administration of the toxicants, indicating greater kidney damage. The administration of ZO extract (300 mg/kg) along with either or both toxicants led to a significant restoration of the biochemical markers and renal antioxidant profile and histology.
Collapse
Affiliation(s)
- Priyanka Sharma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Pawan Kumar Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Shilpa Sood
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Rasia Yousuf
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Amit Kumar
- Quality Management and Instrumentation Division, Indian Institute of Integrative Medicine (CSIR-Lab), Jammu 180016, India
| | - Rajinder Raina
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-Jammu, Jammu 181102, India
| |
Collapse
|
5
|
Miao Y, Zhao GL, Cheng S, Wang Z, Yang XL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res 2023; 93:101169. [PMID: 36736070 DOI: 10.1016/j.preteyeres.2023.101169] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.
Collapse
Affiliation(s)
- Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Yamanaka T, Ueki T, Mase M, Inoue K. Arbitrary Ca 2+ regulation for endothelial nitric oxide, NFAT and NF-κB activities by an optogenetic approach. Front Pharmacol 2023; 13:1076116. [PMID: 36703743 PMCID: PMC9871596 DOI: 10.3389/fphar.2022.1076116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Modern western dietary habits and low physical activity cause metabolic abnormalities and abnormally elevated levels of metabolites such as low-density lipoprotein, which can lead to immune cell activation, and inflammatory reactions, and atherosclerosis. Appropriate stimulation of vascular endothelial cells can confer protective responses against inflammatory reactions and atherosclerotic conditions. This study aims to determine whether a designed optogenetic approach is capable of affecting functional changes in vascular endothelial cells and to evaluate its potential for therapeutic regulation of vascular inflammatory responses in vitro. We employed a genetically engineered, blue light-activated Ca2+ channel switch molecule that utilizes an endogenous store-operated calcium entry system and induces intracellular Ca2+ influx through blue light irradiation and observed an increase in intracellular Ca2+ in vascular endothelial cells. Ca2+-dependent activation of the nuclear factor of activated T cells and nitric oxide production were also detected. Microarray analysis of Ca2+-induced changes in vascular endothelial cells explored several genes involved in cellular contractility and inflammatory responses. Indeed, there was an increase in the gene expression of molecules related to anti-inflammatory and vasorelaxant effects. Thus, a combination of human blue light-activated Ca2+ channel switch 2 (hBACCS2) and blue light possibly attenuates TNFα-induced inflammatory NF-κB activity. We propose that extrinsic cellular Ca2+ regulation could be a novel approach against vascular inflammation.
Collapse
Affiliation(s)
- Tomoyasu Yamanaka
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,*Correspondence: Koichi Inoue,
| |
Collapse
|
7
|
Kuck L, Peart JN, Simmonds MJ. Piezo1 regulates shear-dependent nitric oxide production in human erythrocytes. Am J Physiol Heart Circ Physiol 2022; 323:H24-H37. [PMID: 35559724 DOI: 10.1152/ajpheart.00185.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mature circulating red blood cells (RBC) are classically viewed as passive participants in circulatory function, given erythroblasts eject their organelles during maturation. Endogenous production of nitric oxide (NO) and its effects are of particular significance; however, the integration between RBC sensation of the local environment and subsequent activation of mechano-sensitive signaling networks that generate NO remain poorly understood. The present study investigated endogenous NO-production via the RBC-specific nitric oxide synthase-isoform (RBC-NOS), connecting membrane strain with intracellular enzymatic processes. Isolated RBC were obtained from apparently healthy humans. Intracellular NO was compared at rest and following shear (cellular deformation) using semi-quantitative fluorescent imaging. Concurrently, RBC-NOS phosphorylation at its Serine1177 (ser1177) residue was measured. The contribution of cellular deformation to shear-induced NO-production in RBC was determined by rigidifying RBC with the thiol-oxidizing agent diamide; rigid RBC exhibited significantly impaired (up to 80%) capacity to generate NO via RBC-NOS during shear. Standardizing membrane strain of rigid RBC by applying increased shear did not normalize NO-production, or RBC-NOS activation. Calcium-imaging with Fluo-4 revealed that diamide-treated RBC exhibited a 42%-impairment in Piezo1-mediated calcium-movement when compared with untreated RBC. Pharmacological inhibition of Piezo1 with GsMTx4 during shear inhibited RBC-NOS activation in untreated RBC, while Piezo1-activation with Yoda1 in the absence of shear stimulated RBC-NOS activation. Collectively, a novel, mechanically-activated signaling pathway in mature RBC is described. Opening of Piezo1 and subsequent influx of calcium appears to be required for endogenous production of NO in response to mechanical shear, which is accompanied by phosphorylation of RBC-NOS at ser1177.
Collapse
Affiliation(s)
- Lennart Kuck
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Australia
| | - Jason N Peart
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast, Southport, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Australia
| |
Collapse
|
8
|
Đukanović Đ, Gajic Bojic M, Marinkovic S, Trailovic SM, Stojiljković MP, Škrbić R. Vasorelaxant effect of monoterpene carvacrol on isolated human umbilical artery. Can J Physiol Pharmacol 2022; 100:755-762. [PMID: 35507953 DOI: 10.1139/cjpp-2021-0736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carvacrol is the main compound of essential oils extracted primarily from Thymus and Origanum species. Its various biological activities were confirmed: antioxidant, anti-inflammatory, antibacterial, antifungal, anti-tumour, antinematodal and vasorelaxant action. Although vasodilation mediated by carvacrol was previously described, the exact mechanism of its action has not yet been established. Hence, the aim of this study was to investigate carvacrol vasoactivity on human umbilical arteries (HUA) and different pathways involved in its mechanism of action using tissue bath methodology. Carvacrol caused a significant decrease in vascular tension of 5-HT-pre-contracted umbilical arteries, with EC50 of 442.13 ± 33.8 µM (mean ± standard error of the mean - SEM). At 300 µM, carvacrol shifted downward the 5-HT concentration-response curve with statistical significance of p < 0.001 obtained for the four highest concentrations. At concentration of 1 mM, carvacrol completely abolished BaCl2-induced contraction in Ca2+-free Krebs-Ringer bicarbonate solution (p < 0.001). Isopentenyl pyrophosphate, the antagonist of TRPV3 channel, was able to decrease the efficacy of carvacrol (p < 0.001). The vasorelaxant effect of carvacrol seems to involve the blocking of L-type of Ca2+ channels on smooth muscle cells. However, the role of TRPV3 channels in carvacrol-induced vasodilation of HUA cannot be excluded either.
Collapse
Affiliation(s)
- Đorđe Đukanović
- University of Banja Luka Faculty of Medicine, 469576, Centre for Biomedical Research, Banja Luka, Bosnia and Herzegovina;
| | - Milica Gajic Bojic
- University of Banja Luka Faculty of Medicine, 469576, Centre for Biomedical Research, Banja Luka, Bosnia and Herzegovina;
| | - Sonja Marinkovic
- University of Banja Luka Faculty of Medicine, 469576, Centre for Biomedical Research, Banja Luka, Bosnia and Herzegovina;
| | - Sasa M Trailovic
- University of Belgrade, 54801, Pharmacology and Toxicology, Bulevar oslobodjenja 18, Beograd, Serbia, 11000;
| | - Miloš P Stojiljković
- University of Banja Luka Faculty of Medicine, 469576, Department of Pharmacology, Toxicology and Clinical Pharmacology, Banja Luka, Bosnia and Herzegovina, 78000;
| | - Ranko Škrbić
- University of Banja Luka Faculty of Medicine, 469576, Banja Luka, Bosnia and Herzegovina, 78000;
| |
Collapse
|
9
|
Akins JD, Richey RE, Campbell JC, Martin ZT, Olvera G, Brothers RM. Contributions of endothelin-1 and l-arginine to blunted cutaneous microvascular function in young, black women. Am J Physiol Heart Circ Physiol 2022; 322:H260-H268. [PMID: 34919455 PMCID: PMC8759956 DOI: 10.1152/ajpheart.00457.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Non-Hispanic black (BL) individuals have the greatest prevalence of cardiovascular disease (CVD), relative to other racial/ethnic groups (e.g., non-Hispanic white population; WH), which may be secondary to blunted vascular function. Although women typically present with reduced CVD relative to men of the same racial/ethnic group, the prevalence is similar between BL women and men though the mechanisms differ. This study hypothesized that reduced microvascular function in young, BL women is associated with endothelin-1 (ET-1) overactivity or insufficient l-arginine bioavailability. Nine BL and nine WH women participated (age: 20 ± 2 vs. 22 ± 2 yr). Cutaneous microvascular function was assessed during 39°C local heating, whereas lactated Ringer's (control), BQ-123 (ET-1 receptor type A antagonist), BQ-788 (ET-1 receptor type B antagonist), or l-arginine were infused via intradermal microdialysis to modify cutaneous vascular conductance (CVC). Subsequent infusion of Nω-nitro-l-arginine methyl ester allowed for quantification of the nitric oxide (NO) contribution to vasodilation, whereas combined sodium nitroprusside and 43°C heating allowed for normalization to maximal CVC (%CVCmax). BL women had blunted %CVCmax and NO contribution to dilation during the 39°C plateau (P < 0.027 for both). BQ-123 improved this response through augmented NO-mediated dilation (P < 0.048 for both). BQ-788 and l-arginine did not alter the CVC responses (P > 0.835 for both) or the NO contribution (P > 0.371 for both). Cutaneous microvascular function is reduced in BL women, and ET-1 receptor type A may contribute to this reduced function. Further research is needed to better characterize these mechanisms in young, BL women.NEW & NOTEWORTHY Cardiovascular disease remains a burden in the United States non-Hispanic black (BL) population, although its manifestation through blunted vasodilation in this population is different between men and women. Accordingly, this study determined that reduced microvascular function in young, BL women may be partially controlled by endothelin-1 (ET-1) type A receptors, although neither type B receptors nor insufficient l-arginine bioavailability seems to contribute to this response. Accordingly, further research is needed to better characterize these ET-1 related mechanisms and illuminate other pathways that may contribute to this disparate vascular function in young, BL women.
Collapse
Affiliation(s)
- John D. Akins
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Rauchelle E. Richey
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas,2Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Jeremiah C. Campbell
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Zachary T. Martin
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Guillermo Olvera
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas,3Institute for Exercise and Environmental Medicine, Dallas, Texas
| | - R. Matthew Brothers
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
10
|
Troiano JA, Potje SR, Graton ME, Gonçalves ET, Tostes RC, Antoniali C. Caveolin-1/Endothelial Nitric Oxide Synthase Interaction Is Reduced in Arteries From Pregnant Spontaneously Hypertensive Rats. Front Physiol 2021; 12:760237. [PMID: 34858211 PMCID: PMC8631196 DOI: 10.3389/fphys.2021.760237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
We have investigated the role caveolae/caveolin-1 (Cav-1) plays in endothelial nitric oxide synthase (eNOS) activation and how it impacts pregnancy-induced decreased vascular reactivity in normotensive (Wistar rats) and spontaneously hypertensive rats (SHR). Wistar rats and SHR were divided into non-pregnant (NP) and pregnant (P). Nitrite levels were assessed by the Griess method in the aorta and mesenteric vascular bed. In functional studies, arteries were incubated with methyl-β-cyclodextrin (dextrin, 10mmol/L), which disrupts caveolae by depleting cholesterol, and concentration-response curves to phenylephrine (PE) and acetylcholine (ACh) were constructed. Electronic microscopy was used to determine endothelial caveolae density in the aorta and resistance mesenteric artery in the presence of vehicle or dextrin (10mmol/L). Western blot was performed to evaluate Cav-1, p-Cav-1, calmodulin (CaM), and heat shock protein 90 (Hsp90) expression. Cav-1/eNOS interaction in the aorta and mesenteric vascular bed was assessed by co-immunoprecipitation. Nitric oxide (NO) generation was greater in arteries from P groups compared to NP groups. Dextrin did not change vascular responses in the aorta from P groups or the number of caveolae in P groups compared to NP groups. Compared to NP Wistar rats, NP SHR showed smaller number of caveolae and reduced Cav-1 expression. Pregnancy did not alter Cav-1, CaM, or Hsp90 expression in the aorta or mesenteric vascular bed from Wistar rats or SHR. These results suggest that pregnancy does not alter expression of the main eNOS regulatory proteins, but it decreases Cav-1/eNOS interaction. Reduced Cav-1/eNOS interaction in the aorta and mesenteric vascular bed seems to be an important mechanism to increase eNOS activity and nitric oxide production in pregnant normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Jéssica A Troiano
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Simone R Potje
- Department of Physics and Chemistry, Ribeirão Preto, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil.,Department of Biological Sciences, Minas Gerais State University (UEMG), Passos, Brazil
| | - Murilo E Graton
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Emily T Gonçalves
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Cristina Antoniali
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
11
|
Harraz OF, Jensen LJ. Vascular calcium signalling and ageing. J Physiol 2021; 599:5361-5377. [PMID: 34705288 PMCID: PMC9002240 DOI: 10.1113/jp280950] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Changes in cellular Ca2+ levels have major influences on vascular function and blood pressure regulation. Vascular smooth muscle cells (SMCs) and endothelial cells (ECs) orchestrate vascular activity in distinct ways, often involving highly specific fluctuations in Ca2+ signalling. Ageing is a major risk factor for cardiovascular diseases, but the impact of ageing per se on vascular Ca2+ signalling has received insufficient attention. We reviewed the literature for age-related changes in Ca2+ signalling in relation to vascular structure and function. Vascular tone dysregulation in several vascular beds has been linked to abnormal expression or activity of SMC voltage-gated Ca2+ channels, Ca2+ -activated K+ channels or TRPC6 channels. Some of these effects were linked to altered caveolae density, microRNA expression or 20-HETE abundance. Intracellular store Ca2+ handling was suppressed in ageing mainly via reduced expression of intracellular Ca2+ release channels, and Ca2+ reuptake or efflux pumps. An increase in mitochondrial Ca2+ uptake, leading to oxidative stress, could also play a role in SMC hypercontractility and structural remodelling in ageing. In ECs, ageing entailed diverse effects on spontaneous and evoked Ca2+ transients, as well as structural changes at the EC-SMC interface. The concerted effects of altered Ca2+ signalling on myogenic tone, endothelium-dependent vasodilatation, and vascular structure are likely to contribute to blood pressure dysregulation and blood flow distribution deficits in critical organs. With the increase in the world's ageing population, future studies should be directed at solving specific ageing-induced Ca2+ signalling deficits to combat the imminent accelerated vascular ageing and increased risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA,Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA
| | - Lars Jørn Jensen
- Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
12
|
Mazurek M, Rola R. The implications of nitric oxide metabolism in the treatment of glial tumors. Neurochem Int 2021; 150:105172. [PMID: 34461111 DOI: 10.1016/j.neuint.2021.105172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
Glial tumors are the most common intracranial malignancies. Unfortunately, despite such a high prevalence, patients' prognosis is usually poor. It is related to the high invasiveness, tendency to relapse and the resistance of tumors to traditional methods of treatment. An important link in the aspect of these issues may be nitric oxide (NO) metabolism. It is a very complex mechanism with multidirectional effects on the neoplastic process. Depending on the concentration axis, it can both exert pro-tumor action as well as contribute to the inhibition of tumorigenesis. The latest observations show that the control of its metabolism can be very helpful in the development of new methods of treating gliomas, as well as in increasing the effectiveness of the agents currently used. The influence of nitric oxide and nitric oxide synthase (NOS) activity on glioma stem cells seem to be of particular importance. The use of specific inhibitors may allow the reduction of tumor growth and its tendency to relapse. Another important feature of GSCs is their conditioning of glioma resistance to traditional forms of treatment. Recent studies have shown that modulation of NO metabolism can suppress this effect, preventing the induction of radio and chemoresistance. Moreover, nitric oxide is involved in the regulation of a number of immune mechanisms. Adequate modulation of its metabolism may contribute to the induction of an anti-tumor response in the patients' immune system.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland.
| | - Radosław Rola
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland
| |
Collapse
|
13
|
Large magnitude of force leads to NO-mediated cell shrinkage in single osteocytes implying an initial apoptotic response. J Biomech 2021; 117:110245. [PMID: 33493709 DOI: 10.1016/j.jbiomech.2021.110245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/06/2020] [Accepted: 01/03/2021] [Indexed: 11/22/2022]
Abstract
Damage accumulation in the bone under continuous daily loading causes local mechanical overloading known to induce osteocyte apoptosis, which promotes bone resorption to repair bone damage. However, only a few studies have investigated the mechanism of apoptosis in mechanically overloaded osteocytes. As mechanically stimulated osteocytes produce nitric oxide (NO), which triggers apoptosis in various cell types, we aimed to elucidate the mechanism underlying apoptosis in mechanically overloaded osteocytes, focusing on intracellular NO. To investigate the effects of force magnitude on apoptosis and intracellular NO production, we isolated osteocytes from DMP1-EGFP mice and subjected them to quantitative local forces via fibronectin-coated micro beads targeting integrin on the cell surface using a magnetic tweezer. Cell shrinkage was microscopically examined, and intracellular NO production was visualized using DAR-4 M. Mechanical stimulation revealed relationships between force magnitude, apoptosis, and intracellular NO production. The application of a smaller force resulted in no significant cell shrinkage or intracellular NO production; however, a larger force caused a rapid increase in intracellular NO production followed by cell shrinkage. Besides, intracellular NOS (NO synthase) inhibition and NO donation revealed the pro-apoptotic roles of NO in osteocytes. L-NAME (NOS inhibitor)-treated cells displayed no significant shrinkage under a larger force, whereas SNP (NO donor)-treated cells showed cell shrinkage and Annexin V fluorescence, indicating apoptosis. Collectively, our study demonstrates that larger force leads to NO production-mediated osteocyte shrinkage, implying an initial apoptotic response and highlighting the importance of NO production in bone damage.
Collapse
|
14
|
Yan J, Shang FF, He A, Hu S, Luo S, Xia Y. N-Glycosylation at Asn695 might suppress inducible nitric oxide synthase activity by disturbing electron transfer. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1360-1372. [PMID: 33231608 DOI: 10.1093/abbs/gmaa132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) plays critical roles in the inflammatory response and host defense. Previous research on iNOS regulation mainly focused on its gene expression level, and much less is known about the regulation of iNOS function by N-glycosylation. In this study, we report for the first time that iNOS is N-glycosylated in vitro and in vivo. Mass spectrometry studies identified Asn695 as an N-glycosylation site of murine iNOS. Mutating Asn695 to Gln695 yields an iNOS that exhibits greater enzyme activity. The essence of nitric oxide synthase catalytic reaction is electron transfer process, which involves a series of conformational changes, and the linker between the flavin mononucleotide-binding domain and the flavin adenine dinucleotide-binding domain plays vital roles in the conformational changes. Asn695 is part of the linker, so we speculated that attachment of N-glycan to the Asn695 residue might inhibit activity by disturbing electron transfer. Indeed, our NADPH consumption results demonstrated that N-glycosylated iNOS consumes NADPH more slowly. Taken together, our results indicate that iNOS is N-glycosylated at its Asn695 residue and N-glycosylation of Asn695 might suppress iNOS activity by disturbing electron transfer.
Collapse
Affiliation(s)
- Jianghong Yan
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
- Department of Medical Laboratory Technology, Chongqing Medical University, Chongqing 400016, China
| | - Fei-Fei Shang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - An He
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shupeng Hu
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Suxin Luo
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yong Xia
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Reina-Torres E, De Ieso ML, Pasquale LR, Madekurozwa M, van Batenburg-Sherwood J, Overby DR, Stamer WD. The vital role for nitric oxide in intraocular pressure homeostasis. Prog Retin Eye Res 2020; 83:100922. [PMID: 33253900 DOI: 10.1016/j.preteyeres.2020.100922] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Catalyzed by endothelial nitric oxide (NO) synthase (eNOS) activity, NO is a gaseous signaling molecule maintaining endothelial and cardiovascular homeostasis. Principally, NO regulates the contractility of vascular smooth muscle cells and permeability of endothelial cells in response to either biochemical or biomechanical cues. In the conventional outflow pathway of the eye, the smooth muscle-like trabecular meshwork (TM) cells and Schlemm's canal (SC) endothelium control aqueous humor outflow resistance, and therefore intraocular pressure (IOP). The mechanisms by which outflow resistance is regulated are complicated, but NO appears to be a key player as enhancement or inhibition of NO signaling dramatically affects outflow function; and polymorphisms in NOS3, the gene that encodes eNOS modifies the relation between various environmental exposures and glaucoma. Based upon a comprehensive review of past foundational studies, we present a model whereby NO controls a feedback signaling loop in the conventional outflow pathway that is sensitive to changes in IOP and its oscillations. Thus, upon IOP elevation, the outflow pathway tissues distend, and the SC lumen narrows resulting in increased SC endothelial shear stress and stretch. In response, SC cells upregulate the production of NO, relaxing neighboring TM cells and increasing permeability of SC's inner wall. These IOP-dependent changes in the outflow pathway tissues reduce the resistance to aqueous humor drainage and lower IOP, which, in turn, diminishes the biomechanical signaling on SC. Similar to cardiovascular pathogenesis, dysregulation of the eNOS/NO system leads to dysfunctional outflow regulation and ocular hypertension, eventually resulting in primary open-angle glaucoma.
Collapse
Affiliation(s)
| | | | - Louis R Pasquale
- Eye and Vision Research Institute of New York Eye and Ear Infirmary at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, UK.
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC, USA.
| |
Collapse
|
16
|
Tenopoulou M, Doulias PT. Endothelial nitric oxide synthase-derived nitric oxide in the regulation of metabolism. F1000Res 2020; 9. [PMID: 33042519 PMCID: PMC7531049 DOI: 10.12688/f1000research.19998.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Nitric oxide is an endogenously formed gas that acts as a signaling molecule in the human body. The signaling functions of nitric oxide are accomplished through two primer mechanisms: cGMP-mediated phosphorylation and the formation of S-nitrosocysteine on proteins. This review presents and discusses previous and more recent findings documenting that nitric oxide signaling regulates metabolic activity. These discussions primarily focus on endothelial nitric oxide synthase (eNOS) as the source of nitric oxide.
Collapse
Affiliation(s)
- Margarita Tenopoulou
- Children's Hospital of Philadelphia Research Institute, 3517 Civic Center Boulevard, Philadelphia, Pennsylvania, 19104-4318, USA.,Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Paschalis-Thomas Doulias
- Children's Hospital of Philadelphia Research Institute, 3517 Civic Center Boulevard, Philadelphia, Pennsylvania, 19104-4318, USA.,Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, 45110, Greece
| |
Collapse
|
17
|
Nezamoleslami S, Sheibani M, Mumtaz F, Esmaeili J, Shafaroodi H, Dehpour AR. Lithium reverses the effect of opioids on eNOS/nitric oxide pathway in human umbilical vein endothelial cells. Mol Biol Rep 2020; 47:6829-6840. [PMID: 32888132 DOI: 10.1007/s11033-020-05740-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022]
Abstract
The main challenge of pain management with opioids is development of acute and chronic analgesic tolerance. Several studies on neuronal cells have focused on the molecular mechanisms involved in tolerance such as cyclic AMP (cAMP) activation, and nitric oxide (NO) pathway. However, the effects of opioids on non-neuronal cells and tolerance development have been poorly investigated. Lithium chloride is a glycogen synthase kinase 3β (GSK-3β) inhibitor and exert its effects through modulation of nitric oxide pathway. In this study we examined the effect of lithium on acute/chronic morphine and methadone administration in endothelial cells which express mu opioid receptors. Human umbilical vein endothelial cells (HUVECs) were treated with different doses of morphine, methadone, and lithium for six and 48 h. Then we evaluated cell viability, nitrite and cyclic AMP levels, as well as the expression of endothelial nitric oxide synthase (eNOS) protein using Immunocytochemistry (ICC) assay and phosphorylated GSK-3β enzyme by western blot analysis in cells. Both chronic morphine and methadone treatment increased NO level and eNOS expression in HUVECs. Morphine induced cAMP overproduction after 48 h exposure with cells. Lithium pretreatment (10 mM) in both morphine and methadone received groups significantly reduced nitrite and cAMP levels as well as eNOS expression as compared to the control. The decreased amount of phospho GSK-3β due to the opioid exposure was increased following lithium treatment. Tolerance like pattern may occur in non-neuronal cells with opioid receptors and this study clearly revealed the attenuation of morphine and methadone tolerance like behavior by lithium treatment in HUVECs.
Collapse
Affiliation(s)
- Sadaf Nezamoleslami
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Jamileh Esmaeili
- Department of Biology, Islamic Azad University, P.O. Box 1477893855, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
18
|
Kuck L, Peart JN, Simmonds MJ. Active modulation of human erythrocyte mechanics. Am J Physiol Cell Physiol 2020; 319:C250-C257. [PMID: 32579474 DOI: 10.1152/ajpcell.00210.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The classic view of the red blood cell (RBC) presents a biologically inert cell that upon maturation has limited capacity to alter its physical properties. This view developed largely because of the absence of translational machinery and inability to synthesize or repair proteins in circulating RBC. Recent developments have challenged this perspective, in light of observations supporting the importance of posttranslational modifications and greater understanding of ion movement in these cells, that each regulate a myriad of cellular properties. There is thus now sufficient evidence to induce a step change in understanding of RBC: rather than passively responding to the surrounding environment, these cells have the capacity to actively regulate their physical properties and thus alter flow behavior of blood. Specific evidence supports that the physical and rheological properties of RBC are subject to active modulation, primarily by the second-messenger molecules nitric oxide (NO) and calcium-ions (Ca2+). Furthermore, an isoform of nitric oxide synthase is expressed in RBC (RBC-NOS), which has been recently demonstrated to have an active role in regulating the physical properties of RBC. Mechanical stimulation of the cell membrane activates RBC-NOS, leading to NO generation, which has several intracellular effects, including the S-nitrosylation of integral membrane components. Intracellular concentration of Ca2+ is increased upon mechanical stimulation via the recently identified mechanosensitive cation channel piezo1. Increased intracellular Ca2+ modifies the physical properties of RBC by regulating cell volume and potentially altering several important intracellular proteins. A synthesis of recent advances in understanding of molecular processes within RBC thus challenges the classic view of these cells and rather indicates a highly active cell with self-regulated mechanical properties.
Collapse
Affiliation(s)
- Lennart Kuck
- Biorheology Research Laboratory, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Jason N Peart
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Griffith University Gold Coast, Southport, Queensland, Australia
| |
Collapse
|
19
|
Di Meo S, Venditti P. Evolution of the Knowledge of Free Radicals and Other Oxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9829176. [PMID: 32411336 PMCID: PMC7201853 DOI: 10.1155/2020/9829176] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Free radicals are chemical species (atoms, molecules, or ions) containing one or more unpaired electrons in their external orbitals and generally display a remarkable reactivity. The evidence of their existence was obtained only at the beginning of the 20th century. Chemists gradually ascertained the involvement of free radicals in organic reactions and, in the middle of the 20th century, their production in biological systems. For several decades, free radicals were thought to cause exclusively damaging effects . This idea was mainly supported by the finding that oxygen free radicals readily react with all biological macromolecules inducing their oxidative modification and loss of function. Moreover, evidence was obtained that when, in the living organism, free radicals are not neutralized by systems of biochemical defences, many pathological conditions develop. However, after some time, it became clear that the living systems not only had adapted to the coexistence with free radicals but also developed methods to turn these toxic substances to their advantage by using them in critical physiological processes. Therefore, free radicals play a dual role in living systems: they are toxic by-products of aerobic metabolism, causing oxidative damage and tissue dysfunction, and serve as molecular signals activating beneficial stress responses. This discovery also changed the way we consider antioxidants. Their use is usually regarded as helpful to counteract the damaging effects of free radicals but sometimes is harmful as it can block adaptive responses induced by low levels of radicals.
Collapse
Affiliation(s)
- Sergio Di Meo
- Università degli Studi di Napoli Federico II Dipartimento di Biologia, Complesso, Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Paola Venditti
- Università degli Studi di Napoli Federico II Dipartimento di Biologia, Complesso, Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| |
Collapse
|
20
|
Lin H, Wang X. The effects of gasotransmitters on bronchopulmonary dysplasia. Eur J Pharmacol 2020; 873:172983. [PMID: 32017936 DOI: 10.1016/j.ejphar.2020.172983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Bronchopulmonary dysplasia (BPD), which remains a major clinical problem for preterm infants, is caused mainly by hyperoxia, mechanical ventilation and inflammation. Many approaches have been developed with the aim of decreasing the incidence of or alleviating BPD, but effective methods are still lacking. Gasotransmitters, a type of small gas molecule that can be generated endogenously, exert a protective effect against BPD-associated lung injury; nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are three such gasotransmitters. The protective effects of NO have been extensively studied in animal models of BPD, but the results of these studies are inconsistent with those of clinical trials. NO inhalation seems to have no effect on BPD, although side effects have been reported. NO inhalation is not recommended for BPD treatment in preterm infants, except those with severe pulmonary hypertension. Both CO and H2S decreased lung injury in BPD rodent models in preclinical studies. Another small gas molecule, hydrogen, exerts a protective effect against BPD. The nuclear factor erythroid-derived 2 (Nrf2)/heme oxygenase-1 (HO-1) axis seems to play a central role in the protective effect of these gasotransmitters on BPD. Gasotransmitters play important roles in mammals, but further clinical trials are needed to explore their effects on BPD.
Collapse
Affiliation(s)
- Hai Lin
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Xinbao Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
21
|
Moreira LN, Silva GC, Câmara DV, Pádua RM, Lemos VS, Braga FC, Cortes SF. The Cyclitol L-(+)-Bornesitol as an Active Marker for the Cardiovascular Activity of the Brazilian Medicinal Plant Hancornia speciosa. Biol Pharm Bull 2019; 42:2076-2082. [PMID: 31787722 DOI: 10.1248/bpb.b19-00601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cyclitol bornesitol is the main constituent of the leaves from the antihypertensive medicinal plant Hancornia speciosa. This study aimed to investigate the ability of bornesitol to reduce blood pressure and its mechanism of action. Normotensive Wistar rats were divided into control group and bornesitol groups treated intravenously with bornesitol (0.1, 1.0 and 3.0 mg/kg). Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were recorded in non-anesthetized awake animals. Nitric oxide (NO) and angiotensin-converting enzyme (ACE) were measured in plasma by using colorimetric methods. Vascular reactivity study was performed in rat aorta rings and the involvement of nitric oxide synthase (NOS), calcium-calmodulin complex and phosphatidylinositol-3-kinase (PI3K)/Akt pathway in the vasodilator effect was investigated. Administration of bornesitol significantly reduced the SBP, increased the plasmatic level of nitrite, and decreased ACE activity in normotensive rats. In the rat aorta, bornesitol induced endothelium-dependent vasodilatation, which was abolished by NOS blockade. While calcium-calmodulin complex inhibition decreased the vasodilator effect of bornesitol, the inhibition of PI3K/Akt pathway did not alter it. Bornesitol reduced the blood pressure by a mechanism involving an increased production or bioavailability of NO, inhibition of ACE, and by an endothelium- and NO-dependent vasodilator effect. The present results support the use of bornesitol as an active marker for the cardiovascular activity of Hancornia speciosa.
Collapse
Affiliation(s)
- Luciana N Moreira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais
| | - Grazielle C Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais
| | - Diógenes V Câmara
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais
| | - Rodrigo M Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais
| | - Virgínia S Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais
| | - Fernão C Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais
| | - Steyner F Cortes
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais
| |
Collapse
|
22
|
Ulanova A, Gritsyna Y, Salmov N, Lomonosova Y, Belova S, Nemirovskaya T, Shenkman B, Vikhlyantsev I. Effect of L-Arginine on Titin Expression in Rat Soleus Muscle After Hindlimb Unloading. Front Physiol 2019; 10:1221. [PMID: 31616317 PMCID: PMC6764413 DOI: 10.3389/fphys.2019.01221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/06/2019] [Indexed: 01/18/2023] Open
Abstract
Nitric oxide (NO), produced by NO-synthases via L-arginine oxidation, is an essential trigger for signaling processes involved in structural and metabolic changes in muscle fibers. Recently, it was shown that L-arginine administration prevented the decrease in levels of the muscle cytoskeletal proteins, desmin and dystrophin, in rat soleus muscle after 14 days of hindlimb unloading. Therefore, in this study, we investigated the effect of L-arginine administration on the degree of atrophy changes in the rat soleus muscles under unloading conditions, and on the content, gene expression, and phosphorylation level of titin, the giant protein of striated muscles, able to form a third type of myofilaments—elastic filaments. A 7-day gravitational unloading [hindlimb suspension (HS) group] resulted in a decrease in the soleus weight:body weight ratio (by 31.8%, p < 0.05), indicating muscle atrophy development. The content of intact titin (T1) decreased (by 22.4%, p < 0.05) and the content of proteolytic fragments of titin (T2) increased (by 66.7%, p < 0.05) in the soleus muscle of HS rats, compared to control rats. The titin gene expression and phosphorylation level of titin between these two groups were not significantly different. L-Arginine administration under 7-day gravitational unloading decreased the degree of atrophy changes and also prevented the decrease in levels of T1 in the soleus muscle as compared to HS group. Furthermore, L-arginine administration under unloading resulted in increased titin mRNA level (by 76%, p < 0.05) and decreased phosphorylation level of T2 (by 28%, p < 0.05), compared to those in the HS group. These results suggest that administration of L-arginine, the NO precursor, under unloading decreased the degree of atrophy changes, increased gene expression of titin and prevented the decrease in levels of T1 in the rat soleus muscle. The results can be used to search for approaches to reduce the development of negative changes caused by gravitational unloading in the muscle.
Collapse
Affiliation(s)
- Anna Ulanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.,Pushchino State Institute of Natural Sciences, Pushchino, Russia
| | - Yuliya Gritsyna
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Nikolai Salmov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Yuliya Lomonosova
- State Scientific Center RF, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana Belova
- State Scientific Center RF, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Tatyana Nemirovskaya
- State Scientific Center RF, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Boris Shenkman
- State Scientific Center RF, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
23
|
Filippini A, D'Amore A, D'Alessio A. Calcium Mobilization in Endothelial Cell Functions. Int J Mol Sci 2019; 20:ijms20184525. [PMID: 31547344 PMCID: PMC6769945 DOI: 10.3390/ijms20184525] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells (ECs) constitute the innermost layer that lines all blood vessels from the larger arteries and veins to the smallest capillaries, including the lymphatic vessels. Despite the histological classification of endothelium of a simple epithelium and its homogeneous morphological appearance throughout the vascular system, ECs, instead, are extremely heterogeneous both structurally and functionally. The different arrangement of cell junctions between ECs and the local organization of the basal membrane generate different type of endothelium with different permeability features and functions. Continuous, fenestrated and discontinuous endothelia are distributed based on the specific function carried out by the organs. It is thought that a large number ECs functions and their responses to extracellular cues depend on changes in intracellular concentrations of calcium ion ([Ca2+]i). The extremely complex calcium machinery includes plasma membrane bound channels as well as intracellular receptors distributed in distinct cytosolic compartments that act jointly to maintain a physiological [Ca2+]i, which is crucial for triggering many cellular mechanisms. Here, we first survey the overall notions related to intracellular Ca2+ mobilization and later highlight the involvement of this second messenger in crucial ECs functions with the aim at stimulating further investigation that link Ca2+ mobilization to ECs in health and disease.
Collapse
Affiliation(s)
- Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Antonella D'Amore
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Alessio D'Alessio
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, 00168 Rome, Italy.
| |
Collapse
|
24
|
Garhöfer G, Schmetterer L. Nitric oxide: a drug target for glaucoma revisited. Drug Discov Today 2019; 24:1614-1620. [DOI: 10.1016/j.drudis.2019.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/11/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
|
25
|
Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1949-1967. [DOI: 10.1016/j.bbadis.2018.11.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
|
26
|
Li J, Cechova S, Wang L, Isakson BE, Le TH, Shi W. Loss of reticulocalbin 2 lowers blood pressure and restrains ANG II-induced hypertension in vivo. Am J Physiol Renal Physiol 2019; 316:F1141-F1150. [PMID: 30943068 PMCID: PMC6620588 DOI: 10.1152/ajprenal.00567.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Hypertension affects over 1 billion people worldwide and increases the risk for heart failure, stroke, and chronic kidney disease. Despite high prevalence and devastating impact, its etiology still remains poorly understood for most hypertensive cases. Rcn2, which encodes reticulocalbin 2, is a candidate gene for atherosclerosis that we have previously reported in mice. Here, we identified Rcn2 as a novel regulator of blood pressure in mice. Rcn2 was abundantly expressed in the endothelium and adventitia of normal arteries and was dramatically upregulated in the medial layer of the artery undergoing structural remodeling. Deletion of Rcn2 lowered basal blood pressure and attenuated ANG II-induced hypertension in C57BL/6 mice. siRNA knockdown of Rcn2 dramatically increased production of the nitric oxide (NO) breakdown products nitrite and nitrate by endothelial cells but not by smooth muscle cells. Isolated carotid arteries from Rcn2-/- mice showed an increased sensitivity to the ACh-induced NO-mediated relaxant response compared with arteries of Rcn2+/+ mice. Analysis of a recent meta-data set showed associations of genetic variants near RCN2 with blood pressure in humans. These data suggest that Rcn2 regulates blood pressure and contributes to hypertension through actions on endothelial NO synthase.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology and Medical Imaging, University of Virginia , Charlottesville, Virginia
| | - Sylvia Cechova
- Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Lina Wang
- Department of Medicine, University of Virginia , Charlottesville, Virginia
- Department of Pulmonary Medicine, Qingdao University Hospital , Qingdao , China
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Thu H Le
- Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
27
|
Mihoubi E, Bouldjennet F, Raache R, Amroun H, Azzouz M, Benazouz N, Touil-Boukoffa C, Attal N. [T-786C endothelial nitric oxide gene polymorphism and type 1 diabetic retinopathy in the Algerian population]. J Fr Ophtalmol 2019; 42:579-585. [PMID: 30962068 DOI: 10.1016/j.jfo.2018.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Diabetic retinopathy (DR) results from interactions between genetic and environmental factors. We were interested in the endothelial nitric oxide gene (eNOS), given the involvement of this enzyme in functional alterations in the retinal microvasculature in diabetes. The goal of our study was to assess the association of T-786C endothelial nitric oxide synthase (eNOS) gene polymorphism with diabetic retinopathy in the Algerian population. PATIENTS AND METHODS Our study enrolled 110 patients with and without DR. All subjects were genotyped for the T786C eNOS polymorphism using the PCR-RFLP method. We also investigated the association between this polymorphism and certain clinical and laboratory characteristics of patients with DR. RESULTS A significant increase in the frequency of the CC genotype is noted in subjects without DR (P=0.03). We also report a significant increase in the frequencies of the TT+TC genotypes in individuals with DR (P=0.03). However, the association between the different genotypes and clinical or laboratory profiles in patients with DR reveals that the NO level is lower in subjects carrying the TT genotype (P=0.039). CONCLUSION Our preliminary results suggest that the CC genotype could confer protection from type 1 diabetic retinopathy in the Algerian population, while the T allele seems to confer susceptibility.
Collapse
Affiliation(s)
- E Mihoubi
- Équipe cytokines et NO synthases/immunité et pathogénie, laboratoire de biologie cellulaire et moléculaire (LBCM), faculté des sciences biologiques, USTHB, BP 32, El Alia, 16111, Alger, Algérie; Département d'immunologie, institut Pasteur d'Algérie, route du Petit-Staouéli, Delly Brahim, Algérie.
| | - F Bouldjennet
- Équipe cytokines et NO synthases/immunité et pathogénie, laboratoire de biologie cellulaire et moléculaire (LBCM), faculté des sciences biologiques, USTHB, BP 32, El Alia, 16111, Alger, Algérie; Faculté des sciences, université M'Hamed Bougara de Boumerdès, avenue de l'indépendance, 35000 Boumerdès, Algérie
| | - R Raache
- Équipe cytokines et NO synthases/immunité et pathogénie, laboratoire de biologie cellulaire et moléculaire (LBCM), faculté des sciences biologiques, USTHB, BP 32, El Alia, 16111, Alger, Algérie
| | - H Amroun
- Laboratoire central de biologie. CHU N'fissa Hamoud, Hussein Dey, route de Bachdjerah, el magharia, 16008, Alger, Algérie
| | - M Azzouz
- Service de diabétologie, CHU Mustapha Bacha, Alger, Algérie
| | - N Benazouz
- Service d'ophtalmologie, CHU Beb el Oued, Alger, Algérie
| | - C Touil-Boukoffa
- Équipe cytokines et NO synthases/immunité et pathogénie, laboratoire de biologie cellulaire et moléculaire (LBCM), faculté des sciences biologiques, USTHB, BP 32, El Alia, 16111, Alger, Algérie
| | - N Attal
- Équipe cytokines et NO synthases/immunité et pathogénie, laboratoire de biologie cellulaire et moléculaire (LBCM), faculté des sciences biologiques, USTHB, BP 32, El Alia, 16111, Alger, Algérie
| |
Collapse
|
28
|
Abstract
LINKED ARTICLES This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
|
29
|
Harraz OF, Longden TA, Hill-Eubanks D, Nelson MT. PIP 2 depletion promotes TRPV4 channel activity in mouse brain capillary endothelial cells. eLife 2018; 7:38689. [PMID: 30084828 PMCID: PMC6117155 DOI: 10.7554/elife.38689] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
We recently reported that the inward-rectifier Kir2.1 channel in brain capillary endothelial cells (cECs) plays a major role in neurovascular coupling (NVC) by mediating a neuronal activity-dependent, propagating vasodilatory (hyperpolarizing) signal. We further demonstrated that Kir2.1 activity is suppressed by depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2). Whether cECs express depolarizing channels that intersect with Kir2.1-mediated signaling remains unknown. Here, we report that Ca2+/Na+-permeable TRPV4 (transient receptor potential vanilloid 4) channels are expressed in cECs and are tonically inhibited by PIP2. We further demonstrate that depletion of PIP2 by agonists, including putative NVC mediators, that promote PIP2 hydrolysis by signaling through Gq-protein-coupled receptors (GqPCRs) caused simultaneous disinhibition of TRPV4 channels and suppression of Kir2.1 channels. These findings collectively support the concept that GqPCR activation functions as a molecular switch to favor capillary TRPV4 activity over Kir2.1 signaling, an observation with potentially profound significance for the control of cerebral blood flow. Capillaries form branching networks that surround all cells of the body. They allow oxygen and nutrient exchange between blood and tissue, but this is not their only role. Capillaries in the brain form a tight barrier that prevents components carried in the blood from easily reaching the brain compartment. They also detect the activity of neurons and trigger on-demand increases in blood flow to active regions of the brain. This role, revealed only recently, depends upon ion channels on the surface of the capillary cells. Active neurons release potassium ions, which open a type of ion channel called Kir2.1 that allows potassium inside the cell to flow out. This process is repeated in neighboring capillary cells until it reaches an upstream vessel, where it causes the vessel to relax and increase the blood flow. Kir2.1 channels sit astride the membranes of capillary cells, where they can interact with other membrane molecules. One such molecule, called PIP2, plays several roles in relaying signals from the outside to the inside of cells. It also physically interacts with channels in the membrane, including Kir2.1 channels. If PIP2 levels are low, Kir2.1 channel activity decreases. Here, Harraz et al. discovered that capillary cells contain another type of ion channel, called TRPV4, which is also regulated by PIP2. But unlike Kir2.1, its activity increases when PIP2 levels drop. Moreover, TRPV4 channels allow sodium and calcium ions to flow into the cell, which has an effect opposite to that of potassium flowing out of the cell. Capillary cells also have receptor proteins called GqPCRs that are activated by chemical signals released by active neurons in the brain. GqPCRs break down PIP2, so their activity turns Kir2.1 channels off and TRPV4 channels on. This resets the system so that it is ready to respond to new signals from active neurons. GqPCRs work as molecular switches to control the balance between Kir2.1 and TRPV4 channels and turn brain blood flow up and down. GqPCRs and ion channels that depend on PIP2 can also be found in other types of cells. These findings could reveal clues about how signals are switched on and off in different cells. Understanding the role of PIP2 in signaling could also unveil what happens when signaling go wrong.
Collapse
Affiliation(s)
- Osama F Harraz
- Department of Pharmacology, University of Vermont, Burlington, United States
| | - Thomas A Longden
- Department of Pharmacology, University of Vermont, Burlington, United States
| | - David Hill-Eubanks
- Department of Pharmacology, University of Vermont, Burlington, United States
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, United States.,Institute of Cardiovascular Sciences, Manchester, United Kingdom
| |
Collapse
|
30
|
Hayes MP, Soto-Velasquez M, Fowler CA, Watts VJ, Roman DL. Identification of FDA-Approved Small Molecules Capable of Disrupting the Calmodulin-Adenylyl Cyclase 8 Interaction through Direct Binding to Calmodulin. ACS Chem Neurosci 2018; 9:346-357. [PMID: 28968502 DOI: 10.1021/acschemneuro.7b00349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Adenylyl cyclases (AC) catalyze the formation of cyclic AMP (cAMP) from ATP and are involved in a number of disease states, making them attractive potential drug targets. AC8, in particular, has been implicated in several neurological disorders. While development of small molecule AC inhibitors has generated some chemical leads, the lack of inhibitor specificity among AC family members has limited the identification of successful drug candidates. Therefore, finding alternative novel methods to suppress AC activity are needed. Because only AC1 and AC8 are robustly stimulated by calmodulin (CaM), we set out to explore the mechanism of disrupting the AC/CaM interaction as a way to selectively inhibit AC8. Through the development and implementation of a novel biochemical high-throughput-screening paradigm, we identified six small molecules from an FDA-approved compound library that are capable of disrupting the AC8/CaM interaction. These compounds were also shown to be able disrupt formation of this complex in cells, ultimately leading to decreased AC8 activity. Interestingly, further mechanistic analysis determined that these compounds functioned by binding to CaM and blocking its interaction with AC8. While these particular compounds could inhibit CaM interaction with both AC1 and AC8, they provide significant proof of concept for inhibition of ACs through disruption of CaM binding. These compounds, as dual AC1/AC8 inhibitors, provide important tools for probing pathological conditions where AC1/AC8 activity are enhanced, such as chronic pain and ethanol consumption. Furthermore, unlike tools such as genetic deletion, these compounds can be used in a dose-dependent fashion to determine the role of AC/CaM interactions in these pathologies.
Collapse
Affiliation(s)
- Michael P. Hayes
- Department of Pharmaceutical
Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Monica Soto-Velasquez
- Department
of Medicinal Chemistry and Molecular Pharmacology and Center for Drug
Discovery, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - C. Andrew Fowler
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Val J. Watts
- Department
of Medicinal Chemistry and Molecular Pharmacology and Center for Drug
Discovery, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - David L. Roman
- Department of Pharmaceutical
Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Iowa Neuroscience Institute, Roy J. and
Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
31
|
Zhang B, Naik JS, Jernigan NL, Walker BR, Resta TC. Reduced membrane cholesterol after chronic hypoxia limits Orai1-mediated pulmonary endothelial Ca 2+ entry. Am J Physiol Heart Circ Physiol 2017; 314:H359-H369. [PMID: 29101179 DOI: 10.1152/ajpheart.00540.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endothelial dysfunction in chronic hypoxia (CH)-induced pulmonary hypertension is characterized by reduced store-operated Ca2+ entry (SOCE) and diminished Ca2+-dependent production of endothelium-derived vasodilators. We recently reported that SOCE in pulmonary arterial endothelial cells (PAECs) is tightly regulated by membrane cholesterol and that decreased membrane cholesterol is responsible for impaired SOCE after CH. However, the ion channels involved in cholesterol-sensitive SOCE are unknown. We hypothesized that cholesterol facilitates SOCE in PAECs through the interaction of Orai1 and stromal interaction molecule 1 (STIM1). The role of cholesterol in Orai1-mediated SOCE was initially assessed using CH exposure in rats (4 wk, 380 mmHg) as a physiological stimulus to decrease PAEC cholesterol. The effects of Orai1 inhibition with AnCoA4 on SOCE were examined in isolated PAEC sheets from control and CH rats after cholesterol supplementation, substitution of endogenous cholesterol with epicholesterol (Epichol), or vehicle treatment. Whereas cholesterol restored endothelial SOCE in CH rats, both Epichol and AnCoA4 attenuated SOCE only in normoxic controls. The Orai1 inhibitor had no further effect in cells pretreated with Epichol. Using cultured pulmonary endothelial cells to allow better mechanistic analysis of the molecular components of cholesterol-regulated SOCE, we found that Epichol, AnCoA4, and Orai1 siRNA each inhibited SOCE compared with their respective controls. Epichol had no additional effect after knockdown of Orai1. Furthermore, Epichol substitution significantly reduced STIM1-Orai1 interactions as assessed by a proximity ligation assay. We conclude that membrane cholesterol is required for the STIM1-Orai1 interaction necessary to elicit endothelial SOCE. Furthermore, reduced PAEC membrane cholesterol after CH limits Orai1-mediated SOCE. NEW & NOTEWORTHY This research demonstrates a novel contribution of cholesterol to regulate the interaction of Orai1 and stromal interaction molecule 1 required for pulmonary endothelial store-operated Ca2+ entry. The results provide a mechanistic basis for impaired pulmonary endothelial Ca2+ influx after chronic hypoxia that may contribute to pulmonary hypertension.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| |
Collapse
|
32
|
Zuo H, Li Y, Cui Y, An Y. Cardioprotective effect of Malva sylvestris L. in myocardial ischemic/reprefused rats. Biomed Pharmacother 2017; 95:679-684. [PMID: 28886527 DOI: 10.1016/j.biopha.2017.08.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 02/04/2023] Open
Abstract
PURPOSE The present investigation evaluated the cardioprotective effect of Malva sylvestris L. (MS) on myocardial ischemic/reperfusion (MI/R) in rats. METHODS All animals were divided into four groups: the sham operated group, ischemia/reperfusion group (MI/R), and the MS (250 and 500mg/kg) treated groups, who received MS 250 and 500mg/kg intragastrically for 15 consecutive days, respectively. At the end of the protocol, concentrations of aspartate transaminase (AST), creatine kinase-MB fraction (CK-MB) and lactate dehydrogenase (LDH) were estimated in serum and the concentrations of other parameters, such as C-reactive protein, macrophage inflammatory protein 1 alpha (MIP-1α), and nitric oxide (NO) were also estimated in the blood. Tissue homogenate concentrations of inflammatory cytokines, such as tumour necrosis factor-α (TNF-α), interlukin-1β (IL-1β), IL-10 and IL-6 as well as oxidative stress parameters, such as lipid peroxidation, catalase, and superoxide dismutase were estimated in MI/R rats. RESULT Significant decreases (p<0.01) in AST, LDH, and CK-MB levels were observed in the MS-treated group compared with those in the MI/R group. C-reactive protein and MIP-1α levels decreased in the MS-treated group compared with those in the MI/R group. Plasma NO level was significantly enhanced in the MS-treated group than in the MI/R group. Moreover, treatment with MS significantly reduced TNF-α, IL-1β, and IL-6 levels and increased IL-10 levels in the MS group compared with the MI/R group. Treatment with MS also attenuated the altered oxidative stress parameters in MI/R rats. CONCLUSION The present results indicate the cardioprotective effects of MS of reducing oxidative stress and the inflammatory response in MI/R rats.
Collapse
Affiliation(s)
- Hanheng Zuo
- Cardiovascular Division, The Medical College of Qingdao University, Qingdao, Shandong 266021, China
| | - Yinping Li
- Cardiac Care Unit, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yinghua Cui
- Cardiac Care Unit, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yi An
- Cardiovascular Division, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 222071, China.
| |
Collapse
|
33
|
Nelson RK, Ya-Ping J, Gadbery J, Abedeen D, Sampson N, Lin RZ, Frohman MA. Phospholipase D2 loss results in increased blood pressure via inhibition of the endothelial nitric oxide synthase pathway. Sci Rep 2017; 7:9112. [PMID: 28831159 PMCID: PMC5567230 DOI: 10.1038/s41598-017-09852-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/14/2017] [Indexed: 11/10/2022] Open
Abstract
The Phospholipase D (PLD) superfamily is linked to neurological disease, cancer, and fertility, and a recent report correlated a potential loss-of-function PLD2 polymorphism with hypotension. Surprisingly, PLD2 -/- mice exhibit elevated blood pressure accompanied by associated changes in cardiac performance and molecular markers, but do not have findings consistent with the metabolic syndrome. Instead, expression of endothelial nitric oxide synthase (eNOS), which generates the potent vasodilator nitric oxide (NO), is decreased. An eNOS inhibitor phenocopied PLD2 loss and had no further effect on PLD2 -/- mice, confirming the functional relationship. Using a human endothelial cell line, PLD2 loss of function was shown to lower intracellular free cholesterol, causing upregulation of HMG Co-A reductase, the rate-limiting enzyme in cholesterol synthesis. HMG Co-A reductase negatively regulates eNOS, and the PLD2-deficiency phenotype of decreased eNOS expression and activity could be rescued by cholesterol supplementation and HMG Co-A reductase inhibition. Together, these findings identify a novel pathway through which the lipid signaling enzyme PLD2 regulates blood pressure, creating implications for on-going therapeutic development of PLD small molecule inhibitors. Finally, we show that the human PLD2 polymorphism does not trigger eNOS loss, but rather creates another effect, suggesting altered functioning for the allele.
Collapse
Affiliation(s)
- Rochelle K Nelson
- The Graduate Program in Physiology & Biophysics, Stony Brook University, New York, USA
| | - Jiang Ya-Ping
- Department of Physiology & Biophysics, Stony Brook University, New York, USA
| | - John Gadbery
- Biochemistry and Structural Biology, Stony Brook University, New York, USA
| | - Danya Abedeen
- The Undergraduate Program in Biochemistry, Stony Brook University, New York, USA
| | - Nicole Sampson
- Biochemistry and Structural Biology, Stony Brook University, New York, USA
- Department of Chemistry, Stony Brook University, New York, USA
| | - Richard Z Lin
- Department of Physiology & Biophysics, Stony Brook University, New York, USA
- Medical Service, Northport Veterans Affairs Medical Center, Northport, NY, USA
| | - Michael A Frohman
- Department of Pharmacological Sciences, Stony Brook University, New York, USA.
| |
Collapse
|
34
|
Zhang B, Naik JS, Jernigan NL, Walker BR, Resta TC. Reduced membrane cholesterol limits pulmonary endothelial Ca 2+ entry after chronic hypoxia. Am J Physiol Heart Circ Physiol 2017; 312:H1176-H1184. [PMID: 28364016 DOI: 10.1152/ajpheart.00097.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/17/2017] [Accepted: 03/24/2017] [Indexed: 12/22/2022]
Abstract
Chronic hypoxia (CH)-induced pulmonary hypertension is associated with diminished production of endothelium-derived Ca2+-dependent vasodilators such as nitric oxide. Interestingly, ATP-induced endothelial Ca2+ entry as well as membrane cholesterol (Chol) are decreased in pulmonary arteries from CH rats (4 wk, barometric pressure = 380 Torr) compared with normoxic controls. Store-operated Ca2+ entry (SOCE) and depolarization-induced Ca2+ entry are major components of the response to ATP and are similarly decreased after CH. We hypothesized that membrane Chol facilitates both SOCE and depolarization-induced pulmonary endothelial Ca2+ entry and that CH attenuates these responses by decreasing membrane Chol. To test these hypotheses, we administered Chol or epicholesterol (Epichol) to acutely isolated pulmonary arterial endothelial cells (PAECs) from control and CH rats to either supplement or replace native Chol, respectively. The efficacy of membrane Chol manipulation was confirmed by filipin staining. Epichol greatly reduced ATP-induced Ca2+ influx in PAECs from control rats. Whereas Epichol similarly blunted endothelial SOCE in PAECs from both groups, Chol supplementation restored diminished SOCE in PAECs from CH rats while having no effect in controls. Similar effects of Chol manipulation on PAEC Ca2+ influx were observed in response to a depolarizing stimulus of KCl. Furthermore, KCl-induced Ca2+ entry was inhibited by the T-type Ca2+ channel antagonist mibefradil but not the L-type Ca2+ channel inhibitor diltiazem. We conclude that PAEC membrane Chol is required for ATP-induced Ca2+ entry and its two components, SOCE and depolarization-induced Ca2+ entry, and that reduced Ca2+ entry after CH may be due to loss of this key regulator.NEW & NOTEWORTHY This research is the first to examine the direct role of membrane cholesterol in regulating pulmonary endothelial agonist-induced Ca2+ entry and its components. The results provide a potential mechanism by which chronic hypoxia impairs pulmonary endothelial Ca2+ influx, which may contribute to pulmonary hypertension.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
35
|
Cebová M, Košútová M, Pecháňová O. Cardiovascular effects of gasotransmitter donors. Physiol Res 2017; 65:S291-S307. [PMID: 27775418 DOI: 10.33549/physiolres.933441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gasotransmitters represent a subfamily of the endogenous gaseous signaling molecules that include nitric oxide (NO), carbon monoxide (CO), and hydrogen sulphide (H(2)S). These particular gases share many common features in their production and function, but they fulfill their physiological tasks in unique ways that differ from those of classical signaling molecules found in tissues and organs. These gasotransmitters may antagonize or potentiate each other's cellular effects at the level of their production, their downstream molecular targets and their direct interactions. All three gasotransmitters induce vasodilatation, inhibit apoptosis directly or by increasing the expression of anti-apoptotic genes, and activate antioxidants while inhibiting inflammatory actions. NO and CO may concomitantly participate in vasorelaxation, anti-inflammation and angiogenesis. NO and H(2)S collaborate in the regulation of vascular tone. Finally, H(2)S may upregulate the heme oxygenase/carbon monoxide (HO/CO) pathway during hypoxic conditions. All three gasotransmitters are produced by specific enzymes in different cell types that include cardiomyocytes, endothelial cells and smooth muscle cells. As translational research on gasotransmitters has exploded over the past years, drugs that alter the production/levels of the gasotransmitters themselves or modulate their signaling pathways are now being developed. This review is focused on the cardiovascular effects of NO, CO, and H(2)S. Moreover, their donors as drug targeting the cardiovascular system are briefly described.
Collapse
Affiliation(s)
- M Cebová
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
36
|
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Clinical and pharmacogenetic impact of endothelial nitric oxide synthase polymorphisms on cardiovascular diseases. Nitric Oxide 2017; 63:39-51. [DOI: 10.1016/j.niox.2016.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 12/30/2022]
|
37
|
Mechanisms and time course of menthol-induced cutaneous vasodilation. Microvasc Res 2016; 110:43-47. [PMID: 27899298 DOI: 10.1016/j.mvr.2016.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 11/23/2022]
Abstract
Menthol is a vasoactive compound that is widely used in topical analgesic agents. Menthol induces cutaneous vasodilation, however the underlying mechanisms are unknown. Determining the rates of appearance and clearance of menthol in the skin is important for optimizing topical treatment formulation and dosing. The purpose of this study was to determine the mechanisms contributing to menthol-mediated cutaneous vasodilation and to establish a time course for menthol appearance/clearance in the skin. Ten young (23±1years, 5 males 5 females) subjects participated in two protocols. In study 1, four intradermal microdialysis fibers were perfused with increasing doses of menthol (0.1-500mM) and inhibitors for nitric oxide (NO), endothelium derived hyperpolarizing factors (EDHFs), and sensory nerves. Skin blood flow was measured with laser Doppler flowmetry and normalized to %CVCmax. In study 2, two intradermal microdialysis fibers were perfused with lactated Ringer's solution. 0.017mL·cm-2 of a 4% menthol gel was placed over each fiber. 5μL samples of dialysate from the microdialysis fibers were collected every 30min and analyzed for the presence of menthol with high performance gas chromatography/mass spectrometry. Skin blood flow (laser speckle contrast imaging) and subjective ratings of menthol sensation were simultaneously obtained with dialysate samples. In study 1, menthol induced cutaneous vasodilation at all doses ≥100mM (all p<0.05). However, inhibition of either NO, EDHFs, or sensory nerves fully inhibited menthol-mediated vasodilation (all p>0.05). In study 2, significant menthol was detected in dialysate 30min post menthol application (0.89ng, p=0.0002). Relative to baseline, cutaneous vasodilation was elevated from minutes 15-45 and ratings of menthol sensation were elevated from minute 5-60 post menthol application (all p<0.05). Menthol induces cutaneous vasodilation in the skin through multiple vasodilator pathways, including NO, EDHF, and sensory nerves. Topical menthol is detectable in the skin within 30min and is cleared by 60min. Skin blood flow and perceptual measures follow a similar time course as menthol appearance/clearance.
Collapse
|
38
|
Transcriptional and Posttranslational Regulation of eNOS in the Endothelium. ADVANCES IN PHARMACOLOGY 2016; 77:29-64. [PMID: 27451094 DOI: 10.1016/bs.apha.2016.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a highly reactive free radical gas and these unique properties have been adapted for a surprising number of biological roles. In neurons, NO functions as a neurotransmitter; in immune cells, NO contributes to host defense; and in endothelial cells, NO is a major regulator of blood vessel homeostasis. In the vasculature, NO is synthesized on demand by a specific enzyme, endothelial nitric oxide synthase (eNOS) that is uniquely expressed in the endothelial cells that form the interface between the circulating blood and the various tissues of the body. NO regulates endothelial and blood vessel function via two distinct pathways, the activation of soluble guanylate cyclase and cGMP-dependent signaling and the S-nitrosylation of proteins with reactive thiols (S-nitrosylation). The chemical properties of NO also serve to reduce oxidation and regulate mitochondrial function. Reduced synthesis and/or compromised biological activity of NO precede the development of cardiovascular disease and this has generated a high level of interest in the mechanisms controlling the synthesis and fate of NO in the endothelium. The amount of NO produced results from the expression level of eNOS, which is regulated at the transcriptional and posttranscriptional levels as well as the acute posttranslational regulation of eNOS. The goal of this chapter is to highlight and integrate past and current knowledge of the mechanisms regulating eNOS expression in the endothelium and the posttranslational mechanisms regulating eNOS activity in both health and disease.
Collapse
|
39
|
Li H, Kim HS, Kim HW, Shin SE, Jung WK, Ha KS, Han ET, Hong SH, Firth AL, Bae YM, Choi IW, Park WS. The class III anti-arrhythmic agent, amiodarone, inhibits voltage-dependent K(+) channels in rabbit coronary arterial smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:713-21. [PMID: 27030392 DOI: 10.1007/s00210-016-1232-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/16/2016] [Indexed: 01/06/2023]
Abstract
We examined the inhibitory effect of amiodarone, a class III anti-arrhythmic agent, on voltage-dependent K(+) (Kv) currents in freshly isolated rabbit coronary arterial smooth muscle cells, using a whole-cell patch clamp technique. Amiodarone inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC50) value of 3.9 ± 1.44 μM and a Hill coefficient of 0.45 ± 0.14. Amiodarone did not have a significant effect on the steady-state activation of Kv channels, but shifted the inactivation current toward a more negative potential. Application of consecutive pulses progressively augmented the amiodarone-induced Kv channel inhibition. Another class III anti-arrhythmic agent, dofetilide, did not inhibit the Kv current or change the inhibitory effect of amiodarone on Kv channels. Therefore, these results strongly suggest that amiodarone inhibits Kv currents in a concentration- and state-dependent manner.
Collapse
Affiliation(s)
- Hongliang Li
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 200-701, South Korea
| | - Han Sol Kim
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 200-701, South Korea
| | - Hye Won Kim
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 200-701, South Korea
| | - Sung Eun Shin
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 200-701, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 608-737, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, 200-701, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 200-701, South Korea
| | - Seok-Ho Hong
- Institute of Medical Sciences, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 200-701, South Korea
| | - Amy L Firth
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju, 380-701, South Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan, 614-735, South Korea.
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 200-701, South Korea.
| |
Collapse
|
40
|
Qu L, Yu L, Wang Y, Jin X, Zhang Q, Lu P, Yu X, Zhong W, Zheng X, Cui N, Jiang C, Zhu D. Inward Rectifier K+ Currents Are Regulated by CaMKII in Endothelial Cells of Primarily Cultured Bovine Pulmonary Arteries. PLoS One 2015; 10:e0145508. [PMID: 26700160 PMCID: PMC4689359 DOI: 10.1371/journal.pone.0145508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 12/04/2015] [Indexed: 01/24/2023] Open
Abstract
Endothelium lines the interior surface of vascular walls and regulates vascular tones. The endothelial cells sense and respond to chemical and mechanical stimuli in the circulation, and couple the stimulus signals to vascular smooth muscles, in which inward rectifier K+ currents (Kir) play an important role. Here we applied several complementary strategies to determine the Kir subunit in primarily cultured pulmonary arterial endothelial cells (PAECs) that was regulated by the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII). In whole-cell voltage clamp, the Kir currents were sensitive to micromolar concentrations of extracellular Ba2+. In excised inside-out patches, an inward rectifier K+ current was observed with single-channel conductance 32.43 ± 0.45 pS and Popen 0.27 ± 0.04, which were consistent with known unitary conductance of Kir 2.1. RT-PCR and western blot results showed that expression of Kir 2.1 was significantly stronger than that of other subtypes in PAECs. Pharmacological analysis of the Kir currents demonstrated that insensitivity to intracellular ATP, pinacidil, glibenclamide, pH, GDP-β-S and choleratoxin suggested that currents weren’t determined by KATP, Kir2.3, Kir2.4 and Kir3.x. The currents were strongly suppressed by exposure to CaMKII inhibitor W-7 and KN-62. The expression of Kir2.1 was inhibited by knocking down CaMKII. Consistently, vasodilation was suppressed by Ba2+, W-7 and KN-62 in isolated and perfused pulmonary arterial rings. These results suggest that the PAECs express an inward rectifier K+ current that is carried dominantly by Kir2.1, and this K+ channel appears to be targeted by CaMKII-dependent intracellular signaling systems.
Collapse
Affiliation(s)
- Lihui Qu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing 163319, Heilongjiang, China
| | - Lei Yu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, Heilongjiang, China
- Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150086, Heilongjiang, China
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, Georgia, 30302, United States of America
| | - Yanli Wang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing 163319, Heilongjiang, China
- Department of Rheumatology and Immunology, First Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Xin Jin
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, Georgia, 30302, United States of America
| | - Qianlong Zhang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing 163319, Heilongjiang, China
| | - Ping Lu
- Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150086, Heilongjiang, China
| | - Xiufeng Yu
- Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150086, Heilongjiang, China
| | - Weiwei Zhong
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, Georgia, 30302, United States of America
| | - Xiaodong Zheng
- Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150086, Heilongjiang, China
| | - Ningren Cui
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, Georgia, 30302, United States of America
| | - Chun Jiang
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, Georgia, 30302, United States of America
- * E-mail: (DZ); (CJ)
| | - Daling Zhu
- Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150086, Heilongjiang, China
- * E-mail: (DZ); (CJ)
| |
Collapse
|
41
|
Shenkman BS, Nemirovskaya TL, Lomonosova YN. No-dependent signaling pathways in unloaded skeletal muscle. Front Physiol 2015; 6:298. [PMID: 26582991 PMCID: PMC4628111 DOI: 10.3389/fphys.2015.00298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/09/2015] [Indexed: 01/22/2023] Open
Abstract
The main focus of the current review is the nitric oxide (NO)-mediated signaling mechanism in unloaded skeletal. Review of the published data describing muscles during physical activity and inactivity demonstrates that NO is an essential trigger of signaling processes, which leads to structural and metabolic changes of the muscle fibers. The experiments with modulation of NO-synthase (NOS) activity during muscle unloading demonstrate the ability of an activated enzyme to stabilize degradation processes and prevent development of muscle atrophy. Various forms of muscle mechanical activity, i.e., plantar afferent stimulation, resistive exercise and passive chronic stretch increase the content of neural NOS (nNOS) and thus may facilitate an increase in NO production. Recent studies demonstrate that NO-synthase participates in the regulation of protein and energy metabolism in skeletal muscle by fine-tuning and stabilizing complex signaling systems which regulate protein synthesis and degradation in the fibers of inactive muscle.
Collapse
Affiliation(s)
- Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences Moscow, Russia
| | - Tatiana L Nemirovskaya
- Institute of Biomedical Problems, Russian Academy of Sciences Moscow, Russia ; Faculty of Fundamental Medicine, Lomonosov Moscow State University Moscow, Russia
| | - Yulia N Lomonosova
- Institute of Biomedical Problems, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
42
|
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene 2015; 575:584-99. [PMID: 26428312 DOI: 10.1016/j.gene.2015.09.061] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/10/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is an important vasodilator with a well-established role in cardiovascular homeostasis. While mediator is synthesized from L-arginine by neuronal, endothelial, and inducible nitric oxide synthases (NOS1,NOS3 and NOS2 respectively), NOS3 is the most important isoform for NO formation in the cardiovascular system. NOS3 is a dimeric enzyme whose expression and activity are regulated at transcriptional, posttranscriptional,and posttranslational levels. The NOS3 gene, which encodes NOS3, exhibits a number of polymorphic sites including single nucleotide polymorphisms (SNPs), variable number of tandem repeats (VNTRs), microsatellites, and insertions/deletions. Some NOS3 polymorphisms show functional effects on NOS3 expression or activity, thereby affecting NO formation. Interestingly, many studies have evaluated the effects of functional NOS3 polymorphisms on disease susceptibility and drug responses. Moreover, some studies have investigated how NOS3 haplotypes may impact endogenous NO formation and disease susceptibility. In this article,we carried out a comprehensive review to provide a basic understanding of biochemical mechanisms involved in NOS3 regulation and how genetic variations in NOS3 may translate into relevant clinical and pharmacogenetic implications.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
43
|
The red blood cell: a new key player in cardiovascular homoeostasis? Focus on the nitric oxide pathway. Biochem Soc Trans 2015; 42:996-1000. [PMID: 25109992 DOI: 10.1042/bst20140122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RBCs (red blood cells) have a fundamental role in the regulation of vascular homoeostasis thanks to the ability of these cells to carry O2 (oxygen) between respiratory surfaces and metabolizing tissues and to release vasodilator compounds, such as ATP and NO (nitric oxide), in response to tissue oxygenation. More recently it has been shown that RBCs are also able to produce NO endogenously as they express a functional NOS (nitric oxide synthase), similar to the endothelial isoform. In addition, RBCs carry important enzymes and molecules involved in L-arginine metabolism, such as arginase, NO synthesis inhibitors and the cationic amino acid transporters. Altogether these findings strongly support the role of these cells as producers, vehicles and scavengers of NO, therefore affecting several physiological processes such as blood rheology and cell adhesion. Consequently, the importance of alterations in the L-arginine/NO metabolic pathway induced by specific conditions, e.g. oxidative stress, in different pathological settings have been investigated. In the present review we discuss the role of RBCs in vascular homoeostasis, focusing our attention on the importance of the NO pathway alterations in cardiovascular diseases and their relationship to major risk factors.
Collapse
|
44
|
Wijnands KAP, Castermans TMR, Hommen MPJ, Meesters DM, Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients 2015; 7:1426-63. [PMID: 25699985 PMCID: PMC4377861 DOI: 10.3390/nu7031426] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 01/01/2023] Open
Abstract
Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.
Collapse
Affiliation(s)
- Karolina A P Wijnands
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Tessy M R Castermans
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Merel P J Hommen
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Dennis M Meesters
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Martijn Poeze
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
45
|
Guillon CD, Wisnoski DD, Saxena J, Heindel ND, Heck DE, Wolff DJ, Laskin JD. Nω-NITRO- Nω'-SUBSTITUTED GUANIDINES: A SIMPLE CLASS OF NITRIC OXIDE SYNTHASE INHIBITORS. MODERN RESEARCH IN INFLAMMATION 2014; 3:48-58. [PMID: 25360396 DOI: 10.4236/mri.2014.32006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A series of Nω-nitro-Nω'-substituted guanidines has been prepared as potential inhibitors of the human Nitric Oxide Synthase (NOS) isoforms. The reported utility of aminoguanidine and nitroarginine in iNOS inhibition points to a potential similar utility for analogs of nitro-guanidine. The compound library was tested against the three isoforms of Nitric Oxide Synthase (eNOS, iNOS and nNOS). Several candidates showed excellent activity and good selectivity for nNOS. One particular compound even demonstrated good selectivity for iNOS. The potential usefulness of such selective inhibitors is discussed.
Collapse
Affiliation(s)
- Christophe D Guillon
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, PA, USA
| | - David D Wisnoski
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, PA, USA
| | - Jaya Saxena
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, PA, USA
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, PA, USA
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY, USA
| | - Donald J Wolff
- Department of Pharmacology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
46
|
Kumar S, Prahalathan P, Saravanakumar M, Raja B. Vanillic acid prevents the deregulation of lipid metabolism, endothelin 1 and up regulation of endothelial nitric oxide synthase in nitric oxide deficient hypertensive rats. Eur J Pharmacol 2014; 743:117-25. [DOI: 10.1016/j.ejphar.2014.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 01/09/2023]
|
47
|
Sharma MC. Comparative pharmacophore modeling and QSAR studies for structural requirements of some substituted 2-aminopyridines derivatives as inhibitors nitric oxide synthases. Interdiscip Sci 2014. [PMID: 25183347 DOI: 10.1007/s12539-013-0038-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 10/06/2013] [Accepted: 10/14/2014] [Indexed: 06/03/2023]
Abstract
The present studies are an attempt in this direction seeking for the development and comparison of QSAR models of substituted 2-aminopyridines derivatives as inhibitors of nitric oxide synthases by different feature selection methods. Comparing the two different feature selection methods, it is implicit that the model built with the selected variables by simulated annealing (SA) method gives better prediction in case of 2D and 3D QSAR modeling. The QSAR study was carried out on V-life Molecular Design Suite software and the derived best QSAR model was derived by partial component regression (PCR) method. The statistically significant best model with high correlation coefficient (r2 = 0.8408) was selected for further study. The model was further validated by means of crossed squared correlation coefficient (q2 = 0.7270 and pred r2 = 0.7889) which shows model has good predictive ability. 3D-QSAR analysis has been performed on a series of substituted 2-aminopyridines derivatives as which were screened as inhibitors of nitric oxide synthases, using the simulated annealing and step wise k-nearest neighbour Molecular Field Analysis. The best QSAR model showed q2 = 0.8377, r2 = 0.8739 and standard error = 0.1954. It was observed that steric properties predicted by k-nearest neighbour MFA contours can be related to inhibitors of nitric oxide synthases. The predictive ability of the resultant model was evaluated using a test set molecules and the predicted r2 = 0.8159. The distances between the pharmacophore sites were measured in order to confirm their significance to the activities. The results reveal that the acceptor (acc), donor (don), aliphatic and aromatic pharmacophore properties are favorable contours sites for both the activities. The two dimensional and k-nearest neighbour contour plots required for further understanding of the relationship between structural features of substituted 2-aminopyridines derivatives and their activities which should be applicable to design newer potential inducible nitric oxide synthases.
Collapse
Affiliation(s)
- Mukesh C Sharma
- Drug Design and Development Laboratory, School of Pharmacy, Devi Ahilya University, Takshila Campus, Khandwa Road, Indore, 452 001, India,
| |
Collapse
|
48
|
Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence? BIOMED RESEARCH INTERNATIONAL 2014. [PMID: 24738065 DOI: 10.1155/2014/598271.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypertension is a risk factor for other cardiovascular diseases and endothelial dysfunction was found in humans as well as in various commonly employed animal experimental models of arterial hypertension. Data from the literature indicate that, in general, endothelial dysfunction would not be the cause of experimental hypertension and may rather be secondary, that is, resulting from high blood pressure (BP). The initial mechanism of endothelial dysfunction itself may be associated with a lack of endothelium-derived relaxing factors (mainly nitric oxide) and/or accentuation of various endothelium-derived constricting factors. The involvement and role of endothelium-derived factors in the development of endothelial dysfunction in individual experimental models of hypertension may vary, depending on the triggering stimulus, strain, age, and vascular bed investigated. This brief review was focused on the participation of endothelial dysfunction, individual endothelium-derived factors, and their mechanisms of action in the development of high BP in the most frequently used rodent experimental models of arterial hypertension, including nitric oxide deficient models, spontaneous (pre)hypertension, stress-induced hypertension, and selected pharmacological and diet-induced models.
Collapse
|
49
|
Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence? BIOMED RESEARCH INTERNATIONAL 2014; 2014:598271. [PMID: 24738065 PMCID: PMC3971506 DOI: 10.1155/2014/598271] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/31/2014] [Indexed: 02/07/2023]
Abstract
Hypertension is a risk factor for other cardiovascular diseases and endothelial dysfunction was found in humans as well as in various commonly employed animal experimental models of arterial hypertension. Data from the literature indicate that, in general, endothelial dysfunction would not be the cause of experimental hypertension and may rather be secondary, that is, resulting from high blood pressure (BP). The initial mechanism of endothelial dysfunction itself may be associated with a lack of endothelium-derived relaxing factors (mainly nitric oxide) and/or accentuation of various endothelium-derived constricting factors. The involvement and role of endothelium-derived factors in the development of endothelial dysfunction in individual experimental models of hypertension may vary, depending on the triggering stimulus, strain, age, and vascular bed investigated. This brief review was focused on the participation of endothelial dysfunction, individual endothelium-derived factors, and their mechanisms of action in the development of high BP in the most frequently used rodent experimental models of arterial hypertension, including nitric oxide deficient models, spontaneous (pre)hypertension, stress-induced hypertension, and selected pharmacological and diet-induced models.
Collapse
|
50
|
Bähre H, Danker KY, Stasch JP, Kaever V, Seifert R. Nucleotidyl cyclase activity of soluble guanylyl cyclase in intact cells. Biochem Biophys Res Commun 2013; 443:1195-9. [PMID: 24380860 DOI: 10.1016/j.bbrc.2013.12.108] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/20/2013] [Indexed: 12/30/2022]
Abstract
Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and generates the second messenger cyclic GMP (cGMP). Recently, purified sGC α1β1 has been shown to additionally generate the cyclic pyrimidine nucleotides cCMP and cUMP. However, since cyclic pyrimidine nucleotide formation occurred only the presence of Mn(2+) but not Mg(2+), the physiological relevance of these in vitro findings remained unclear. Therefore, we studied cyclic nucleotide formation in intact cells. We observed NO-dependent cCMP- and cUMP formation in intact HEK293 cells overexpressing sGC α1β1 and in RFL-6 rat fibroblasts endogenously expressing sGC, using HPLC-tandem mass spectrometry. The identity of cCMP and cUMP was unambiguously confirmed by HPLC-time-of-flight mass spectrometry. Our data indicate that cCMP and cUMP play second messenger roles and that Mn(2+) is a physiological sGC cofactor.
Collapse
Affiliation(s)
- Heike Bähre
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Kerstin Y Danker
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | | | - Volkhard Kaever
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany; Core Unit Metabolomics, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|