1
|
Madeira MM, Hage Z, Tsirka SE. Beyond Myelination: Possible Roles of the Immune Proteasome in Oligodendroglial Homeostasis and Dysfunction. Front Neurosci 2022; 16:867357. [PMID: 35615276 PMCID: PMC9124978 DOI: 10.3389/fnins.2022.867357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Oligodendroglia play a critical role in CNS homeostasis by myelinating neuronal axons in their mature stages. Dysfunction in this lineage occurs when early stage OPCs are not able to differentiate to replace dying Mature Myelinating Oligodendrocytes. Many hypotheses exist as to why de- and hypo-myelinating disorders and diseases occur. In this review, we present data to show that oligodendroglia can adopt components of the immune proteasome under inflammatory conditions. The works reviewed further reflect that these immune-component expressing oligodendroglia can in fact function as antigen presenting cells, phagocytosing foreign entities and presenting them via MHC II to activate CD4+ T cells. Additionally, we hypothesize, based on the limited literature, that the adoption of immune components by oligodendroglia may contribute to their stalled differentiation in the context of these disorders and diseases. The present review will underline: (1) Mechanisms of neuroinflammation in diseases associated with Immune Oligodendroglia; (2) the first associations between the immune proteasome and oligodendroglia and the subtle distinctions between these works; (3) the suggested functionality of these cells as it is described by current literature; and (4) the hypothesized consequences on metabolism. In doing so we aim to shed light on this fairly under-explored cell type in hopes that study of their functionality may lead to further mechanistic understanding of hypo- and de-myelinating neuroinflammatory disorders and diseases.
Collapse
Affiliation(s)
- Miguel M. Madeira
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Zachary Hage
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Stella E. Tsirka
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- *Correspondence: Stella E. Tsirka,
| |
Collapse
|
2
|
Li H, Chen Y, Niu J, Yi C. New insights into the immunologic role of oligodendrocyte lineage cells in demyelination diseases. J Biomed Res 2022; 36:343-352. [PMID: 35578762 PMCID: PMC9548433 DOI: 10.7555/jbr.36.20220016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Oligodendrocyte lineage cells (OL-lineage cells) are a cell population that are crucial for mammalian central nervous system (CNS) myelination. OL-lineage cells go through developmental stages, initially differentiating into oligodendrocyte precursor cells (OPCs), before becoming immature oligodendrocytes, then mature oligodendrocytes (OLs). While the main function of cell lineage is in myelin formation, and increasing number of studies have turned to explore the immunological characteristics of these cells. Initially, these studies focused on discovering how OPCs and OLs are affected by the immune system, and then, how these immunological changes influence the myelination process. However, recent studies have uncovered another feature of OL-lineage cells in our immune systems. It would appear that OL-lineage cells also express immunological factors such as cytokines and chemokines in response to immune activation, and the expression of these factors changes under various pathologic conditions. Evidence suggests that OL-lineage cells actually modulate immune functions. Indeed, OL-lineage cells appear to play both "victim" and "agent" in the CNS which raises a number of questions. Here, we summarize immunologic changes in OL-lineage cells and their effects, as well as consider OL-lineage cell changes which influence immune cells under pathological conditions. We also describe some of the underlying mechanisms of these changes and their effects. Finally, we describe several studies which use OL-lineage cells as immunotherapeutic targets for demyelination diseases.
Collapse
Affiliation(s)
- Hui Li
- Research Centre, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Yang Chen
- Research Centre, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
- Jianqin Niu, Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Gaotanyan Main street, Chongqing 400038, China. Tel: +86-13668016001, E-mail:
| | - Chenju Yi
- Research Centre, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Chenju Yi, Research Centre, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Guangming (New) District, Shenzhen 518107, China. Tel: +86-13419189905, E-mail:
| |
Collapse
|
3
|
Raffaele S, Boccazzi M, Fumagalli M. Oligodendrocyte Dysfunction in Amyotrophic Lateral Sclerosis: Mechanisms and Therapeutic Perspectives. Cells 2021; 10:cells10030565. [PMID: 33807572 PMCID: PMC8000560 DOI: 10.3390/cells10030565] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Myelin is the lipid-rich structure formed by oligodendrocytes (OLs) that wraps the axons in multilayered sheaths, assuring protection, efficient saltatory signal conduction and metabolic support to neurons. In the last few years, the impact of OL dysfunction and myelin damage has progressively received more attention and is now considered to be a major contributing factor to neurodegeneration in several neurological diseases, including amyotrophic lateral sclerosis (ALS). Upon OL injury, oligodendrocyte precursor cells (OPCs) of adult nervous tissue sustain the generation of new OLs for myelin reconstitution, but this spontaneous regeneration process fails to successfully counteract myelin damage. Of note, the functions of OPCs exceed the formation and repair of myelin, and also involve the trophic support to axons and the capability to exert an immunomodulatory role, which are particularly relevant in the context of neurodegeneration. In this review, we deeply analyze the impact of dysfunctional OLs in ALS pathogenesis. The possible mechanisms underlying OL degeneration, defective OPC maturation, and impairment in energy supply to motor neurons (MNs) have also been examined to provide insights on future therapeutic interventions. On this basis, we discuss the potential therapeutic utility in ALS of several molecules, based on their remyelinating potential or capability to enhance energy metabolism.
Collapse
|
4
|
Kirby L, Castelo-Branco G. Crossing boundaries: Interplay between the immune system and oligodendrocyte lineage cells. Semin Cell Dev Biol 2020; 116:45-52. [PMID: 33162336 DOI: 10.1016/j.semcdb.2020.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/12/2020] [Accepted: 10/26/2020] [Indexed: 01/20/2023]
Abstract
Oligodendrocytes and their progenitors are glial cells in the central nervous system, which have been mainly implicated with the homeostatic roles of axonal myelin ensheathment but serve as targets of the peripheral immune system attack in the context of diseases like multiple sclerosis. This view of oligodendroglia as passive bystanders with no immunological properties was first challenged in the 1980s when it was reported that the cytokine interferon γ could induce the gene expression of the major histocompatibility complexes (MHC) class I and II. While the physiological role of this induction was controversial for decades to follow, recent studies suggest that oligodendroglia survey their environment, respond to a larger array of cues and can indeed exert immunomodulatory functions, which are particularly relevant in the context of neurodegeneration and demyelinating diseases. The alternative functionality of oligodendroglia not only regulates immune cell responses, but also hinders remyelination, and might thereby be key to understanding MS disease pathology and promoting regeneration after immune-mediated demyelination.
Collapse
Affiliation(s)
- Leslie Kirby
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
5
|
Williams S, Ghosh C. Neurovascular glucocorticoid receptors and glucocorticoids: implications in health, neurological disorders and drug therapy. Drug Discov Today 2019; 25:89-106. [PMID: 31541713 DOI: 10.1016/j.drudis.2019.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/12/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Glucocorticoid receptors (GRs) are ubiquitous transcription factors widely studied for their role in controlling events related to inflammation, stress and homeostasis. Recently, GRs have reemerged as crucial targets of investigation in neurological disorders, with a focus on pharmacological strategies to direct complex mechanistic GR regulation and improve therapy. In the brain, GRs control functions necessary for neurovascular integrity, including responses to stress, neurological changes mediated by the hypothalamic-pituitary-adrenal axis and brain-specific responses to corticosteroids. Therefore, this review will examine GR regulation at the neurovascular interface in normal and pathological conditions, pharmacological GR modulation and glucocorticoid insensitivity in neurological disorders.
Collapse
Affiliation(s)
- Sherice Williams
- Brain Physiology Laboratory/Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chaitali Ghosh
- Brain Physiology Laboratory/Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine and Biomedical Engineering at Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
6
|
Falcão AM, van Bruggen D, Marques S, Meijer M, Jäkel S, Agirre E, Samudyata, Floriddia EM, Vanichkina DP, Ffrench-Constant C, Williams A, Guerreiro-Cacais AO, Castelo-Branco G. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med 2018; 24:1837-1844. [PMID: 30420755 PMCID: PMC6544508 DOI: 10.1038/s41591-018-0236-y] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 09/14/2018] [Indexed: 11/22/2022]
Abstract
Multiple sclerosis (MS) is characterized by an immune system attack targeting myelin, which is produced by oligodendrocytes (OLs). We performed single-cell transcriptomic analysis of OL lineage cells from the spinal cord of mice induced with experimental autoimmune encephalomyelitis (EAE), which mimics several aspects of MS. We found unique OLs and OL precursor cells (OPCs) in EAE and uncovered several genes specifically alternatively spliced in these cells. Surprisingly, EAE-specific OL lineage populations expressed genes involved in antigen processing and presentation via major histocompatibility complex class I and II (MHC-I and -II), and in immunoprotection, suggesting alternative functions of these cells in a disease context. Importantly, we found that disease-specific oligodendroglia are also present in human MS brains and that a substantial number of genes known to be susceptibility genes for MS, so far mainly associated with immune cells, are expressed in the OL lineage cells. Finally, we demonstrate that OPCs can phagocytose and that MHC-II-expressing OPCs can activate memory and effector CD4-positive T cells. Our results suggest that OLs and OPCs are not passive targets but instead active immunomodulators in MS. The disease-specific OL lineage cells, for which we identify several biomarkers, may represent novel direct targets for immunomodulatory therapeutic approaches in MS.
Collapse
Affiliation(s)
- Ana Mendanha Falcão
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Stockholm, Sweden.
| | - David van Bruggen
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Sueli Marques
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Mandy Meijer
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Sarah Jäkel
- MRC Centre for Regenerative Medicine and MS Society Edinburgh Centre, Edinburgh bioQuarter, University of Edinburgh, Edinburgh, UK
| | - Eneritz Agirre
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Samudyata
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Elisa M Floriddia
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Darya P Vanichkina
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, New South Wales , Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine and MS Society Edinburgh Centre, Edinburgh bioQuarter, University of Edinburgh, Edinburgh, UK
| | - Anna Williams
- MRC Centre for Regenerative Medicine and MS Society Edinburgh Centre, Edinburgh bioQuarter, University of Edinburgh, Edinburgh, UK
| | | | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Stockholm, Sweden.
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Kolomeets NS. [Disturbance of oligodendrocyte differentiation in schizophrenia in relation to main hypothesis of the disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:108-117. [PMID: 28884727 DOI: 10.17116/jnevro201711781108-117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing evidence coming from neuroimaging, molecular genetic and post-mortem studies have implicated oligodendrocyte abnormalities and compromised myelin integrity in schizophrenia. Activity-dependent myelination in adult brain is considered to be an important mechanism of neural circuit's plasticity due to the presence of a large population of oligodendrocyte progenitor cells (OPC) in the adult CNS. Growing evidence for impairment of oligodendrocyte differentiation has been reported in the brain of schizophrenia subjects. OPC are very vulnerable inflammation, oxidative stress, and elevated glutamate levels leading to excitotoxicity. The mechanisms of prolonged suppression of oligodendrocyte differentiation caused by prenatal maternal infection or preterm birth are discussed in view of increased risk of schizophrenia, neurodevelopmental and inflammation hypotheses of the disease. The data that some neuroleptics stimulate OPC differentiation and ameliorate myelin alterations support the notion that impairment in the differentiation of OPCs contributes to oligodendrocyte abnormalities and to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- N S Kolomeets
- National Mental Health Research Center, Moscow, Russia
| |
Collapse
|
8
|
Zeis T, Enz L, Schaeren-Wiemers N. The immunomodulatory oligodendrocyte. Brain Res 2015; 1641:139-148. [PMID: 26423932 DOI: 10.1016/j.brainres.2015.09.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 01/12/2023]
Abstract
Oligodendrocytes, the myelinating glial cells of the central nervous system (CNS), are due to their high specialization and metabolic needs highly vulnerable to various insults. This led to a general view that oligodendrocytes are defenseless victims during brain damage such as occurs in acute and chronic CNS inflammation. However, this view is challenged by increasing evidence that oligodendrocytes are capable of expressing a wide range of immunomodulatory molecules. They express various cytokines and chemokines (e.g. Il-1β, Il17A, CCL2, CXCL10), antigen presenting molecules (MHC class I and II) and co-stimulatory molecules (e.g. CD9, CD81), complement and complement receptor molecules (e.g. C1s, C2 and C3, C1R), complement regulatory molecules (e.g. CD46, CD55, CD59), tetraspanins (e.g. TSPAN2), neuroimmune regulatory proteins (e.g. CD200, CD47) as well as extracellular matrix proteins (e.g. VCAN) and many others. Their potential immunomodulatory properties can, at specific times and locations, influence ongoing immune processes as shown by numerous publications. Therefore, oligodendrocytes are well capable of immunomodulation, especially during the initiation or resolution of immune processes in which subtle signaling might tip the scale. A better understanding of the immunomodulatory oligodendrocyte can help to invent new, innovative therapeutic interventions in various diseases such as Multiple Sclerosis. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Thomas Zeis
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lukas Enz
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nicole Schaeren-Wiemers
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 2014; 141:302-13. [PMID: 23981039 DOI: 10.1111/imm.12163] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022] Open
Abstract
Communication between the immune system and the central nervous system (CNS) is exemplified by cross-talk between glia and neurons shown to be essential for maintaining homeostasis. While microglia are actively modulated by neurons in the healthy brain, little is known about the cross-talk between oligodendrocytes and microglia. Oligodendrocytes, the myelin-forming cells in the CNS, are essential for the propagation of action potentials along axons, and additionally serve to support neurons by producing neurotrophic factors. In demyelinating diseases such as multiple sclerosis, oligodendrocytes are thought to be the victims. Here, we review evidence that oligodendrocytes also have strong immune functions, express a wide variety of innate immune receptors, and produce and respond to chemokines and cytokines that modulate immune responses in the CNS. We also review evidence that during stress events in the brain, oligodendrocytes can trigger a cascade of protective and regenerative responses, in addition to responses that elicit progressive neurodegeneration. Knowledge of the cross-talk between microglia and oligodendrocytes may continue to uncover novel pathways of immune regulation in the brain that could be further exploited to control neuroinflammation and degeneration.
Collapse
Affiliation(s)
- Laura Peferoen
- Pathology Department, VU University Medical Centre, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
10
|
Possible involvement of TLRs and hemichannels in stress-induced CNS dysfunction via mastocytes, and glia activation. Mediators Inflamm 2013; 2013:893521. [PMID: 23935250 PMCID: PMC3713603 DOI: 10.1155/2013/893521] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/16/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022] Open
Abstract
In the central nervous system (CNS), mastocytes and glial cells (microglia, astrocytes and oligodendrocytes) function as sensors of neuroinflammatory conditions, responding to stress triggers or becoming sensitized to subsequent proinflammatory challenges. The corticotropin-releasing hormone and glucocorticoids are critical players in stress-induced mastocyte degranulation and potentiation of glial inflammatory responses, respectively. Mastocytes and glial cells express different toll-like receptor (TLR) family members, and their activation via proinflammatory molecules can increase the expression of connexin hemichannels and pannexin channels in glial cells. These membrane pores are oligohexamers of the corresponding protein subunits located in the cell surface. They allow ATP release and Ca2+ influx, which are two important elements of inflammation. Consequently, activated microglia and astrocytes release ATP and glutamate, affecting myelinization, neuronal development, and survival. Binding of ligands to TLRs induces a cascade of intracellular events leading to activation of several transcription factors that regulate the expression of many genes involved in inflammation. During pregnancy, the previous responses promoted by viral infections and other proinflammatory conditions are common and might predispose the offspring to develop psychiatric disorders and neurological diseases. Such disorders could eventually be potentiated by stress and might be part of the etiopathogenesis of CNS dysfunctions including autism spectrum disorders and schizophrenia.
Collapse
|
11
|
Kivisäkk P, Tian W, Fredrikson S, Link H, Söderström M. Multiple sclerosis: myelin basic protein induced mRNA expression of proinflammatory cytokines in mononuclear cells is suppressed by interferon-β 1b in vitro. Eur J Neurol 2011. [DOI: 10.1111/j.1468-1331.1997.tb00385.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Zeis T, Schaeren-Wiemers N. Lame Ducks or Fierce Creatures? - The Role of Oligodendrocytes in Multiple Sclerosis. J Mol Neurosci 2008; 35:91-100. [DOI: 10.1007/s12031-008-9042-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 11/29/2022]
|
13
|
Tepavcević V, Blakemore WF. Glial grafting for demyelinating disease. Philos Trans R Soc Lond B Biol Sci 2006; 360:1775-95. [PMID: 16147541 PMCID: PMC1569542 DOI: 10.1098/rstb.2005.1700] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Remyelination of demyelinated central nervous system (CNS) axons is considered as a potential treatment for multiple sclerosis, and it has been achieved in experimental models of demyelination by transplantation of pro-myelinating cells. However, the experiments undertaken have not addressed the need for tissue-type matching in order to achieve graft-mediated remyelination since they were performed in conditions in which the chance for graft rejection was minimized. This article focuses on the factors determining survival of allogeneic oligodendrocyte lineage cells and their contribution to the remyelination of demyelinating CNS lesions. The immune status of the CNS as well as the suitability of different models of demyelination for graft rejection studies are discussed, and ways of enhancing allogeneic oligodendrocyte-mediated remyelination are presented. Finally, the effects of glial graft rejection on host remyelination are described, highlighting the potential benefits of the acute CNS inflammatory response for myelin repair.
Collapse
Affiliation(s)
- V Tepavcević
- Department of Veterinary Medicine, MS Society Cambridge Centre for Myelin Repair, Cambridge Centre for Brain Repair, UK.
| | | |
Collapse
|
14
|
Colomar A, Marty V, Médina C, Combe C, Parnet P, Amédée T. Maturation and release of interleukin-1beta by lipopolysaccharide-primed mouse Schwann cells require the stimulation of P2X7 receptors. J Biol Chem 2003; 278:30732-40. [PMID: 12796490 DOI: 10.1074/jbc.m304534200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The P2X7 receptor, mainly expressed by immune cells, is a ionotropic receptor activated by high concentration of extracellular ATP. It is involved in several processes relevant to immunomodulation and inflammation. Among these processes, the production of extracellular interleukin-1beta (IL-1beta), a pro-inflammatory cytokine, plays a major role in the activation of the cytokine network. We have investigated the role of P2X7 receptor and of an associated calcium-activated potassium conductance (BK channels) in IL-1beta maturation and releasing processes by Schwann cells. Lipopolysaccharide-primed Schwann cells synthesized large amounts of pro-IL-1beta but did not release detectable amounts of pro or mature IL-1beta. ATP on its own had no effect on the synthesis of pro-IL-1beta, but a co-treatment with lipopolysaccharide and ATP led to the maturation and the release of IL-1beta by Schwann cells. Both mechanisms were blocked by oxidized ATP. IL-1beta-converting enzyme (ICE), the caspase responsible for the maturation of pro-IL-1beta in IL-1beta, was activated by P2X7 receptor stimulation. The specific inhibition of ICE by the caspase inhibitor Ac-Tyr-Val-Ala-Asp-aldehyde blocked the maturation of IL-1beta. In searching for a link between the P2X7 receptor and the activation of ICE, we found that enhancing potassium efflux from Schwann cells upregulated the production of IL-1beta, while strongly reducing potassium efflux led to opposite effects. Blocking BK channels actually modulated IL-1beta release. Taken together, these results show that P2X7 receptor stimulation and associated BK channels, through the activation of ICE, leads to the maturation and the release of IL-1beta by immune-challenged Schwann cells.
Collapse
Affiliation(s)
- Aurore Colomar
- Département de Physiologie, Centre de Recherches en Sciences Neurologiques, Université de Montréal, Montréal H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Glucocorticoids (GCs) are well known for their anti-inflammatory and immunosuppressive properties in the periphery and are therefore widely and successfully used in the treatment of autoimmune diseases, chronic inflammation, or transplant rejection. This led to the assumption that GCs are uniformly anti-inflammatory in the periphery and the central nervous system (CNS). As a consequence, GCs are also used in the treatment of CNS inflammation. There is abundant evidence that an inflammatory reaction is mounted within the CNS following trauma, stroke, infection, and seizure, which can augment the brain damage. However an increasing number of studies indicate that the concept of GCs being universally immunosuppressive might be oversimplified. This article provides a review of the current literature, showing that under certain circumstances GCs might fail to have anti-inflammatory effects and sometimes even enhance inflammation.
Collapse
Affiliation(s)
- Klaus Dinkel
- Department of Biological Sciences, Stanford University, Stanford, California, USA.
| | | | | |
Collapse
|
16
|
Abstract
Autoimmune responses are controlled by complex regulatory circuits. Previous work has revealed that factors controlling autoimmunity can act both as potentiating and inhibitory agents, depending upon the site and timing of exposure. Recent advances in this complex field have at least partially uncovered the mechanism whereby these regulatory molecules participate in autoimmune processes. IL-12 production in the absence of infection may predispose to autoimmunity. IL-4 and transforming growth factor beta may suppress autoreactive T cells. Proinflammatory cytokines may ameliorate autoimmunity, dependent on the timing and level of production. In many cases, cytokines may act via antigen-presenting cells.
Collapse
Affiliation(s)
- M Falcone
- Department of Immunology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
17
|
Abstract
Multiple sclerosis (MS) is characterized by multifocal areas within the CNS of demyelination with relative but not absolute axonal sparing. Initial lesion development appears dependent on T cell infiltration into the CNS; however, lesion expansion may reflect tissue injury induced by additional effector mechanisms derived from cells of the immune system and endogenous CNS cells (glial cells). This relative susceptibility to injury in MS of myelin and its cell of origin, the oligodendrocyte (OL), could reflect either the properties of the effectors or the targets. Effector-determined susceptibility could relate to presence of OL/myelin-restricted T cells or antibody. OLs, at least in vitro, express MHC class I molecules and are susceptible to CD8(+)T cell-mediated cytotoxicity. OL/myelin-specific antibodies are identified in MS lesions and could induce injury via complement- or ADCC-dependent mechanisms. OLs are susceptible to injury-mediated by non-specific cell effectors including NK cells, NK-like T cells (CD56(+)), and gamma/delta T cells via perforin/granzyme-dependent mechanisms. In vitro studies of OL injury mediated via tumor necrosis factor (TNF) and CD95 indicate that differential glial cell susceptibility to injury can depend on cell surface receptor expression and intracellular signaling pathways that are activated. These target-determined susceptibility factors may be amenable to neuroprotective therapies.
Collapse
Affiliation(s)
- S Pouly
- Neuroimmunology Unit, Montréal Neurological Institute, 3801 University Street, Montréal, Québec, H3A 2B4, Canada
| | | |
Collapse
|
18
|
Wiegers GJ, Reul JM. Induction of cytokine receptors by glucocorticoids: functional and pathological significance. Trends Pharmacol Sci 1998; 19:317-21. [PMID: 9745359 DOI: 10.1016/s0165-6147(98)01229-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current concepts on the role of glucocorticoid hormones in the regulation of inflammatory and immune responses depict this role as being inhibitory. Over the past decade, however, a large variety of studies have shown that glucocorticoids also exert stimulatory effects on immune function, suggesting that the present concept of the role of glucocorticoids in the immune system in not sufficient and needs to be extended. Here, Jan Wiegers and Hans Reul ask how these apparently paradoxical effects fit together and what their functional and pathological significance might be.
Collapse
Affiliation(s)
- G J Wiegers
- Section of Neuroimmunoendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | | |
Collapse
|
19
|
Popko B, Corbin JG, Baerwald KD, Dupree J, Garcia AM. The effects of interferon-gamma on the central nervous system. Mol Neurobiol 1997; 14:19-35. [PMID: 9170099 PMCID: PMC7091409 DOI: 10.1007/bf02740619] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interferon-gamma (IFN-gamma) is a pleotropic cytokine released by T-lymphocytes and natural killer cells. Normally, these cells do not traverse the blood-brain barrier at appreciable levels and, as such, IFN-gamma is generally undetectable within the central nervous system (CNS). Nevertheless, in response to CNS infections, as well as during certain disorders in which the CNS is affected, T-cell traffic across the blood-brain barrier increases considerably, thereby exposing neuronal and glial cells to the potent effects of IFN-gamma. A larger portion of this article is devoted to the substantial circumstantial and experimental evidence that suggests that IFN-gamma plays an important role in the pathogenesis of the demyelinating disorder multiple sclerosis (MS) and its animal model experimental allergic encephalomyelitis (EAE). Moreover, the biochemical and physiological effects of IFN-gamma are discussed in the context of the potential consequences of such activities on the developing and mature nervous systems.
Collapse
Affiliation(s)
- B Popko
- Department of Biochemistry, UNC Neuroscience Center, University of North Carolina, Chapel Hill 27599-7250, USA
| | | | | | | | | |
Collapse
|
20
|
Horwitz MS, Evans CF, Mcgavern DB, Rodriguez M, Oldstone MBA. Primary demyelination in transgenic mice expressing interferon-gamma. Nat Med 1997; 3:1037-1041. [PMID: 9288735 PMCID: PMC5321678 DOI: 10.1038/nm0997-1037] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ever since the use of interferon-gamma to treat patients with multiple sclerosis resulted in enhanced disease, the role of IFN-gamma in demyelination has been under question. To address this issue directly, transgenic mice were generated that expressed the cDNA of murine IFN-gamma in the central nervous system by using an oligodendrocyte-specific promoter. Expression of the transgene occurred after 8 weeks of age, at which time the murine immune and central nervous systems are both fully developed. Directly associated with transgene expression, primary demyelination occurred and was accompanied by clinical abnormalities consistent with CNS disorders. Additionally, multiple hallmarks of immune-mediated CNS disease were observed including upregulation of MHC molecules, gliosis and lymphocytic infiltration. These results demonstrate a direct role for IFN-gamma as an inducer of CNS demyelination leading to disease and provide new opportunities for dissecting the mechanism of demyelination.
Collapse
Affiliation(s)
- Marc S Horwitz
- Departments of Immunology (IMM-23), 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Neuropharmacology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Claire F Evans
- Neuropharmacology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Dorian B Mcgavern
- Department of Neurology and Immunology, Mayo Clinic, 200 First Street, SW, Rochester, Minnesota 55905, USA
| | - Moses Rodriguez
- Department of Neurology and Immunology, Mayo Clinic, 200 First Street, SW, Rochester, Minnesota 55905, USA
| | - Michael B A Oldstone
- Neuropharmacology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
21
|
Eng LF, Ghirnikar RS, Lee YL. Inflammation in EAE: role of chemokine/cytokine expression by resident and infiltrating cells. Neurochem Res 1996; 21:511-25. [PMID: 8734446 DOI: 10.1007/bf02527717] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Experimental allergic encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system (CNS) which has many clinical and pathological features in common with multiple sclerosis (MS). Comparison of the histopathology of EAE and MS reveals a close similarity suggesting that these two diseases share common pathogenetic mechanisms. Immunologic processes are widely accepted to contribute to the initiation and continuation of the diseases and recent studies have indicated that microglia, astrocytes and the infiltrating immune cells have separate roles in the pathogenesis of the MS lesion. The role of cytokines as important regulatory elements in these immune processes has been well established in EAE and the presence of cytokines in cells at the edge of MS lesions has also been observed. However, the role of chemokines in the initial inflammatory process as well as in the unique demyelinating event associated with MS and EAE has only recently been examined. A few studies have detected the transient presence of selected chemokines at the earliest sign of leukocyte infiltration of CNS tissue and have suggested astrocytes as their cellular source. Based on these studies, chemokines have been postulated as a promising target for future therapy of CNS inflammation. This review summarized the events that occur during the inflammatory process in EAE and discusses the roles of cytokine and chemokine expression by the resident and infiltrating cells participating in the process.
Collapse
Affiliation(s)
- L F Eng
- Department of Pathology, Veteran Affairs Palo Alto Health Care System, CA 94304, USA
| | | | | |
Collapse
|
22
|
Sundstrom JB, Ansari AA. Comparative study of the role of professional versus semiprofessional or nonprofessional antigen presenting cells in the rejection of vascularized organ allografts. Transpl Immunol 1995; 3:273-89. [PMID: 8665146 DOI: 10.1016/0966-3274(95)80013-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune systems of transplant recipients are progressively challenged with exposure to the multiple lineages of donor cells that comprise the vascularized organ allograft. Each lineage of such donor tissue constitutively expresses or can be induced to express varying densities of MHC antigens ranging from no expression of MHC to MHC class I only to both MHC class I and class II. In addition, the cell surface expression of a diverse assortment of costimulatory and cell adhesion molecules also varies in density in a tissue specific fashion within the allograft. The MHC class I/II molecules displayed on the donor cells contain within their clefts a constellation of processed protein antigens in the form of peptides derived from intracellular and to some extent extracellular sources. Therefore, the potential for each cell lineage to induce alloactivation and serve as a target for allospecific immune responses is dependent on the diversity and density of peptide-bearing MHC molecules, costimulatory molecules, and cell adhesion molecules. In addition, the T cell receptor repertoire of the recipient also contributes to the magnitude of the allogeneic response. Consequently, the variety of clinical outcomes following organ transplantation even with the institution of potent immunosuppressive (drug) therapies is not surprising, as it appears reasonable for such therapies to influence the allogeneic response against distinct lineages differentially. Our failure to prevent chronic human allograft rejection may therefore be due to our limited appreciation of the full spectrum of alloactivating experiences encountered by host T cells as they interact with donor cells of diverse tissue lineages. Investigations by our laboratory of the immunopathogenesis of chronic cardiac allograft rejection have revealed an intrinsic inability of human cardiac myocytes to process and present antigens, not only for primary but also for secondary alloimmune responses. One obvious explanation for this phenomenon is the fact that cardiac myocytes do not constitutively express MHC class II molecules and express only low levels of class I molecules. However, this immunological unresponsiveness is maintained even after the induction of MHC class II and upregulation of MHC class I on these cells by interferon-gamma (IFN-gamma). Similar results have also been reported for cells of different tissue lineages (e.g. chondrocytes, keratinocytes, neural cells). Until now, cells have been defined as professional or nonprofessional for the purposes of defining their potential for antigen presentation to T cells. Professional antigen presenting cells have been identified as cells that are of haematopoietic origin, that constitutively express MHC class I and class II molecules as well as potent costimulatory molecules, and that are able to induce both primary and secondary immune responses, whereas nonprofessional antigen presenting cells are not bone marrow derived, do not constitutively express MHC class II, but may in some cases initiate primary and secondary immune responses after induction of MHC class II antigen by proinflammatory cytokines (e.g. IFN-gamma). The findings of our laboratory and others suggest that cells of certain lineages be considered in the separate class of 'nonantigen presenting cells'. Indeed, nonprofessional antigen presenting cells can be reclassified into three categories: semiprofessional-, nonprofessional-, or nonantigen presenting cells that are able to present antigen to and activate naive T cells, activated T cells, or no T Cells, respectively. The aim of this review is to identify and (re)examine the antigen presentation characteristics of cells of different tissue lineages in terms of their ability to activate different subsets of T cells. This approach is taken in an attempt to synthesize these concepts into a unified picture of T cell activation in the context of antigen processing and presentation by different cell types.
Collapse
Affiliation(s)
- J B Sundstrom
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
23
|
Vartanian T, Li Y, Zhao M, Stefansson K. Interferon-gamma-induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis. Mol Med 1995; 1:732-43. [PMID: 8612196 PMCID: PMC2230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The histopathology of multiple sclerosis (MS) is characterized by a loss of myelin and oligodendrocytes, relative preservation of axons, and a modest inflammatory response. The reasons for this selective oligodendrocyte death and demyelination are unknown. MATERIALS AND METHODS In light of the T lymphocyte and macrophage infiltrates in MS lesions and the numerous cytokines these cells secrete, the direct influence of cytokines on survival of cultured oligodendrocytes and sensory neurons was investigated. Expression of cytokines in vivo was determined by immunolabeling cryostat sections of snap-frozen tissue containing chronic active lesions from four different patients. The samples were also analyzed for the presence of apoptotic nuclei by in situ labeling of 3'-OH ends of degraded nuclear DNA. RESULTS The results showed: (i) interferon-gamma (IFN gamma) to be a potent inducer of apoptosis among oligodendrocytes in vitro and that this effect can be reversed by leukemia inhibitory factor (LIF); (ii) IFN gamma has a minimal effect on the survival of cultured neurons; (iii) IFN gamma at the margins of active MS plaques but not in unaffected white matter; (iv) evidence for apoptosis of oligodendrocytes at the advancing margins of chronic active MS plaques. CONCLUSIONS Injury to a substantial number of oligodendrocytes in MS is the results of programmed cell death rather than necrotic cell death mechanisms. We postulate that IFN gamma plays a role in the pathogenesis of MS by activating apoptosis in oligodendrocytes.
Collapse
Affiliation(s)
- T Vartanian
- Department of Neurology, Beth Israel Hospital, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
24
|
Interferon-γ-Induced Oligodendrocyte Cell Death: Implications for the Pathogenesis of Multiple Sclerosis. Mol Med 1995. [DOI: 10.1007/bf03401888] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
25
|
Lampson LA. Interpreting MHC class I expression and class I/class II reciprocity in the CNS: reconciling divergent findings. Microsc Res Tech 1995; 32:267-85. [PMID: 8573777 DOI: 10.1002/jemt.1070320402] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MHC-restricted T cells are thought to contribute to clinical demyelination in MS and other circumstances. The step-by-step mechanisms involved and ways of controlling them are still being defined. Identification of the MHC+ cells in the CNS in situ has been controversial. This chapter reviews MHC expression in neural tissue, including normal, pathological, experimental, and developing tissue in situ and isolated cells in vitro. A basic pattern is defined, in which MHC expression is limited to nonneural cells and strongest class I and II expression are on different cell types. Variations from the basic pattern are reviewed. Ways of reconciling divergent findings are discussed, including the use of "mock tissue" to help choose between technical and biological bases for divergent findings, the potential contribution of internal antigen to the in situ staining patterns, and the possibility that class I upregulation is actively suppressed in situ. Functional implications of the observed patterns of MHC expression and ways of confirming the function of each MHC+ cell type in situ are described. It is suggested that modulating MHC expression in different cell types at different times or in different directions might be desirable.
Collapse
Affiliation(s)
- L A Lampson
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
26
|
Abstract
Pathological features of MS include perivascular inflammation and demyelination with oligodendrocyte loss; in addition, attempts at remyelination are often unsuccessful and may culminate in astrocytic scarring. One approach to investigating the biological principles underlying these processes is to use in vitro systems to analyse single-cell behaviour as well as cell-cell interactions. This paper reviews such data concerned with cell injury and repair which illuminate both demyelination and remyelination. In tissue culture oligodendrocytes are susceptible to injury via cell-mediated and humoral mechanisms. Substances including complement and tumour necrosis factor are capable of killing rat oligodendrocytes in vitro; surface complement activation also initiates a number of intracellular processes within oligodendrocytes as well as providing ligands for phagocytic interactions. The reasons for oligodendrocyte complement activation are discussed, but it appears that species differences exist when extrapolating these data to humans. Myelination and remyelination can also be studied both in vitro and in vivo using defined cell populations. Results from these studies may eventually help to explain some pathological features of MS, including astrocytosis and factors governing the limits of remyelination.
Collapse
Affiliation(s)
- J Zajicek
- University of Cambridge Neurology Unit, Addenbrooke's Hospital, UK
| | | |
Collapse
|
27
|
Stohlman SA, Bergmann CC, van der Veen RC, Hinton DR. Mouse hepatitis virus-specific cytotoxic T lymphocytes protect from lethal infection without eliminating virus from the central nervous system. J Virol 1995; 69:684-94. [PMID: 7815531 PMCID: PMC188629 DOI: 10.1128/jvi.69.2.684-694.1995] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Acute infection of the central nervous system by the neurotropic JHM strain of mouse hepatitis virus (JHMV) induces nucleocapsid protein specific cytotoxic T lymphocytes (CTL) not found in the periphery (S. Stohlman, S. Kyuwa, J. Polo, D. Brady, M. Lai, and C. Bergmann, J. Virol. 67:7050-7059, 1993). Peripheral induction of CTL specific for the nucleocapsid protein of JHMV by vaccination with recombinant vaccinia viruses was unable to provide significant protection to a subsequent lethal virus challenge. By contrast, the transfer of nucleoprotein-specific CTL protected mice from a subsequent lethal challenge by reducing virus replication within the central nervous system, demonstrating the importance of the CTL response to this epitope in JHMV infection. Transfer of these CTL directly into the central nervous system was at least 10-fold more effective than peripheral transfer. Histological analysis indicated that the CTL reduced virus replication in ependymal cells, astrocytes, and microglia. Although the CTL were relatively ineffective at reducing virus replication in oligodendroglia, survivors showed minimal evidence of virus persistence within the central nervous system and no evidence of chronic ongoing demyelination.
Collapse
Affiliation(s)
- S A Stohlman
- Department of Neurology, USC School of Medicine, Los Angeles 90033
| | | | | | | |
Collapse
|
28
|
Li Y, Atashi J, Hayes C, Reap E, Hunt S, Popko B. Morphological and molecular response of the MOCH-1 oligodendrocyte cell line to serum and interferon-gamma: possible implications for demyelinating disorders. J Neurosci Res 1995; 40:189-98. [PMID: 7745612 DOI: 10.1002/jnr.490400207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The regional loss of oligodendrocytes is thought to be an important pathological event in a variety of demyelinating diseases of the central nervous system (CNS). Various components of serum, which are normally excluded from the CNS by the blood-brain barrier, have been implicated as mediators of demyelinating disorders. We have examined the effects of high concentrations of serum (10% fetal bovine serum, FBS), as well as the cytokine interferon-gamma (IFN-gamma), on an oligodendrocyte cell line, MOCH-1 cells. These cells changed from phase-bright, small round cells with multiple thin, branched processes in 1% FBS medium to flat, fibroblast-like cells with large cell bodies when cultured in 10% FBS medium or 1% FBS medium containing IFN-gamma. These morphological changes were accompanied by a large increase in expression of the astrocyte marker, glial fibrillary acidic protein (GFAP), as detected by Northern and Western blot analyses. In addition, Northern blot and fluorescence-activated cell sorting analyses revealed that IFN-gamma induced a very large increase in major histocompatibility complex (MHC) class I expression in MOCH-1 cells. MHC class II mRNA induction by IFN-gamma was also seen. In contrast, 10% FBS did not elevate either MHC class I or class II mRNA levels in MOCH-1 cells. The morphological and molecular effects of 10% FBS and IFN-gamma were reversible. We suggest that the response of MOCH-1 cells to high concentrations of serum and IFN-gamma may reflect an important in vivo response to oligodendrocytes to perturbations that occur in demyelinating disorders.
Collapse
Affiliation(s)
- Y Li
- Brain and Development Research Center, University of North Carolina at Chapel Hill 27599-7250, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kahn MA, de Vellis J. Growth factors in the CNS and their effects on oligodendroglia. PROGRESS IN BRAIN RESEARCH 1995; 105:145-69. [PMID: 7568872 DOI: 10.1016/s0079-6123(08)63291-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M A Kahn
- Department of Anatomy and Cell Biology, UCLA School of Medicine, USA
| | | |
Collapse
|
30
|
Dowding AJ, Scholes J. Lymphocytes and macrophages outnumber oligodendroglia in normal fish spinal cord. Proc Natl Acad Sci U S A 1993; 90:10183-7. [PMID: 8234275 PMCID: PMC47738 DOI: 10.1073/pnas.90.21.10183] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
As shown by staining with a monoclonal antibody against fish CD45, leukocytes are present in very large numbers in the fish central nervous system. Their subtypes were distinguished by electron microscopy and found to include all major hematogenous forms except thrombocytes, the most numerous being tissue macrophages and lymphocytes. As a population, they differ fundamentally from ramified microglia, the restricted form of myeloid cells present in the central nervous system in mammals. They are rare in most grey matter regions but are concentrated in myelinated fiber tracts as well as in certain strata of the radial glial network. The macrophages engulf discarded myelin and outnumber the oligodendrocytes in normal spinal cord white matter, where the density of lymphocytes is > 5000-fold greater than reported in rat.
Collapse
Affiliation(s)
- A J Dowding
- Medical Research Council Muscle and Cell Motility Unit, King's College London, United Kingdom
| | | |
Collapse
|
31
|
Carroll P, Sendtner M, Meyer M, Thoenen H. Rat ciliary neurotrophic factor (CNTF): gene structure and regulation of mRNA levels in glial cell cultures. Glia 1993; 9:176-87. [PMID: 8294148 DOI: 10.1002/glia.440090303] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The structure of the rat ciliary neurotrophic factor (CNTF) gene and the regulation of CNTF mRNA levels in cultured glial cells were investigated. The rat mRNA is encoded by a simple two-exon transcription unit. Sequence analysis of the region upstream of the transcription start-site did not reveal a typical TATA-box consensus sequence. Low levels of CNTF mRNA were detected in cultured Schwann cells, and CNTF mRNA was not increased by a variety of treatments. Three-week-old astrocyte-enriched cell cultures from new-born rat brain contained easily detectable CNTF mRNA. In astrocyte-enriched cultures, upregulation of CNTF mRNA levels was observed after treatment with IFN-gamma. CNTF mRNA levels were down-regulated in these cells by treatments that elevate intracellular cyclic AMP and by members of the fibroblast growth factor (FGF) family. The implications of these results for potential in vivo functions of CNTF are discussed.
Collapse
Affiliation(s)
- P Carroll
- Max-Planck Institute for Psychiatry, Department of Neurochemistry, Planegg, Germany
| | | | | | | |
Collapse
|