1
|
Bacillus amyloliquefaciens MBI600 differentially induces tomato defense signaling pathways depending on plant part and dose of application. Sci Rep 2019; 9:19120. [PMID: 31836790 PMCID: PMC6910970 DOI: 10.1038/s41598-019-55645-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
The success of Bacillus amyloliquefaciens as a biological control agent relies on its ability to outgrow plant pathogens. It is also thought to interact with its plant host by inducing systemic resistance. In this study, the ability of B. amyloliquefaciens MBI600 to elicit defense (or other) responses in tomato seedlings and plants was assessed upon the expression of marker genes and transcriptomic analysis. Spray application of Serifel, a commercial formulation of MBI600, induced responses in a dose-dependent manner. Low dosage primed plant defense by activation of SA-responsive genes. Suggested dosage induced defense by mediating synergistic cross-talk between JA/ET and SA-signaling. Saturation of tomato roots or leaves with MBI600 elicitors activated JA/ET signaling at the expense of SA-mediated responses. The complex signaling network that is implicated in MBI600-tomato seedling interactions was mapped. MBI600 and flg22 (a bacterial flagellin peptide) elicitors induced, in a similar manner, biotic and abiotic stress responses by the coordinated activation of genes involved in JA/ET biosynthesis as well as hormone and redox signaling. This is the first study to suggest the activation of plant defense following the application of a commercial microbial formulation under conditions of greenhouse crop production.
Collapse
|
2
|
Bovet L, Cheval C, Hilfiker A, Battey J, Langlet D, Broye H, Schwaar J, Ozelley P, Lang G, Bakaher N, Laparra H, Goepfert S. Asparagine Synthesis During Tobacco Leaf Curing. PLANTS 2019; 8:plants8110492. [PMID: 31718005 PMCID: PMC6918383 DOI: 10.3390/plants8110492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
Senescence is a genetically controlled mechanism that modifies leaf chemistry. This involves significant changes in the accumulation of carbon- and nitrogen-containing compounds, including asparagine through the activity of asparagine synthetases. These enzymes are required for nitrogen re-assimilation and remobilization in plants; however, their mechanisms are not fully understood. Here, we report how leaf curing—a senescence-induced process that allows tobacco leaves to dry out—modifies the asparagine metabolism. We show that leaf curing strongly alters the concentration of the four main amino acids, asparagine, glutamine, aspartate, and glutamate. We demonstrate that detached tobacco leaf or stalk curing has a different impact on the expression of asparagine synthetase genes and accumulation of asparagine. Additionally, we characterize the main asparagine synthetases involved in the production of asparagine during curing. The expression of ASN1 and ASN5 genes is upregulated during curing. The ASN1-RNAi and ASN5-RNAi tobacco plant lines display significant alterations in the accumulation of asparagine, glutamine, and aspartate relative to wild-type plants. These results support the idea that ASN1 and ASN5 are key regulators of asparagine metabolism during leaf curing.
Collapse
|
3
|
Weber N, Hatsch A, Labagnere L, Heider H. Production of (S)-2-aminobutyric acid and (S)-2-aminobutanol in Saccharomyces cerevisiae. Microb Cell Fact 2017; 16:51. [PMID: 28335772 PMCID: PMC5364695 DOI: 10.1186/s12934-017-0667-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/21/2017] [Indexed: 01/09/2023] Open
Abstract
Background Saccharomyces cerevisiae (baker’s yeast) has great potential as a whole-cell biocatalyst for multistep synthesis of various organic molecules. To date, however, few examples exist in the literature of the successful biosynthetic production of chemical compounds, in yeast, that do not exist in nature. Considering that more than 30% of all drugs on the market are purely chemical compounds, often produced by harsh synthetic chemistry or with very low yields, novel and environmentally sound production routes are highly desirable. Here, we explore the biosynthetic production of enantiomeric precursors of the anti-tuberculosis and anti-epilepsy drugs ethambutol, brivaracetam, and levetiracetam. To this end, we have generated heterologous biosynthetic pathways leading to the production of (S)-2-aminobutyric acid (ABA) and (S)-2-aminobutanol in baker’s yeast. Results We first designed a two-step heterologous pathway, starting with the endogenous amino acid l-threonine and leading to the production of enantiopure (S)-2-aminobutyric acid. The combination of Bacillus subtilis threonine deaminase and a mutated Escherichia coli glutamate dehydrogenase resulted in the intracellular accumulation of 0.40 mg/L of (S)-2-aminobutyric acid. The combination of a threonine deaminase from Solanum lycopersicum (tomato) with two copies of mutated glutamate dehydrogenase from E. coli resulted in the accumulation of comparable amounts of (S)-2-aminobutyric acid. Additional l-threonine feeding elevated (S)-2-aminobutyric acid production to more than 1.70 mg/L. Removing feedback inhibition of aspartate kinase HOM3, an enzyme involved in threonine biosynthesis in yeast, elevated (S)-2-aminobutyric acid biosynthesis to above 0.49 mg/L in cultures not receiving additional l-threonine. We ultimately extended the pathway from (S)-2-aminobutyric acid to (S)-2-aminobutanol by introducing two reductases and a phosphopantetheinyl transferase. The engineered strains produced up to 1.10 mg/L (S)-2-aminobutanol. Conclusions Our results demonstrate the biosynthesis of (S)-2-aminobutyric acid and (S)-2-aminobutanol in yeast. To our knowledge this is the first time that the purely synthetic compound (S)-2-aminobutanol has been produced in vivo. This work paves the way to greener and more sustainable production of chemical entities hitherto inaccessible to synthetic biology. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0667-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nora Weber
- Evolva SA, Duggingerstrasse 23, 4153, Reinach, Switzerland.
| | - Anaëlle Hatsch
- Evolva SA, Duggingerstrasse 23, 4153, Reinach, Switzerland
| | | | - Harald Heider
- Evolva SA, Duggingerstrasse 23, 4153, Reinach, Switzerland
| |
Collapse
|
4
|
Baas-Espinola FM, Castro-Concha LA, Vázquez-Flota FA, Miranda-Ham ML. Capsaicin Synthesis Requires in Situ Phenylalanine and Valine Formation in in Vitro Maintained Placentas from Capsicum chinense. Molecules 2016; 21:E799. [PMID: 27338325 PMCID: PMC6273288 DOI: 10.3390/molecules21060799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 11/27/2022] Open
Abstract
Capsaicinoids (CAP) are nitrogenous metabolites formed from valine (Val) and phenylalanine (Phe) in the placentas of hot Capsicum genotypes. Placentas of Habanero peppers can incorporate inorganic nitrogen into amino acids and have the ability to secure the availability of the required amino acids for CAP biosynthesis. In order to determine the participation of the placental tissue as a supplier of these amino acids, the effects of blocking the synthesis of Val and Phe by using specific enzyme inhibitors were analyzed. Isolated placentas maintained in vitro were used to rule out external sources' participation. Blocking Phe synthesis, through the inhibition of arogenate dehydratase, significantly decreased CAP accumulation suggesting that at least part of Phe required in this process has to be produced in situ. Chlorsulfuron inhibition of acetolactate synthase, involved in Val synthesis, decreased not only Val accumulation but also that of CAP, pointing out that the requirement for this amino acid can also be fulfilled by this tissue. The presented data demonstrates that CAP accumulation in in vitro maintained placentas can be accomplished through the in situ availability of Val and Phe and suggests that the synthesis of the fatty acid chain moiety may be a limiting factor in the biosynthesis of these alkaloids.
Collapse
Affiliation(s)
- Fray M Baas-Espinola
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 # 130, Chuburná de Hidalgo, Mérida, Yucatán 97200, Mexico.
| | - Lizbeth A Castro-Concha
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 # 130, Chuburná de Hidalgo, Mérida, Yucatán 97200, Mexico.
| | - Felipe A Vázquez-Flota
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 # 130, Chuburná de Hidalgo, Mérida, Yucatán 97200, Mexico.
| | - María L Miranda-Ham
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 # 130, Chuburná de Hidalgo, Mérida, Yucatán 97200, Mexico.
| |
Collapse
|
5
|
Nozawa A, Takano J, Miwa K, Nakagawa Y, Fujiwara T. Cloning of cDNAs Encoding Isopropylmalate Dehydrogenase fromArabidopsis thalianaand Accumulation Patterns of Their Transcripts. Biosci Biotechnol Biochem 2014; 69:806-10. [PMID: 15849421 DOI: 10.1271/bbb.69.806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Isopropylmalate dehydrogenase (IPMDH) is an enzyme in the leucine biosynthetic pathway. We isolated three IPMDH ORF sequences from Arabidopsis thaliana, and genes corresponding to these ORF sequences were designated AtIMD1, AtIMD2, and AtIMD3. Deduced amino acid sequences of the three genes contain a putative transit-peptide for plastidic localization. AtIMD1, AtIMD2, and AtIMD3 were able to complement a leu2 mutant of yeast, suggesting that these genes encode functional IPMDH. RT-PCR analysis revealed different tissue specificity of transcript accumulation for the three genes.
Collapse
Affiliation(s)
- Akira Nozawa
- Precursory Research for Embryonic Science and Technology, Saitama 332-0012, Japan
| | | | | | | | | |
Collapse
|
6
|
Helm S, Dobritzsch D, Rödiger A, Agne B, Baginsky S. Protein identification and quantification by data-independent acquisition and multi-parallel collision-induced dissociation mass spectrometry (MS(E)) in the chloroplast stroma proteome. J Proteomics 2013; 98:79-89. [PMID: 24361574 DOI: 10.1016/j.jprot.2013.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/30/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022]
Abstract
UNLABELLED We report here a systematic evaluation of a multiplex mass spectrometry method coupled with ion mobility separation (HD-MS(E)) for the identification and quantification of proteins in the chloroplast stroma. We show that this method allows the robust quantification of reference proteins in mixtures, and it detects concentration differences with high sensitivity when three replicas are performed. Applied to the analysis of the chloroplast stroma proteome, HD-MS(E) identified and quantified many chloroplast proteins that were not previously identified in large-scale proteome analyses, suggesting HD-MS(E) as a suitable complementary tool for discovery proteomics. We find that HD-MS(E) tends to underestimate protein abundances at concentrations above 25fmol, which is likely due to ion transmission loss and detector saturation. This limitation can be circumvented by omitting the ion mobility separation step in the HD-MS(E) workflow. The robustness of protein quantification is influenced by the selection of peptides and their intensity distribution, therefore critical scrutiny of quantification results is required. Based on the HD-MS(E) quantification of chloroplast stroma proteins we performed a meta-analysis and compared published quantitative data with our results, using a parts per million normalization scheme. Important pathways in the chloroplast stroma show quantitative stability against different experimental conditions and quantification strategies. BIOLOGICAL SIGNIFICANCE Our analysis establishes MS(E)-based Hi3 quantification as a tool for the absolute quantification of proteins in the chloroplast stroma. The meta-analysis performed with a parts per million normalization scheme shows that quantitative proteomics data acquired in different labs and with different quantification strategies yield comparable results for some metabolic pathways, while others show a higher variability. Our data therefore indicate that such meta-analyses allow distinguishing robust from fine-controlled metabolic pathways.
Collapse
Affiliation(s)
- Stefan Helm
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Dirk Dobritzsch
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Anja Rödiger
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Birgit Agne
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Sacha Baginsky
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany.
| |
Collapse
|
7
|
Genetic analysis of health-related secondary metabolites in a Brassica rapa recombinant inbred line population. Int J Mol Sci 2013; 14:15561-77. [PMID: 23892600 PMCID: PMC3759873 DOI: 10.3390/ijms140815561] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/09/2013] [Accepted: 07/17/2013] [Indexed: 12/13/2022] Open
Abstract
The genetic basis of the wide variation for nutritional traits in Brassica rapa is largely unknown. A new Recombinant Inbred Line (RIL) population was profiled using High Performance Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR) analysis to detect quantitative trait loci (QTLs) controlling seed tocopherol and seedling metabolite concentrations. RIL population parent L58 had a higher level of glucosinolates and phenylpropanoids, whereas levels of sucrose, glucose and glutamate were higher in the other RIL population parent, R-o-18. QTL related to seed tocopherol (α-, β-, γ-, δ-, α-/γ- and total tocopherol) concentrations were detected on chromosomes A3, A6, A9 and A10, explaining 11%–35% of the respective variation. The locus on A3 co-locates with the BrVTE1gene, encoding tocopherol cyclase. NMR spectroscopy identified the presence of organic/amino acid, sugar/glucosinolate and aromatic compounds in seedlings. QTL positions were obtained for most of the identified compounds. Compared to previous studies, novel loci were found for glucosinolate concentrations. This work can be used to design markers for marker-assisted selection of nutritional compounds in B. rapa.
Collapse
|
8
|
|
9
|
Nguyen LV, Cox KM, Ke JS, Peele CG, Dickey LF. Genetic engineering of a Lemna isoleucine auxotroph. Transgenic Res 2012; 21:1071-83. [PMID: 22311339 DOI: 10.1007/s11248-012-9594-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 01/25/2012] [Indexed: 01/29/2023]
Abstract
Lemna, a member of the Lemnaceae or duckweed family, is a small aquatic plant that can be quickly transformed to produce recombinant proteins in a contained and controlled bioprocessing environment. The containment capability of Lemna has been further improved with the creation of an auxotroph platform that requires isoleucine supplementation for survival of transformed plant lines. Using an RNAi based approach, threonine deaminase (TD) expression was targeted and thus resulted in dramatically reduced expression of this key enzyme in the isoleucine biosynthesis pathway. Auxotrophic plants expressing RNAi for TD were generated in the presence of isoleucine and selected based on their inability to propagate without isoleucine supplementation. TD transcripts isolated from the superior auxotroph lines were shown to be less than 10% of wild type level and thus confirmed the auxotroph phenotype to be derived from the specific knock down of TD expression. When grown under optimal conditions with appropriate isoleucine supplementation, biomass accumulation of the auxotroph lines was equivalent to that of wild type plants. To demonstrate the application of this system for production of recombinant proteins, an avian influenza H5N1 hemagglutinin (HA) protein was expressed in the isoleucine auxotroph platform. The successful expression of H5N1 HA vaccine antigen, in the isoleucine auxotroph background demonstrates the applicability of using an auxotroph to express biotherapeutics and vaccines in a highly contained expression system.
Collapse
MESH Headings
- Araceae/enzymology
- Araceae/genetics
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genetic Engineering/methods
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- Hemagglutination Tests
- Hemagglutinin Glycoproteins, Influenza Virus/biosynthesis
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Influenza A Virus, H5N1 Subtype
- Isoleucine/metabolism
- Phenotype
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- RNA Interference
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Threonine Dehydratase/genetics
- Threonine Dehydratase/metabolism
- Transformation, Genetic
Collapse
Affiliation(s)
- Long V Nguyen
- Biolex Therapeutics, Inc., 158 Credle St., Pittsboro, NC 27312, USA.
| | | | | | | | | |
Collapse
|
10
|
Chung SH, Felton GW. Specificity of induced resistance in tomato against specialist lepidopteran and coleopteran species. J Chem Ecol 2011; 37:378-86. [PMID: 21455676 DOI: 10.1007/s10886-011-9937-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/02/2011] [Accepted: 03/16/2011] [Indexed: 12/21/2022]
Abstract
When challenged by herbivorous insects, plants produce a suite of antinutritive proteins that disrupt digestion and absorption of essential nutrients by the insects. We hypothesized that plants would induce distinct defense responses corresponding to the distinct midgut conditions of different herbivores. We investigated whether or not tomato responds specifically to two specialist herbivores: Colorado potato beetle (CPB; Leptinotarsa decemlineata; Coleoptera: Chrysomelidae) and tobacco hornworm (THW; Manduca sexta; Lepidoptera: Sphingidae), and we evaluated whether the induced defenses triggered by either species affect CPB growth. Tomato did not induce different defense genes in response to CPB or THW but accumulated more transcripts for some defense genes after damage by THW feeding compared to damage by CPB feeding. In addition, trypsin protease inhibitor activity and polyphenol oxidase activity were higher in plants damaged by THW than in plants damaged by CPB. Application of oral secretions from THW to wounded tomato plants increased transcripts compared to controls, but oral secretions from CPB decreased defense transcripts. CPB growth was compromised on plants damaged by either species, suggesting a low specificity of effect. Together, these data suggest distinct quantitative responses of tomato to two different specialist herbivores. Herbivore oral secretions might be responsible for these species-specific responses.
Collapse
Affiliation(s)
- Seung Ho Chung
- Department of Entomology and Center for Chemical Ecology, Penn State University, University Park, PA 16802, USA.
| | | |
Collapse
|
11
|
Adaptive evolution of threonine deaminase in plant defense against insect herbivores. Proc Natl Acad Sci U S A 2011; 108:5897-902. [PMID: 21436043 DOI: 10.1073/pnas.1016157108] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gene duplication is a major source of plant chemical diversity that mediates plant-herbivore interactions. There is little direct evidence, however, that novel chemical traits arising from gene duplication reduce herbivory. Higher plants use threonine deaminase (TD) to catalyze the dehydration of threonine (Thr) to α-ketobutyrate and ammonia as the committed step in the biosynthesis of isoleucine (Ile). Cultivated tomato and related Solanum species contain a duplicated TD paralog (TD2) that is coexpressed with a suite of genes involved in herbivore resistance. Analysis of TD2-deficient tomato lines showed that TD2 has a defensive function related to Thr catabolism in the gut of lepidopteran herbivores. During herbivory, the regulatory domain of TD2 is removed by proteolysis to generate a truncated protein (pTD2) that efficiently degrades Thr without being inhibited by Ile. We show that this proteolytic activation step occurs in the gut of lepidopteran but not coleopteran herbivores, and is catalyzed by a chymotrypsin-like protease of insect origin. Analysis of purified recombinant enzymes showed that TD2 is remarkably more resistant to proteolysis and high temperature than the ancestral TD1 isoform. The crystal structure of pTD2 provided evidence that electrostatic interactions constitute a stabilizing feature associated with adaptation of TD2 to the extreme environment of the lepidopteran gut. These findings demonstrate a role for gene duplication in the evolution of a plant defense that targets and co-opts herbivore digestive physiology.
Collapse
|
12
|
Threonine aldolases—screening, properties and applications in the synthesis of non-proteinogenic β-hydroxy-α-amino acids. Appl Microbiol Biotechnol 2010; 88:409-24. [DOI: 10.1007/s00253-010-2751-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 11/26/2022]
|
13
|
Joshi V, Joung JG, Fei Z, Jander G. Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 2010; 39:933-47. [DOI: 10.1007/s00726-010-0505-7] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/25/2010] [Indexed: 11/27/2022]
|
14
|
Zhao Z, Liu H. A quantum mechanical/molecular mechanical study on the catalysis of the pyridoxal 5'-phosphate-dependent enzyme L-serine dehydratase. J Phys Chem B 2008; 112:13091-100. [PMID: 18811194 DOI: 10.1021/jp802262m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The catalytic mechanism of a pyridoxal 5'-phosphate-dependent enzyme, l-serine dehydratase, has been investigated using ab initio quantum mechanical/molecular mechanical (QM/MM) methods. New insights into the chemical steps have been obtained, including the chemical role of the substrate carboxyl group in the Schiff base formation step and a proton-relaying mechanism involving the phosphate of the cofactor in the beta-hydroxyl-leaving step. The latter step is of no barrier and follows sequentially after the elimination of the alpha-proton, leading to a single but sequential alpha, beta-elimination step. The rate-limiting transition state is specifically stabilized by the enzyme environment. At this transition state, charges are localized on the substrate carboxyl group, as well as on the amino group of Lys41. Specific interactions of the enzyme environment with these groups are able to lower the activation barrier significantly. One major difficulty associated with studies of complicated enzymatic reactions using ab initio QM/MM models is the appropriate choices of reaction coordinates. In this study, we have made use of efficient semiempirical models and pathway optimization techniques to overcome this difficulty.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Life Sciences, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | | |
Collapse
|
15
|
A catalytic mechanism that explains a low catalytic activity of serine dehydratase like-1 from human cancer cells: Crystal structure and site-directed mutagenesis studies. Biochim Biophys Acta Gen Subj 2008; 1780:809-18. [DOI: 10.1016/j.bbagen.2008.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/29/2008] [Accepted: 01/30/2008] [Indexed: 11/23/2022]
|
16
|
Chen H, Gonzales-Vigil E, Wilkerson CG, Howe GA. Stability of plant defense proteins in the gut of insect herbivores. PLANT PHYSIOLOGY 2007. [PMID: 17416643 DOI: 10.1104/pp.107.095588] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant defense against insect herbivores is mediated in part by enzymes that impair digestive processes in the insect gut. Little is known about the evolutionary origins of these enzymes, their distribution in the plant kingdom, or the mechanisms by which they act in the protease-rich environment of the animal digestive tract. One example of such an enzyme is threonine (Thr) deaminase (TD), which in tomato (Solanum lycopersicum) serves a dual role in isoleucine (Ile) biosynthesis in planta and Thr degradation in the insect midgut. Here, we report that tomato uses different TD isozymes to perform these functions. Whereas the constitutively expressed TD1 has a housekeeping role in Ile biosynthesis, expression of TD2 in leaves is activated by the jasmonate signaling pathway in response to herbivore attack. Ingestion of tomato foliage by specialist (Manduca sexta) and generalist (Trichoplusia ni) insect herbivores triggered proteolytic removal of TD2's C-terminal regulatory domain, resulting in an enzyme that degrades Thr without being inhibited through feedback by Ile. This processed form (pTD2) of TD2 accumulated to high levels in the insect midgut and feces (frass). Purified pTD2 exhibited biochemical properties that are consistent with a postingestive role in defense. Shotgun proteomic analysis of frass from tomato-reared M. sexta identified pTD2 as one of the most abundant proteins in the excrement. Among the other tomato proteins identified were several jasmonate-inducible proteins that have a known or proposed role in anti-insect defense. Subtilisin-like proteases and other pathogenesis-related proteins, as well as proteins of unknown function, were also cataloged. We conclude that proteomic analysis of frass from insect herbivores provides a robust experimental approach to identify hyperstable plant proteins that serve important roles in defense.
Collapse
Affiliation(s)
- Hui Chen
- Department of Energy Plant Research Laboratory , Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
17
|
Chen H, Gonzales-Vigil E, Wilkerson CG, Howe GA. Stability of plant defense proteins in the gut of insect herbivores. PLANT PHYSIOLOGY 2007; 143:1954-67. [PMID: 17416643 PMCID: PMC1851804 DOI: 10.1104/pp.106.095588] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Accepted: 01/29/2007] [Indexed: 05/14/2023]
Abstract
Plant defense against insect herbivores is mediated in part by enzymes that impair digestive processes in the insect gut. Little is known about the evolutionary origins of these enzymes, their distribution in the plant kingdom, or the mechanisms by which they act in the protease-rich environment of the animal digestive tract. One example of such an enzyme is threonine (Thr) deaminase (TD), which in tomato (Solanum lycopersicum) serves a dual role in isoleucine (Ile) biosynthesis in planta and Thr degradation in the insect midgut. Here, we report that tomato uses different TD isozymes to perform these functions. Whereas the constitutively expressed TD1 has a housekeeping role in Ile biosynthesis, expression of TD2 in leaves is activated by the jasmonate signaling pathway in response to herbivore attack. Ingestion of tomato foliage by specialist (Manduca sexta) and generalist (Trichoplusia ni) insect herbivores triggered proteolytic removal of TD2's C-terminal regulatory domain, resulting in an enzyme that degrades Thr without being inhibited through feedback by Ile. This processed form (pTD2) of TD2 accumulated to high levels in the insect midgut and feces (frass). Purified pTD2 exhibited biochemical properties that are consistent with a postingestive role in defense. Shotgun proteomic analysis of frass from tomato-reared M. sexta identified pTD2 as one of the most abundant proteins in the excrement. Among the other tomato proteins identified were several jasmonate-inducible proteins that have a known or proposed role in anti-insect defense. Subtilisin-like proteases and other pathogenesis-related proteins, as well as proteins of unknown function, were also cataloged. We conclude that proteomic analysis of frass from insect herbivores provides a robust experimental approach to identify hyperstable plant proteins that serve important roles in defense.
Collapse
Affiliation(s)
- Hui Chen
- Department of Energy Plant Research Laboratory , Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
18
|
|
19
|
Lisón P, Rodrigo I, Conejero V. A novel function for the cathepsin D inhibitor in tomato. PLANT PHYSIOLOGY 2006; 142:1329-39. [PMID: 17012408 PMCID: PMC1630738 DOI: 10.1104/pp.106.086587] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 09/22/2006] [Indexed: 05/12/2023]
Abstract
Proteinaceous aspartic proteinase inhibitors are rare in nature and are described in only a few plant species. One of them corresponds to a family of cathepsin D inhibitors (CDIs) described in potato (Solanum tuberosum), involving up to 15 isoforms with a high sequence similarity. In this work, we describe a tomato (Solanum lycopersicum) wound-inducible protein called jasmonic-induced protein 21 (JIP21). Sequence analysis of its cDNA predicted a putative function as a CDI. The JIP21 gene, whose protein has been demonstrated to be glycosylated, is constitutively expressed in flowers, stem, and fruit, and is inducible to high levels by wounding and methyl jasmonate in leaves of tomato plants. The genomic sequence of JIP21 shows that the gene is intronless and reveals the presence of both a methyl jasmonate box (TGACT) and a G-box (CACGT) in the promoter. In contrast to the presumed role of JIP21 based on sequence analysis, a detailed biochemical characterization of the purified protein uncovers a different function as a strong chymotrypsin inhibitor, which questions the previously predicted inhibitory activity against aspartic proteinases. Moreover, Egyptian cotton worm (Spodoptera littoralis) larvae fed on transgenic tomato plants overexpressing JIP21 present an increase in mortality and a delay in growth when compared with larvae fed on wild-type plants. These larvae belong to the Lepidoptera family whose main digestive enzymes have been described as being Ser proteases. All these results support the notion that tomato JIP21 should be considered as a chymotrypsin inhibitor belonging to the Ser proteinase inhibitors rather than a CDI. Therefore, we propose to name this protein tomato chymotrypsin inhibitor 21 (TCI21).
Collapse
Affiliation(s)
- Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | | | | |
Collapse
|
20
|
Kang JH, Wang L, Giri A, Baldwin IT. Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. THE PLANT CELL 2006; 18:3303-20. [PMID: 17085687 PMCID: PMC1693959 DOI: 10.1105/tpc.106.041103] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 08/25/2006] [Accepted: 10/13/2006] [Indexed: 05/12/2023]
Abstract
Threonine deaminase (TD) catalyzes the conversion of Thr to alpha-keto butyrate in Ile biosynthesis; however, its dramatic upregulation in leaves after herbivore attack suggests a role in defense. In Nicotiana attenuata, strongly silenced TD transgenic plants were stunted, whereas mildly silenced TD transgenic plants had normal growth but were highly susceptible to Manduca sexta attack. The herbivore susceptibility was associated with the reduced levels of jasmonic acid-isoleucine (JA-Ile), trypsin proteinase inhibitors, and nicotine. Adding [(13)C(4)]Thr to wounds treated with oral secretions revealed that TD supplies Ile for JA-Ile synthesis. Applying Ile or JA-Ile to the wounds of TD-silenced plants restored herbivore resistance. Silencing JASMONATE-RESISTANT4 (JAR4), the N. attenuata homolog of the JA-Ile-conjugating enzyme JAR1, by virus-induced gene silencing confirmed that JA-Ile plays important roles in activating plant defenses. TD may also function in the insect gut as an antinutritive defense protein, decreasing the availability of Thr, because continuous supplementation of TD-silenced plants with large amounts (2 mmol) of Thr, but not Ile, increased M. sexta growth. However, the fact that the herbivore resistance of both TD- and JAR-silenced plants was completely restored by signal quantities (0.6 mumol) of JA-Ile treatment suggests that TD's defensive role can be attributed more to signaling than to antinutritive defense.
Collapse
Affiliation(s)
- Jin-Ho Kang
- Department of Molecular Ecology, Max-Planck-Institute of Chemical Ecology, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
21
|
Kang JH, Baldwin IT. Isolation and characterization of the threonine deaminase promoter in Nicotiana attenuata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2006; 171:435-40. [PMID: 25193640 DOI: 10.1016/j.plantsci.2006.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 04/16/2006] [Accepted: 05/04/2006] [Indexed: 05/08/2023]
Abstract
The enzyme encoded by the threonine deaminase (TD) gene catalyzes the conversion of threonine to α-keto butyrate in the biosynthesis of isoleucine (Ile). In Nicotiana attenuata, TD transcripts accumulate constitutively in cotyledons and flowers and are elicited in leaves by wounding, herbivore attack, and methyl jasmonic acid (MeJA) treatment. To understand TD's unique pattern of expression, we isolated a genomic clone of the TD gene from N. attenuata and characterized its promoter. T2 transgenic plants, each harboring single copies of fusions of different parts of the 5' non-coding region to the β-glucuronidase reporter gene, demonstrated that the promoter was constitutively expressed in seedlings and flowers, and elicited in leaves by wounding or by MeJA treatment. Promoter deletion analysis defined the promoter regions capable of directing minimal expression in cotyledons and anthers as -142 to -31bp, and in stigmas as -289 to -231bp. Regions from -142 to -31bp were found to be important for basal elicitation in leaves by both wounding and MeJA treatment. These promoter elements may prove valuable in biotechnological applications.
Collapse
Affiliation(s)
- Jin-Ho Kang
- Department of Molecular Ecology, Max-Planck Institute of Chemical Ecology, Hans Knöll Str. 8, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max-Planck Institute of Chemical Ecology, Hans Knöll Str. 8, D-07745 Jena, Germany.
| |
Collapse
|
22
|
Azevedo RA, Lancien M, Lea PJ. The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 2006; 30:143-62. [PMID: 16525757 DOI: 10.1007/s00726-005-0245-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 06/20/2005] [Indexed: 10/24/2022]
Abstract
Aspartate is the common precursor of the essential amino acids lysine, threonine, methionine and isoleucine in higher plants. In addition, aspartate may also be converted to asparagine, in a potentially competing reaction. The latest information on the properties of the enzymes involved in the pathways and the genes that encode them is described. An understanding of the overall regulatory control of the flux through the pathways is undisputedly of great interest, since the nutritive value of all cereal and legume crops is reduced due to low concentrations of at least one of the aspartate-derived amino acids. We have reviewed the recent literature and discussed in this paper possible methods by which the concentrations of the limiting amino acids may be increased in the seeds.
Collapse
Affiliation(s)
- R A Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil.
| | | | | |
Collapse
|
23
|
Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci U S A 2005; 102:19237-42. [PMID: 16357201 PMCID: PMC1323180 DOI: 10.1073/pnas.0509026102] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Indexed: 11/18/2022] Open
Abstract
The plant hormone jasmonic acid (JA) activates host defense responses against a broad spectrum of herbivores. Although it is well established that JA controls the expression of a large set of target genes in response to tissue damage, very few gene products have been shown to play a direct role in reducing herbivore performance. To test the hypothesis that JA-inducible proteins (JIPs) thwart attack by disrupting digestive processes in the insect gut, we used a MS-based approach to identify host proteins that accumulate in the midgut of Manduca sexta larvae reared on tomato (Solanum lycopersicum) plants. We show that two JIPs, arginase and threonine deaminase (TD), act in the M. sexta midgut to catabolize the essential amino acids Arg and Thr, respectively. Transgenic plants that overexpress arginase were more resistant to M. sexta larvae, and this effect was correlated with reduced levels of midgut Arg. We present evidence indicating that the ability of TD to degrade Thr in the midgut is enhanced by herbivore-induced proteolytic removal of the enzyme's C-terminal regulatory domain, which confers negative feedback regulation by isoleucine in planta. Our results demonstrate that the JA signaling pathway strongly influences the midgut protein content of phytophagous insects and support the hypothesis that catabolism of amino acids in the insect digestive tract by host enzymes plays a role in plant protection against herbivores.
Collapse
Affiliation(s)
- Hui Chen
- Department of Energy Plant Research Laboratory, Michigan Proteome Consortium, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
24
|
Diaz C, Purdy S, Christ A, Morot-Gaudry JF, Wingler A, Masclaux-Daubresse C. Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach. PLANT PHYSIOLOGY 2005; 138:898-908. [PMID: 15923326 PMCID: PMC1150406 DOI: 10.1104/pp.105.060764] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/07/2005] [Accepted: 04/12/2005] [Indexed: 05/02/2023]
Abstract
Comparison of the extent of leaf senescence depending on the genetic background of different recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana) is described. Five RILs of the Bay-0 x Shahdara population showing differential leaf senescence phenotypes (from early senescing to late senescing) were selected to determine metabolic markers to discriminate Arabidopsis lines on the basis of senescence-dependent changes in metabolism. The proportion of gamma-aminobutyric acid, leucine, isoleucine, aspartate, and glutamate correlated with (1) the age and (2) the senescence phenotype of the RILs. Differences were observed in the glycine/serine ratio even before any senescence symptoms could be detected in the rosettes. This could be used as predictive indicator for plant senescence behavior. Surprisingly, late-senescing lines appeared to mobilize glutamine, asparagine, and sulfate more efficiently than early-senescing lines. The physiological basis of the relationship between leaf senescence and flowering time was analyzed.
Collapse
Affiliation(s)
- Céline Diaz
- Unité de Nutrition Azotée des Plantes, Institut National de la Recherche Agronomique, 78 026 Versailles cedex, France
| | | | | | | | | | | |
Collapse
|
25
|
Diaz C, Purdy S, Christ A, Morot-Gaudry JF, Wingler A, Masclaux-Daubresse C. Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach. PLANT PHYSIOLOGY 2005. [PMID: 15923326 DOI: 10.1104/pp.105.060764.898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Comparison of the extent of leaf senescence depending on the genetic background of different recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana) is described. Five RILs of the Bay-0 x Shahdara population showing differential leaf senescence phenotypes (from early senescing to late senescing) were selected to determine metabolic markers to discriminate Arabidopsis lines on the basis of senescence-dependent changes in metabolism. The proportion of gamma-aminobutyric acid, leucine, isoleucine, aspartate, and glutamate correlated with (1) the age and (2) the senescence phenotype of the RILs. Differences were observed in the glycine/serine ratio even before any senescence symptoms could be detected in the rosettes. This could be used as predictive indicator for plant senescence behavior. Surprisingly, late-senescing lines appeared to mobilize glutamine, asparagine, and sulfate more efficiently than early-senescing lines. The physiological basis of the relationship between leaf senescence and flowering time was analyzed.
Collapse
Affiliation(s)
- Céline Diaz
- Unité de Nutrition Azotée des Plantes, Institut National de la Recherche Agronomique, 78 026 Versailles cedex, France
| | | | | | | | | | | |
Collapse
|
26
|
Edgar AJ. Mice have a transcribed L-threonine aldolase/GLY1 gene, but the human GLY1 gene is a non-processed pseudogene. BMC Genomics 2005; 6:32. [PMID: 15757516 PMCID: PMC555945 DOI: 10.1186/1471-2164-6-32] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Accepted: 03/09/2005] [Indexed: 11/24/2022] Open
Abstract
Background There are three pathways of L-threonine catabolism. The enzyme L-threonine aldolase (TA) has been shown to catalyse the conversion of L-threonine to yield glycine and acetaldehyde in bacteria, fungi and plants. Low levels of TA enzymatic activity have been found in vertebrates. It has been suggested that any detectable activity is due to serine hydroxymethyltransferase and that mammals lack a genuine threonine aldolase. Results The 7-exon murine L-threonine aldolase gene (GLY1) is located on chromosome 11, spanning 5.6 kb. The cDNA encodes a 400-residue protein. The protein has 81% similarity with the bacterium Thermotoga maritima TA. Almost all known functional residues are conserved between the two proteins including Lys242 that forms a Schiff-base with the cofactor, pyridoxal-5'-phosphate. The human TA gene is located at 17q25. It contains two single nucleotide deletions, in exons 4 and 7, which cause frame-shifts and a premature in-frame stop codon towards the carboxy-terminal. Expression of human TA mRNA was undetectable by RT-PCR. In mice, TA mRNA was found at low levels in a range of adult tissues, being highest in prostate, heart and liver. In contrast, serine/threonine dehydratase, another enzyme that catabolises L-threonine, is expressed very highly only in the liver. Serine dehydratase-like 1, also was most abundant in the liver. In whole mouse embryos TA mRNA expression was low prior to E-15 increasing more than four-fold by E-17. Conclusion Mice, the western-clawed frog and the zebrafish have transcribed threonine aldolase/GLY1 genes, but the human homolog is a non-transcribed pseudogene. Serine dehydratase-like 1 is a putative L-threonine catabolising enzyme.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosome Mapping
- Cloning, Molecular
- Codon, Terminator
- Computational Biology
- Crystallography, X-Ray
- DNA, Complementary/metabolism
- Embryo, Mammalian/metabolism
- Exons
- Gene Deletion
- Gene Expression Regulation, Developmental
- Glycine Hydroxymethyltransferase/genetics
- Glycine Hydroxymethyltransferase/metabolism
- Humans
- Liver/metabolism
- Lysine/chemistry
- Mice
- Molecular Sequence Data
- Open Reading Frames
- Protein Structure, Tertiary
- Pseudogenes
- Pyridoxal Phosphate/chemistry
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Species Specificity
- Time Factors
- Tissue Distribution
- Transcription, Genetic
Collapse
Affiliation(s)
- Alasdair J Edgar
- Department of Craniofacial Development, King's College, London, UK.
| |
Collapse
|
27
|
Sun L, Bartlam M, Liu Y, Pang H, Rao Z. Crystal structure of the pyridoxal-5'-phosphate-dependent serine dehydratase from human liver. Protein Sci 2005; 14:791-8. [PMID: 15689518 PMCID: PMC2279282 DOI: 10.1110/ps.041179105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
L-serine dehydratase (SDH), a member of the beta-family of pyridoxal phosphate-dependent (PLP) enzymes, catalyzes the deamination of L-serine and L-threonine to yield pyruvate or 2-oxobutyrate. The crystal structure of L-serine dehydratase from human liver (hSDH) has been solved at 2.5 A-resolution by molecular replacement. The structure is a homodimer and reveals a fold typical for beta-family PLP-dependent enzymes. Each monomer serves as an active unit and is subdivided into two distinct domains: a small domain and a PLP-binding domain that covalently anchors the cofactor. Both domains show the typical open alpha/beta architecture of PLP enzymes. Comparison with the rSDH-(PLP-OMS) holo-enzyme reveals a large structural difference in active sites caused by the artifical O-methylserine. Furthermore, the activity of hSDH-PLP was assayed and it proved to show catalytic activity. That suggests that the structure of hSDH-PLP is the first structure of the active natural holo-SDH.
Collapse
Affiliation(s)
- Lei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | | | | | | | | |
Collapse
|
28
|
Garcia EL, Mourad GS. A site-directed mutagenesis interrogation of the carboxy-terminal end of Arabidopsis thaliana threonine dehydratase/deaminase reveals a synergistic interaction between two effector-binding sites and contributes to the development of a novel selectable marker. PLANT MOLECULAR BIOLOGY 2004; 55:121-134. [PMID: 15604669 DOI: 10.1007/s11103-004-0500-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We fused four mutant omr1 alleles, encoding feedback-insensitive forms of Arabidopsis thaliana biosynthetic threonine dehydratase/deaminase (TD), to the CaMV 35S promoter and transformed these constructs into A. thaliana Columbia wild type plants. The mutant TD forms consisted of our previously isolated double mutant, omr1-1 , and three new site-directed mutants, omr1-5 , omr1-7 , and omr1-8 with single point mutations. We employed site-directed mutagenesis to assay the effects of amino acid substitutions in separate regulatory regions within the carboxy-terminal (C-term) allosteric end. TD assays and growth resistance to the isoleucine (Ile) toxic analog -O-methylthreonine (OMT) confirmed the desensitization to feedback inhibition and the viability of these mutant omr1 alleles as selectable markers, respectively. Two of the site-directed mutants, omr1-5 and omr1-7 , appeared to influence one of the two separate Ile-binding sites and had a notable 13-fold and 15-fold increase in free Ile, respectively. The omr1-8 appeared to influence the other Ile-binding site and resulted in a 2-fold increase in free Ile. The transgenic omr1-1 double mutant affecting both Ile-binding sites, however, displayed a 106-fold increase in free Ile revealing a profound synergistic interplay between these separate Ile-binding sites. While all of the four omr1 alleles conferred resistance to elevated concentrations of OMT, the progeny of omr1-1 initial transformants exhibited a bushy phenotype at the rosette stage. On the other hand, progeny of transformants omr1-5 , omr1-7 , and omr1-8 had a normal phenotype, undistinguishable from wild type. Therefore, alleles omr1-5 , omr1-7 , and omr1-8 , proved to be ideal as environmentally-friendly, dominant, selectable markers for plant transformation.
Collapse
Affiliation(s)
- Eric L Garcia
- Department of Biology, Indiana-Purdue University, 2101 East Coliseum Blvd, IN, USA
| | | |
Collapse
|
29
|
Schittko U, Baldwin IT. Constraints to herbivore-induced systemic responses: bidirectional signaling along orthostichies in Nicotiana attenuata. J Chem Ecol 2003; 29:763-70. [PMID: 12757332 DOI: 10.1023/a:1022833022672] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the impact of leaf vascular connections on systemically transmitted herbivore-induced gene expression in Nicotiana attenuata. Although systemic signaling is clearly associated with the plant vascular system, few studies consider vascular architecture when measuring systemically induced defenses. N. attenuata is a plant with dispersed phyllotaxis approximating 3/8 in the rosette stage of growth. We mimicked Manduca sexta herbivory by introducing larval regurgitant to wounds produced with a standardized continuous mechanical wounding and investigated mRNA accumulation of genes. Herbivory in N. attenuata induces the expression of genes coding for a proteinase inhibitor protein (PI), threonine deaminase (TD, EC 4.3.1.19), a luminal-binding protein (BiP), and an alpha-dioxygenase (alpha-DOX). We measured the systemic response of sink leaves when orthostichous (growing at an angular distance of 0 degrees) source leaves were treated, and vice versa, and compared it to the systemic response of leaves growing at the maximum angular distance of 180 degrees. Vascular architecture clearly controlled the intensity of systemic mRNA accumulation within the 4-hr time frame of the experiment. In addition, we found signal translocation to be bidirectional, travelling from source to sink as well as from sink to source leaves, which argues against a phloem-based assimilate-linked signal identity.
Collapse
Affiliation(s)
- Ursula Schittko
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Winzerlaer Strasse 10, D-07745 Jena, Germany
| | | |
Collapse
|
30
|
Schittko U, Hermsmeier D, Baldwin IT. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. II. Accumulation of plant mRNAs in response to insect-derived cues. PLANT PHYSIOLOGY 2001; 125:701-10. [PMID: 11161027 PMCID: PMC64871 DOI: 10.1104/pp.125.2.701] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2000] [Revised: 07/24/2000] [Accepted: 09/20/2000] [Indexed: 05/18/2023]
Abstract
The transcriptional changes in Nicotiana attenuata Torr. ex Wats. elicited by attack from Manduca sexta larvae were previously characterized by mRNA differential display (D. Hermsmeier, U. Schittko, I.T. Baldwin [2001] Plant Physiol 125: 683-700). Because herbivore attack causes wounding, we disentangled wound-induced changes from those elicited by M. sexta oral secretions and regurgitant (R) with a northern analysis of a subset of the differentially expressed transcripts encoding threonine deaminase, pathogen-induced oxygenase, a photosystem II light-harvesting protein, a retrotransposon homolog, and three unknown genes. R extensively modified wound-induced responses by suppressing wound-induced transcripts (type I) or amplifying the wound-induced response (type II) further down-regulating wound-suppressed transcripts (type IIa) or up-regulating wound-induced transcripts (type IIb). It is interesting that although all seven genes displayed their R-specific patterns in the treated tissues largely independently of the leaf or plant developmental stage, only the type I genes displayed strong systemic induction. Ethylene was not responsible for any of the specific patterns of expression. R collected from different tobacco feeding insects, M. sexta, Manduca quinquemaculata, and Heliothis virescens, as well as from different instars of M. sexta were equally active. The active components of M. sexta R were heat stable and active in minute amounts, comparable with real transfer rates during larval feeding. Specific expression patterns may indicate that the plant is adjusting its wound response to efficiently fend off M. sexta, but may also be advantageous to the larvae, especially when R suppress wound-induced plant responses.
Collapse
Affiliation(s)
- U Schittko
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Carl Zeiss Promenade 10, D-07745 Jena, Germany
| | | | | |
Collapse
|
31
|
Hermsmeier D, Schittko U, Baldwin IT. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs. PLANT PHYSIOLOGY 2001; 125:683-700. [PMID: 11161026 PMCID: PMC64870 DOI: 10.1104/pp.125.2.683] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2000] [Revised: 07/24/2000] [Accepted: 09/20/2000] [Indexed: 05/18/2023]
Abstract
Plants respond to herbivore attack with a dramatic functional reorganization that involves the activation of direct and indirect defenses and tolerance, which in turn make large demands on primary metabolism. Here we provide the first characterization of the transcriptional reorganization that occurs after insect attack in a model plant-herbivore system: Nicotiana attenuata Torr. ex Wats.-Manduca sexta. We used mRNA differential display to characterize one-twentieth of the insect-responsive transcriptome of N. attenuata and verified differential expression for 27 cDNAs. Northern analyses were used to study the effects of folivory and exposure to airborne methyl jasmonate and for kinetic analyses throughout a 16-h- light/8-h-dark cycle. Sequence similarity searches allowed putative functions to be assigned to 15 transcripts. Genes were related to photosynthesis, electron transport, cytoskeleton, carbon and nitrogen metabolism, signaling, and a group responding to stress, wounding, or invasion of pathogens. Overall, transcripts involved in photosynthesis were strongly down-regulated, whereas those responding to stress, wounding, and pathogens and involved in shifting carbon and nitrogen to defense were strongly up-regulated. The majority of transcripts responded similarly to airborne methyl jasmonate and folivory, and had tissue- and diurnal-specific patterns of expression. Transcripts encoding Thr deaminase (TD) and a putative retrotransposon were absent in control plants, but were strongly induced after herbivory. Full-length sequences were obtained for TD and the pathogen-inducible alpha-dioxygenase, PIOX. Effects of abiotic and biotic stimuli were investigated for transcripts encoding TD, importin alpha, PIOX, and a GAL83-like kinase cofactor.
Collapse
Affiliation(s)
- D Hermsmeier
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Carl Zeiss Promenade 10, D-07745 Jena, Germany
| | | | | |
Collapse
|
32
|
Tumova S, Woods A, Couchman JR. Heparan sulfate chains from glypican and syndecans bind the Hep II domain of fibronectin similarly despite minor structural differences. J Biol Chem 2000; 275:9410-7. [PMID: 10734086 DOI: 10.1074/jbc.275.13.9410] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Numerous functions of heparan sulfate proteoglycans are mediated through interactions between their heparan sulfate glycosaminoglycan chains and extracellular ligands. Ligand binding specificity for some molecules, including many growth factors, is determined by complex heparan sulfate fine structure, where highly sulfated, iduronate-rich domains alternate with N-acetylated domains. Syndecan-4, a cell surface heparan sulfate proteoglycan, has a distinct role in cell adhesion, suggesting its chains may differ from those of other cell surface proteoglycans. To determine whether the specific role of syndecan-4 correlates with a distinct heparan sulfate structure, we have analyzed heparan sulfate chains from the different surface proteoglycans of a single fibroblast strain and compared their ability to bind the Hep II domain of fibronectin, a ligand known to promote focal adhesion formation through syndecan-4. Despite distinct molecular masses of glypican and syndecan glycosaminoglycans and minor differences in disaccharide composition and sulfation pattern, the overall proportion and distribution of sulfated regions and the affinity for the Hep II domain were similar. Therefore, adhesion regulation requires core protein determinants of syndecan-4.
Collapse
Affiliation(s)
- S Tumova
- Department of Cell Biology and Cell Adhesion and the Matrix Research Center, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
33
|
Woods A, Longley RL, Tumova S, Couchman JR. Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts. Arch Biochem Biophys 2000; 374:66-72. [PMID: 10640397 DOI: 10.1006/abbi.1999.1607] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell adhesion to extracellular matrix involves signaling mechanisms which control attachment, spreading and the formation of focal adhesions and stress fibers. Fibronectin can provide sufficient signals for all three processes, even when protein synthesis is prevented by cycloheximide. Primary fibroblasts attach and spread following integrin ligation, but do not form focal adhesions unless treated with a heparin-binding fragment of fibronectin (HepII), a peptide from this domain, or phorbol esters to activate protein kinase C. Syndecan-4 heparan sulfate proteoglycan is a transmembrane component present together with integrins in focal adhesions. Syndecan-4 binds and activates protein kinase Calpha, whose activity is needed for focal adhesion formation. We now report that the glycosaminoglycan chains of syndecan-4 bind recombinant HepII and it is incorporated into forming focal adhesions.
Collapse
Affiliation(s)
- A Woods
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA.
| | | | | | | |
Collapse
|
34
|
Dante RA, Neto GC, Leite A, Yunes JA, Arruda P. The DapA gene encoding the lysine biosynthetic enzyme dihydrodipicolinate synthase from Coix lacryma-jobi: cloning, characterization, and expression analysis. PLANT MOLECULAR BIOLOGY 1999; 41:551-561. [PMID: 10608664 DOI: 10.1023/a:1006367116073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Dihydrodipicolinate synthase (DHPS) is the main enzyme of a specific branch of the aspartate pathway leading to lysine biosynthesis in higher plants. We have cloned and characterized the DHPS-encoding Dap)A gene from the maize-related grass Coix lacryiana-jobi. The DapA open reading frame is interrupted by two introns and encodes the 326 amino acid-long Coix DHPS protein, which is 95% identical to the maize DHPS protein. Coix DNA gel blot analysis with maize DHPS cDNA as a probe showed a single strongly hybridizing band along with faint bands. RNA gel blot analysis showed that DHPS transcripts are present in coleoptiles, embryos, endosperms, and roots but are almost undetectable in blades of young leaves of both Coix and maize. The 5'-flanking region of the DapA gene contains a TGACTC GCN4-like element located 372 bp upstream the putative translation start codon. Steady-state levels of DHPS mRNA were slightly reduced in the endosperms and embryos of the maize lysine-rich opaque2 mutants when compared with those in normal kernels. Selective binding assay with the maize Opaque2 protein (O2) showed that the GCN4-like element is not an O2 binding site, suggesting that the DHPS gene is not under the control of O2.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- DNA-Binding Proteins/metabolism
- Gene Dosage
- Gene Expression Regulation, Developmental/radiation effects
- Gene Expression Regulation, Enzymologic/radiation effects
- Gene Expression Regulation, Plant/radiation effects
- Genes/genetics
- Hydro-Lyases/genetics
- Hydro-Lyases/metabolism
- Light
- Lysine/biosynthesis
- Molecular Sequence Data
- Plant Proteins
- Poaceae/enzymology
- Poaceae/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription Factors/metabolism
- Zea mays/genetics
Collapse
Affiliation(s)
- R A Dante
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
35
|
Ogawa H, Takusagawa F, Wakaki K, Kishi H, Eskandarian MR, Kobayashi M, Date T, Huh NH, Pitot HC. Rat liver serine dehydratase. Bacterial expression and two folding domains as revealed by limited proteolysis. J Biol Chem 1999; 274:12855-60. [PMID: 10212273 DOI: 10.1074/jbc.274.18.12855] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A pCW vector harboring rat liver serine dehydratase cDNA was expressed in Escherichia coli. The expressed level was about 5-fold higher in E. coli BL21 than in JM109 cell extract; the former lacked two kinds of proteases. Immunoblot analysis revealed the occurrence of a derivative other than serine dehydratase in the JM109 cell extract. The recombinant enzyme was purified to homogeneity. Staphylococcus aureus V8 protease and trypsin cleaved the enzyme at Glu-206 and Lys-220, respectively, with a concomitant loss of enzyme activity. Spectrophotometrically, the nicked enzyme showed a approximately 50% reduced capacity for binding of the coenzyme pyridoxal phosphate and no spectral change of circular dichroism in the region at 300-480 nm, whereas circular dichroism spectra of both enzymes in the far-UV region were similar, suggesting that proteolysis impairs the coenzyme binding without an accompanying gross change of the secondary structure. Whereas the nicked enzyme behaved like the intact enzyme on Sephadex G-75 column chromatography, it was dissociated into two fragments on the column containing 6 M urea. Upon the removal of urea, both fragments spontaneously refolded. These results suggest that serine dehydratase consists of two folding domains connected by a region that is very susceptible to proteases.
Collapse
Affiliation(s)
- H Ogawa
- Department of Biochemistry, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tumova S, Bame KJ. The interaction between basic fibroblast growth factor and heparan sulfate can prevent the in vitro degradation of the glycosaminoglycan by Chinese hamster ovary cell heparanases. J Biol Chem 1997; 272:9078-85. [PMID: 9083034 DOI: 10.1074/jbc.272.14.9078] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Heparan sulfate proteoglycans on Chinese hamster ovary (CHO) cell surfaces can bind and internalize basic fibroblast growth factor (bFGF). We have investigated whether this interaction affects heparan sulfate catabolism in vitro by measuring the ability of partially purified CHO heparanase activities to degrade 35S-labeled heparan sulfate glycosaminoglycans in the absence or presence of bFGF. Our studies show that the presence of the growth factor prevents partially purified heparanases from degrading the nascent 81-kDa chains to short 6-kDa products, whether the glycosaminoglycan is free in solution or covalently bound to core proteins. A 30-60 molar excess of the growth factor is required to inhibit completely chain degradation by heparanases, implying that multiple bFGF molecules must be bound to the glycosaminoglycan to prevent heparanase-catalyzed catabolism. This hypothesis is supported by protection studies indicating that nascent CHO heparan sulfate glycosaminoglycans have at least four to eight bFGF binding sites/chain. It does not appear, however, that the growth factor inhibits heparanase-catalyzed degradation of the glycosaminoglycan by binding to the sequence cleaved by the enzyme. Both the nascent and short chains bind bFGF with similar affinity (Kd values of 27.0 +/- 3.5 and 38.9 +/- 5.1 nM, respectively), indicating that heparanase activities do not destroy the bFGF binding sites. Rather, our results suggest that the growth factor interferes sterically with heparanase action by binding the heparan sulfate chain at a sequence next to the cleavage site or at a secondary site recognized by the enzyme.
Collapse
Affiliation(s)
- S Tumova
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110-2499, USA
| | | |
Collapse
|
37
|
Zhu-Shimoni JX, Lev-Yadun S, Matthews B, Galili G. Expression of an Aspartate Kinase Homoserine Dehydrogenase Gene Is Subject to Specific Spatial and Temporal Regulation in Vegetative Tissues, Flowers, and Developing Seeds. PLANT PHYSIOLOGY 1997; 113:695-706. [PMID: 12223636 PMCID: PMC158187 DOI: 10.1104/pp.113.3.695] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although the regulation of amino acid synthesis has been studied extensively at the biochemical level, it is still not known how genes encoding amino acid biosynthesis enzymes are regulated during plant development. In the present report, we have used the [beta]-glucuronidase (GUS) reporter gene to study the regulation of expression of an Arabidopsis thaliana aspartate kinase-homoserine dehydrogenase (AK/HSD) gene in transgenic tobacco plants. The polypeptide encoded by the AK/HSD gene comprises two linked key enzymes in the biosynthesis of aspartate-family amino acids. AK/HSD-GUS gene expression was highly stimulated in apical and lateral meristems, lateral buds, young leaves, trichomes, vascular and cortical tissues of growing stems, tapetum and other tissues of anthers, pollen grains, various parts of the developing gynoecium, developing seeds, and, in some transgenic plants, also in stem and leaf epidermal trichomes. AK/HSD-GUS gene expression gradually dimished upon maturation of leaves, stems, floral tissues, and embryos. GUS expression was relatively low in roots. During seed development, expression of the AK/HSD gene in the embryo was coordinated with the initiation and onset of storage protein synthesis, whereas in the endosperm it was coordinated with the onset of seed desiccation. Upon germination, AK/HSD-GUS gene expression in the hypocotyl and the cotyledons was significantly affected by light. The expression pattern of the A. thaliana AK/HSD-GUS reporter gene positively correlated with the levels of aspartate-family amino acids and was also very similar to the expression pattern of the endogenous tobacco AK/HSD mRNA as determined by in situ hybridization.
Collapse
Affiliation(s)
- J. X. Zhu-Shimoni
- Department of Plant Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel (J.X.Z.-S., S.L.-Y., G.G.)
| | | | | | | |
Collapse
|
38
|
Schaller A, Bergey DR, Ryan CA. Induction of wound response genes in tomato leaves by bestatin, an inhibitor of aminopeptidases. THE PLANT CELL 1995; 7:1893-8. [PMID: 8535142 PMCID: PMC161047 DOI: 10.1105/tpc.7.11.1893] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bestatin, an inhibitor of some aminopeptidases in plants and animals, is a powerful inducer of defense genes in tomato leaves; these genes are also induced by herbivore attacks, mechanical wounding, systemin, and methyl jasmonate. Unlike wounding and systemin, bestatin does not cause an increase in intracellular jasmonic acid concentrations, and inhibitors of the octadecanoid pathway do not inhibit induction by bestatin. Furthermore, defense genes were induced by bestatin in a mutant tomato line (JL-5) with a defect in the octadecanoid pathway. Bestatin therefore appears to be exerting its effects close to the level of transcriptional control of these genes, where it may be inhibiting a regulatory protease.
Collapse
Affiliation(s)
- A Schaller
- Institute of Biological Chemistry, Washington State University, Pullman 99164-6340, USA
| | | | | |
Collapse
|
39
|
Singh BK, Shaner DL. Biosynthesis of Branched Chain Amino Acids: From Test Tube to Field. THE PLANT CELL 1995. [PMID: 12242394 DOI: 10.2307/3870048] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- B. K. Singh
- American Cyanamid Company, P.O. Box 400, Princeton, New Jersey 08543-0400
| | | |
Collapse
|
40
|
Herrmann KM. The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds. THE PLANT CELL 1995; 7:907-919. [PMID: 12242393 PMCID: PMC160886 DOI: 10.1105/tpc.7.7.907] [Citation(s) in RCA: 244] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- K. M. Herrmann
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
41
|
Singh BK, Shaner DL. Biosynthesis of Branched Chain Amino Acids: From Test Tube to Field. THE PLANT CELL 1995; 7:935-944. [PMID: 12242394 PMCID: PMC160890 DOI: 10.1105/tpc.7.7.935] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- B. K. Singh
- American Cyanamid Company, P.O. Box 400, Princeton, New Jersey 08543-0400
| | | |
Collapse
|
42
|
Herrmann KM. The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds. THE PLANT CELL 1995. [PMID: 12242393 DOI: 10.2307/3870046] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- K. M. Herrmann
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
43
|
John SJ, Srivastava V, Guha-Mukherjee S. Cloning and sequencing of chickpea cDNA coding for threonine deaminase. PLANT PHYSIOLOGY 1995; 107:1023-4. [PMID: 7716234 PMCID: PMC157225 DOI: 10.1104/pp.107.3.1023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- S J John
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
44
|
Herrmann KM. The shikimate pathway as an entry to aromatic secondary metabolism. PLANT PHYSIOLOGY 1995; 107:7-12. [PMID: 7870841 PMCID: PMC161158 DOI: 10.1104/pp.107.1.7] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- K M Herrmann
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
45
|
Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E. The TM5 MADS Box Gene Mediates Organ Differentiation in the Three Inner Whorls of Tomato Flowers. THE PLANT CELL 1994. [PMID: 12244235 DOI: 10.2307/3869637] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The tomato MADS box gene no. 5 (TM5) is shown here to be expressed in meristematic domains fated to form the three inner whorls-petals, stamens, and gynoecia-of the tomato flower. TM5 is also expressed during organogenesis and in the respective mature organs of these three whorls. This is unlike the major organ identity genes of the MADS box family from Antirrhinum and Arabidopsis, which function in overlapping primordial territories consisting of only two floral whorls each. The developmental relevance of the unique expression pattern of this putative homeotic gene was examined in transgenic plants. In agreement with the expression patterns, antisense RNA of the TM5 gene conferred both early and late alterations of morphogenetic markers. Early defects consist of additional whorls or of a wrong number of organs per whorl. Late, organ-specific changes include evergreen, cauline, and unabscised petals; green, dialytic, and sterile anthers; and sterile carpels and defective styles on which glandular trichomes characteristic of sepals and petals are ectopically formed. However, a complete homeotic transformation of either organ was not observed. The early and late floral phenotypes of TM5 antisense plants suggest that TM5 mediates two unrelated secondary regulatory systems. One system is the early function of the floral meristem identity genes, and the other system is the function of the major floral organ identity genes.
Collapse
Affiliation(s)
- L. Pnueli
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
46
|
Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. THE PLANT CELL 1994; 6:163-73. [PMID: 7908549 PMCID: PMC160424 DOI: 10.1105/tpc.6.2.163] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
To understand the details of the homeotic systems that govern flower development in tomato and to establish the ground rules for the judicious manipulation of this floral system, we have isolated the tomato AGAMOUS gene, designated TAG1, and examined its developmental role in antisense and sense transgenic plants. The AGAMOUS gene of Arabidopsis is necessary for the proper development of stamens and carpels and the prevention of indeterminate growth of the floral meristem. Early in flower development, TAG1 RNA accumulates uniformly in the cells fated to differentiate into stamens and carpels and later becomes restricted to specific cell types within these organs. Transgenic plants that express TAG1 antisense RNA display homeotic conversion of third whorl stamens into petaloid organs and the replacement of fourth whorl carpels with pseudocarpels bearing indeterminate floral meristems with nested perianth flowers. A complementary phenotype was observed in transgenic plants expressing the TAG1 sense RNA in that first whorl sepals were converted into mature pericarpic leaves and sterile stamens replaced the second whorl petals.
Collapse
Affiliation(s)
- L Pnueli
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
47
|
Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E. The TM5 MADS Box Gene Mediates Organ Differentiation in the Three Inner Whorls of Tomato Flowers. THE PLANT CELL 1994; 6:175-186. [PMID: 12244235 PMCID: PMC160425 DOI: 10.1105/tpc.6.2.175] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The tomato MADS box gene no. 5 (TM5) is shown here to be expressed in meristematic domains fated to form the three inner whorls-petals, stamens, and gynoecia-of the tomato flower. TM5 is also expressed during organogenesis and in the respective mature organs of these three whorls. This is unlike the major organ identity genes of the MADS box family from Antirrhinum and Arabidopsis, which function in overlapping primordial territories consisting of only two floral whorls each. The developmental relevance of the unique expression pattern of this putative homeotic gene was examined in transgenic plants. In agreement with the expression patterns, antisense RNA of the TM5 gene conferred both early and late alterations of morphogenetic markers. Early defects consist of additional whorls or of a wrong number of organs per whorl. Late, organ-specific changes include evergreen, cauline, and unabscised petals; green, dialytic, and sterile anthers; and sterile carpels and defective styles on which glandular trichomes characteristic of sepals and petals are ectopically formed. However, a complete homeotic transformation of either organ was not observed. The early and late floral phenotypes of TM5 antisense plants suggest that TM5 mediates two unrelated secondary regulatory systems. One system is the early function of the floral meristem identity genes, and the other system is the function of the major floral organ identity genes.
Collapse
Affiliation(s)
- L. Pnueli
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
48
|
Molecular regulation of amino acid biosynthesis in plants. Amino Acids 1994; 7:165-74. [DOI: 10.1007/bf00814158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1993] [Accepted: 12/12/1993] [Indexed: 10/26/2022]
|
49
|
Möckel B, Eggeling L, Sahm H. Functional and structural analyses of threonine dehydratase from Corynebacterium glutamicum. J Bacteriol 1992; 174:8065-72. [PMID: 1459955 PMCID: PMC207545 DOI: 10.1128/jb.174.24.8065-8072.1992] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Threonine dehydratase activity is an important element in the flux control of isoleucine biosynthesis. The enzyme of Corynebacterium glutamicum demonstrates a marked sigmoidal dependence of initial velocity on the threonine concentration, a dependence that is consistent with substrate-promoted conversion of the enzyme from a low-activity to a high-activity conformation. In the presence of the negative allosteric effector isoleucine, the K0.5 increased from 21 to 78 mM and the cooperativity, as expressed by the Hill coefficient increased from 2.4 to 3.7. Valine promoted opposite effects: the K0.5 was reduced to 12 mM, and the enzyme exhibited almost no cooperativity. Sequence determination of the C. glutamicum gene for this enzyme revealed an open reading frame coding for a polypeptide of 436 amino acids. From this information and the molecular weight determination of the native enzyme, it follows that the dehydratase is a tetramer with a total mass of 186,396 daltons. Comparison of the deduced polypeptide sequence with the sequences of known threonine dehydratases revealed surprising differences from the C. glutamicum enzyme in the carboxy-terminal portion. This portion is greatly reduced in size, and a large gap of 95 amino acids must be introduced to achieve homology. Therefore, the C. glutamicum enzyme must be considered a small variant of threonine dehydratase that is typically controlled by isoleucine and valine but has an altered structure reflecting a topological difference in the portion of the protein most likely to be important for allosteric regulation.
Collapse
Affiliation(s)
- B Möckel
- Institut für Biotechnologie, Forschungszentrum, Jülich, Germany
| | | | | |
Collapse
|
50
|
Hildmann T, Ebneth M, Peña-Cortés H, Sánchez-Serrano JJ, Willmitzer L, Prat S. General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. THE PLANT CELL 1992; 4:1157-70. [PMID: 1392612 PMCID: PMC160206 DOI: 10.1105/tpc.4.9.1157] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Exogenous application of abscisic acid (ABA) has been shown to induce a systemic pattern of proteinase inhibitor II (pin2) mRNA accumulation identical to that induced by mechanical wounding. Evidence is presented that the ABA-specific response is not restricted to pin2 genes but appears to be part of a general reaction to wound stress. Four other wound-induced, ABA-responsive genes that encode two additional proteinase inhibitors, the proteolytic enzyme leucine aminopeptidase, and the biosynthetic enzyme threonine deaminase were isolated from potato plants. Wounding or treatment with ABA resulted in a pattern of accumulation of these mRNAs very similar to that of pin2. ABA-deficient plants did not accumulate any of the mRNAs upon wounding, although they showed normal levels of expression upon ABA treatment. Also, application of methyl jasmonate (MeJA) induced a strong accumulation of these transcripts, both in wild-type and in ABA-deficient plants, thus supporting a role for jasmonic acid as an intermediate in the signaling pathway that leads from ABA accumulation in response to wounding to the transcriptional activation of the genes.
Collapse
Affiliation(s)
- T Hildmann
- Institut für Genbiologische Forschung, Berlin GmbH, Germany
| | | | | | | | | | | |
Collapse
|