1
|
Rowell J, Lau CI, Ross S, Yanez DC, Peña OA, Chain B, Crompton T. Distinct T-cell receptor (TCR) gene segment usage and MHC-restriction between foetal and adult thymus. eLife 2024; 13:RP93493. [PMID: 39636212 PMCID: PMC11620746 DOI: 10.7554/elife.93493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Here, we sequenced rearranged TCRβ and TCRα chain sequences in CD4+CD8+ double positive (DP), CD4+CD8- single positive (SP4) and CD4-CD8+ (SP8) thymocyte populations from the foetus and young adult mouse. We found that life-stage had a greater impact on TCRβ and TCRα gene segment usage than cell-type. Foetal repertoires showed bias towards 3'TRAV and 5'TRAJ rearrangements in all populations, whereas adult repertoires used more 5'TRAV gene segments, suggesting that progressive TCRα rearrangements occur less frequently in foetal DP cells. When we synchronised young adult DP thymocyte differentiation by hydrocortisone treatment the new recovering DP thymocyte population showed more foetal-like 3'TRAV and 5'TRAJ gene segment usage. In foetus we identified less influence of MHC-restriction on α-chain and β-chain combinatorial VxJ usage and CDR1xCDR2 (V region) usage in SP compared to adult, indicating weaker impact of MHC-restriction on the foetal TCR repertoire. The foetal TCRβ repertoire was less diverse, less evenly distributed, with fewer non-template insertions, and all foetal populations contained more clonotypic expansions than adult. The differences between the foetal and adult thymus TCR repertoires are consistent with the foetal thymus producing αβT-cells with properties and functions that are distinct from adult T-cells: their repertoire is less governed by MHC-restriction, with preference for particular gene segment usage, less diverse with more clonotypic expansions, and more closely encoded by genomic sequence.
Collapse
Affiliation(s)
- Jasmine Rowell
- UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Ching-In Lau
- UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Susan Ross
- UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Diana C Yanez
- UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Oscar A Peña
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Benny Chain
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| |
Collapse
|
2
|
Mihai A, Lee SY, Shinton S, Parker MI, Contreras AV, Zhang B, Rhodes M, Dunbrack RL, Zúñiga-Pflücker JC, Ciofani M, Zhuang Y, Wiest DL. E proteins control the development of NKγδT cells through their invariant T cell receptor. Nat Commun 2024; 15:5078. [PMID: 38871720 PMCID: PMC11176164 DOI: 10.1038/s41467-024-49496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
T cell receptor (TCR) signaling regulates important developmental transitions, partly through induction of the E protein antagonist, Id3. Although normal γδ T cell development depends on Id3, Id3 deficiency produces different phenotypes in distinct γδ T cell subsets. Here, we show that Id3 deficiency impairs development of the Vγ3+ subset, while markedly enhancing development of NKγδT cells expressing the invariant Vγ1Vδ6.3 TCR. These effects result from Id3 regulating both the generation of the Vγ1Vδ6.3 TCR and its capacity to support development. Indeed, the Trav15 segment, which encodes the Vδ6.3 TCR subunit, is directly bound by E proteins that control its expression. Once expressed, the Vγ1Vδ6.3 TCR specifies the innate-like NKγδT cell fate, even in progenitors beyond the normally permissive perinatal window, and this is enhanced by Id3-deficiency. These data indicate that the paradoxical behavior of NKγδT cells in Id3-deficient mice is determined by its stereotypic Vγ1Vδ6.3 TCR complex.
Collapse
Affiliation(s)
- Ariana Mihai
- Immunology Department, Duke University, Durham, NC, USA
| | - Sang-Yun Lee
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Susan Shinton
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Mitchell I Parker
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Baojun Zhang
- Immunology Department, Duke University, Durham, NC, USA
| | - Michele Rhodes
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Roland L Dunbrack
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Maria Ciofani
- Immunology Department, Duke University, Durham, NC, USA
| | - Yuan Zhuang
- Immunology Department, Duke University, Durham, NC, USA
| | - David L Wiest
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Jamaleddine H, Rogers D, Perreault G, Postat J, Patel D, Mandl JN, Khadra A. Chronic infection control relies on T cells with lower foreign antigen binding strength generated by N-nucleotide diversity. PLoS Biol 2024; 22:e3002465. [PMID: 38300945 PMCID: PMC10833529 DOI: 10.1371/journal.pbio.3002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024] Open
Abstract
The breadth of pathogens to which T cells can respond is determined by the T cell receptors (TCRs) present in an individual's repertoire. Although more than 90% of the sequence diversity among TCRs is generated by terminal deoxynucleotidyl transferase (TdT)-mediated N-nucleotide addition during V(D)J recombination, the benefit of TdT-altered TCRs remains unclear. Here, we computationally and experimentally investigated whether TCRs with higher N-nucleotide diversity via TdT make distinct contributions to acute or chronic pathogen control specifically through the inclusion of TCRs with lower antigen binding strengths (i.e., lower reactivity to peptide-major histocompatibility complex (pMHC)). When T cells with high pMHC reactivity have a greater propensity to become functionally exhausted than those of low pMHC reactivity, our computational model predicts a shift toward T cells with low pMHC reactivity over time during chronic, but not acute, infections. This TCR-affinity shift is critical, as the elimination of T cells with lower pMHC reactivity in silico substantially increased the time to clear a chronic infection, while acute infection control remained largely unchanged. Corroborating an affinity-centric benefit for TCR diversification via TdT, we found evidence that TdT-deficient TCR repertoires possess fewer T cells with weaker pMHC binding strengths in vivo and showed that TdT-deficient mice infected with a chronic, but not an acute, viral pathogen led to protracted viral clearance. In contrast, in the case of a chronic fungal pathogen where T cells fail to clear the infection, both our computational model and experimental data showed that TdT-diversified TCR repertoires conferred no additional protection to the hosts. Taken together, our in silico and in vivo data suggest that TdT-mediated TCR diversity is of particular benefit for the eventual resolution of prolonged pathogen replication through the inclusion of TCRs with lower foreign antigen binding strengths.
Collapse
Affiliation(s)
| | - Dakota Rogers
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Geneviève Perreault
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Jérémy Postat
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Dhanesh Patel
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Judith N. Mandl
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Muñoz-Rojas AR, Wang G, Benoist C, Mathis D. Adipose-tissue regulatory T cells are a consortium of subtypes that evolves with age and diet. Proc Natl Acad Sci U S A 2024; 121:e2320602121. [PMID: 38227656 PMCID: PMC10823167 DOI: 10.1073/pnas.2320602121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
Foxp3+CD4+ regulatory T (Treg) cells found within tissues regulate local immunity, inflammation, and homeostasis. Tregs in epididymal visceral adipose tissue (eVAT) are critical regulators of local and systemic inflammation and metabolism. During aging and under obesogenic conditions, eVAT Tregs undergo transcriptional and phenotypic changes and are important for containing inflammation and normalizing metabolic indices. We have employed single-cell RNA sequencing, single-cell Tra and Trb sequencing, adoptive transfers, photoconvertible mice, cellular interaction analyses, and in vitro cultures to dissect the evolving heterogeneity of eVAT Tregs with aging and obesity. Distinct Treg subtypes with distinguishable gene expression profiles and functional roles were enriched at differing ages and with differing diets. Like those in lean mice, eVAT Tregs in obese mice were not primarily recruited from the circulation but instead underwent local expansion and had a distinct and diversified T cell receptor repertoire. The different eVAT-Treg subtypes were specialized in different functions; for example, the subtypes enriched in lean, but not obese, mice suppressed adipogenesis. The existence of functionally divergent eVAT-Treg subtypes in response to obesogenic conditions presents possibilities for precision therapeutics in the context of obesity.
Collapse
Affiliation(s)
| | - Gang Wang
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
5
|
Ramanan D, Chowdhary K, Candéias SM, Sassone-Corsi M, Gelineau A, Mathis D, Benoist C. Homeostatic, repertoire and transcriptional relationships between colon T regulatory cell subsets. Proc Natl Acad Sci U S A 2023; 120:e2311566120. [PMID: 38064511 PMCID: PMC10723124 DOI: 10.1073/pnas.2311566120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Foxp3+ regulatory T cells (Tregs) in the colon are key to promoting peaceful coexistence with symbiotic microbes. Differentiated in either thymic or peripheral locations, and modulated by microbes and other cellular influencers, colonic Treg subsets have been identified through key transcription factors (TFs; Helios, Rorγ, Gata3, and cMaf), but their interrelationships are unclear. Applying a multimodal array of immunologic, genomic, and microbiological assays, we find more overlap than expected between populations. The key TFs (Rorγ, Helios, Gata3, and cMaf) play different roles, some essential for subset identity, others driving functional gene signatures. Functional divergence was clearest under challenge. Single-cell genomics revealed a spectrum of phenotypes between the Helios+ and Rorγ+ poles, different Treg-inducing bacteria inducing the same Treg phenotypes to varying degrees, not distinct populations. TCR repertoires in monocolonized mice revealed that Helios+ and Rorγ+ Tregs are related and cannot be uniquely equated to tTreg and pTreg. Comparison of spleen and colon repertoires revealed that 2 to 5% of clonotypes are shared between the locations. We propose that rather than the origin of their differentiation, tissue-specific cues dictate the spectrum of colonic Treg phenotypes.
Collapse
Affiliation(s)
| | | | - Serge M. Candéias
- Université Grenoble Alpes, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Interdisciplinary Research Institute of Grenoble, Laboratory of Chemistry and Biology of Metals, Grenoble38054, France
| | | | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | | |
Collapse
|
6
|
de Boer RJ, Tesselaar K, Borghans JAM. Better safe than sorry: Naive T-cell dynamics in healthy ageing. Semin Immunol 2023; 70:101839. [PMID: 37716048 DOI: 10.1016/j.smim.2023.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
It is well-known that the functioning of the immune system gradually deteriorates with age, and we are increasingly confronted with its consequences as the life expectancy of the human population increases. Changes in the T-cell pool are among the most prominent features of the changing immune system during healthy ageing, and changes in the naive T-cell pool in particular are generally held responsible for its gradual deterioration. These changes in the naive T-cell pool are thought to be due to involution of the thymus. It is commonly believed that the gradual loss of thymic output induces compensatory mechanisms to maintain the number of naive T cells at a relatively constant level, and induces a loss of diversity in the T-cell repertoire. Here we review the studies that support or challenge this widely-held view of immune ageing and discuss the implications for vaccination strategies.
Collapse
Affiliation(s)
- Rob J de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands
| | - Kiki Tesselaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - José A M Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Ramanan D, Chowdhary K, Candéias SM, Sassone-Corsi M, Mathis D, Benoist C. Homeostatic, repertoire and transcriptional relationships between colon T regulatory cell subsets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541199. [PMID: 37292878 PMCID: PMC10245751 DOI: 10.1101/2023.05.17.541199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Foxp3 + regulatory T cells (Tregs) in the colon are key to promoting peaceful co-existence with symbiotic microbes. Differentiated in either thymic or peripheral locations, and modulated by microbes and other cellular influencers, colonic Treg subsets have been identified through key transcription factors (TF; Helios, Rorg, Gata3, cMaf), but their inter-relationships are unclear. Applying a multimodal array of immunologic, genomic, and microbiological assays, we find more overlap than expected between populations. The key TFs play different roles, some essential for subset identity, others driving functional gene signatures. Functional divergence was clearest under challenge. Single-cell genomics revealed a spectrum of phenotypes between the Helios+ and Rorγ+ poles, different Treg-inducing bacteria inducing the same Treg phenotypes to varying degrees, not distinct populations. TCR clonotypes in monocolonized mice revealed that Helios+ and Rorγ+ Tregs are related, and cannot be uniquely equated to tTreg and pTreg. We propose that rather than the origin of their differentiation, tissue-specific cues dictate the spectrum of colonic Treg phenotypes.
Collapse
|
8
|
Paiola M, Dimitrakopoulou D, Pavelka MS, Robert J. Amphibians as a model to study the role of immune cell heterogeneity in host and mycobacterial interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104594. [PMID: 36403788 DOI: 10.1016/j.dci.2022.104594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mycobacterial infections represent major concerns for aquatic and terrestrial vertebrates including humans. Although our current knowledge is mostly restricted to Mycobacterium tuberculosis and mammalian host interactions, increasing evidence suggests common features in endo- and ectothermic animals infected with non-tuberculous mycobacteria (NTMs) like those described for M. tuberculosis. Importantly, most of the pathogenic and non-pathogenic NTMs detected in amphibians from wild, farmed, and research facilities represent, in addition to the potential economic loss, a rising concern for human health. Upon mycobacterial infection in mammals, the protective immune responses involving the innate and adaptive immune systems are highly complex and therefore not fully understood. This complexity results from the versatility and resilience of mycobacteria to hostile conditions as well as from the immune cell heterogeneity arising from the distinct developmental origins according with the concept of layered immunity. Similar to the differing responses of neonates versus adults during tuberculosis development, the pathogenesis and inflammatory responses are stage-specific in Xenopus laevis during infection by the NTM M. marinum. That is, both in human fetal and neonatal development and in tadpole development, responses are characterized by hypo-responsiveness and a lower capacity to contain mycobacterial infections. Similar to a mammalian fetus and neonates, T cells and myeloid cells in Xenopus tadpoles and axolotls are different from the adult immune cells. Fetal and amphibian larval T cells, which are characterized by a lower T cell receptor (TCR) repertoire diversity, are biased toward regulatory function, and they have distinct progenitor origins from those of the adult immune cells. Some early developing T cells and likely macrophage subpopulations are conserved in adult anurans and mammals, and therefore, they likely play an important role in the host-pathogen interactions from early stages of development to adulthood. Thus, we propose the use of developing amphibians, which have the advantage of being free-living early in their development, as an alternative and complementary model to study the role of immune cell heterogeneity in host-mycobacteria interactions.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Rota IA, Handel AE, Maio S, Klein F, Dhalla F, Deadman ME, Cheuk S, Newman JA, Michaels YS, Zuklys S, Prevot N, Hublitz P, Charles PD, Gkazi AS, Adamopoulou E, Qasim W, Davies EG, Hanson I, Pagnamenta AT, Camps C, Dreau HM, White A, James K, Fischer R, Gileadi O, Taylor JC, Fulga T, Lagerholm BC, Anderson G, Sezgin E, Holländer GA. FOXN1 forms higher-order nuclear condensates displaced by mutations causing immunodeficiency. SCIENCE ADVANCES 2021; 7:eabj9247. [PMID: 34860543 PMCID: PMC8641933 DOI: 10.1126/sciadv.abj9247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/15/2021] [Indexed: 05/04/2023]
Abstract
The transcription factor FOXN1 is a master regulator of thymic epithelial cell (TEC) development and function. Here, we demonstrate that FOXN1 expression is differentially regulated during organogenesis and participates in multimolecular nuclear condensates essential for the factor’s transcriptional activity. FOXN1’s C-terminal sequence regulates the diffusion velocity within these aggregates and modulates the binding to proximal gene regulatory regions. These dynamics are altered in a patient with a mutant FOXN1 that is modified in its C-terminal sequence. This mutant is transcriptionally inactive and acts as a dominant negative factor displacing wild-type FOXN1 from condensates and causing athymia and severe lymphopenia in heterozygotes. Expression of the mutated mouse ortholog selectively impairs mouse TEC differentiation, revealing a gene dose dependency for individual TEC subtypes. We have therefore identified the cause for a primary immunodeficiency disease and determined the mechanism by which this FOXN1 gain-of-function mutant mediates its dominant negative effect.
Collapse
Affiliation(s)
- Ioanna A. Rota
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adam E. Handel
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stefano Maio
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Fabian Klein
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Fatima Dhalla
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mary E. Deadman
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stanley Cheuk
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Joseph A. Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford, UK
| | - Yale S. Michaels
- Genome Engineering and Synthetic Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Saulius Zuklys
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
| | - Nicolas Prevot
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Philip Hublitz
- MRC Weatherall Institute of Molecular Medicine, Genome engineering services, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Philip D. Charles
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Athina Soragia Gkazi
- Great Ormond Street Hospital and Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Eleni Adamopoulou
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Waseem Qasim
- Great Ormond Street Hospital and Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Edward Graham Davies
- Great Ormond Street Hospital and Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Imelda Hanson
- Department of Pediatrics, Section of Pediatric Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA
| | - Alistair T. Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Carme Camps
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Helene M. Dreau
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Andrea White
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Kieran James
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford, UK
| | - Jenny C. Taylor
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Tudor Fulga
- Genome Engineering and Synthetic Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - B. Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Erdinc Sezgin
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Georg A. Holländer
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
10
|
Binz C, Bubke A, Sandrock I, Prinz I. αβ T cells replacing dermal and epidermal γδ T cells in Tcrd -/- mice express an MHC-independent TCR repertoire. Eur J Immunol 2021; 51:2618-2632. [PMID: 34398456 DOI: 10.1002/eji.202149243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/23/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
The epidermis of mouse skin is usually populated by dendritic epidermal T cells (γδDETC) expressing an invariant Vγ5Vδ1+ TCR. In Tcrd-/- mice, skin-resident γδDETC are replaced by αβDETC carrying polyclonal αβ TCRs. Although they exhibit a dendritic morphology, αβDETC were reported to be less functional than genuine γδDETC, likely because their TCR is unable to interact with the original TCR ligands of γδDETC. However, the TCR repertoire of those replacement DETC in Tcrd-/- mice might provide clues for understanding the development and selection of canonical γδDETC. Here, we compare the phenotype and TCR repertoires of wild-type and Tcrd-/- mouse skin T cells. Our data reveal that αβDETC are CD4/CD8 double negative and express an MHC-independent TCR repertoire. Furthermore, we identify a second MHC-independent population of CD103hi CD4/ CD8 double-negative αβ T cells in the dermis of Tcrd-/- mice.
Collapse
Affiliation(s)
- Christoph Binz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Vergani S, Yuan J. Developmental changes in the rules for B cell selection. Immunol Rev 2021; 300:194-202. [PMID: 33501672 DOI: 10.1111/imr.12949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
The autoimmune checkpoint during B cell maturation eliminates self-antigen reactive specificities from the mature B cell repertoire. However, an exception to this rule is illustrated by B-1 cells, an innate-like self-reactive B cell subset that is positively selected into the mature B cell pool in a self-antigen-driven fashion. The mechanisms by which B-1 cells escape central tolerance have puzzled the field for decades. A key clue comes from their restricted developmental window during fetal and neonatal life. Here we use B-1 cells as a prototypic early life derived B cell subset to explore developmental changes in the constraints of B cell selection. We discuss recent advancements in the understanding of the molecular program, centered around the RNA binding protein Lin28b, that licenses self-reactive B-1 cell output during ontogeny. Finally, we speculate on the possible link between the unique rules of early life B cell tolerance and the establishment of B cell - microbial mutualism to propose an integrated model for how developmental and environmental cues come together to create a protective layer of B cell memory involved in neonatal immune imprinting.
Collapse
Affiliation(s)
- Stefano Vergani
- Developmental Immunology Unit, Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Joan Yuan
- Developmental Immunology Unit, Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Sethna Z, Isacchini G, Dupic T, Mora T, Walczak AM, Elhanati Y. Population variability in the generation and selection of T-cell repertoires. PLoS Comput Biol 2020; 16:e1008394. [PMID: 33296360 PMCID: PMC7725366 DOI: 10.1371/journal.pcbi.1008394] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
The diversity of T-cell receptor (TCR) repertoires is achieved by a combination of two intrinsically stochastic steps: random receptor generation by VDJ recombination, and selection based on the recognition of random self-peptides presented on the major histocompatibility complex. These processes lead to a large receptor variability within and between individuals. However, the characterization of the variability is hampered by the limited size of the sampled repertoires. We introduce a new software tool SONIA to facilitate inference of individual-specific computational models for the generation and selection of the TCR beta chain (TRB) from sequenced repertoires of 651 individuals, separating and quantifying the variability of the two processes of generation and selection in the population. We find not only that most of the variability is driven by the VDJ generation process, but there is a large degree of consistency between individuals with the inter-individual variance of repertoires being about ∼2% of the intra-individual variance. Known viral-specific TCRs follow the same generation and selection statistics as all TCRs.
Collapse
Affiliation(s)
- Zachary Sethna
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Giulio Isacchini
- Laboratoire de physique de l'École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université de Paris 24 rue Lhomond, Paris, France.,Max Planck Institute for Dynamics and Self-organization, Am Faßberg 17, Göttingen, Germany
| | - Thomas Dupic
- Laboratoire de physique de l'École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université de Paris 24 rue Lhomond, Paris, France
| | - Thierry Mora
- Laboratoire de physique de l'École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université de Paris 24 rue Lhomond, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université de Paris 24 rue Lhomond, Paris, France
| | - Yuval Elhanati
- Computational Oncology, Department of Epidemiology and Biostatistics, and Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
13
|
Abstract
T cell-mediated immune tolerance is a state of unresponsiveness of T cells towards specific self or non-self antigens. This is particularly essential during prenatal/neonatal period when T cells are exposed to dramatically changing environment and required to avoid rejection of maternal antigens, limit autoimmune responses, tolerate inert environmental and food antigens and antigens from non-harmful commensal microorganisms, promote maturation of mucosal barrier function, yet mount an appropriate response to pathogenic microorganisms. The cell-intrinsic and cell extrinsic mechanisms promote the generation of prenatal/neonatal T cells with distinct features to meet the complex and dynamic need of tolerance during this period. Reduced exposure or impaired tolerance in early life may have significant impact on allergic or autoimmune diseases in adult life. The uniqueness of conventional and regulatory T cells in human umbilical cord blood (UCB) may also provide certain advantages in UCB transplantation for hematological disorders.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Dan Lu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
14
|
Khass M, Levinson M, Schelonka RL, Kapoor P, Burrows PD, Schroeder HW. Preimmune Control of the Variance of TCR CDR-B3: Insights Gained From Germline Replacement of a TCR Dβ Gene Segment With an Ig D H Gene Segment. Front Immunol 2020; 11:2079. [PMID: 33042119 PMCID: PMC7518465 DOI: 10.3389/fimmu.2020.02079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/30/2020] [Indexed: 12/03/2022] Open
Abstract
We have previously shown that the sequence of the immunoglobulin diversity gene segment (D H ) helps dictate the structure and composition of complementarity determining region 3 of the immunoglobulin heavy chain (CDR-H3). In order to test the role of germline D sequence on the diversity of the preimmune TCRβ repertoire of T cells, we generated a mouse with a mutant TCRβ DJC locus wherein the Dβ2-Jβ2 gene segment cluster was deleted and the remaining diversity gene segment, Dβ1 (IMGT:TRDB1), was replaced with DSP2.3 (IMGT:IGHD2-02), a commonly used B cell immunoglobulin D H gene segment. Crystallographic studies have shown that the length and thus structure of TCR CDR-B3 places amino acids at the tip of CDR-B3 in a position to directly interact with peptide bound to an MHC molecule. The length distribution of complementarity determining region 3 of the T cell receptor beta chain (CDR-B3) has been proposed to be restricted largely by MHC-specific selection, disfavoring CDR-B3 that are too long or too short. Here we show that the mechanism of control of CDR-B3 length depends on the Dβ sequence, which in turn dictates exonucleolytic nibbling. By contrast, the extent of N addition and the variance of created CDR3 lengths are regulated by the cell of origin, the thymocyte. We found that the sequence of the D and control of N addition collaborate to bias the distribution of CDR-B3 lengths in the pre-immune TCR repertoire and to focus the diversity provided by N addition and the sequence of the D on that portion of CDR-B3 that is most likely to interact with the peptide that is bound to the presenting MHC.
Collapse
Affiliation(s)
- Mohamed Khass
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Genetic Engineering and Biotechnology, National Research Center, Cairo, Egypt
| | - Michael Levinson
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert L. Schelonka
- Division of Neonatology, Department of Pediatrics, Oregon Health Science Center, Portland, OR, United States
| | - Pratibha Kapoor
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Peter D. Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harry W. Schroeder
- Division of Clinical Immunology and Rheumatology, Department of Medicine, Microbiology, and Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
15
|
Abstract
Neonatal CD4+ and CD8+ T cells have historically been characterized as immature or defective. However, recent studies prompt a reinterpretation of the functions of neonatal T cells. Rather than a population of cells always falling short of expectations set by their adult counterparts, neonatal T cells are gaining recognition as a distinct population of lymphocytes well suited for the rapidly changing environment in early life. In this review, I will highlight new evidence indicating that neonatal T cells are not inert or less potent versions of adult T cells but instead are a broadly reactive layer of T cells poised to quickly develop into regulatory or effector cells, depending on the needs of the host. In this way, neonatal T cells are well adapted to provide fast-acting immune protection against foreign pathogens, while also sustaining tolerance to self-antigens.
Collapse
Affiliation(s)
- Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
16
|
Vanhee S, Åkerstrand H, Kristiansen TA, Datta S, Montano G, Vergani S, Lang S, Ungerbäck J, Doyle A, Olsson K, Beneventi G, Jensen CT, Bellodi C, Soneji S, Sigvardsson M, Gyllenbäck EJ, Yuan J. Lin28b controls a neonatal to adult switch in B cell positive selection. Sci Immunol 2019; 4:4/39/eaax4453. [DOI: 10.1126/sciimmunol.aax4453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
The ability of B-1 cells to become positively selected into the mature B cell pool, despite being weakly self-reactive, has puzzled the field since its initial discovery. Here, we explore changes in B cell positive selection as a function of developmental time by exploiting a link between CD5 surface levels and the natural occurrence of self-reactive B cell receptors (BCRs) in BCR wild-type mice. We show that the heterochronic RNA binding protein Lin28b potentiates a neonatal mode of B cell selection characterized by enhanced overall positive selection in general and the developmental progression of CD5+immature B cells in particular. Lin28b achieves this by amplifying the CD19/PI3K/c-Myc positive feedback loop, and ectopic Lin28b expression restores both positive selection and mature B cell numbers in CD19−/−adult mice. Thus, the temporally restricted expression ofLin28brelaxes the rules for B cell selection during ontogeny by modulating tonic signaling. We propose that this neonatal mode of B cell selection represents a cell-intrinsic cue to accelerate the de novo establishment of the adaptive immune system and incorporate a layer of natural antibody-mediated immunity throughout life.
Collapse
|
17
|
Egorov ES, Kasatskaya SA, Zubov VN, Izraelson M, Nakonechnaya TO, Staroverov DB, Angius A, Cucca F, Mamedov IZ, Rosati E, Franke A, Shugay M, Pogorelyy MV, Chudakov DM, Britanova OV. The Changing Landscape of Naive T Cell Receptor Repertoire With Human Aging. Front Immunol 2018; 9:1618. [PMID: 30087674 PMCID: PMC6066563 DOI: 10.3389/fimmu.2018.01618] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022] Open
Abstract
Human aging is associated with a profound loss of thymus productivity, yet naïve T lymphocytes still maintain their numbers by division in the periphery for many years. The extent of such proliferation may depend on the cytokine environment, including IL-7 and T-cell receptor (TCR) “tonic” signaling mediated by self pMHCs recognition. Additionally, intrinsic properties of distinct subpopulations of naïve T cells could influence the overall dynamics of aging-related changes within the naïve T cell compartment. Here, we investigated the differences in the architecture of TCR beta repertoires for naïve CD4, naïve CD8, naïve CD4+CD25−CD31+ (enriched with recent thymic emigrants, RTE), and mature naïve CD4+CD25−CD31− peripheral blood subsets between young and middle-age/old healthy individuals. In addition to observing the accumulation of clonal expansions (as was shown previously), we reveal several notable changes in the characteristics of T cell repertoire. We observed significant decrease of CDR3 length, NDN insert, and number of non-template added N nucleotides within TCR beta CDR3 with aging, together with a prominent change of physicochemical properties of the central part of CDR3 loop. These changes were similar across CD4, CD8, RTE-enriched, and mature CD4 subsets of naïve T cells, with minimal or no difference observed between the latter two subsets for individuals of the same age group. We also observed an increase in “publicity” (fraction of shared clonotypes) of CD4, but not CD8 naïve T cell repertoires. We propose several explanations for these phenomena built upon previous studies of naïve T-cell homeostasis, and call for further studies of the mechanisms causing the observed changes and of consequences of these changes in respect of the possible holes formed in the landscape of naïve T cell TCR repertoire.
Collapse
Affiliation(s)
- Evgeny S Egorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Sofya A Kasatskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Vasiliy N Zubov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Mark Izraelson
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Ilgar Z Mamedov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Mikhail Shugay
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | - Dmitriy M Chudakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Olga V Britanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
18
|
Müller V, de Boer RJ, Bonhoeffer S, Szathmáry E. An evolutionary perspective on the systems of adaptive immunity. Biol Rev Camb Philos Soc 2017; 93:505-528. [PMID: 28745003 DOI: 10.1111/brv.12355] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022]
Abstract
We propose an evolutionary perspective to classify and characterize the diverse systems of adaptive immunity that have been discovered across all major domains of life. We put forward a new function-based classification according to the way information is acquired by the immune systems: Darwinian immunity (currently known from, but not necessarily limited to, vertebrates) relies on the Darwinian process of clonal selection to 'learn' by cumulative trial-and-error feedback; Lamarckian immunity uses templated targeting (guided adaptation) to internalize heritable information on potential threats; finally, shotgun immunity operates through somatic mechanisms of variable targeting without feedback. We argue that the origin of Darwinian (but not Lamarckian or shotgun) immunity represents a radical innovation in the evolution of individuality and complexity, and propose to add it to the list of major evolutionary transitions. While transitions to higher-level units entail the suppression of selection at lower levels, Darwinian immunity re-opens cell-level selection within the multicellular organism, under the control of mechanisms that direct, rather than suppress, cell-level evolution for the benefit of the individual. From a conceptual point of view, the origin of Darwinian immunity can be regarded as the most radical transition in the history of life, in which evolution by natural selection has literally re-invented itself. Furthermore, the combination of clonal selection and somatic receptor diversity enabled a transition from limited to practically unlimited capacity to store information about the antigenic environment. The origin of Darwinian immunity therefore comprises both a transition in individuality and the emergence of a new information system - the two hallmarks of major evolutionary transitions. Finally, we present an evolutionary scenario for the origin of Darwinian immunity in vertebrates. We propose a revival of the concept of the 'Big Bang' of vertebrate immunity, arguing that its origin involved a 'difficult' (i.e. low-probability) evolutionary transition that might have occurred only once, in a common ancestor of all vertebrates. In contrast to the original concept, we argue that the limiting innovation was not the generation of somatic diversity, but the regulatory circuitry needed for the safe operation of amplifiable immune responses with somatically acquired targeting. Regulatory complexity increased abruptly by genomic duplications at the root of the vertebrate lineage, creating a rare opportunity to establish such circuitry. We discuss the selection forces that might have acted at the origin of the transition, and in the subsequent stepwise evolution leading to the modern immune systems of extant vertebrates.
Collapse
Affiliation(s)
- Viktor Müller
- Parmenides Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany.,Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary.,Evolutionary Systems Research Group, MTA Centre for Ecological Research, 8237 Tihany, Hungary
| | - Rob J de Boer
- Theoretical Biology, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Sebastian Bonhoeffer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Eörs Szathmáry
- Parmenides Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany.,Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary.,Evolutionary Systems Research Group, MTA Centre for Ecological Research, 8237 Tihany, Hungary
| |
Collapse
|
19
|
Dong M, Artusa P, Kelly SA, Fournier M, Baldwin TA, Mandl JN, Melichar HJ. Alterations in the Thymic Selection Threshold Skew the Self-Reactivity of the TCR Repertoire in Neonates. THE JOURNAL OF IMMUNOLOGY 2017; 199:965-973. [PMID: 28659353 DOI: 10.4049/jimmunol.1602137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/02/2017] [Indexed: 12/19/2022]
Abstract
Neonatal and adult T cells differ in their effector functions. Although it is known that cell-intrinsic differences in mature T cells contribute to this phenomenon, the factors involved remain unclear. Given emerging evidence that the binding strength of a TCR for self-peptide presented by MHC (self-pMHC) impacts T cell function, we sought to determine whether altered thymic selection influences the self-reactivity of the TCR repertoire during ontogeny. We found that conventional and regulatory T cell subsets in the thymus of neonates and young mice expressed higher levels of cell surface CD5, a surrogate marker for TCR avidity for self-pMHC, as compared with their adult counterparts, and this difference in self-reactivity was independent of the germline bias of the neonatal TCR repertoire. The increased binding strength of the TCR repertoire for self-pMHC in neonates was not solely due to reported defects in clonal deletion. Rather, our data suggest that thymic selection is altered in young mice such that thymocytes bearing TCRs with low affinity for self-peptide are not efficiently selected into the neonatal repertoire, and stronger TCR signals accompany both conventional and regulatory T cell selection. Importantly, the distinct levels of T cell self-reactivity reflect physiologically relevant differences based on the preferential expansion of T cells from young mice to fill a lymphopenic environment. Therefore, differences in thymic selection in young versus adult mice skew the TCR repertoire, and the relatively higher self-reactivity of the T cell pool may contribute to the distinct immune responses observed in neonates.
Collapse
Affiliation(s)
- Mengqi Dong
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.,Department of Microbiology, Infectious Diseases, and Immunology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Patricio Artusa
- Department of Physiology and McGill Research Centre for Complex Traits, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Stephanie A Kelly
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; and
| | - Marilaine Fournier
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; and
| | - Judith N Mandl
- Department of Physiology and McGill Research Centre for Complex Traits, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Heather J Melichar
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; .,Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
20
|
Insights into immune system development and function from mouse T-cell repertoires. Proc Natl Acad Sci U S A 2017; 114:2253-2258. [PMID: 28196891 DOI: 10.1073/pnas.1700241114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of the adaptive immune system to respond to arbitrary pathogens stems from the broad diversity of immune cell surface receptors. This diversity originates in a stochastic DNA editing process (VDJ recombination) that acts on the surface receptor gene each time a new immune cell is created from a stem cell. By analyzing T-cell receptor (TCR) sequence repertoires taken from the blood and thymus of mice of different ages, we quantify the changes in the VDJ recombination process that occur from embryo to young adult. We find a rapid increase with age in the number of random insertions and a dramatic increase in diversity. Because the blood accumulates thymic output over time, blood repertoires are mixtures of different statistical recombination processes, and we unravel the mixture statistics to obtain a picture of the time evolution of the early immune system. Sequence repertoire analysis also allows us to detect the statistical impact of selection on the output of the VDJ recombination process. The effects we find are nearly identical between thymus and blood, suggesting that our analysis mainly detects selection for proper folding of the TCR receptor protein. We further find that selection is weaker in laboratory mice than in humans and it does not affect the diversity of the repertoire.
Collapse
|
21
|
Callan CG, Mora T, Walczak AM. Repertoire sequencing and the statistical ensemble approach to adaptive immunity. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2016.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Application of Immunohistochemistry in Toxicologic Pathology of the Hematolymphoid System. IMMUNOPATHOLOGY IN TOXICOLOGY AND DRUG DEVELOPMENT 2017. [DOI: 10.1007/978-3-319-47377-2_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Britanova OV, Shugay M, Merzlyak EM, Staroverov DB, Putintseva EV, Turchaninova MA, Mamedov IZ, Pogorelyy MV, Bolotin DA, Izraelson M, Davydov AN, Egorov ES, Kasatskaya SA, Rebrikov DV, Lukyanov S, Chudakov DM. Dynamics of Individual T Cell Repertoires: From Cord Blood to Centenarians. THE JOURNAL OF IMMUNOLOGY 2016; 196:5005-13. [PMID: 27183615 DOI: 10.4049/jimmunol.1600005] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/16/2016] [Indexed: 01/29/2023]
Abstract
The diversity, architecture, and dynamics of the TCR repertoire largely determine our ability to effectively withstand infections and malignancies with minimal mistargeting of immune responses. In this study, we have employed deep TCRβ repertoire sequencing with normalization based on unique molecular identifiers to explore the long-term dynamics of T cell immunity. We demonstrate remarkable stability of repertoire, where approximately half of all T cells in peripheral blood are represented by clones that persist and generally preserve their frequencies for 3 y. We further characterize the extremes of lifelong TCR repertoire evolution, analyzing samples ranging from umbilical cord blood to centenarian peripheral blood. We show that the fetal TCR repertoire, albeit structurally maintained within regulated borders due to the lower numbers of randomly added nucleotides, is not limited with respect to observed functional diversity. We reveal decreased efficiency of nonsense-mediated mRNA decay in umbilical cord blood, which may reflect specific regulatory mechanisms in development. Furthermore, we demonstrate that human TCR repertoires are functionally more similar at birth but diverge during life, and we track the lifelong behavior of CMV- and EBV-specific T cell clonotypes. Finally, we reveal gender differences in dynamics of TCR diversity constriction, which come to naught in the oldest age. Based on our data, we propose a more general explanation for the previous observations on the relationships between longevity and immunity.
Collapse
Affiliation(s)
- Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Ekaterina M Merzlyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitriy B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Ekaterina V Putintseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Maria A Turchaninova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mikhail V Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitriy A Bolotin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mark Izraelson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Alexey N Davydov
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Evgeny S Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Sofya A Kasatskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Denis V Rebrikov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| |
Collapse
|
24
|
Affiliation(s)
- Eliver Eid Bou Ghosn
- Department of Genetics and Immunology Program; Stanford University School of Medicine; Stanford California
| | - Yang Yang
- Department of Genetics and Immunology Program; Stanford University School of Medicine; Stanford California
| |
Collapse
|
25
|
Fonte C, Gruez A, Ghislin S, Frippiat JP. The urodele amphibian Pleurodeles waltl has a diverse repertoire of immunoglobulin heavy chains with polyreactive and species-specific features. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:371-384. [PMID: 26277106 DOI: 10.1016/j.dci.2015.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 06/04/2023]
Abstract
Urodele amphibians are an interesting model because although they possess the cardinal elements of the vertebrate immune system, their immune response is apparently subdued. This phenomenon, sometimes regarded as a state of immunodeficiency, has been attributed by some authors to limited antibody diversity. We reinvestigated this issue in Pleurodeles waltl, a metamorphosing urodele, and noted that upsilon transcripts of its IgY repertoire were as diverse as alpha transcripts of the mammalian IgA repertoire. Mu transcripts encoding the IgM repertoire were less diverse, but could confer more plasticity. Both isotypes present potential polyreactive features that may confer urodele antibodies with the ability to bind to a variety of antigens. Finally, we observed additional cysteines in CDR1 and 2 of the IGHV5 and IGHV6 domains, some of which specific to urodeles, that could allow the establishment of a disulfide bond between these CDRs. Together, these data suggest that urodele antibody diversity is not as low as previously thought.
Collapse
Affiliation(s)
- Coralie Fonte
- EA7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500, Vandœuvre-lès-Nancy, France
| | - Arnaud Gruez
- Molecular and Structural Enzymology Group, Université de Lorraine, IMoPA, UMR 7365, F-54500, Vandoeuvre-lès-Nancy, France
| | - Stéphanie Ghislin
- EA7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500, Vandœuvre-lès-Nancy, France
| | - Jean-Pol Frippiat
- EA7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
26
|
Yang Y, Wang C, Yang Q, Kantor AB, Chu H, Ghosn EE, Qin G, Mazmanian SK, Han J, Herzenberg LA. Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires. eLife 2015; 4:e09083. [PMID: 26422511 PMCID: PMC4714975 DOI: 10.7554/elife.09083] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022] Open
Abstract
Processes that define immunoglobulin repertoires are commonly presumed to be the same for all murine B cells. However, studies here that couple high-dimensional FACS sorting with large-scale quantitative IgH deep-sequencing demonstrate that B-1a IgH repertoire differs dramatically from the follicular and marginal zone B cells repertoires and is defined by distinct mechanisms. We track B-1a cells from their early appearance in neonatal spleen to their long-term residence in adult peritoneum and spleen. We show that de novo B-1a IgH rearrangement mainly occurs during the first few weeks of life, after which their repertoire continues to evolve profoundly, including convergent selection of certain V(D)J rearrangements encoding specific CDR3 peptides in all adults and progressive introduction of hypermutation and class-switching as animals age. This V(D)J selection and AID-mediated diversification operate comparably in germ-free and conventional mice, indicating these unique B-1a repertoire-defining mechanisms are driven by antigens that are not derived from microbiota. DOI:http://dx.doi.org/10.7554/eLife.09083.001 Our immune system protects us by recognizing and destroying invading viruses, bacteria and other microbes. B cells are immune cells that produce protective proteins called antibodies to stop infections. These cells are activated by ‘antigens’, which are fragments of molecules from the microbes or from our own cells. When an antigen binds to a B cell, the cell matures, multiplies and produces proteins called antibodies. These antibodies can bind to the antigen, which marks the microbe for attack and removal by other cells in the immune system. Each antibody consists of two ‘heavy chain’ and two ‘light chain’ proteins. B cells are able to produce a large variety of different antibodies due to the rearrangement of the gene segments that encode the heavy and light chains. In mice, there are two kinds of B cells – known as B-1a and B-2 cells – that play different roles in immune responses. B-1a cells have long been known to produce the ‘natural’ antibodies that are present in the blood prior to an infection. On the other hand, B-2 cells produce antibodies that are specifically stimulated by an infection and are better adapted to fighting it. Previous studies have shown that both types of antibodies are required to allow animals to successfully fight the flu virus. Here, Yang, Wang et al. used a technique called fluorescence-activated cell sorting (or FACS) and carried out extensive genomic sequencing to study how the B-1a and B-2 populations rearrange their genes to produce heavy chains. This approach made it possible to separate the different types of B cells and then sequence the gene for the heavy chain within the individual cells. The experiments show that the “repertoire” of heavy chains in the antibodies of the B-1a cells is much less random and more repetitive than that of B-2 populations. Furthermore, Yang, Wang et al. show that B-1a cells produce and maintain their repertoire of heavy chains in a different way to other B-2 populations. B-1a cells develop earlier and the major genetic rearrangements in the gene that encodes the heavy chain occur within the first few weeks of life. Although the gene rearrangements have mostly stopped by adulthood, the B-1a antibody repertoire continues to evolve profoundly as the B-1a cells divide over the life of the animal. On the other hand, the gene rearrangements that make the heavy chains in the B-2 cells continue throughout the life of the animal to produce the wider repertoire of antibodies found in these cells. In addition, the processes that continue to change the antibody reperotire in the B-1a cells during adulthood do not occur in the B-2 populations. Importantly, the these reperotire-changing processes in B-1a cells also occur in mice that have been raised in germ-free conditions, which demonstrates that – unlike other B cells – the repertoire of heavy chains in B-1a cells is not influenced by antigens from microbes. Instead, it is mainly driven by antigens that are expressed by normal cells in the body. These findings open the way to future work aimed at understanding how B-1a cells help to protect us against infection, and their role in autoimmune diseases, where immune cells attack the body’s own healthy cells. DOI:http://dx.doi.org/10.7554/eLife.09083.002
Collapse
Affiliation(s)
- Yang Yang
- Genetics Department, Stanford University, Stanford, United States
| | - Chunlin Wang
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - Qunying Yang
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - Aaron B Kantor
- Genetics Department, Stanford University, Stanford, United States
| | - Hiutung Chu
- Biology and Biological Engineering Department, California Institute of Technology, Pasadena, United States
| | - Eliver Eb Ghosn
- Genetics Department, Stanford University, Stanford, United States
| | - Guang Qin
- Genetics Department, Stanford University, Stanford, United States
| | - Sarkis K Mazmanian
- Biology and Biological Engineering Department, California Institute of Technology, Pasadena, United States
| | - Jian Han
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | | |
Collapse
|
27
|
Santori FR. The immune system as a self-centered network of lymphocytes. Immunol Lett 2015; 166:109-16. [PMID: 26092524 DOI: 10.1016/j.imlet.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/04/2015] [Indexed: 12/13/2022]
Abstract
This essay makes a brief historical and comparative review of selective and network theories of the immune system which is presented as a chemical sensory system with immune and non-immune functions. The ontogeny of immune networks is the result of both positive and negative selection of lymphocytes to self-epitopes that serve as a "template" for the recognition of foreign antigens. The development of immune networks progresses from single individual clones in early ontogeny into complex "information processing networks" in which lymphocytes are linked to inhibitory and stimulatory immune cells. The results of these regulatory interactions modulate immune responses and tolerance.
Collapse
Affiliation(s)
- Fabio R Santori
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
28
|
Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 2015; 348:589-94. [PMID: 25791085 PMCID: PMC4710357 DOI: 10.1126/science.aaa7017] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/04/2015] [Indexed: 12/26/2022]
Abstract
Aire is an important regulator of immunological tolerance, operating in a minute subset of thymic stromal cells to induce transcripts encoding peptides that guide T cell selection. Expression of Aire during a perinatal age window is necessary and sufficient to prevent the multiorgan autoimmunity characteristic of Aire-deficient mice. We report that Aire promotes the perinatal generation of a distinct compartment of Foxp3(+)CD4(+) regulatory T (Treg) cells, which stably persists in adult mice. This population has a role in maintaining self-tolerance, a transcriptome and an activation profile distinguishable from those of Tregs produced in adults. Underlying the distinct Treg populations are age-dependent, Aire-independent differences in the processing and presentation of thymic stromal-cell peptides, resulting in different T cell receptor repertoires. Our findings expand the notion of a developmentally layered immune system.
Collapse
Affiliation(s)
- Siyoung Yang
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Noriyuki Fujikado
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Dmitriy Kolodin
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston MA 02115, USA.
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston MA 02115, USA.
| |
Collapse
|
29
|
Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab 2015; 21:543-57. [PMID: 25863247 PMCID: PMC4747251 DOI: 10.1016/j.cmet.2015.03.005] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/12/2015] [Accepted: 02/27/2015] [Indexed: 12/12/2022]
Abstract
A unique population of Foxp3(+)CD4(+) regulatory T (Treg) cells, with a distinct transcriptome and antigen-receptor repertoire, resides in visceral adipose tissue (VAT) of lean individuals. These cells regulate local inflammation and both local and systemic metabolic indices. Here we focus on expansion of the VAT Treg compartment in aging lean mice-assessing these cells' phenotypic conversion from conventional CD4(+) T cells, influx from lymphoid organs, and local population dynamics. Our findings establish that the VAT Treg compartment is seeded from thymocytes generated during the first weeks of life and expands beyond 10 weeks of age due to indolent proliferation, of certain clones in particular, coupled with enhanced survival. Accumulation of VAT Tregs depends on the antigen(s) presented by MHC class-II molecules and soluble mediators, notably interleukin(IL)-33. Addressing such factors therapeutically promises novel approaches for harnessing Tregs to stem the growing epidemic of obesity and consequent metabolic abnormalities.
Collapse
|
30
|
Wei YL, Han A, Glanville J, Fang F, Zuniga LA, Lee JS, Cua DJ, Chien YH. A Highly Focused Antigen Receptor Repertoire Characterizes γδ T Cells That are Poised to Make IL-17 Rapidly in Naive Animals. Front Immunol 2015; 6:118. [PMID: 25852688 PMCID: PMC4370043 DOI: 10.3389/fimmu.2015.00118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/03/2015] [Indexed: 01/21/2023] Open
Abstract
Interleukin (IL)-17 plays a key role in immunity. In acute infections, a rapid IL-17 response must be induced without prior antigen exposure, and γδ T cells are the major initial IL-17 producers. In fact, some γδ T cells make IL-17 within hours after an immune challenge. These cells appear to acquire the ability to respond to IL-1 and IL-23 and to make IL-17 naturally in naïve animals. They are known as the natural Tγδ17 (nTγδ17) cells. The rapidity of the nTγδ17 response, and the apparent lack of explicit T cell receptor (TCR) engagement for its induction have led to the view that this is a cytokine (IL-1, IL-23)-mediated response. However, pharmacological inhibition or genetic defects in TCR signaling drastically reduce the nTγδ17 response and/or their presence. To better understand antigen recognition in this rapid IL-17 response, we analyzed the antigen receptor repertoire of IL-1R(+)/IL-23R(+) γδ T cells, a proxy for nTγδ17 cells in naïve animals directly ex vivo, using a barcode-enabled high throughput single-cell TCR sequence analysis. We found that regardless of their anatomical origin, these cells have a highly focused TCR repertoire. In particular, the TCR sequences have limited V gene combinations, little or no junctional diversity and much reduced or no N region diversity. In contrast, IL-23R(-) cells at mucosal sites similar to most of the splenic γδ T cells and small intestine epithelial γδ lymphocytes expressed diverse TCRs. This remarkable commonality and restricted repertoire of IL-1R(+)/IL-23R(+) γδ T cells underscores the importance of antigen recognition in their establishment/function.
Collapse
Affiliation(s)
- Yu-Ling Wei
- Department of Microbiology and Immunology, Stanford University School of Medicine , Stanford, CA , USA
| | - Arnold Han
- Department of Medicine, Division of Gastroenterology, Stanford University School of Medicine , Stanford, CA , USA
| | - Jacob Glanville
- Program in Immunology, Stanford University School of Medicine , Stanford, CA , USA
| | - Fengqin Fang
- Department of Microbiology and Immunology, Stanford University School of Medicine , Stanford, CA , USA
| | | | - Jacob S Lee
- Merck Research Laboratories , Palo Alto, CA , USA
| | - Daniel J Cua
- Merck Research Laboratories , Palo Alto, CA , USA
| | - Yueh-Hsiu Chien
- Department of Microbiology and Immunology, Stanford University School of Medicine , Stanford, CA , USA ; Program in Immunology, Stanford University School of Medicine , Stanford, CA , USA
| |
Collapse
|
31
|
Yu X, Almeida JR, Darko S, van der Burg M, DeRavin SS, Malech H, Gennery A, Chinn I, Markert ML, Douek DC, Milner JD. Human syndromes of immunodeficiency and dysregulation are characterized by distinct defects in T-cell receptor repertoire development. J Allergy Clin Immunol 2014; 133:1109-15. [PMID: 24406074 DOI: 10.1016/j.jaci.2013.11.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Human immunodeficiencies characterized by hypomorphic mutations in critical developmental and signaling pathway genes allow for the dissection of the role of these genes in the development of the T-cell receptor (TCR) repertoire and the correlation of alterations of the TCR repertoire with diverse clinical phenotypes. OBJECTIVE The presence of T cells in patients with Omenn syndrome (OS) and patients with atypical presentations of severe combined immunodeficiency gene mutations presents an opportunity to study the effects of the causal genes on TCR repertoires and provides a window into the clinical heterogeneity observed. METHODS We performed deep sequencing of TCRβ complementarity-determining region 3 (CDR3) regions in subjects with a series of immune dysregulatory conditions caused by mutations in recombination activating gene 1/2 (RAG 1/2), IL-2 receptor γ (IL2RG), and ζ chain-associated protein kinase 70 (ZAP70); a patient with atypical DiGeorge syndrome; and healthy control subjects. RESULTS We found that patients with OS had marked reductions in TCRβ diversity compared with control subjects, as expected. Patients with atypical presentations of RAG or IL2RG mutations associated with autoimmunity and granulomatous disease did not have altered overall diversity but instead had skewed V-J pairing and skewed CDR3 amino acid use. Although germline TCRs were more abundant and clonally expanded in patients with OS, nongermline sequences were expanded as well. TCRβ from patients with RAG mutations had less junctional diversity and smaller CDR3s than patients with OS caused by other gene mutations and healthy control subjects but relatively similar CDR3 amino acid use. CONCLUSIONS High-throughput TCR sequencing of rare immune disorders has demonstrated that quantitative TCR diversity can appear normal despite qualitative changes in repertoire and strongly suggests that in human subjects RAG enzymatic function might be necessary for normal CDR3 junctional diversity.
Collapse
Affiliation(s)
- Xiaomin Yu
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jorge R Almeida
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Suk See DeRavin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Harry Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew Gennery
- Department of Paediatric Immunology, Newcastle University, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ivan Chinn
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Mary Louise Markert
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC; Department of Immunology, Duke University Medical Center, Durham, NC
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
32
|
Zhou Y, Fan X, Routbort M, Cameron Yin C, Singh R, Bueso-Ramos C, Thomas DA, Milton DR, Medeiros LJ, Lin P. Absence of terminal deoxynucleotidyl transferase expression identifies a subset of high-risk adult T-lymphoblastic leukemia/lymphoma. Mod Pathol 2013; 26:1338-45. [PMID: 23702731 DOI: 10.1038/modpathol.2013.78] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 02/03/2023]
Abstract
Terminal deoxynucleotidyl transferase (TdT) can be downregulated in minimal residual disease of T-acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) after chemotherapy. TdT-negative T-ALL/LBL cases are rare and have not been well characterized. We studied the clinicopathologic features of de novo T-ALL/LBL patients treated at our institution during 2003-2011, with an emphasis on immunophenotype and survival of TdT-negative versus TdT-positive cases. Absence of TdT expression was defined as <10% lymphoblasts positive. Seven (12%) TdT-negative cases were identified from a cohort of 59 de novo T-ALL/LBL. The TdT-negative and TdT-positive cases were similar with regard to gender, percentage of patients with a high leukocyte count (>100 × 10(9)/l), central nervous system involvement, and an abnormal karyotype. However, patients with TdT-negative T-ALL/LBL had a significantly higher rate of disease progression and shorter overall survival. Although not statistically significant, TdT-negative T-ALL/LBL cases were associated with an older median age and higher percentage of 'early T precursor' (ETP) immunophenotype than TdT-positive cases. Absence of TdT expression identifies a subset of high-risk T-ALL/LBL that overlaps with, but is not identical to, the ETP leukemia, providing additional prognostic value.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ben-Hur H, Gurevich P, Hagay Z, Huszar M, Ziv-Sokolovskaya N, Shezen E, Zusmman I. Insufficiency of the Immune System in Fetuses and Infants with Sepsis: Morphological and Morphometric Studies. J Histotechnol 2013. [DOI: 10.1179/his.1998.21.4.309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
34
|
Kisielow J, Kopf M. The origin and fate of γδT cell subsets. Curr Opin Immunol 2013; 25:181-8. [PMID: 23562386 DOI: 10.1016/j.coi.2013.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/21/2013] [Accepted: 03/04/2013] [Indexed: 12/16/2022]
Abstract
Recent experiments indicate that in contrast to αβT cells, γδT cell effector functions are largely preprogrammed in the thymus during fetal life. However the thymus also exports juvenile γδT cells that can mature and be polarized in the periphery. How these developmental pathways are regulated and how much they contribute to the γδT cell effector pool is unclear. Here we discuss recent advances in the understanding of γδT cell subset development, with particular focus on IL-17-producing γδT cells and their beneficial and pathogenic roles in immunity.
Collapse
Affiliation(s)
- Jan Kisielow
- Institute of Molecular Health Sciences, ETH Zürich, Switzerland.
| | | |
Collapse
|
35
|
Hayes SM, Laird RM. Genetic requirements for the development and differentiation of interleukin-17-producing γδ T cells. Crit Rev Immunol 2012; 32:81-95. [PMID: 22428856 DOI: 10.1615/critrevimmunol.v32.i1.50] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Most effector T cells are generated in the periphery following an encounter with a foreign antigen and exposure to soluble and membrane-bound mediators. There are, however, some T cell subsets, such as γδ T cells and natural killer T cells, that acquire their effector potential in the thymus before their emigration to the periphery. This developmental preprogramming enables these cells to differentiate rapidly into cytokine-producing effectors during the host immune response. This review focuses on murine interleukin (IL)-17-producing γδ T (γδ-17) cells, which have been shown, through their early production of IL-17, to have a critical role in multiple infectious and autoimmune diseases. Specifically, we discuss what is currently known about the genetic requirements for their generation and compare it with what is known about that of the more extensively studied IL-17-producing helper T (Thl7) cells. Based on this comparison, we propose a model for murine γδ-17 development and differentiation.
Collapse
Affiliation(s)
- Sandra M Hayes
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
36
|
Schelonka RL, Ivanov II, Vale AM, Dimmitt RA, Khaled M, Schroeder HW. Absence of N addition facilitates B cell development, but impairs immune responses. Immunogenetics 2011; 63:599-609. [PMID: 21660592 PMCID: PMC3181008 DOI: 10.1007/s00251-011-0543-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/24/2011] [Indexed: 12/02/2022]
Abstract
The programmed, stepwise acquisition of immunocompetence that marks the development of the fetal immune response proceeds during a period when both T cell receptor and immunoglobulin (Ig) repertoires exhibit reduced junctional diversity due to physiologic terminal deoxynucleotidyl transferase (TdT) insufficiency. To test the effect of N addition on humoral responses, we transplanted bone marrow from TdT-deficient (TdT(-/-)) and wild-type (TdT(+/+)) BALB/c mice into recombination activation gene 1-deficient BALB/c hosts. Mice transplanted with TdT(-/-) cells exhibited diminished humoral responses to the T-independent antigens α-1-dextran and (2,4,6-trinitrophenyl) hapten conjugated to AminoEthylCarboxymethyl-FICOLL, to the T-dependent antigens NP(19)CGG and hen egg lysozyme, and to Enterobacter cloacae, a commensal bacteria that can become an opportunistic pathogen in immature and immunocompromised hosts. An exception to this pattern of reduction was the T-independent anti-phosphorylcholine response to Streptococcus pneumoniae, which is normally dominated by the N-deficient T15 idiotype. Most of the humoral immune responses in the recipients of TdT(-/-) bone marrow were impaired, yet population of the blood with B and T cells occurred more rapidly. To further test the effect of N-deficiency on B cell and T cell population growth, transplanted TdT-sufficient and -deficient BALB/c IgM(a) and congenic TdT-sufficient CB17 IgM(b) bone marrow were placed in competition. TdT(-/-) cells demonstrated an advantage in populating the bone marrow, the spleen, and the peritoneal cavity. TdT deficiency, which characterizes fetal lymphocytes, thus appears to facilitate filling both central and peripheral lymphoid compartments, but at the cost of altered responses to a broad set of antigens.
Collapse
Affiliation(s)
- Robert L. Schelonka
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Present Address: Oregon Health and Science University, Portland, OR 97239 USA
| | - Ivaylo I. Ivanov
- Department of Microbiology, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
- Present Address: Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032 USA
| | - Andre M. Vale
- Department of Medicine, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
| | - Reed A. Dimmitt
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Mahnaz Khaled
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Harry W. Schroeder
- Department of Microbiology, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
- Department of Medicine, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
- Department of Genetics, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
| |
Collapse
|
37
|
Holtmeier W, Gille J, Zeuzem S, Sinkora M. Distribution and development of the postnatal murine Vδ1 T-cell receptor repertoire. Immunology 2010; 131:192-201. [PMID: 20465568 PMCID: PMC2967265 DOI: 10.1111/j.1365-2567.2010.03290.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 03/14/2010] [Accepted: 03/15/2010] [Indexed: 12/27/2022] Open
Abstract
Murine γ/δ T cells express canonical Vγ5Vδ1 chains in the epidermis and Vγ6Vδ1 chains at reproductive sites. Both subsets carry an identical Vδ1-Dδ2-Jδ2 chain which completely lacks junctional diversity. These cells are thought to monitor tissue integrity via recognition of stress-induced self antigens. In this study, we showed by reverse transcription-polymerase chain reaction (RT-PCR), complementarity determining region 3 (CDR3) spectratyping and sequencing of the junctional regions of Vδ1 chains from C57BL/6 mice (aged 1 day to 14 months) that the canonical Vδ1-Dδ2-Jδ2 chain is also consistently present at other sites such as the thymus, gut, lung, liver, spleen and peripheral blood. In addition, we found multiple Vδ1 chains with fetal type rearrangements which were also shared among organs and among animals. These Vδ1 chains were typically characterized by a conserved amino acid motif, 'GGIRA'. Furthermore, by analysing the early postnatal period at days 10 and 16, we demonstrated that the diversification of the thymic Vδ1 repertoire is not paralleled by a diversification of extrathymic Vδ1+γ/δ T cells. This indicates that only fetal type rearrangements survive at extrathymic sites. In conclusion, γ/δ T cells expressing the canonical Vδ1-Dδ2-Jδ2 chain are not unique to the skin and reproductive sites. Furthermore, we found other γ/δ T cells expressing fetal type Vδ1 chains which were shared among different organs and animals. Thus, γ/δ T cells expressing conserved Vδ1 chains are likely to have important functions. We suggest a model in which this subset continuously recirculates throughout the organism and rapidly responds to stress-induced self antigens.
Collapse
MESH Headings
- Aging/genetics
- Aging/immunology
- Amino Acid Motifs/genetics
- Amino Acid Motifs/immunology
- Amino Acid Sequence/genetics
- Animals
- Animals, Newborn
- Base Sequence/genetics
- Cloning, Molecular
- Complementarity Determining Regions/genetics
- Fetus/immunology
- Gene Expression/genetics
- Gene Expression/immunology
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/immunology
- Immune System/cytology
- Immune System/growth & development
- Immune System/immunology
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Skin/immunology
- Skin/metabolism
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Wolfgang Holtmeier
- Medizinische Klinik I, Division of Gastroenterology, Johann Wolfgang Goethe-Universität, Frankfurt Am Main, Germany.
| | | | | | | |
Collapse
|
38
|
Zvezdova ES, Silaeva YY, Vagida MS, Maryukhnich EV, Deikin AV, Ermolkevich TG, Kadulin SG, Sadchikova ER, Goldman IL, Kazansky DB. Generation of transgenic animals expressing the α and β chains of the autoreactive T-cell receptor. Mol Biol 2010. [DOI: 10.1134/s0026893310020135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
A role for DNA polymerase mu in the emerging DJH rearrangements of the postgastrulation mouse embryo. Mol Cell Biol 2008; 29:1266-75. [PMID: 19103746 DOI: 10.1128/mcb.01518-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The molecular complexes involved in the nonhomologous end-joining process that resolves recombination-activating gene (RAG)-induced double-strand breaks and results in V(D)J gene rearrangements vary during mammalian ontogeny. In the mouse, the first immunoglobulin gene rearrangements emerge during midgestation periods, but their repertoires have not been analyzed in detail. We decided to study the postgastrulation DJ(H) joints and compare them with those present in later life. The embryo DJ(H) joints differed from those observed in perinatal life by the presence of short stretches of nontemplated (N) nucleotides. Whereas most adult N nucleotides are introduced by terminal deoxynucleotidyl transferase (TdT), the embryo N nucleotides were due to the activity of the homologous DNA polymerase mu (Polmu), which was widely expressed in the early ontogeny, as shown by analysis of Polmu(-/-) embryos. Based on its DNA-dependent polymerization ability, which TdT lacks, Polmu also filled in small sequence gaps at the coding ends and contributed to the ligation of highly processed ends, frequently found in the embryo, by pairing to internal microhomology sites. These findings show that Polmu participates in the repair of early-embryo, RAG-induced double-strand breaks and subsequently may contribute to preserve the genomic stability and cellular homeostasis of lymphohematopoietic precursors during development.
Collapse
|
40
|
Leon-Ponte M, Kasprzyski T, Mannik LA, Haeryfar SMM. Altered immunodominance hierarchies of influenza A virus-specific H-2(b)-restricted CD8+ T cells in the absence of terminal deoxynucleotidyl transferase. Immunol Invest 2008; 37:714-25. [PMID: 18821218 DOI: 10.1080/08820130802349908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immunodominance is considered an obstacle to successful T cell-based vaccination, and constant efforts are made to uncover the underlying mechanisms for this phenomenon. We have examined the contribution of terminal deoxynucleotidyl transferase (TdT), whose function accounts for approximately 90% of T cell receptor diversity, to dominance hierarchies of H-2(b)-restricted flu-specific T(CD8+). Using intracellular cytokine staining to quantitatively detect epitope-specific T(CD8+), we demonstrate that TdT-deficient mice exhibit a distinct hierarchical pattern in their primary and recall T(CD8+) responses to influenza A viruses, which results from skewed responsiveness towards select influenza epitopes. Our data establish a link between TdT and immunodominance in H-2(b)-restricted antiviral T(CD8+) responses.
Collapse
Affiliation(s)
- Matilde Leon-Ponte
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
41
|
Haeryfar SMM, Hickman HD, Irvine KR, Tscharke DC, Bennink JR, Yewdell JW. Terminal deoxynucleotidyl transferase establishes and broadens antiviral CD8+ T cell immunodominance hierarchies. THE JOURNAL OF IMMUNOLOGY 2008; 181:649-59. [PMID: 18566432 DOI: 10.4049/jimmunol.181.1.649] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The action of TdT on mouse TCR genes accounts for approximately 90% of T cell repertoire diversity. We report that in TdT-/- mice, total T(CD8+) responses to influenza and vaccinia viruses are reduced by approximately 30% relative to wild-type mice. We find that T(CD8+) responses to three subdominant influenza virus determinants are reduced to background values in TdT-/- mice while responses to three immunodominant determinants undergo a major reshuffling. A similar reshuffling occurs in T(CD8+) responses to immunodominant vaccinia virus determinants, and is clearly based on broad differences in TCR family usage and CDR3 length between wild-type and TdT-/- mice. These findings demonstrate that TdT plays a critical role in the magnitude and breadth of anti-viral T(CD8+) responses toward individual determinants and suggests that germline TCR repertoire bias toward the most dominant determinants is a major factor in establishing immunodominance hierarchies.
Collapse
Affiliation(s)
- S M Mansour Haeryfar
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Petrovic Berglund J, Petrovc Berglund J, Mariotti-Ferrandiz E, Rosmaraki E, Hall H, Cazenave PA, Six A, Höglund P. TCR repertoire dynamics in the pancreatic lymph nodes of non-obese diabetic (NOD) mice at the time of disease initiation. Mol Immunol 2008; 45:3059-64. [PMID: 18471883 DOI: 10.1016/j.molimm.2008.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/17/2022]
Abstract
Mouse T-cell development is unfinished at birth and continues during the first month of life, when T cells exit from the thymus and colonize secondary hematopoietic organs to build up a peripheral T-cell repertoire. T-cell responses against beta-cell-derived autoantigens are initiated in the pancreatic lymph nodes (PLN) of non-obese diabetic (NOD) mice during the same time period. We hypothesized that the combined effect of T-cell development and T-cell activation against tissue-specific antigens would create unique TCR repertoires in two different lymph node stations in NOD mice. To test this hypothesis, we determined the length distribution of the third complementarity-determining region (CDR3) of the TCR in the PLN and the inguinal lymph nodes (ILN) of 10, 14, 18 and 22-day-old NOD females. The analysis of all the BV genes revealed significant perturbations of the repertoire between days 10 and 22 but with no statistical differences between the PLN and ILN repertoires. In contrast, when a set of BV chains were amplified using BJ-specific primers, several unique TCR perturbations were observed in the PLN compared to the ILN. We propose that the TCR repertoire in peripheral lymph nodes of NOD mice develops dynamically between 10 and 22 days of age as a result of a developmental process. On top of that development, the local environment may fine-tune that repertoire, possibly by means of stimulation of T cells by tissue-specific antigens presented by local APC.
Collapse
Affiliation(s)
- Jelena Petrovic Berglund
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Box 280, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Naito T, Shiohara T, Hibi T, Suematsu M, Ishikawa H. ROR gamma t is dispensable for the development of intestinal mucosal T cells. Mucosal Immunol 2008; 1:198-207. [PMID: 19079179 DOI: 10.1038/mi.2008.4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To examine the origin of intestinal mucosal T cells and, in particular, unconventional CD8 alpha alpha(+) T cells, we have undertaken a thorough analysis of the gut immune compartment in euthymic and athymic mice carrying either wild-type or mutant transcription factor retinoic acid-related orphan receptor-gamma t (ROR gamma t). We identified a previously unrealized complexity of gut cryptopatch (CP) cells that challenges the previous assertion that CP cells comprise ROR gamma t-expressing adult counterparts of fetal lymphoid tissue inducer (Lti) cells. We showed that many CP cells express intermediate T cell differentiation markers, whether or not they express ROR gamma t, and found that CPs are not completely dependent on ROR gamma t, as previously reported, but merely fewer in number in the ROR gamma t-deficient condition. Indeed, c-kit(+)IL-7R(+)Lin(-)ROR gamma t(-) cells inside the CP and c-kit(+)IL-7R(+)Lin(-)ROR gamma t(-) and c-kit(+)IL-7R(+)Lin(-)ROR gamma t(low) cells outside the CP basically remain in the gut mucosa of ROR gamma t-deficient ROR gamma t(EGFP/EGFP) mice. Consistent with these non-Lti-like c-kit(+)IL-7R(+)Lin(-) cells being gut T cell progenitors, ROR gamma t-deficient mice develop the normal number of intestinal mucosal T cells. These results clearly reassert the intraintestinal differentiation of the body's largest peripheral T cell subpopulation.
Collapse
Affiliation(s)
- T Naito
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
44
|
Cherrier M, D'Andon MF, Rougeon F, Doyen N. Identification of a new cis-regulatory element of the terminal deoxynucleotidyl transferase gene in the 5' region of the murine locus. Mol Immunol 2007; 45:1009-17. [PMID: 17854898 DOI: 10.1016/j.molimm.2007.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/26/2007] [Accepted: 07/27/2007] [Indexed: 10/22/2022]
Abstract
Terminal deoxynucleotidyl transferase (TdT) expression is controlled at the transcriptional level, however, the TdT core promoter combining D, D', an initiator (Inr) and downstream basal elements (DBE) does not recapitulate the whole complex regulation of TdT expression. We hypothesized that important cis-regulatory elements of the gene are located outside of the TdT promoter. In an attempt to identify these elements, we performed DNase I hypersensitivity assays over 24kb including a 10kb region located upstream of the transcription start site (+1) and a 14kb region spanning exons and introns I to VI. Hypersensitive sites (HS) HS1 and HS2 were localized 8.5 and 8kb upstream of the transcription start site, respectively, and were exclusively detected in TdT+ cell types. HS3, HS4 and HS5 were mapped at positions -7, -3.4 and -3kb, respectively, and detected in both TdT negative and positive cells. HS6, HS7 and HS8 were detected immediately upstream of the TdT promoter. HS10 and HS11 were localized in the first and third intron of the gene. Luciferase reporter assays revealed that HS1, HS2 and HS3 synergize with the TdT promoter to activate transcription in a TdT+ pre-T cell line but not in a TdT+ pro-B cell line. In summary novel cis-regulatory elements have been identified in the 5' region of the TdT locus that synergize with the promoter to activate gene expression and our results suggest these elements may be more active in T cells.
Collapse
Affiliation(s)
- Marie Cherrier
- Développement des tissus lymphoïdes, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
45
|
André S, Kerfourn F, Affaticati P, Guerci A, Ravassard P, Fellah JS. Highly restricted diversity of TCR delta chains of the amphibian Mexican axolotl (Ambystoma mexicanum) in peripheral tissues. Eur J Immunol 2007; 37:1621-33. [PMID: 17523213 DOI: 10.1002/eji.200636375] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gammadelta T cells localize at mammalian epithelial surfaces to exert both protective and regulatory roles in response to infections. We have previously characterized the Mexican axolotl (Ambystoma mexicanum) T cell receptor delta (TRD) chain. In this study, TRD repertoires in spleen, liver, intestine and skin from larvae, pre-adult and adult axolotls were examined and compared to the thymic TRD repertoire. A TRDV transcript without N/D diversity, TRDV1S1-TRDJ1, dominates the TRD repertoires until sexual maturation. In adult tissues, this canonical transcript is replaced by another dominant TRDV1S1-TRDJ1 transcript. In the thymus, these two transcripts are detected early in development. Our results suggest that gammadelta T cells that express the canonical TRDV1S1-TRDJ1 transcript emerge from the thymus and colonize the peripheral tissues, where they are selectively expanded by recurrent ligands. This particular situation is probably related to the neotenic state and the slow development of the axolotl. In thymectomized axolotls, TRD repertoires appear different from those of normal axolotls, suggesting that extrathymic gammadelta T cell differentiation could occur. Gene expression analysis showed the importance of the gut in T cell development.
Collapse
MESH Headings
- Ambystoma mexicanum
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Differentiation
- DNA Nucleotidylexotransferase/genetics
- GATA3 Transcription Factor/genetics
- Gene Expression
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Homeodomain Proteins/genetics
- Ikaros Transcription Factor/genetics
- Immune System/growth & development
- Immune System/immunology
- Immune System/metabolism
- In Situ Hybridization
- Intestinal Mucosa/metabolism
- Intestines/growth & development
- Intestines/immunology
- Larva/growth & development
- Larva/immunology
- Larva/metabolism
- Liver/growth & development
- Liver/immunology
- Liver/metabolism
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Sequence Alignment
- Skin/growth & development
- Skin/immunology
- Skin/metabolism
- Spleen/growth & development
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/growth & development
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Sébastien André
- UMR 7622, National Centre for Scientific Research, and Hôpital Pitié Salpêtrière, Pierre and Marie Curie University, Paris, France
| | | | | | | | | | | |
Collapse
|
46
|
Adkins B. Heterogeneity in the CD4 T Cell Compartment and the Variability of Neonatal Immune Responsiveness. ACTA ACUST UNITED AC 2007; 3:151-159. [PMID: 19122799 DOI: 10.2174/157339507781483496] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Over the past decade, it has become clear that T cell immune responses in both murine and human neonates are very heterogeneous, running the gamut from poor or deviant responsiveness to mature, adult-like inflammatory function. How this variability arises is not well understood but there is now a great deal of information suggesting that differences in the T cell compartments in neonates vs adults play important roles. A number of cell types or processes are qualitatively or quantitatively different in the neonate. These include (a) alternate epigenetic programs at the Th2 cytokine locus, (b) enhanced homeostatic proliferation, (c) a relative abundance of fetal-origin cells, (d) a greater representation of recent thymic emigrants, (e) high proportions of potentially self-reactive cells, (f) a developmental delay in the production of regulatory T cells, and (g) cells bearing TCR with limited N region diversity. Different conditions of antigen exposure may lead to different environmental signals that promote the selective responsiveness of one or more of these populations. Therefore, the variability of neonatal responses may be a function of the heterogeneous nature of the responding T cell population. In this review, we will describe these various subpopulations in detail and speculate as to the manner in which they could contribute to the heterogeneity of neonatal immune responses.
Collapse
Affiliation(s)
- Becky Adkins
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
47
|
Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 2006; 8:191-7. [PMID: 17136045 DOI: 10.1038/ni1428] [Citation(s) in RCA: 1386] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 11/21/2006] [Indexed: 11/09/2022]
Abstract
Mice lacking the transcription factor Foxp3 (Foxp3(-)) lack regulatory T (T(reg)) cells and develop fatal autoimmune pathology. In Foxp3(-) mice, many activated effector T cells express self-reactive T cell receptors that are expressed in T(reg) cells in wild-type mice. Thus, in wild-type mice, most self-reactive thymocytes escaping negative selection are diverted into the T(reg) lineage, and whether T(reg) cells are critical in self-tolerance in wild-type mice remains unknown. Here, acute in vivo ablation of T(reg) cells demonstrated a vital function for T(reg) cells in neonatal and adult mice. We suggest that self-reactive T cells are continuously suppressed by T(reg) cells and that when suppression is relieved, self-reactive T cells become activated and facilitate accelerated maturation of dendritic cells.
Collapse
Affiliation(s)
- Jeong M Kim
- Department of Immunology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
48
|
Butler JE, Sinkora M, Wertz N, Holtmeier W, Lemke CD. Development of the neonatal B and T cell repertoire in swine: implications for comparative and veterinary immunology. Vet Res 2006; 37:417-41. [PMID: 16611556 DOI: 10.1051/vetres:2006009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 10/18/2005] [Indexed: 12/12/2022] Open
Abstract
Birth in all higher vertebrates is at the center of the critical window of development in which newborns transition from dependence on innate immunity to dependence on their own adaptive immunity, with passive maternal immunity bridging this transition. Therefore we have studied immunological development through fetal and early neonatal life. In swine, B cells appear earlier in fetal development than T cells. B cell development begins in the yolk sac at the 20th day of gestation (DG20), progresses to fetal liver at DG30 and after DG45 continues in bone marrow. The first wave of developing T cells is gammadelta cells expressing a monomorphic Vdelta rearrangement. Thereafter, alphabeta T cells predominate and at birth, at least 19 TRBV subgroups are expressed, 17 of which appear highly homologous with those in humans. In contrast to the T cell repertoire and unlike humans and mice, the porcine pre-immune VH (IGHV-D-J) repertoire is highly restricted, depending primarily on CDR3 for diversity. The V-KAPPA (IGKV-J) repertoire and apparently also the V-LAMBDA (IGLV-J) repertoire, are also restricted. Diversification of the pre-immune B cell repertoire of swine and the ability to respond to both T-dependent and T-independent antigen depends on colonization of the gut after birth in which colonizing bacteria stimulate with Toll-like receptor ligands, especially bacterial DNA. This may explain the link between repertoire diversification and the anatomical location of primary lymphoid tissue like the ileal Peyers patches. Improper development of adaptive immunity can be caused by infectious agents like the porcine reproductive and respiratory syndrome virus that causes immune dysregulation resulting in immunological injury and autoimmunity.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology and Interdisciplinary Immunology Program, The University of Iowa, Iowa City, 52242, USA.
| | | | | | | | | |
Collapse
|
49
|
Niederberger N, Buehler LK, Ampudia J, Gascoigne NRJ. Thymocyte stimulation by anti-TCR-beta, but not by anti-TCR-alpha, leads to induction of developmental transcription program. J Leukoc Biol 2005; 77:830-841. [PMID: 15661827 DOI: 10.1189/jlb.1004608] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 12/15/2004] [Accepted: 12/29/2004] [Indexed: 12/19/2022] Open
Abstract
Anti-T cell receptor (aTCR) antibody (Ab) stimulation of T cells results in TCR down-modulation and T cell activation. Differences in the effect of anti-alpha-chain and beta-chain Ab have been reported on thymocytes. Anti-beta-chain Ab but not anti-alpha-chain reagents cause long-term TCR down-modulation. However, both types of Ab result in TCR cross-linking and activate early steps in signal transduction. In this study, we show that TCR internalization and calcium flux, hallmarks of T cell activation, are similar with aValpha and aVbeta treatment. Therefore, we have compared the gene expression profiles of preselection thymocytes stimulated with these reagents. We find that aValpha treatment does not cause any significant change in gene expression compared with control culture conditions. In contrast, aVbeta stimulation results in numerous changes in gene expression. The alterations of expression of genes known to be expressed in thymocytes are similar to changes caused by positive thymic selection, suggesting that the expression of some of the genes without known roles in thymocyte development and of novel genes whose expression is found to be altered may also be involved in this process.
Collapse
Affiliation(s)
- Nathalie Niederberger
- Department of Immunology, IMM1, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
50
|
Mick VE, Starr TK, McCaughtry TM, McNeil LK, Hogquist KA. The Regulated Expression of a Diverse Set of Genes during Thymocyte Positive Selection In Vivo. THE JOURNAL OF IMMUNOLOGY 2004; 173:5434-44. [PMID: 15494490 DOI: 10.4049/jimmunol.173.9.5434] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A signal initiated by the newly formed Ag receptor is integrated with microenvironmental cues during T cell development to ensure positive selection of CD4+CD8+ progenitors into functionally mature CD4+ or CD8+ T lymphocytes. During this transition, a survival program is initiated, TCR gene recombination ceases, cells migrate into a new thymic microenvironment, the responsiveness of the Ag receptor is tuned, and the cells commit to a specific T lineage. To determine potential regulators of these processes, we used mRNA microarray analysis to compare gene expression changes in CD4+CD8+ thymocytes from TCR transgenic mice that have received a TCR selection signal with those that had not received a signal. We found 129 genes with expression that changed significantly during positive selection, the majority of which were not previously appreciated. A large number of these changes were confirmed by real-time PCR or flow cytometry. We have combined our findings with gene changes reported in the literature to provide a comprehensive report of the genes regulated during positive selection, and we attempted to assign these genes to positive selection process categories.
Collapse
MESH Headings
- Animals
- Cell Adhesion/genetics
- Cell Adhesion/immunology
- Cell Death/genetics
- Cell Death/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Cell Survival/genetics
- Cell Survival/immunology
- Gene Expression Profiling/methods
- Gene Rearrangement, T-Lymphocyte
- Kinetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Oligonucleotide Array Sequence Analysis/methods
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombination, Genetic/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Verity E Mick
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|