1
|
Cyanobacterial membrane dynamics in the light of eukaryotic principles. Biosci Rep 2023; 43:232406. [PMID: 36602300 PMCID: PMC9950537 DOI: 10.1042/bsr20221269] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Intracellular compartmentalization is a hallmark of eukaryotic cells. Dynamic membrane remodeling, involving membrane fission/fusion events, clearly is crucial for cell viability and function, as well as membrane stabilization and/or repair, e.g., during or after injury. In recent decades, several proteins involved in membrane stabilization and/or dynamic membrane remodeling have been identified and described in eukaryotes. Yet, while typically not having a cellular organization as complex as eukaryotes, also bacteria can contain extra internal membrane systems besides the cytoplasmic membranes (CMs). Thus, also in bacteria mechanisms must have evolved to stabilize membranes and/or trigger dynamic membrane remodeling processes. In fact, in recent years proteins, which were initially defined being eukaryotic inventions, have been recognized also in bacteria, and likely these proteins shape membranes also in these organisms. One example of a complex prokaryotic inner membrane system is the thylakoid membrane (TM) of cyanobacteria, which contains the complexes of the photosynthesis light reaction. Cyanobacteria are evolutionary closely related to chloroplasts, and extensive remodeling of the internal membrane systems has been observed in chloroplasts and cyanobacteria during membrane biogenesis and/or at changing light conditions. We here discuss common principles guiding eukaryotic and prokaryotic membrane dynamics and the proteins involved, with a special focus on the dynamics of the cyanobacterial TMs and CMs.
Collapse
|
2
|
de Luna-Valdez LA, Villaseñor-Salmerón CI, Cordoba E, Vera-Estrella R, León-Mejía P, Guevara-García AA. Functional analysis of the Chloroplast GrpE (CGE) proteins from Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:293-306. [PMID: 30927692 DOI: 10.1016/j.plaphy.2019.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/26/2019] [Accepted: 03/17/2019] [Indexed: 05/20/2023]
Abstract
The function of proteins depends on specific partners that regulate protein folding, degradation and protein-protein interactions, such partners are the chaperones and cochaperones. In chloroplasts, proteins belonging to several families of chaperones have been identified: chaperonins (Cpn60s), Hsp90s (Hsp90-5/Hsp90C), Hsp100s (Hsp93/ClpC) and Hsp70s (cpHsc70s). Several lines of evidence have demonstrated that cpHsc70 chaperones are involved in molecular processes like protein import, protein folding and oligomer formation that impact important physiological aspects in plants such as thermotolerance and thylakoid biogenesis. Despite the vast amount of data existing around the function of cpHcp70s chaperones, very little attention has been paid to the roles of DnaJ and GrpE cochaperones in the chloroplast. In this study, we performed a phylogenetic analysis of the chloroplastic GrpE (CGE) proteins from 71 species. Based on their phylogenetic relationships and on a motif enrichment analysis, we propose a classification system for land plants' CGEs, which include two independent groups with specific primary structure traits. Furthermore, using in vivo assays we determined that the two CGEs from A. thaliana (AtCGEs) complement the mutant phenotype displayed by a knockout E. coli strain defective in the bacterial grpE gene. Moreover, we determined in planta that the two AtCGEs are bona fide chloroplastic proteins, which form the essential homodimers needed to establish direct physical interactions with the cpHsc70-1 chaperone. Finally, we found evidence suggesting that AtCGE1 is involved in specific physiological phenomena in A. thaliana, such as the chloroplastic response to heat stress, and the correct oligomerization of the photosynthesis-related LHCII complex.
Collapse
Affiliation(s)
- L A de Luna-Valdez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - C I Villaseñor-Salmerón
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - E Cordoba
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - R Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - P León-Mejía
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - A A Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| |
Collapse
|
3
|
The role of chloroplasts in plant pathology. Essays Biochem 2018; 62:21-39. [PMID: 29273582 DOI: 10.1042/ebc20170020] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Plants have evolved complex tolerance systems to survive abiotic and biotic stresses. Central to these programmes is a sophisticated conversation of signals between the chloroplast and the nucleus. In this review, we examine the antagonism between abiotic stress tolerance (AST) and immunity: we propose that to generate immunogenic signals, plants must disable AST systems, in particular those that manage reactive oxygen species (ROS), while the pathogen seeks to reactivate or enhance those systems to achieve virulence. By boosting host systems of AST, pathogens trick the plant into suppressing chloroplast immunogenic signals and steer the host into making an inappropriate immune response. Pathogens disrupt chloroplast function, both transcriptionally-by secreting effectors that alter host gene expression by interacting with defence-related kinase cascades, with transcription factors, or with promoters themselves-and post-transcriptionally, by delivering effectors that enter the chloroplast or alter the localization of host proteins to change chloroplast activities. These mechanisms reconfigure the chloroplast proteome and chloroplast-originating immunogenic signals in order to promote infection.
Collapse
|
4
|
Paila YD, Richardson LGL, Schnell DJ. New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J Mol Biol 2014; 427:1038-1060. [PMID: 25174336 DOI: 10.1016/j.jmb.2014.08.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 01/04/2023]
Abstract
The translocons at the outer (TOC) and the inner (TIC) envelope membranes of chloroplasts mediate the targeting and import of several thousand nucleus-encoded preproteins that are required for organelle biogenesis and homeostasis. The cytosolic events in preprotein targeting remain largely unknown, although cytoplasmic chaperones have been proposed to facilitate delivery to the TOC complex. Preprotein recognition is mediated by the TOC GTPase receptors Toc159 and Toc34. The receptors constitute a GTP-regulated switch, which initiates membrane translocation via Toc75, a member of the Omp85 (outer membrane protein 85)/TpsB (two-partner secretion system B) family of bacterial, plastid and mitochondrial β-barrel outer membrane proteins. The TOC receptor systems have diversified to recognize distinct sets of preproteins, thereby maximizing the efficiency of targeting in response to changes in gene expression during developmental and physiological events that impact organelle function. The TOC complex interacts with the TIC translocon to allow simultaneous translocation of preproteins across the envelope. Both the two inner membrane complexes, the Tic110 and 1 MDa complexes, have been implicated as constituents of the TIC translocon, and it remains to be determined how they interact to form the TIC channel and assemble the import-associated chaperone network in the stroma that drives import across the envelope membranes. This review will focus on recent developments in our understanding of the mechanisms and diversity of the TOC-TIC systems. Our goal is to incorporate these recent studies with previous work and present updated or revised models for the function of TOC-TIC in protein import.
Collapse
Affiliation(s)
- Yamuna D Paila
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| | - Lynn G L Richardson
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| | - Danny J Schnell
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| |
Collapse
|
5
|
Pulido P, Toledo-Ortiz G, Phillips MA, Wright LP, Rodríguez-Concepción M. Arabidopsis J-protein J20 delivers the first enzyme of the plastidial isoprenoid pathway to protein quality control. THE PLANT CELL 2013; 25:4183-94. [PMID: 24104567 PMCID: PMC3877790 DOI: 10.1105/tpc.113.113001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/23/2013] [Accepted: 09/19/2013] [Indexed: 05/22/2023]
Abstract
Plastids provide plants with metabolic pathways that are unique among eukaryotes, including the methylerythritol 4-phosphate pathway for the production of isoprenoids essential for photosynthesis and plant growth. Here, we show that the first enzyme of the pathway, deoxyxylulose 5-phosphate synthase (DXS), interacts with the J-protein J20 in Arabidopsis thaliana. J-proteins typically act as adaptors that provide substrate specificity to heat shock protein 70 (Hsp70), a molecular chaperone. Immunoprecipitation experiments showed that J20 and DXS are found together in vivo and confirmed the presence of Hsp70 chaperones in DXS complexes. Mutants defective in J20 activity accumulated significantly increased levels of DXS protein (but no transcripts) and displayed reduced levels of DXS enzyme activity, indicating that loss of J20 function causes posttranscriptional accumulation of DXS in an inactive form. Furthermore, J20 promotes degradation of DXS following a heat shock. Together, our data indicate that J20 might identify unfolded or misfolded (damaged) forms of DXS and target them to the Hsp70 system for proper folding under normal conditions or degradation upon stress.
Collapse
Affiliation(s)
- Pablo Pulido
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Gabriela Toledo-Ortiz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Michael A. Phillips
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | | | - Manuel Rodríguez-Concepción
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
- Address correspondence to
| |
Collapse
|
6
|
Latijnhouwers M, Xu XM, Møller SG. Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. PLANTA 2010; 232:567-78. [PMID: 20506024 DOI: 10.1007/s00425-010-1192-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/04/2010] [Indexed: 05/20/2023]
Abstract
70 kDa heat shock proteins (Hsp70s) act as molecular chaperones involved in essential cellular processes such as protein folding and protein transport across membranes. They also play a role in the cell's response to a wide range of stress conditions. The Arabidopsis family of Hsp70s homologues includes two highly conserved proteins, cpHsc70-1 and cpHsc70-2 which are both imported into chloroplasts (Su and Li in Plant Physiol 146:1231-1241, 2008). Here, we demonstrate that YFP-fusion proteins of both cpHsc70-1 and cpHsc70-2 are predominantly stromal, though low levels were detected in the thylakoid membrane. Both genes are ubiquitously expressed at high levels in both seedlings and adult plants. We further show that both cpHsc70-1 and cpHsc70-2 harbour ATPase activity which is essential for Hsp70 chaperone activity. A previously described T-DNA insertion line for cpHsc70-1 (DeltacpHsc70-1) has variegated cotyledons, malformed leaves, growth retardation, impaired root growth and sensitivity to heat shock treatment. In addition, under stress conditions, this mutant also exhibits unusual sepals, and malformed flowers and sucrose concentrations as low as 1% significantly impair growth. cpHsc70-1/cpHsc70-2 double-mutants are lethal. However, we demonstrate through co-suppression and artificial microRNA (amiRNA) approaches that transgenic plants with severely reduced levels of both genes have a white and stunted phenotype. Interestingly, chloroplasts in these plants have an unusual morphology and contain few or no thylakoid membranes. Our data show that cpHsc70-1 and cpHsc70-2 are essential ATPases, have overlapping roles and are required for normal plastid structure.
Collapse
Affiliation(s)
- Maita Latijnhouwers
- Centre of Organelle Research, Faculty of Science and Technology, University of Stavanger, 4021 Stavanger, Norway
| | | | | |
Collapse
|
7
|
Falk S, Sinning I. cpSRP43 is a novel chaperone specific for light-harvesting chlorophyll a,b-binding proteins. J Biol Chem 2010; 285:21655-61. [PMID: 20498370 PMCID: PMC2898393 DOI: 10.1074/jbc.c110.132746] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of most membrane proteins is directly coupled to membrane insertion, and therefore, molecular chaperones are not required. The light-harvesting chlorophyll a,b-binding proteins (LHCPs) present a prominent exception as they are synthesized in the cytoplasm, and after import into the chloroplast, they are targeted and inserted into the thylakoid membrane. Upon arrival in the stroma, LHCPs form a soluble transit complex with the chloroplast signal recognition particle (cpSRP) consisting of an SRP54 homolog and the unique cpSRP43 composed of three chromodomains and four ankyrin repeats. Here we describe that cpSRP43 alone prevents aggregation of LHCP by formation of a complex with nanomolar affinity, whereas cpSRP54 is not required for this chaperone activity. Other stromal chaperones like trigger factor cannot replace cpSRP43, which implies that LHCPs require a specific chaperone. Although cpSRP43 does not have an ATPase activity, it can dissolve aggregates of LHCPs similar to chaperones of the Hsp104/ClpB family. We show that the LHCP-cpSRP43 interaction is predominantly hydrophobic but strictly depends on an intact DPLG motif between the second and third transmembrane region. The cpSRP43 ankyrin repeats that provide the binding site for the DPLG motif are sufficient for the chaperone function, whereas the chromodomains are dispensable. Taken together, we define cpSRP43 as a highly specific chaperone for LHCPs in addition to its established function as a targeting factor for this family of membrane proteins.
Collapse
Affiliation(s)
- Sebastian Falk
- Heidelberg University Biochemistry Center BZH, INF 328, D-69120 Heidelberg, Germany
| | | |
Collapse
|
8
|
Sziderics AH, Oufir M, Trognitz F, Kopecky D, Matusíková I, Hausman JF, Wilhelm E. Organ-specific defence strategies of pepper (Capsicum annuum L.) during early phase of water deficit. PLANT CELL REPORTS 2010; 29:295-305. [PMID: 20087595 DOI: 10.1007/s00299-010-0822-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 05/23/2023]
Abstract
Drought is one of the major factors that limits crop production and reduces yield. To understand the early response of plants under nearly natural conditions, pepper plants (Capsicum annuum L.) were grown in a greenhouse and stressed by withholding water for 1 week. Plants adapted to the decreasing water content of the soil by adjustment of their osmotic potential in root tissue. As a consequence of drought, strong accumulation of raffinose, glucose, galactinol and proline was detected in the roots. In contrast, in leaves the levels of fructose, sucrose and also galactinol increased. Due to the water deficit cadaverine, putrescine, spermidine and spermine accumulated in leaves, whereas the concentration of polyamines was reduced in roots. To study the molecular basis of these responses, a combined approach of suppression subtractive hybridisation and microarray technique was performed on the same material. A total of 109 unique ESTs were detected as responsive to drought, while additional 286 ESTs were selected from the bulk of rare transcripts on the array. The metabolic profiles of stressed pepper plants are discussed with respect to the transcriptomic changes detected, while attention is given to the differences between defence strategies of roots and leaves.
Collapse
Affiliation(s)
- Astrid Heide Sziderics
- Department of Health and Environment/Bioresources, PICME, AIT Austrian Institute of Technology GmbH, 2444, Seibersdorf, Austria
| | | | | | | | | | | | | |
Collapse
|
9
|
Skretas G, Georgiou G. Genetic analysis of G protein-coupled receptor expression in Escherichia coli: inhibitory role of DnaJ on the membrane integration of the human central cannabinoid receptor. Biotechnol Bioeng 2009; 102:357-67. [PMID: 18828176 DOI: 10.1002/bit.22097] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The overexpression of G protein-coupled receptors (GPCRs) and of many other heterologous membrane proteins in simple microbial hosts, such as the bacterium Escherichia coli, often results in protein mistargeting, aggregation into inclusion bodies or cytoplasmic degradation. Furthermore, membrane protein production is very frequently accompanied by severe cell toxicity. In this work, we have employed a genetic strategy to isolate E. coli mutants that produce markedly increased amounts of the human central cannabinoid receptor (CB1), a pharmacologically significant GPCR that expresses very poorly in wild-type E. coli. By utilizing a CB1 fusion with the green fluorescent protein (GFP) and fluorescence-activated cell sorting (FACS), we screened an E. coli transposon library and identified an insertion in dnaJ that resulted in a large increase in CB1-GFP fluorescence and a dramatic enhancement in bacterial production of membrane-integrated CB1. Furthermore, the dnaJ::Tn5 inactivation suppressed the severe cytotoxicity associated with CB1 production. This revealed an unexpected inhibitory role of the chaperone/ co-chaperone DnaJ in the protein folding or membrane insertion of bacterially produced CB1. Our strategy can be easily adapted to identify expression bottlenecks for different GPCRs or any other integral membrane protein, provide useful and unanticipated mechanistic insights, and assist in the construction of genetically engineered E. coli strains for efficient heterologous membrane protein production.
Collapse
Affiliation(s)
- Georgios Skretas
- Department of Chemical Engineering, University of Texas at Austin, 2500 Speedway, Austin, Texas 78712, USA
| | | |
Collapse
|
10
|
Abstract
Most chloroplast proteins are encoded in the nucleus and synthesized on free, cytosolic ribosomes in precursor form. Each precursor has an amino-terminal extension called a transit peptide, which directs the protein through a post-translational targeting pathway and is removed upon arrival inside the organelle. This 'protein import' process is mediated by the coordinate action of two multiprotein complexes, one in each of the envelope membranes: the TOC and TIC (Translocon at the Outer/ Inner envelope membrane of Chloroplasts) machines. Many components of these complexes have been identified biochemically in pea; these include transit peptide receptors, channel proteins, and molecular chaperones. Intriguingly, the Arabidopsis genome encodes multiple, homologous genes for receptor components of the TOC complex. Careful analysis indicated that the different receptor isoforms operate in different import pathways with distinct precursor recognition specificities. These 'substrate-specific' import pathways might play a role in the differentiation of different plastid types, and/or act to prevent deleterious competition effects between abundant and nonabundant precursors. Until recently, all proteins destined for internal chloroplast compartments were thought to possess a cleavable transit peptide, and to engage the TOC/TIC machinery. New studies using proteomics and other approaches have revealed that this is far from true. Remarkably, a significant number of chloroplast proteins are transported via a pathway that involves the endoplasmic reticulum and Golgi apparatus. Other recent reports have elucidated an intriguing array of protein targeting routes leading to the envelope membranes themselves.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
11
|
Shonhai A, Boshoff A, Blatch GL. The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum. Protein Sci 2007; 16:1803-18. [PMID: 17766381 PMCID: PMC2206976 DOI: 10.1110/ps.072918107] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is becoming increasingly apparent that heat shock proteins play an important role in the survival of Plasmodium falciparum against temperature changes associated with its passage from the cold-blooded mosquito vector to the warm-blooded human host. Interest in understanding the possible role of P. falciparum Hsp70s in the life cycle of the parasite has led to the identification of six HSP70 genes. Although most research attention has focused primarily on one of the cytosolic Hsp70s (PfHsp70-1) and its endoplasmic reticulum homolog (PfHsp70-2), further functional insights could be inferred from the structural motifs exhibited by the rest of the Hsp70 family members of P. falciparum. There is increasing evidence that suggests that PfHsp70-1 could play an important role in the life cycle of P. falciparum both as a chaperone and immunogen. In addition, P. falciparum Hsp70s and Hsp40 partners are implicated in the intracellular and extracellular trafficking of proteins. This review summarizes data emerging from studies on the chaperone role of P. falciparum Hsp70s, taking advantage of inferences gleaned from their structures and information on their cellular localization. The possible associations between P. falciparum Hsp70s with their cochaperone partners as well as other chaperones and proteins are discussed.
Collapse
Affiliation(s)
- Addmore Shonhai
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | | | | |
Collapse
|
12
|
Rassow J, Pfanner N. Molecular chaperones and intracellular protein translocation. Rev Physiol Biochem Pharmacol 2006; 126:199-264. [PMID: 7886379 DOI: 10.1007/bfb0049777] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Rassow
- Biochemisches Institut, Universität Freiburg, Germany
| | | |
Collapse
|
13
|
Smith MD. Protein import into chloroplasts: an ever-evolving storyThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chloroplasts are but one type of a diverse group of essential organelles that distinguish plant cells and house many critical biochemical pathways, including photosynthesis. The biogenesis of plastids is essential to plant growth and development and relies on the targeting and import of thousands of nuclear-encoded proteins from the cytoplasm. The import of the vast majority of these proteins is dependent on translocons located in the outer and inner envelope membranes of the chloroplast, termed the Toc and Tic complexes, respectively. The core components of the Toc and Tic complexes have been identified within the last 12 years; however, the precise functions of many components are still being elucidated, and new components are still being identified. In Arabidopsis thaliana (and other species), many of the components are encoded by more than one gene, and it appears that the isoforms differentially associate with structurally distinct import complexes. Furthermore, it appears that these complexes represent functionally distinct targeting pathways, and the regulation of import by these separate pathways may play a role in the differentiation and specific functions of distinct plastid types during plant growth and development. This review summarizes these recent discoveries and emphasizes the mechanisms of differential Toc complex assembly and substrate recognition.
Collapse
Affiliation(s)
- Matthew D. Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada (e-mail: )
| |
Collapse
|
14
|
YORUK RUHIYE, MARSHALL MAURICER. PHYSICOCHEMICAL PROPERTIES AND FUNCTION OF PLANT POLYPHENOL OXIDASE: A REVIEW. J Food Biochem 2003. [DOI: 10.1111/j.1745-4514.2003.tb00289.x] [Citation(s) in RCA: 365] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Cao D, Froehlich JE, Zhang H, Cheng CL. The chlorate-resistant and photomorphogenesis-defective mutant cr88 encodes a chloroplast-targeted HSP90. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:107-118. [PMID: 12943545 DOI: 10.1046/j.1365-313x.2003.016011.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The cr88 mutant of Arabidopsis is a novel chlorate-resistant mutant that displays long hypocotyls in red light, but not in far red or blue light, and is delayed in the greening process. In cotyledons and young leaves, plastids are less developed compared with those of the wild type. In addition, a subset of light-regulated genes are under-expressed in this mutant. To understand the pleiotropic phenotypes of cr88, we isolated the CR88 gene through map-based cloning. We found that CR88 encodes a chloroplast-targeted 90-kDa heat shock protein (HSP90). The CR88 gene is expressed at highest levels during early post-germination stages and in leaves and reproductive organs. It is constitutively expressed but is also light and heat shock inducible. Chloroplast import experiments showed that the protein is localized to the stroma compartment of the chloroplast. The possible function of an HSP90 in the chloroplast and a plausible explanation of the pleiotropic phenotypes observed in cr88 are discussed.
Collapse
Affiliation(s)
- Dongsun Cao
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
16
|
Ortiz C, Cardemil L. Heat-shock responses in two leguminous plants: a comparative study. JOURNAL OF EXPERIMENTAL BOTANY 2001. [PMID: 11479337 DOI: 10.1093/jxb/52.361.1711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Relative growth rates, basal and acclimated thermotolerance, membrane damage, fluorescence emission, and relative levels of free and conjugated ubiquitin and HSP70 were compared after 2 h of treatment at different temperatures between Prosopis chilensis and Glycine max (soybean), cv. McCall, to evaluate if the thermotolerance of these two plants was related to levels of accumulation of heat shock proteins. Seedlings of P. chilensis germinated at 25 degrees C and at 35 degrees C and grown at temperatures above germination temperature showed higher relative growth than soybean seedlings treated under the same conditions. The lethal temperature of both species was 50 degrees C after germination at 25 degrees C. However, they were able to grow at 50 degrees C after germination at 35 degrees C. Membrane damage determinations in leaves showed that P. chilensis has an LT(50) 6 degrees C higher than that of soybean. There were no differences in the quantum yield of photosynthesis (F(v)/F(m)), between both plants when the temperatures were raised. P. chilensis showed higher relative levels of free ubiquitin, conjugated ubiquitin and HSP70 than soybean seedlings when the temperatures were raised. Time-course studies of accumulation of these proteins performed at 40 degrees C showed that the relative accumulation rates of ubiquitin, conjugated ubiquitin and HSP70 were higher in P. chilensis than in soybean. In both plants, free ubiquitin decreased during the first 5 min and increased after 30 min of heat shock, conjugated ubiquitin increased after 30 min and HSP70 began to increase dramatically after 20 min of heat shock. From these data it is concluded that P. chilensis is more tolerant to acute heat stress than soybean.
Collapse
Affiliation(s)
- C Ortiz
- Facultad de Ciencias, Universidad de Chile, Departamento de Biologia, Casilla 653, Santiago, Chile
| | | |
Collapse
|
17
|
Hippler M, Biehler K, Krieger-Liszkay A, van Dillewjin J, Rochaix JD. Limitation in electron transfer in photosystem I donor side mutants of Chlamydomonas reinhardtii. Lethal photo-oxidative damage in high light is overcome in a suppressor strain deficient in the assembly of the light harvesting complex. J Biol Chem 2000; 275:5852-9. [PMID: 10681576 DOI: 10.1074/jbc.275.8.5852] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Strains of Chlamydomonas reinhardtii lacking the PsaF gene or containing the mutation K23Q within the N-terminal part of PsaF are sensitive to high light (>400 microE m(-2) s(-1)) under aerobic conditions. In vitro experiments indicate that the sensitivity to high light of the isolated photosystem I (PSI) complex from wild type and from PsaF mutants is similar. In vivo measurements of photochemical quenching and oxygen evolution show that impairment of the donor side of PSI in the PsaF mutants leads to a diminished linear electron transfer and/or a decrease of photosystem II (PSII) activity in high light. Thermoluminescence measurements indicate that the PSII reaction center is directly affected under photo-oxidative stress when the rate of electron transfer becomes limiting in the PsaF-deficient strain and in the PsaF mutant K23Q. We have isolated a high light-resistant PsaF-deficient suppressor strain that has a high chlorophyll a/b ratio and is affected in the assembly of light-harvesting complex. These results indicate that under high light a functionally intact donor side of PSI is essential for protection of C. reinhardtii against photo-oxidative damage when the photosystems are properly connected to their light-harvesting antennae.
Collapse
Affiliation(s)
- M Hippler
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Kosemund K, Geiger I, Paulsen H. Insertion of light-harvesting chlorophyll a/b protein into the thylakoid topographical studies. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1138-45. [PMID: 10672023 DOI: 10.1046/j.1432-1327.2000.01110.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The major light-harvesting chlorophyll a/b-binding protein (Lhcb1,2) of photosystem II is inserted into the thylakoid via the signal recognition particle dependent pathway. However, the mechanism by which the protein enters the membrane is at this time unknown. In order to define some topographical restrictions for this process, we constructed several recombinant derivatives of Lhcb1 carrying hexahistidine tags at either protein terminus or in the stromal loop domain. Additionally, green fluorescent protein (GFP) was fused to either terminus. None of the modifications significantly impair the pigment-binding properties of the protein in the in vitro reconstitution of LHCII. With the exception of the C-terminal GFP fusion, all mutants stably insert into isolated thylakoids in the absence of Ni2+ ions. The addition of low concentrations of Ni2+ ions abolishes the thylakoid insertion of C-terminally His-tagged mutants whereas the other His-tagged proteins fail to insert only at higher Ni2+ concentrations. The C-terminus of Lhcb1 must cross the membrane during protein insertion whereas the other sites of Lhcb1 modification are positioned on the stromal side of LHCII. We conclude that a Ni2+-complexed His tag and fusion to GFP inhibit translocation of the protein C-terminus across the thylakoid. Our observations indicate that the N-terminal and stromal domain of Lhcb1 need not traverse the thylakoid during protein insertion and are consistent with a loop mechanism in which only the C-terminus and the lumenal loop of Lhcb1 are translocated across the thylakoid.
Collapse
Affiliation(s)
- K Kosemund
- Institut für Allgemeine Botanik, Johannes Gutenberg-Universität Mainz, Germany
| | | | | |
Collapse
|
19
|
He Q, Schlich T, Paulsen H, Vermaas W. Expression of a higher plant light-harvesting chlorophyll a/b-binding protein in Synechocystis sp. PCC 6803. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:561-70. [PMID: 10406967 DOI: 10.1046/j.1432-1327.1999.00526.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A chimeric lhcb gene, coding for Lhcb, a higher plant chlorophyll a/b-binding light-harvesting complex of photosystem II (LHCII), was constructed using the Synechocystis sp. PCC 6803 psbA3 promoter and a modified lhcb gene from pea. This construct drives synthesis of full-length, mature Lhcb under the control of the strong psbA3 promoter that usually drives expression of the D1 protein of photosystem II. This chimeric gene was transformed into a photosystem I-less/chlL(-) Synechocystis sp. PCC 6803 strain that is unable to synthesize chlorophyll in darkness. In the resulting strain, a high level of lhcb transcript was detected and transcript accumulation was enhanced by addition of exogenous Zn-chlorophyllide b. The chimeric lhcb gene was translated to produce full-length Lhcb as demonstrated by pulse-labeling: a new radioactively labeled band of a size corresponding to full-length Lhcb was visible on autoradiograms. Using Triton X-114 phase fractionation, this labeled protein band was found to partition to the phase containing integral membrane proteins, indicating that the pulse-labeled Lhcb is readily integrated into the membrane. However, Lhcb was rapidly degraded and did not accumulate in thylakoid membranes to levels that were detectable other than by pulse labeling. Upon immunological detection with LHCII antibodies, a small protein (approximately 8 kDa) was found specifically in the lhcb-containing mutant. We interpret this protein to be a degradation product of the full-length Lhcb. This fragment was stabilized by supplementing cells with xanthophylls, which incorporated into thylakoid membranes only in the mutant carrying lhcb. The lutein/chlorophyll ratio of thylakoids of this mutant was about 1 : 10. These results indicate that in this cyanobacterial system Lhcb is synthesized, integrated into the membrane, and then degraded to a approximately 8 kDa fragment that is stabilized by pigment binding and does not require the presence of chlorophyll b.
Collapse
Affiliation(s)
- Q He
- Department of Plant Biology and Center for the Study of Early Events in Photosynthesis, Arizona State University, Box 871601, Tempe, AZ 85287-1601, USA
| | | | | | | |
Collapse
|
20
|
Carpentier R. Effect of High-Temperature Stress on the Photosynthetic Apparatus. BOOKS IN SOILS, PLANTS, AND THE ENVIRONMENT 1999. [DOI: 10.1201/9780824746728.ch14] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:21-85. [PMID: 10216153 DOI: 10.1016/s0005-2728(99)00043-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Abstract
▪ Abstract The assembly of the photosynthetic apparatus at the thylakoid begins with the targeting of proteins from their site of synthesis in the cytoplasm or stroma to the thylakoid membrane. Plastid-encoded proteins are targeted directly to the thylakoid during or after synthesis on plastid ribosomes. Nuclear-encoded proteins undergo a two-step targeting process requiring posttranslational import into the organelle from the cytoplasm and subsequent targeting to the thylakoid membrane. Recent investigations have revealed a single general import machinery at the envelope that mediates the direct transport of preproteins from the cytoplasm to the stroma. In contrast, at least four distinct pathways exist for the targeting of proteins to the thylakoid membrane. At least two of these systems are homologous to translocation systems that operate in bacteria and at the endoplasmic reticulum, indicating that elements of the targeting mechanisms have been conserved from the original prokaryotic endosymbiont.
Collapse
Affiliation(s)
- Danny J. Schnell
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey 07102; e-mail:
| |
Collapse
|
23
|
Bonk M, Hoffmann B, Von Lintig J, Schledz M, Al-Babili S, Hobeika E, Kleinig H, Beyer P. Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:942-50. [PMID: 9288918 DOI: 10.1111/j.1432-1033.1997.00942.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The precursor proteins of the carotenogenic enzymes geranylgeranyl diphosphate synthase, phytoene synthase, phytoene desaturase and lycopene cyclase were imported into isolated pea chloroplasts. Geranylgeranyl diphosphate synthase remained soluble in the stroma in a free form and phytoene synthase associated to thylakoid membranes upon import, both as expected. Surprisingly, phytoene desaturase and lycopene cyclase, which strongly depend on membrane association for enzymatic activity, also remained soluble in the chloroplast stroma. The soluble forms of these enzymes were, however, still competent for membrane-association, e.g. with protein-free liposomal membranes. Indeed the soluble forms of phytoene synthase, phytoene desaturase and lycopene cyclase occurred as ATP- and cold-sensitive high-molecular-mass complexes. Gel-filtration experiments and blue native-PAGE plus autoradiography and western blot analysis indicated a participation of the chloroplast 60-kDa chaperonin (Cpn60) in the soluble high-molecular-mass complexes of imported carotenogenic enzymes. Finally, it was inferred that a membrane-bound regulatory factor plays a decisive role in membrane-binding.
Collapse
Affiliation(s)
- M Bonk
- Institut für Biologie II, Zellbiologie, Universität Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The chloroplast envelope protein Com70 is a hsp70 homolog identified recently as a component of the protein translocation apparatus. The stage of protein import involving Com70 was determined by examining the nature of the association of Com70 with the envelope and its interaction with translocating proteins. Com70 is accessible to thermolysin, but its association with the envelope could not be disrupted by stringent washes. In light of the external membrane-bound location, the involvement of Com70 at the early stage of protein translocation was investigated using a combination of in vitro binding assays, chemical cross-linking, and coimmunoprecipitation. The results provide evidence that Com70 is in close physical proximity to different types of chloroplast protein precursors under conditions supporting binding rather than complete translocation. The formation of cross-linked complexes is dependent on the presence of a typical plastid transit signal and protease-accessible outer envelope components. The close proximity of Com70 and the translocating protein occurs while the protein is still exposed to the cytosol.
Collapse
Affiliation(s)
- L Kourtz
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
25
|
Abstract
The last few years has seen enormous progress in understanding of protein targeting and translocation across biological membranes. Many of the key molecules involved have been identified, isolated, and the corresponding genes cloned, opening up the way for detailed analysis of the structure and function of these molecular machines. It has become clear that the protein translocation machinery of the endoplasmic reticulum is very closely related to that of bacteria, and probably represents an ancient solution to the problem of how to get a protein across a membrane. One of the thylakoid translocation systems looks as if it will also be very similar, and probably represents a pathway inherited from the ancestral endosymbiont. It is interesting that, so far, there is a perfect correlation between thylakoid proteins which are present in photosynthetic prokaryotes and those which use the sec pathway in chloroplasts; conversely, OE16 and 23 which use the delta pH pathway are not found in cyanobacteria. To date, no Sec-related proteins have been found in mitochondria, although these organelles also arose as a result of endosymbiotic events. However, virtually nothing is known about the insertion of mitochondrially encoded proteins into the inner membrane. Is the inner membrane machinery which translocates cytoplasmically synthesized proteins capable of operating in reverse to export proteins from the matrix, or is there a separate system? Alternatively, do membrane proteins encoded by mitochondrial DNA insert independently of accessory proteins? Unlike nuclear-encoded proteins, proteins encoded by mtDNA are not faced with a choice of membrane and, in principle, could simply partition into the inner membrane. The ancestors of mitochondria almost certainly had a Sec system; has this been lost along with many of the proteins once encoded in the endosymbiont genome, or is there still such a system waiting to be discovered? The answer to this question may also shed light on the controversy concerning the sorting of the inter-membrane space proteins cytochrome c1 and cytochrome b2, as the conservative-sorting hypothesis would predict re-export of matrix intermediates via an ancestral (possibly Sec-type) pathway. Whereas the ER and bacterial systems clearly share homologous proteins, the protein import machineries of mitochondria and chloroplasts appear to be analogous rather than homologous. In both cases, import occurs through contact sites and there are separate translocation complexes in each membrane, however, with the exception of some of the chaperone molecules, the individual protein components do not appear to be related. Their similarities may be a case of convergent rather than divergent evolution, and may reflect what appear to be common requirements for translocation, namely unfolding, a receptor, a pore complex and refolding. There are also important differences. Translocation across the mitochondrial inner membrane is absolutely dependent upon delta psi, but no GTP requirement has been identified. In chloroplasts the reverse is the case. The roles of delta psi and GTP, respectively, remain uncertain, but it is tempting to speculate that they may play a role in regulating the import process, perhaps by controlling the assembly of a functional translocation complex. In the case of peroxisomes, much still remains to be learned. Many genes involved in peroxisome biogenesis have been identified but, in most cases, the biochemical function remains to be elucidated. In this respect, understanding of peroxisome biogenesis is at a similar stage to that of the ER 10 years ago. The coming together of genetic and biochemical approaches, as with the other organelles, should provide many of the answers.
Collapse
Affiliation(s)
- A Baker
- Department of Biochemistry, University of Cambridge, UK
| | | | | |
Collapse
|
26
|
Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants. PLANT MOLECULAR BIOLOGY 1996; 32:191-222. [PMID: 8980480 DOI: 10.1007/bf00039383] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Protein folding in vivo is mediated by an array of proteins that act either as 'foldases' or 'molecular chaperones'. Foldases include protein disulfide isomerase and peptidyl prolyl isomerase, which catalyze the rearrangement of disulfide bonds or isomerization of peptide bonds around Pro residues, respectively. Molecular chaperones are a diverse group of proteins, but they share the property that they bind substrate proteins that are in unstable, non-native structural states. The best understood chaperone systems are HSP70/DnaK and HSP60/GroE, but considerable data support a chaperone role for other proteins, including HSP100, HSP90, small HSPs and calnexin. Recent research indicates that many, if not all, cellular proteins interact with chaperones and/or foldases during their lifetime in the cell. Different chaperone and foldase systems are required for synthesis, targeting, maturation and degradation of proteins in all cellular compartments. Thus, these diverse proteins affect an exceptionally broad array of cellular processes required for both normal cell function and survival of stress conditions. This review summarizes our current understanding of how these proteins function in plants, with a major focus on those systems where the most detailed mechanistic data are available, or where features of the chaperone/foldase system or substrate proteins are unique to plants.
Collapse
Affiliation(s)
- R S Boston
- Department of Botany, North Carolina State University, Raleigh 27695, USA
| | | | | |
Collapse
|
27
|
Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants. PLANT MOLECULAR BIOLOGY 1996. [PMID: 8980480 DOI: 10.1007/978-94-009-0353-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Protein folding in vivo is mediated by an array of proteins that act either as 'foldases' or 'molecular chaperones'. Foldases include protein disulfide isomerase and peptidyl prolyl isomerase, which catalyze the rearrangement of disulfide bonds or isomerization of peptide bonds around Pro residues, respectively. Molecular chaperones are a diverse group of proteins, but they share the property that they bind substrate proteins that are in unstable, non-native structural states. The best understood chaperone systems are HSP70/DnaK and HSP60/GroE, but considerable data support a chaperone role for other proteins, including HSP100, HSP90, small HSPs and calnexin. Recent research indicates that many, if not all, cellular proteins interact with chaperones and/or foldases during their lifetime in the cell. Different chaperone and foldase systems are required for synthesis, targeting, maturation and degradation of proteins in all cellular compartments. Thus, these diverse proteins affect an exceptionally broad array of cellular processes required for both normal cell function and survival of stress conditions. This review summarizes our current understanding of how these proteins function in plants, with a major focus on those systems where the most detailed mechanistic data are available, or where features of the chaperone/foldase system or substrate proteins are unique to plants.
Collapse
Affiliation(s)
- R S Boston
- Department of Botany, North Carolina State University, Raleigh 27695, USA
| | | | | |
Collapse
|
28
|
Bonk M, Tadros M, Vandekerckhove J, Al-Babili S, Beyer P. Purification and characterization of chaperonin 60 and heat-shock protein 70 from chromoplasts of Narcissus pseudonarcissus. PLANT PHYSIOLOGY 1996; 111:931-9. [PMID: 8754688 PMCID: PMC157912 DOI: 10.1104/pp.111.3.931] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In chromoplast differentiation during flower formation in Narcissus pseudonarcissus, the molecular chaperones chaperonin 60 (Cpn60; alpha and beta) and heat-shock protein 70 (Hsp70) greatly increase in abundance. Both were purified and shown to be present in a functional form in chromoplasts, indicating their requirement in the extensive structural rearrangements during the chloroplast-to-chromoplast transition. The purified proteins, sequenced N terminally and from internal peptides, showed strong homology to plastid Cpn60 and Hsp 70 representatives from other plant species. During chromoplast differentiation, the carotenoid biosynthetic pathway is strongly induced. The corresponding enzymes are all nuclear encoded and form a large, soluble, hetero-oligomeric protein complex after import but prior to their membrane attachment. By immunoprecipitations we have shown that the plastid Hsp70 is a structural constituent of a soluble entity also containing phytoene desaturase.
Collapse
Affiliation(s)
- M Bonk
- Institut für Biologie II der Universität, Zellbiologie, Belgium
| | | | | | | | | |
Collapse
|
29
|
Minai L, Cohen Y, Chitnis PR, Nechushtai R. The precursor of PsaD assembles into the photosystem I complex in two steps. Proc Natl Acad Sci U S A 1996; 93:6338-42. [PMID: 8692816 PMCID: PMC39023 DOI: 10.1073/pnas.93.13.6338] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The present study addresses the assembly in the chloroplast thylakoid membranes of PsaD, a peripheral membrane protein of the photosystem I complex. Located on the stromal side of the thylakoids, PsaD was found to assemble in vitro into the membranes in its precursor (pre-PsaD) and also in its mature (PsaD) form. Newly assembled unprocessed pre-PsaD was resistant to NaBr and alkaline wash. Yet it was sensitive to proteolytic digestion. In contradistinction, when the assembled precursor was processed, the resulting mature PsaD was resistant to proteases to the same extent as endogenous [correction of endogeneous] PsaD. The accumulation of protease-resistant PsaD in the thylakoids correlated with the increase of mature-PsaD in the membranes. This protection of mature PsaD from proteolysis could not be observed when PsaD was in a soluble form-i.e. not assembled within the thylakoids. The data suggest that pre-PsaD assembles to the membranes and only in a second step processing takes place. The observation that the assembly of pre-PsaD is affected by salts to a much lesser extent than that of mature-PsaD supports a two-step assembly of pre-PsaD.
Collapse
Affiliation(s)
- L Minai
- Department of Botany, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
30
|
|
31
|
Plumley GF, Schmidt GW. Light-Harvesting Chlorophyll a/b Complexes: Interdependent Pigment Synthesis and Protein Assembly. THE PLANT CELL 1995; 7:689-704. [PMID: 12242383 PMCID: PMC160816 DOI: 10.1105/tpc.7.6.689] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The biogenetic interdependence of light-harvesting chlorophyll (Chl) a/b proteins (LHCPs) and antenna pigments has been analyzed for two nuclear mutants of Chlamydomonas that have low levels of Chl b, neoxanthin, and loroxanthin. In mutant PA2.1, the apoprotein precursors (pLHCP II) of the major light-harvesting complex LHC II were synthesized at approximately wild-type rates, processed to their mature size, and rapidly degraded. Because the bulk of labile LHCP II in PA2.1 was soluble, a thylakoid integration factor apparently is defective in this strain. Chl a, Chl b, neoxanthin, and loroxanthin synthesis and accumulation were coordinately reduced in PA2.1, indicating that LHCP II play important regulatory or substrate roles in de novo synthesis of these pigments. Mutant GE2.27 is impaired principally in Chl b synthesis but nonetheless accumulated wild-type levels of all LHCPs. Topology studies of the GE2.27 LHCP II demonstrated that their insertion into thylakoids was incomplete even though they were not structurally altered. Thus, Chl b formation mediates conformational changes of LHCP II after thylakoid integration is initiated. GE2.27 also exhibited very low rates of neoxanthin synthesis and was unable to accumulate loroxanthin. Revertant GE2.27 strains with varying capacities for Chl b formation provided additional evidence that neoxanthin synthesis and accumulation are coupled with the final steps of LHCP II integration into thylakoids. We propose that biogenesis of LHC includes interdependent pigment synthesis/assembly events that occur during LHCP integration into the thylakoid membrane and that defects in these events account for the pleiotropic characteristics of many Chl b-deficient mutants.
Collapse
Affiliation(s)
- G. F. Plumley
- Institute of Marine Science, University of Alaska, Fairbanks, Alaska 99775
| | | |
Collapse
|
32
|
Nechushtai R, Cohen Y, Chitnis PR. Assembly of the chlorophyll-protein complexes. PHOTOSYNTHESIS RESEARCH 1995; 44:165-181. [PMID: 24307036 DOI: 10.1007/bf00018307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/1994] [Accepted: 03/10/1995] [Indexed: 06/02/2023]
Abstract
The biogenesis of photosynthetic complexes in plants and algae is a multi-step process that involves intricate coordination of steps in two intracellular compartments, the chloroplast and the cytoplasm. The process initiates with the transcription and translation of the various polypeptide subunits. The nuclear-encoded Chl-binding proteins are translated on cytoplasmic ribosomes as precursors that have a transit (leader) sequence at their amino-terminus. The precursors are post-translationally imported into the chloroplasts, proteolytically processed into their mature forms, inserted into the thylationally imported into the chloroplasts, proteolytically processed into their mature forms, inserted into the thylakoid membrane, and bound to their co-factors (and pigments) and with other subunits to form an active complex. The order and mechanisms by which these events occur, are currently being discovered. Electrostatic interactions, the 'positive inside rule', interhelix interactions, interactions with lipids and chaperone proteins affect the insertion and stabilization of the Chl-proteins in the thylakoids. This review describes the events occurring during the integration and organization of the Chl-proteins.
Collapse
Affiliation(s)
- R Nechushtai
- Department of Botany, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | | | | |
Collapse
|
33
|
Li X, Henry R, Yuan J, Cline K, Hoffman NE. A chloroplast homologue of the signal recognition particle subunit SRP54 is involved in the posttranslational integration of a protein into thylakoid membranes. Proc Natl Acad Sci U S A 1995; 92:3789-93. [PMID: 7731984 PMCID: PMC42047 DOI: 10.1073/pnas.92.9.3789] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mechanisms involved in the integration of proteins into the thylakoid membrane are largely unknown. However, many of the steps of this process for the light-harvesting chlorophyll a/b protein (LHCP) have been described and reconstituted in vitro. LHCP is synthesized as a precursor in the cytosol and posttranslationally imported into chloroplasts. Upon translocation across the envelope membranes, the N-terminal transit peptide is cleaved, and the apoprotein is assembled into a soluble "transit complex" and then integrated into the thylakoid membrane via three transmembrane helices. Here we show that 54CP, a chloroplast homologue of the 54-kDa subunit of the mammalian signal recognition particle (SRP54), is essential for transit complex formation, is present in the complex, and is required for LHCP integration into the thylakoid membrane. Our data indicate that 54CP functions posttranslationally as a molecular chaperone and potentially pilots LHCP to the thylakoids. These results demonstrate that one of several pathways for protein routing to the thylakoids is homologous to the SRP pathway and point to a common evolutionary origin for the protein transport systems of the endoplasmic reticulum and the thylakoid membrane.
Collapse
Affiliation(s)
- X Li
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
34
|
Reinbothe S, Reinbothe C, Runge S, Apel K. Enzymatic product formation impairs both the chloroplast receptor-binding function as well as translocation competence of the NADPH: protochlorophyllide oxidoreductase, a nuclear-encoded plastid precursor protein. J Cell Biol 1995; 129:299-308. [PMID: 7721935 PMCID: PMC2199915 DOI: 10.1083/jcb.129.2.299] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The key enzyme of chlorophyll biosynthesis in higher plants, the light-dependent NADPH:protochlorophyllide oxidoreductase (POR, EC 1.6.99.1), is a nuclear-encoded plastid protein. Its posttranslational transport into plastids of barley depends on the intraplastidic availability of one of its substrates, protochlorophyllide (PChlide). The precursor of POR (pPOR), synthesized from a corresponding full-length barley cDNA clone by coupling in vitro transcription and translation, is enzymatically active and converts PChlide to chlorophyllide (Chlide) in a light- and NADPH-dependent manner. Chlorophyllide formed catalytically remains tightly but noncovalently bound to the precursor protein and stabilizes a transport-incompetent conformation of pPOR. As shown by in vitro processing experiments, the chloroplast transit peptide in the Chlide-pPOR complex appears to be masked and thus is unable to physically interact with the outer plastid envelope membrane. In contrast, the chloroplast transit peptide in the naked pPOR (without its substrates and its product attached to it) and in the pPOR-substrate complexes, such as pPOR-PChlide or pPOR-PChlide-NADPH, seems to react independently of the mature region of the polypeptide, and thus is able to bind to the plastid envelope. When envelope-bound pPOR-PChlide-NADPH complexes were exposed to light during a short preincubation, the enzymatically produced Chlide slowed down the actual translocation step, giving rise to the sequential appearance of two partially processed translocation intermediates. However, ongoing translocation induced by feeding the chloroplasts delta-aminolevulinic acid, a precursor of PChlide, was able to override these two early blocks in translocation, suggesting that the plastid import machinery has a substantial capacity to denature a tightly folded, envelope-bound precursor protein. Together, our results show that pPOR with Chlide attached to it is impaired both in the ATP-dependent step of binding to a receptor protein component of the outer chloroplast envelope membrane, as well as in the PChlide-dependent step of precursor translocation.
Collapse
Affiliation(s)
- S Reinbothe
- Department of Genetics, Swiss Federal Institute of Technology Zurich (ETH), ETH-Zentrum
| | | | | | | |
Collapse
|
35
|
Identification of chloroplast envelope proteins in close physical proximity to a partially translocated chimeric precursor protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31630-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
36
|
Kim J, Klein PG, Mullet JE. Vir-115 gene product is required to stabilize D1 translation intermediates in chloroplasts. PLANT MOLECULAR BIOLOGY 1994; 25:459-467. [PMID: 7914100 DOI: 10.1007/bf00043874] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nuclear gene mutant of barley, vir-115, shows a developmentally induced loss of D1 synthesis that results in inactivation of Photosystem II. Translation in plastids isolated from 1 h illuminated vir-115 seedlings is similar to wild type. In wild-type barley, illumination of plants for 16 to 72 h results in increased radiolabel incorporation into the D1 translation intermediates of 15-24 kDa. In contrast, these D1 translation intermediates were not observed in vir-115 plastids isolated from plants illuminated for 16-72 h. In addition, after 72 h of illumination, radiolabel incorporation into D1 was undetectable in vir-115 plastids. The level and distribution of psbA mRNA in membrane-associated polysomes was similar in wild-type and vir-115 mutant plastids isolated from plants illuminated for 16-72 h. Toeprint analysis showed similar levels of translation initiation complexes on psbA mRNA in vir-115 and wild-type plastids. These results indicate that translation initiation and elongation of D1 is not significantly altered in the mutant plastids. Ribosome pausing on psbA mRNA was observed in wild-type and vir-115 mutant plastids. Therefore, the absence of D1 translation intermediates in mutant plastids is not due to a lack of ribosome pausing on psbA mRNA. Based on these results, it is proposed that vir-115 lacks or contains a modified nuclear-encoded gene product which normally stabilizes the D1 translation intermediates. In wild-type plastids, ribosome pausing and stabilization of D1 translation intermediates is proposed to facilitate assembly of cofactors such as chlorophyll with D1 allowing continued D1 synthesis and accumulation in mature chloroplasts.
Collapse
Affiliation(s)
- J Kim
- Department of Biochemistry and Biophysics, Texas A & M University, College Station 77843-2128
| | | | | |
Collapse
|
37
|
Hulford A, Hazell L, Mould R, Robinson C. Two distinct mechanisms for the translocation of proteins across the thylakoid membrane, one requiring the presence of a stromal protein factor and nucleotide triphosphates. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41855-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Translocation of Proteins Across Chloroplast Membranes. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s1569-2558(08)60403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
|
39
|
Madueno F, Napier JA, Gray JC. Newly Imported Rieske Iron-Sulfur Protein Associates with Both Cpn60 and Hsp70 in the Chloroplast Stroma. THE PLANT CELL 1993; 5:1865-1876. [PMID: 12271059 PMCID: PMC160411 DOI: 10.1105/tpc.5.12.1865] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The precursor of the Rieske FeS protein, a thylakoid membrane protein, was imported by isolated pea chloroplasts, and the mature protein was shown to be integrated into the cytochrome bf complex of the thylakoid membranes. Insertion into the thylakoid membrane was sensitive to the ionophores nigericin and valinomycin, suggesting a requirement for a proton motive force. A considerable proportion of the imported Rieske protein was detected in the stromal fraction of the chloroplasts, and this increased when membrane insertion was blocked with ionophores. Electrophoresis of the stromal fraction under nondenaturing conditions resolved two distinct complexes containing the Rieske protein. One of these complexes was identified as an association of the Rieske protein with the chaperonin Cpn60 complex by its electrophoretic mobility, Mg-ATP-dependent dissociation, and immunoprecipitation with anti-Cpn60 antibodies. Coimmunoprecipitation of imported Rieske protein with anti-heat shock protein 70 (Hsp70) antibodies indicated that the Rieske protein was also associated, in an ATP-dissociable form, with a chloroplast Hsp70 homolog. Immunoprecipitation analysis of an import time course detected the highest amounts of the Cpn60-Rieske protein complex early in the time course, whereas highest amounts of the Hsp70-Rieske protein complex were formed much later. The disappearance of the Cpn60-Rieske protein complex correlated with increased amounts of the Rieske protein in the thylakoid fraction.
Collapse
Affiliation(s)
- F. Madueno
- Department of Plant Sciences and Cambridge Centre for Molecular Recognition, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | | | | |
Collapse
|
40
|
Cohen Y, Chitnis VP, Nechushtai R, Chitnis PR. Stable assembly of PsaE into cyanobacterial photosynthetic membranes is dependent on the presence of other accessory subunits of photosystem I. PLANT MOLECULAR BIOLOGY 1993; 23:895-900. [PMID: 8251642 DOI: 10.1007/bf00021544] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We studied assembly of the PsaE subunit of photosystem I into photosynthetic membranes of cyanobacterial mutant strains that lack specific photosystem I subunits. Radiolabeled PsaE was incubated with photosynthetic membranes, and their binding and assembly were assayed by resistance to removal by chaotropic agents and proteolytic digestion. PsaE incorporated into the wild-type membranes was resistant to these treatments. In the absence of PsaD, it was resistant to proteolytic digestion, but was removed by NaBr. When the membranes were isolated from a mutant strain in which the psaF and psaJ genes have been inactivated, PsaE assembled in vitro could not be removed. PsaE could associate with the membranes of the strain DF in which the psaD, psaJ and psaF genes have been mutated. However, the radiolabeled PsaE associated with these membranes was removed both by the proteolytic as well as by the chaotropic agents. Characterization of PsaE present in vivo revealed similar results. These observations suggest that PsaD and PsaF/J may interact with PsaE and stabilize it in the photosystem I complex.
Collapse
Affiliation(s)
- Y Cohen
- Department of Botany, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
41
|
Yuan J, Henry R, Cline K. Stromal factor plays an essential role in protein integration into thylakoids that cannot be replaced by unfolding or by heat shock protein Hsp70. Proc Natl Acad Sci U S A 1993; 90:8552-6. [PMID: 8378330 PMCID: PMC47395 DOI: 10.1073/pnas.90.18.8552] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The light-harvesting chlorophyll a/b protein (LHCP) is an integral thylakoid membrane protein. It is made in the cytosol as a precursor (pLHCP), imported into chloroplasts, and subsequently integrated into thylakoids. Integration of pLHCP into thylakoids requires a stromal protein factor that functions in part to maintain the solubility and integration competence of pLHCP. Recently, it was reported that unfolded pLHCP was sufficient for integration and that the stromal factor, identified as the plastid Hsp70, was required only to prevent pLHCP refolding [Yalovsky, S., Paulsen, H., Michaeli, D., Chitnis, P. R. & Nechushtai, R. (1992) Proc. Natl. Acad. Sci. USA 89, 5616-5619]. Our studies, using more rigorous criteria for integration, show that unfolded pLHCP is not sufficient; stromal factor is an absolute requirement for integration. Furthermore, experiments with purified Hsp70 as well as Hsp70-depleted stromal extract demonstrate that Hsp70 is not the stromal factor. These results plus the finding that pLHCP diluted out of urea is relatively stable as a substrate for integration point to an additional role for the stromal factor in targeting and/or membrane translocation.
Collapse
Affiliation(s)
- J Yuan
- Horticultural Sciences Department, University of Florida, Gainesville 32611
| | | | | |
Collapse
|
42
|
Paulsen H, Finkenzeller B, Kühlein N. Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:809-16. [PMID: 8354287 DOI: 10.1111/j.1432-1033.1993.tb18096.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The conformational behaviour of the light-harvesting chlorophyll a/b-binding protein (LHCP), the apoprotein of the major light-harvesting complex (LHCII) of photosystem II in plants, has been studied. According to the circular dichroism in the ultraviolet range measured with isolated LHCII, the protein in the complex adopts a folded structure with a high content of alpha helix (about 60%), whereas the non-pigmented, solubilized protein has a less ordered structure (about 20% alpha helix). LHCP-pigment complexes that have been reconstituted from the overexpressed protein and isolated pigments in the presence of detergents display a protein CD signal similar to that of authentic LHCII, indicating that LHCP folds into the native structure during the reconstitution procedure. Renaturation of LHCP in these experiments is dependent on the presence of pigments and the formation of stable LHCP-pigment complexes. Pigment-induced engagement of LHCP in a compact structure has also been shown by two additional experimental approaches. (a) Upon complex formation, LHCP or its precursor (pLHCP) becomes resistant to trypsin digestion with the exception of an N-terminal segment of the protein; the same protection of LHCP is known to occur in intact thylakoids. (b) Pigment binding renders a cysteine residue within the N-proximal hydrophobic domain of the protein as well as a newly introduced cysteine four amino acid positions from the C terminus inaccessible to modification with a sulfhydryl-specific label whereas the N terminus stays susceptible to specific labelling. These observations support the notion that only the N terminus protrudes from a compact protein-pigment structure in LHCII. The fact that the major part of LHCP is trypsin-resistant in pigmented complexes reconstituted in the absence of a membrane or even lipids justifies caution in using protection against trypsin as a criterion for the integration of LHCP into the thylakoid membrane.
Collapse
Affiliation(s)
- H Paulsen
- Botanisches Institut III der Universität, München, Germany
| | | | | |
Collapse
|
43
|
Tsugeki R, Nishimura M. Interaction of homologues of Hsp70 and Cpn60 with ferredoxin-NADP+ reductase upon its import into chloroplasts. FEBS Lett 1993; 320:198-202. [PMID: 8096466 DOI: 10.1016/0014-5793(93)80585-i] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A homologue of the 70-kDa heat-shock protein (Hsp70) was purified from pumpkin chloroplasts. The molecular mass of the purified protein was approximately 75 kDa and its N-terminal amino acid sequence was very similar to those of homologues of Hsp70 from bacterial cells and from the mitochondrial matrix and stroma of pea chloroplasts. The purified homologue of Hsp70 was found in the stroma of chloroplasts. To investigate the role(s) of the homologue of Hsp70 in the chloroplast stroma, we examined the possibility that the homologue of Hsp70 might interact with newly imported proteins to assist in their maturation (for example, in their folding and assembly). Ferredoxin NADP+ reductase (FNR) imported into chloroplasts in vitro could be immunoprecipitated with antisera raised against the homologue of Hsp70 from pumpkin chloroplasts and against GroEL from Escherichia coli, which is a bacterial homologue of chaperonin 60 (Cpn60), in an ATP-dependent manner, an indication that newly imported FNR interacts physically with homologues of Hsp70 and Cpn60 in chloroplasts. Time-course analysis of the import of FNR showed that imported FNR interacts transiently with the homologue of Hsp70 and that the association of FNR with the homologue of Hsp70 precedes that with the homologue of Cpn60. These results suggest that homologues of Hsp70 and Cpn60 in chloroplasts might sequentially assist in the maturation of newly imported FNR in an ATP-dependent manner.
Collapse
Affiliation(s)
- R Tsugeki
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | | |
Collapse
|