1
|
Alves-Bezerra M, Furey N, Johnson CG, Bissig KD. Using CRISPR/Cas9 to model human liver disease. JHEP Rep 2019; 1:392-402. [PMID: 32039390 PMCID: PMC7005665 DOI: 10.1016/j.jhepr.2019.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
CRISPR/Cas9 gene editing has revolutionised biomedical research. The ease of design has allowed many groups to apply this technology for disease modelling in animals. While the mouse remains the most commonly used organism for embryonic editing, CRISPR is now increasingly performed with high efficiency in other species. The liver is also amenable to somatic genome editing, and some delivery methods already allow for efficient editing in the whole liver. In this review, we describe CRISPR-edited animals developed for modelling a broad range of human liver disorders, such as acquired and inherited hepatic metabolic diseases and liver cancers. CRISPR has greatly expanded the repertoire of animal models available for the study of human liver disease, advancing our understanding of their pathophysiology and providing new opportunities to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA
| | - Nika Furey
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Collin G Johnson
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Pankowicz FP, Barzi M, Kim KH, Legras X, Martins CS, Wooton-Kee CR, Lagor WR, Marini JC, Elsea SH, Bissig-Choisat B, Moore DD, Bissig KD. Rapid Disruption of Genes Specifically in Livers of Mice Using Multiplex CRISPR/Cas9 Editing. Gastroenterology 2018; 155:1967-1970.e6. [PMID: 30170115 PMCID: PMC6420307 DOI: 10.1053/j.gastro.2018.08.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Despite advances in gene editing technologies, generation of tissue-specific knockout mice is time-consuming. We used CRISPR/Cas9-mediated genome editing to disrupt genes in livers of adult mice in just a few months, which we refer to as somatic liver knockouts. METHODS In this system, Fah-/- mice are given hydrodynamic tail vein injections of plasmids carrying CRISPR/Cas9 designed to excise exons in Hpd; the Hpd-edited hepatocytes have a survival advantage in these mice. Plasmids that target Hpd and a separate gene of interest can therefore be used to rapidly generate mice with liver-specific deletion of nearly any gene product. RESULTS We used this system to create mice with liver-specific knockout of argininosuccinate lyase, which develop hyperammonemia, observed in humans with mutations in this gene. We also created mice with liver-specific knockout of ATP binding cassette subfamily B member 11, which encodes the bile salt export pump. We found that these mice have a biochemical phenotype similar to that of Abcb11-/- mice. We then used this system to knock out expression of 5 different enzymes involved in drug metabolism within the same mouse. CONCLUSIONS This approach might be used to develop new models of liver diseases and study liver functions of genes that are required during development.
Collapse
Affiliation(s)
- Francis P Pankowicz
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mercedes Barzi
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kang Ho Kim
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xavier Legras
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Celeste Santos Martins
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Clavia Ruth Wooton-Kee
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - William R. Lagor
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Juan C Marini
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
| | - Beatrice Bissig-Choisat
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David D Moore
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
3
|
Validation of a multi-omics strategy for prioritizing personalized candidate driver genes. Oncotarget 2018; 7:38440-38450. [PMID: 27469031 PMCID: PMC5122402 DOI: 10.18632/oncotarget.9540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/08/2016] [Indexed: 01/13/2023] Open
Abstract
Significant heterogeneity between different tumors prevents the discovery of cancer driver genes, especially in a patient-specific manner. We previously prioritized five personalized candidate mutation-driver genes in a hyper-mutated hepatocellular carcinoma patient using a multi-omics strategy. However, the roles of the prioritized driver genes and patient-specific mutations in hepatocarcinogenesis are unclear. We investigated the impact of the tumor-mutated allele on structure-function relationship of the encoded protein and assessed both loss- and gain-of-function of these genes and mutations on hepatoma cell behaviors in vitro. The prioritized mutation-driver genes act as tumor suppressor genes and inhibit cell proliferation and migration. In addition, the loss-of-function effect of the patient-specific mutations promoted cell proliferation and migration. Of note, the HNF1A S247T mutation significantly reduced the HNF1A transcriptional activity for hepatocyte nuclear factor 4 alpha (HNF4A) but did not disrupt nuclear localization of HNF1A. The results provide evidence for supporting the validity of our proposed multi-omics strategy, which supplies a new avenue for prioritizing mutation-drivers towards personalized cancer therapy.
Collapse
|
4
|
Grompe M. Fah Knockout Animals as Models for Therapeutic Liver Repopulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 959:215-230. [PMID: 28755199 DOI: 10.1007/978-3-319-55780-9_20] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several animal models of Fah deficiency have been developed, including mice, pigs and most recently rats. Initially, the murine models were developed with the intent to mirror the human disease for pathophysiologic and therapeutic studies. However, it soon became apparent that Fah-positive hepatocytes have a potent selective growth advantage in mutant liver and can extensively repopulate the diseased organ. For this reason, Fah mutant mice have become a workhorse for liver biology and are widely used in liver stem cell and hepatic gene therapy research. Immune deficient Fah-knockout mice can be repopulated with human hepatocytes, creating "mice with human livers". These chimeric animals have become an important preclinical model for infectious diseases, metabolism and gene therapy. The potent expansion of human hepatocytes in Fah knockout mice has given rise to the concept of using Fah mutants as living bioreactors to produce large quantities of fully mature hepatocytes. As a consequence, larger animal models of Fah deficiency have recently been developed.
Collapse
Affiliation(s)
- Markus Grompe
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239-3098, USA.
| |
Collapse
|
5
|
Nakamura K, Tanaka Y, Mitsubuchi H, Endo F. Animal models of tyrosinemia. J Nutr 2007; 137:1556S-1560S; discussion 1573S-1575S. [PMID: 17513424 DOI: 10.1093/jn/137.6.1556s] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hereditary tyrosinemia I (HT I) is a genetic disorder of tyrosine metabolism characterized by progressive liver damage from infancy and by a high risk for hepatocellular carcinoma. HT I is due to mutations in the fumarylacetoacetate hydrolase (Fah) gene, which encodes the last enzyme in the tyrosine catabolic pathway. Disturbances in tyrosine metabolism lead to increased levels of succinylacetone and succinylacetoacetate. However, the mechanisms causing liver failure, cirrhosis, renal tubular dysfunction, and hepatocarcinoma are still unknown. Lethal albino deletion c14CoS mice and mice with target-disrupted Fah are models for HT I. They die in the perinatal period, although with a different phenotype from that seen in HT I in humans. In addition, 2 mouse strains that carry N-ethyl-N-nitrosourea-induced mutations in the Fah gene have been described. Mice with a splice mutation exhibit the milder features of the clinical phenotype. In mice that carry both Fah and 4-hydroxyphenylpyruvate dioxygenase gene mutations, administration of homogentisate results in rapid apoptosis of hepatocytes. Simultaneously, renal tubular epithelial cells are injured, resulting in Fanconi syndrome. These are central features of visceral injury in patients with HT I. Apoptosis of hepatocyte and renal tubular cells is prevented by the caspase inhibitors acetyl-Tyr-Val-Ala-Asp-CHO or acetyl-Asp-Glu-Val-Asp-CHO. Apoptosis of hepatocytes and renal tubular epithelial cells are central features of this disease. Alterations in gene expression found in the liver of patients with HT I are responsible for the pathogenesis of this disease, for example, acute liver failure. Therefore, gene expression analysis allows a better understanding of the specific pathogenesis. Cell fusion of hematopoietic stem cells with hepatocytes leads to liver regeneration after liver injury. This finding was possible after using the liver injury model of HT I in Fah null mice. Thus, animal models of tyrosinemia are unique and useful tools to reveal mechanisms of interest to both clinical and basic science.
Collapse
Affiliation(s)
- Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University Graduate School of Medical Science, Kumamoto 860-8556, Japan
| | | | | | | |
Collapse
|
6
|
Dieter MZ, Freshwater SL, Miller ML, Shertzer HG, Dalton TP, Nebert DW. Pharmacological rescue of the 14CoS/14CoS mouse: hepatocyte apoptosis is likely caused by endogenous oxidative stress. Free Radic Biol Med 2003; 35:351-67. [PMID: 12899938 DOI: 10.1016/s0891-5849(03)00273-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Whereas ch/ch wild-type mice and ch/14CoS heterozygotes are viable, 14CoS/14CoS mice homozygous for a 3800 kb deletion on chromosome 7 die during the first day postpartum. Death is caused by disruption of the fumarylacetoacetate hydrolase (Fah) gene; absence of FAH, final enzyme in the tyrosine catabolism pathway, leads to accumulation of reactive electrophilic intermediates. In this study, we kept 14CoS/14CoS mice alive for 60 d with oral 2-(2-nitro-4-trifluoromethyl-benzyol)-1,3-cyclohexanedione (NTBC), an inhibitor of p-hydroxyphenylpyruvate dioxygenase, second enzyme in the tyrosine catabolic pathway. The 70% of NTBC-treated 14CoS/14CoS mice that survived 60 d showed poor growth and developed corneal opacities, compared with ch/14CoS littermates; NTBC-rescued Fah(-/-) knockout mice did not show growth retardation or ocular toxicity. NTBC-rescued 14CoS/14CoS mice also exhibited a striking oxidative stress response in liver and kidney, as measured by lower GSH levels and mRNA induction of four genes: glutamate cysteine ligase catalytic (Gclc) and modifier (Gclm) subunits, NAD(P)H:quinone oxidoreductase (Nqo1), and heme oxygenase-1 (Hmox1). Withdrawal of NTBC for 24-48 h from rescued adult 14CoS/14CoS mice resulted in severe apoptosis of the liver, detected histologically and by cytochrome c release from the mitochondria, increased caspase 3-like activity, and further decreases in GSH content. In kidney, proximal tubular epithelial cells were abnormal. Human hereditary tyrosinemia type I (HT1), caused by mutations in the FAH gene, is an autosomal recessive disorder in which the patient usually dies of liver fibrosis and cirrhosis during early childhood; NTBC treatment is known to prolong HT1 children's lives-although liver fibrosis, cirrhosis, hepatocarcinoma, and corneal opacities sometimes occur. The mouse data in the present study are consistent with the possibility that endogenous oxidative stress-induced apoptosis may be the underlying cause of liver pathology seen in NTBC-treated HT1 patients.
Collapse
Affiliation(s)
- Matthew Z Dieter
- Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | |
Collapse
|
7
|
Endo F, Tanaka Y, Tomoeda K, Tanoue A, Tsujimoto G, Nakamura K. Animal models reveal pathophysiologies of tyrosinemias. J Nutr 2003; 133:2063S-2067S. [PMID: 12771366 DOI: 10.1093/jn/133.6.2063s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The activity of the enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) is regulated by transcription factors. Mutations in the HPD locus are related to two known distinct diseases: hereditary tyrosinemia type 3 and hawkinsinuria. HPD-deficient mice are a good model with which to examine the biological effects of 4-hydroxyphenylpyruvic acid, which is a keto acid that causes no apparent visceral damage. In contrast, hereditary tyrosinemia type 1, a genetic disease caused by a deficiency of fumarylacetoacetate hydrolase (FAH), induces severe visceral injuries. Mice with FAH deficiency are lethal after birth; thus, efforts to elucidate the mechanisms of the disease process have been impeded. The use of Fah(-/-) Hpd(-/-) double-mutant mice has enabled studies on tyrosinemias, and essential features of visceral injury have been reveale.
Collapse
Affiliation(s)
- Fumio Endo
- Department of Pediatrics, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Hereditary tyrosinaemia type I (HT 1) (McKusick 276700) is caused by a deficiency of fumarylacetoacetate hydrolase (FAH) activity, the last enzyme in the tyrosine catabolic pathway. Homozygous disruption of the gene encoding FAH in mice (Fah) causes neonatal lethality (i.e. lethal Albino deletion c14CoS mice), which limits the use of this animal as a model for HT I. We developed a new mouse model that carries two genetic defects, Fah and 4-hydroxyphenylpyruvate dioxygenase (Hpd). The double mutant Fah -/- Hpd -/- mice grew normally without evidence of liver and renal disease, showing a phenotype similar to Hpd -/- mice. Complete blockage of the tyrosine catabolic pathway at the, step of HPD prevents development of clinical phenotypes. Administration of homogentisate resulted in rapid apoptosis of hepatocytes and renal tubular epithelial cells, a central feature of visceral injury in patients with HT I. Simultaneously, renal tubular function was impaired, resulting in Fanconi syndrome. Apoptosis of hepatocyte and renal tubular cells is prevented by the caspase inhibitors YVAD or DEVD. However, these inhibitors do not prevent the release of cytochrome c or the development of renal tubular dysfunction. Apoptosis of hepatocytes and of renal tubular epithelial cells are characteristic features of this disease and the apoptotic signal in this disease seems to be initiated by fumarylacetoacetate.
Collapse
Affiliation(s)
- F Endo
- Department of Pediatrics, Kumamoto University, Japan.
| | | |
Collapse
|
9
|
Aponte JL, Sega GA, Hauser LJ, Dhar MS, Withrow CM, Carpenter DA, Rinchik EM, Culiat CT, Johnson DK. Point mutations in the murine fumarylacetoacetate hydrolase gene: Animal models for the human genetic disorder hereditary tyrosinemia type 1. Proc Natl Acad Sci U S A 2001; 98:641-5. [PMID: 11209059 PMCID: PMC14641 DOI: 10.1073/pnas.98.2.641] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1999] [Accepted: 11/21/2000] [Indexed: 11/18/2022] Open
Abstract
Hereditary tyrosinemia type 1 (HT1) is a severe autosomal recessive metabolic disease associated with point mutations in the human fumarylacetoacetate hydrolase (FAH) gene that disrupt tyrosine catabolism. An acute form of HT1 results in death during the first months of life because of hepatic failure, whereas a chronic form leads to gradual development of liver disease often accompanied by renal dysfunction, childhood rickets, neurological crisis, and hepatocellular carcinoma. Mice homozygous for certain chromosome 7 deletions of the albino Tyr; c locus that also include Fah die perinatally as a result of liver dysfunction and exhibit a complex syndrome characterized by structural abnormalities and alterations in gene expression in the liver and kidney. Here we report that two independent, postnatally lethal mutations induced by N-ethyl-N-nitrosourea and mapped near Tyr are alleles of Fah. The Fah(6287SB) allele is a missense mutation in exon 6, and Fah(5961SB) is a splice mutation causing loss of exon 7, a subsequent frameshift in the resulting mRNA, and a severe reduction of Fah mRNA levels. Increased levels of the diagnostic metabolite succinylacetone in the urine of the Fah(6287SB) and Fah(5961SB) mutants indicate that these mutations cause a decrease in Fah enzymatic activity. Thus, the neonatal phenotype present in both mutants is due to a deficiency in Fah caused by a point mutation, and we propose Fah(5961SB) and Fah(6287SB) as mouse models for acute and chronic forms of human HT1, respectively.
Collapse
MESH Headings
- Acute Disease
- Alleles
- Amino Acid Substitution
- Animals
- Animals, Newborn
- Base Sequence
- Biomarkers
- Chronic Disease
- Crosses, Genetic
- DNA, Complementary/genetics
- Enzyme Induction
- Ethylnitrosourea
- Exons/genetics
- Female
- Frameshift Mutation
- Genes
- Genes, Lethal
- Heptanoates/urine
- Humans
- Hydrolases/deficiency
- Hydrolases/genetics
- Kidney/enzymology
- Liver/enzymology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Models, Animal
- Molecular Sequence Data
- Mutagenesis
- Mutation, Missense
- Point Mutation
- RNA Splicing/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Tyrosinemias/enzymology
- Tyrosinemias/genetics
- Tyrosinemias/urine
Collapse
Affiliation(s)
- J L Aponte
- Division of Biology, University of Tennessee, Knoxville, TN 37996-0910, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Hereditary tyrosinaemia type I is the most common of the diseases caused by defects in tyrosine metabolism. The underlying genetic defect is a mutation in the gene for fumarylacetate hydrolase (FAH), and more than 30 different mutations in this gene have been identified. The main clinical consequences of this defect include hepatic involvement, with a high risk for liver cancer, and renal tubular dysfunction. Restriction of phenylalanine and tyrosine from the diet along with supportive measures can ameliorate the symptoms, but cure has so far been possible only with liver transplantation. Recent discovery of a pharmacological treatment with a peroral inhibitor of tyrosine catabolic pathway, 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), offers a new promising tool for the treatment of patients with hereditary tyrosinaemia type I. Mouse models of FAH deficiency have been successfully used in experimental gene therapy, and these studies indicate that future management of tyrosinaemia with a gene therapeutic approach may become feasible.
Collapse
Affiliation(s)
- S T Pitkänen
- Department of Dermatology, University of Helsinki, Finland
| | | | | |
Collapse
|
11
|
DeRossi C, Laiosa MD, Silverstone AE, Holdener BC. Mouse fzd4 maps within a region of chromosome 7 important for thymus and cardiac development. Genesis 2000; 27:64-75. [PMID: 10890980 DOI: 10.1002/1526-968x(200006)27:2<64::aid-gene30>3.0.co;2-i] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cardiac neural crest (CNC) plays a central role in development of the thymus gland and cardiovascular system. Through morphological and histological characterization of embryos homozygous for the Del(7)Tyr(c-112K) and Del(7)Tyr(c-3H) albino deletions, we identified abnormalities that are consistent with aberrant development of tissues requiring CNC contributions. The defects include incompletely penetrant heart and great vessel patterning defects and hypoplastic thymus glands. The CNC phenotype is complemented by the partially overlapping deletion Del(7)Tyr(c-23DVT). Combined, these results suggest that a functional region necessary for development of CNC derived tissues is located between the Del(7)Tyr(c-23DVT) and Del(7)Tyr(c-112K) distal deletion breakpoints. This interval encompasses a functional region previously identified as important for juvenile survival (juvenile development and fertility, jdf). Using deletion mapping, we localized the Frizzled4 (Fzd4) gene to the jdf/thymus and cardiac development intervals.
Collapse
Affiliation(s)
- C DeRossi
- Department of Biochemistry and Cell Biology and the Institute for Cell and Developmental Biology, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA
| | | | | | | |
Collapse
|
12
|
Chen SJ, Tazelaar J, Moscioni AD, Wilson JM. In vivo selection of hepatocytes transduced with adeno-associated viral vectors. Mol Ther 2000; 1:414-22. [PMID: 10933962 DOI: 10.1006/mthe.2000.0065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A murine model for hereditary tyrosinemia Type I (HTI) was evaluated for in vivo gene therapy with adeno-associated viral (AAV) vectors expressing the enzyme fumarylacetoacetate hydrolase. Transduction of a limited number of hepatocytes was accomplished following infusion of vector into the portal circulation. Corrected hepatocytes were expanded in vivo by withdrawing a drug which prevents the accumulation of toxic metabolites. The liver was eventually repopulated with hepatocytes harboring a functional and apparently integrated AAV provirus. Recipient animals regained normal liver function and architecture and the underlying metabolic derangements were normalized. After 9 months, vector-treated animals showed benign hepatomas, whereas in untreated animals areas of marked dysplasia were present within hepatomas.
Collapse
Affiliation(s)
- S J Chen
- Institute for Human Gene Therapy, Department of Molecular and Cellular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
13
|
Sun MS, Hattori S, Kubo S, Awata H, Matsuda I, Endo F. A mouse model of renal tubular injury of tyrosinemia type 1: development of de Toni Fanconi syndrome and apoptosis of renal tubular cells in Fah/Hpd double mutant mice. J Am Soc Nephrol 2000; 11:291-300. [PMID: 10665936 DOI: 10.1681/asn.v112291] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hereditary tyrosinemia type 1 (HT1) (McKusick 276700), a severe autosomal recessive disorder of tyrosine metabolism, is caused by mutations in the fumarylacetoacetate hydrolase gene Fah (EC 3.7.1.2), which encodes the last enzyme in the tyrosine catabolic pathway. HT1 is characterized by severe progressive liver disease and renal tubular dysfunction. Homozygous disruption of the gene encoding Fah in mice causes neonatal lethality (e.g., lethal Albino deletion c14CoS mice), an event that limits use of this animal as a model for HT1. A new mouse model was developed with two genetic defects, Fah and 4-hydroxyphenylpyruvate dioxygenase (Hpd). The Fah-/- Hpd-/- mice grew normally without evidence of liver and renal disease, and the phenotype is similar to that in Fah+/+ Hpd-/- mice. The renal tubular cells of Fah-/- Hpd-/- mice, particularly proximal tubular cells, underwent rapid apoptosis when homogentisate, the intermediate metabolite between HPD and FAH, was administered to the Fah-/- Hpd-/- mice. Simultaneously, renal tubular function was impaired and Fanconi syndrome occurred. Apoptotic death of renal tubular cells, but not renal dysfunction, was prevented by pretreatment of the animals with YVAD, a specific inhibitor of caspases. In the homogentisate-treated Fah-/- Hpd-/- mice, massive amounts of succinylacetone were excreted into the urine, regardless of treatment with inhibitors. It is suggested that apoptotic death of renal tubular cells, as induced by administration of homogentisate to Fah-/- Hpd-/- mice, was caused by an intrinsic process, and that renal apoptosis and tubular dysfunctions in tubular cells occurred through different pathways. These observations shed light on the pathogenesis of renal tubular injury in subjects with FAH deficiency. These Fah-/- Hpd-/- mice can serve as a model in experiments related to renal tubular damage.
Collapse
Affiliation(s)
- Mao-Sen Sun
- Department of Pediatrics, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Shinzaburo Hattori
- The College of Medical Sciences, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Shuji Kubo
- Department of Pediatrics, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Hisataka Awata
- Department of Pediatrics, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Ichiro Matsuda
- Department of Pediatrics, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Fumio Endo
- Department of Pediatrics, Kumamoto University School of Medicine, Kumamoto, Japan
| |
Collapse
|
14
|
Nebert DW, Roe AL, Dieter MZ, Solis WA, Yang Y, Dalton TP. Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem Pharmacol 2000; 59:65-85. [PMID: 10605936 DOI: 10.1016/s0006-2952(99)00310-x] [Citation(s) in RCA: 683] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The chronology and history of characterizing the aromatic hydrocarbon [Ah] battery is reviewed. This battery represents the Ah receptor (AHR)-mediated control of at least six, and probably many more, dioxin-inducible genes; two cytochrome P450 genes-P450 1A1 and 1A2 (Cypla1, Cypla2-and four non-P450 genes, have experimentally been documented to be members of this battery. Metabolism of endogenous and exogenous substrates by perhaps every P450 enzyme, but certainly CYP1A1 and CYP1A2 (which are located, in part, in the mitochondrion), have been shown to cause reactive oxygenated metabolite (ROM)-mediated oxidative stress. Oxidative stress activates genes via the electrophile response element (EPRE) DNA motif, whereas dioxin (acutely) activates genes via the AHR-mediated aromatic hydrocarbon response element (AHRE) DNA motif. In contrast to dioxin, AHR ligands that are readily metabolized to ROMs (e.g. benzo[a]pyrene, beta-naphthoflavone) activate genes via both AHREs and the EPRE. The importance of the AHR in cell cycle regulation and apoptosis has just begun to be realized. Current evidence suggests that the CYP1A1 and CYP1A2 enzymes might control the level of the putative endogenous ligand of the AHR, but that CYPA1/1A2 metabolism generates ROM-mediated oxidative stress which can be ameliorated by the four non-P450 EPRE-driven genes in the [Ah] battery. Oxidative stress is a major signal in precipitating apoptosis; however, the precise mechanism, or molecule, which determines the cell's decision between apoptosis and continuation with the cell cycle, remains to be elucidated. The total action of AHR and the [Ah] battery genes therefore represents a pivotal upstream event in the apoptosis cascade, providing an intricate balance between promoting and preventing ROM-mediated oxidative stress. These proposed endogenous functions of the AHR and [Ah] enzymes are, of course, in addition to the frequently described functions of "metabolic potentiation" and "detoxification" of various foreign chemicals.
Collapse
Affiliation(s)
- D W Nebert
- Department of Environmental Health and the Center for Environmental Genetics, University of Cincinnati Medical Center, OH 45267-0056, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Timm DE, Mueller HA, Bhanumoorthy P, Harp JM, Bunick GJ. Crystal structure and mechanism of a carbon-carbon bond hydrolase. Structure 1999; 7:1023-33. [PMID: 10508789 DOI: 10.1016/s0969-2126(99)80170-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Fumarylacetoacetate hydrolase (FAH) catalyzes the final step of tyrosine and phenylalanine catabolism, the hydrolytic cleavage of a carbon-carbon bond in fumarylacetoacetate, to yield fumarate and acetoacetate. FAH has no known sequence homologs and functions by an unknown mechanism. Carbon-carbon hydrolysis reactions are essential for the human metabolism of aromatic amino acids. FAH deficiency causes the fatal metabolic disease hereditary tyrosinemia type I. Carbon-carbon bond hydrolysis is also important in the microbial metabolism of aromatic compounds as part of the global carbon cycle. RESULTS The FAH crystal structure has been determined by rapid, automated analysis of multiwavelength anomalous diffraction data. The FAH polypeptide folds into a 120-residue N-terminal domain and a 300-residue C-terminal domain. The C-terminal domain defines an unusual beta-strand topology and a novel 'mixed beta-sandwich roll' structure. The structure of FAH complexed with its physiological products was also determined. This structure reveals fumarate binding near the entrance to the active site and acetoacetate binding to an octahedrally coordinated calcium ion located in close proximity to a Glu-His dyad. CONCLUSIONS FAH represents the first structure of a hydrolase that acts specifically on carbon-carbon bonds. FAH also defines a new class of metalloenzymes characterized by a unique alpha/beta fold. A mechanism involving a Glu-His-water catalytic triad is suggested based on structural observations, sequence conservation and mutational analysis. The histidine imidazole group is proposed to function as a general base. The Ca(2+) is proposed to function in binding substrate, activating the nucleophile and stabilizing a carbanion leaving group. An oxyanion hole formed from sidechains is proposed to stabilize a tetrahedral alkoxide transition state. The proton transferred to the carbanion leaving group is proposed to originate from a lysine sidechain. The results also reveal the molecular basis for mutations causing the hereditary tyrosinemia type 1.
Collapse
Affiliation(s)
- D E Timm
- Department of Biochemistry and Molecular Biology Indiana University School of Medicine 635 Barnhill Drive, Indianapolis, Indiana 46202, USA.
| | | | | | | | | |
Collapse
|
16
|
Kubo S, Sun M, Miyahara M, Umeyama K, Urakami K, Yamamoto T, Jakobs C, Matsuda I, Endo F. Hepatocyte injury in tyrosinemia type 1 is induced by fumarylacetoacetate and is inhibited by caspase inhibitors. Proc Natl Acad Sci U S A 1998; 95:9552-7. [PMID: 9689118 PMCID: PMC21376 DOI: 10.1073/pnas.95.16.9552] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tyrosinemia type 1, caused by mutations in the fumarylacetoacetate hydrolase gene (Fah), is characterized by severe liver injury. We earlier developed a tyrosinemic mouse model with two genetic defects, Fah and 4-hydroxyphenylpyruvate dioxygenase (Hpd) deficiencies. Apoptosis of hepatocytes was induced and an acute onset of liver failure occurred after administration of homogentisic acid (HGA), the intermediate metabolite between the enzymes HPD and FAH. Cytochrome c was released from mitochondria prior to liver failure in the Fah-/- Hpd-/- double-mutant mice after the administration of HGA. In a cell-free system, the addition of fumarylacetoacetate induced the release of cytochrome c from the mitochondria. We also found that caspase inhibitors were highly effective in preventing the liver failure induced by HGA in the double-mutant mice. Therefore, fumarylacetoacetate apparently induces the release of cytochrome c, which in turn triggers activation of the caspase cascade in hepatocytes of subjects with hereditary tyrosinemia type 1.
Collapse
Affiliation(s)
- S Kubo
- Department of Pediatrics, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Grompe M, Overturf K, al-Dhalimy M, Finegold M. Therapeutic trials in the murine model of hereditary tyrosinaemia type I: a progress report. J Inherit Metab Dis 1998; 21:518-31. [PMID: 9728332 DOI: 10.1023/a:1005462804271] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have studied a knockout mouse with fumarylacetoacetate hydrolase (FAH) deficiency as a model of human hereditary tyrosinaemia type (I (HT1). These mice have a phenotype very similar to the human disease, which is characterized by acute hepatic failure, renal tubular disease and hepatocarcinoma. We have previously reported on the efficacy of 2-(2-nitro-4-trifluoromethylbenzyol)-1,3-cyclohexanedione (NTBC) in preventing acute liver disease in HT1 mice. Here we present a progress report on long-term follow up (> 1 year) of high-dose NTBC therapy in combination with tyrosine restriction. In vivo retroviral gene therapy was also effective in abolishing the acute liver failure of HT1. Retrovirally treated mice remained completely healthy and active for 12 months after retroviral gene transfer. However, hepatocarcinoma developed in 2/3 treated animals after 1 year. Southern blot analysis showed that the tumours did not arise from retrovirally transduced hepatocytes but from non-corrected FAH-deficient cells. These results highlight the extreme danger for tumour formation in HT1 and indicate the need for improved gene therapy that leads to the elimination of endogenous FAH-deficient liver cells.
Collapse
Affiliation(s)
- M Grompe
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, USA
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- S Gupta
- Marion Bessin Liver Research Center, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
19
|
Shin MK, Russell LB, Tilghman SM. Molecular characterization of four induced alleles at the Ednrb locus. Proc Natl Acad Sci U S A 1997; 94:13105-10. [PMID: 9371807 PMCID: PMC24270 DOI: 10.1073/pnas.94.24.13105] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The piebald locus on mouse chromosome 14 encodes the endothelin-B receptor (EDNRB), a G protein-coupled, seven-transmembrane domain protein, which is required for neural crest-derived melanocyte and enteric neuron development. A spontaneous null allele of Ednrb results in homozygous mice that are predominantly white and die as juveniles from megacolon. To identify the important domains for EDNRB function, four recessive juvenile lethal alleles created by either radiation or chemical mutagens (Ednrb27Pub, Ednrb17FrS, Ednrb1Chlc, and Ednrb3Chlo) were examined at the molecular level. Ednrb27Pub mice harbor a mutation at a critical proline residue in the fifth transmembrane domain of the EDNRB protein. A gross genomic alteration within the Ednrb gene in Ednrb3Chlo results in the production of aberrantly sized transcripts and no authentic Ednrb mRNA. Ednrb17FrS mice exhibited a decreased level of Ednrb mRNA, supporting previous observations that the degree of spotting in piebald mice is dependent on the amount of EDNRB expressed. Finally, no molecular defect was detected in Ednrb1Chlc mice, which produce normal levels of Ednrb mRNA in adult brain, suggesting that the mutation affects important regulatory elements that mediate the expression of the gene during development.
Collapse
Affiliation(s)
- M K Shin
- Howard Hughes Medical Institute and Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | | | |
Collapse
|
20
|
Endo F, Kubo S, Awata H, Kiwaki K, Katoh H, Kanegae Y, Saito I, Miyazaki J, Yamamoto T, Jakobs C, Hattori S, Matsuda I. Complete rescue of lethal albino c14CoS mice by null mutation of 4-hydroxyphenylpyruvate dioxygenase and induction of apoptosis of hepatocytes in these mice by in vivo retrieval of the tyrosine catabolic pathway. J Biol Chem 1997; 272:24426-32. [PMID: 9305902 DOI: 10.1074/jbc.272.39.24426] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hereditary tyrosinemia 1 (HT1) is characterized by progressive liver damage, from infancy, and by a high risk for hepatocellular carcinoma. HT1 is due to mutations in the fumarylacetoacetate hydrolase gene Fah, encoding the last enzyme in the tyrosine catabolic pathway. Lethal albino deletion c14CoS mice and mice with target-disrupted Fah are models for HT1, but they die in the perinatal period, albeit with a different phenotype from that seen in HT1 in humans. We first asked whether homozygous null mutation of the 4-hydroxyphenylpyruvate dioxygenase gene Hpd could rescue the homozygous c14CoS mice (c14CoS/c14CoS or Fah-/-). The double mutant Fah-/- Hpd-/- mice appeared normal, at least until age 18 months, and there was no evidence of liver disease, findings that facilitated examination of the effect of Fah-/- on mature and unmodified hepatocytes in vivo. The hepatocytes of Fah-/- undergo rapid apoptosis, and acute death follows. Essentially the same phenomena were observed when Fah-/- Hpd-/- mice were administered homogentisate intraperitoneally. These changes in liver pathology in Fah-/- Hpd-/- mice after the administration of homogentisate were associated with massive urinary excretion of succinylacetone. These results suggest that accumulation of fumarylacetoacetate, maleylacetoacetate, or succinylacetone seems to trigger the endogenous process of apoptosis in hepatocytes that lack fumarylacetoacetate hydrolase activity. This apoptosis may be related to the development of hepatocellular carcinomas seen in HT1 patients and pharmaceutically treated fumarylacetoacetate hydrolase-deficient mice.
Collapse
Affiliation(s)
- F Endo
- Department of Pediatrics, Kumamoto University School of Medicine, Honjo 1-1-1, Kumamoto 860, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Overlapping DNA fragments spanning approximately 21 kb of genomic DNA and encompassing the human 4-hydroxyphenylpyruvate dioxygenase gene (HPD) have been cloned by screening a human leukocyte genomic library and by PCR amplification of human fibroblastic DNA. A continuous gene sequence of 20,890 nucleotides was established, including 1957 bp of the 5'-flanking region. The 4-hydroxyphenylpyruvate dioxygenase gene is composed of 14 exons interrupted by 13 introns, all exhibiting conventional vertebrate splicing. Computer analysis of the DNA sequence revealed 12 complete repetitive Alu elements, 1 in the 5'-flanking region and 11 in the intervening segments of the gene. The transcriptional initiation site was mapped to a position 35 nt upstream of the translational start point. The computer analysis also identified several potential transcription regulatory elements, including one CRE site, two AP-2 sites, and two Sp1 sites, in the sequence upstream of the transcription initiation site. Functional analysis of promoter activity by transient transfection of chloramphenicolacetyl transferase reporter plasmids revealed a possible involvement of cyclic adenosine monophosphate in the regulation of transcription. The highest level of expression of 4-hydroxyphenylpyruvate dioxygenase was found in human liver tissue as demonstrated by Northern blot analysis.
Collapse
Affiliation(s)
- U Rüetschi
- Department of Clinical Chemistry and Transfusion Medicine, Göteborg University, Sahlgrenska University Hospital, Sweden.
| | | | | |
Collapse
|
22
|
Mulders TM, Bergman DJ, Poll-The BT, Smit GP, Breimer DD, Mulder GJ, Duran M, Smeitink JA. Abnormal glutathione conjugation in patients with tyrosinaemia type I. J Inherit Metab Dis 1997; 20:473-85. [PMID: 9266383 DOI: 10.1023/a:1005385009831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies have suggested that tyrosinaemia type I may be associated with reduced glutathione availability due to conjugation of tyrosinaemia-associated reactive intermediates with glutathione. In the present study, the glutathione/ glutathione S-transferase system of two tyrosinaemia patients and three healthy controls were characterized by administering the racemic sedative drug bromisoval, a probe drug for assessing glutathione conjugation activity in vivo. Furthermore, concentrations of glutathione and glutathione S-transferase class alpha (GSTA) isoenzymes as well as the glutathione S-transferase class mu phenotype were assessed in the blood of six tyrosinaemia patients. The excretion of bromisoval mercapturates in healthy children was comparable to that observed in healthy adults. Tyrosinaemia patients were found to have a very high urinary recovery of bromisoval mercapturates (> or = 60% of the dose compared to about 30% for healthy, age-matched children and adults), which could be attributed mainly to a higher urinary excretion of the mercapturate derived from S-bromisoval. Healthy children and adults predominantly excrete the (R)-bromisoval mercapturate. The differences in amount excreted as well as in stereoselectivity of the urinary excretion of bromisoval mercapturates in tyrosinaemia patients are possibly related to an increased activity of specific glutathione S-transferase isoenzymes. Plasma glutathione and blood cell glutathione disulphide concentrations in tyrosinaemia patients were normal. Low blood cell glutathione concentrations were in general found only in two patients with a poor clinical condition. These results indicate that, in contrast to previous suggestions, reduced glutathione availability is not a generalized problem in (stabilized) tyrosinaemia patients.
Collapse
Affiliation(s)
- T M Mulders
- Leiden/Amsterdam Center for Drug Research, Leiden University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bedell MA, Largaespada DA, Jenkins NA, Copeland NG. Mouse models of human disease. Part II: recent progress and future directions. Genes Dev 1997; 11:11-43. [PMID: 9000048 DOI: 10.1101/gad.11.1.11] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M A Bedell
- Mammalian Genetics Laboratory, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
24
|
Overturf K, Al-Dhalimy M, Tanguay R, Brantly M, Ou CN, Finegold M, Grompe M. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat Genet 1996; 12:266-73. [PMID: 8589717 DOI: 10.1038/ng0396-266] [Citation(s) in RCA: 398] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Current strategies for hepatic gene therapy are either quantitatively inefficient or suffer from lack of permanent gene expression. We have utilized an animal model of hereditary tyrosinaemia type I (HT1), a recessive liver disease caused by deficiency of fumarylacetoacetate hydrolase (FAH), to determine whether in vivo selection of corrected hepatocytes could improve the efficiency of liver gene transfer. As few as 1,000 transplanted wild-type hepatocytes were able to repopulate mutant liver, demonstrating their strong competitive growth advantage. Mutant hepatocytes corrected in situ by retroviral gene transfer were also positively selected. In mutant animals treated by multiple retrovirus injections >90% of hepatocytes became FAH positive and liver function was restored to normal. Our results demonstrate that in vivo selection is a useful strategy for hepatic gene therapy and may lead to effective treatment of human HT1 by retroviral gene transfer.
Collapse
Affiliation(s)
- K Overturf
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Takiguchi M, Mori M. Transcriptional regulation of genes for ornithine cycle enzymes. Biochem J 1995; 312 ( Pt 3):649-59. [PMID: 8554501 PMCID: PMC1136163 DOI: 10.1042/bj3120649] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M Takiguchi
- Department of Molecular Genetics, Kumamoto University School of Medicine, Japan
| | | |
Collapse
|
26
|
Fernández-Cañón JM, Peñalva MA. Fungal metabolic model for human type I hereditary tyrosinaemia. Proc Natl Acad Sci U S A 1995; 92:9132-6. [PMID: 7568087 PMCID: PMC40938 DOI: 10.1073/pnas.92.20.9132] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Type I hereditary tyrosinaemia (HT1) is a severe human inborn disease resulting from loss of fumaryl-acetoacetate hydrolase (Fah). Homozygous disruption of the gene encoding Fah in mice causes neonatal lethality, seriously limiting use of this animal as a model. We report here that fahA, the gene encoding Fah in the fungus Aspergillus nidulans, encodes a polypeptide showing 47.1% identity to its human homologue, fahA disruption results in secretion of succinylacetone (a diagnostic compound for human type I tyrosinaemia) and phenylalanine toxicity. We have isolated spontaneous suppressor mutations preventing this toxicity, presumably representing loss-of-function mutations in genes acting upstream of fahA in the phenylalanine catabolic pathway. Analysis of a class of these mutations demonstrates that loss of homogentisate dioxygenase (leading to alkaptonuria in humans) prevents the effects of a Fah deficiency. Our results strongly suggest human homogentisate dioxygenase as a target for HT1 therapy and illustrate the usefulness of this fungus as an alternative to animal models for certain aspects of human metabolic diseases.
Collapse
Affiliation(s)
- J M Fernández-Cañón
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | |
Collapse
|
27
|
Grompe M, Lindstedt S, al-Dhalimy M, Kennaway NG, Papaconstantinou J, Torres-Ramos CA, Ou CN, Finegold M. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet 1995; 10:453-60. [PMID: 7545495 DOI: 10.1038/ng0895-453] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hereditary tyrosinaemia type I, a severe autosomal recessive metabolic disease, affects the liver and kidneys and is caused by deficiency of fumarylacetoacetate hydrolase (FAH). Mice homozygous for a FAH gene disruption have a neonatal lethal phenotype caused by liver dysfunction and do not represent an adequate model of the human disease. Here we demonstrate that treatment of affected animals with 2-(2-nitro-4-trifluoro-methylbenzyol)-1,3-cyclohexanedione abolished neonatal lethality, corrected liver function and partially normalized the altered expression pattern of hepatic mRNAs. The prolonged lifespan of affected animals resulted in a phenotype analogous to human tyrosinaemia type I including hepatocellular carcinoma. The adult FAH-/- mouse will serve as useful model for studies of the pathophysiology and treatment of hereditary tyrosinaemia type I as well as hepatic cancer.
Collapse
Affiliation(s)
- M Grompe
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rinchik EM, Carpenter DA, Handel MA. Pleiotropy in microdeletion syndromes: neurologic and spermatogenic abnormalities in mice homozygous for the p6H deletion are likely due to dysfunction of a single gene. Proc Natl Acad Sci U S A 1995; 92:6394-8. [PMID: 7604002 PMCID: PMC41524 DOI: 10.1073/pnas.92.14.6394] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Variability and complexity of phenotypes observed in microdeletion syndromes can be due to deletion of a single gene whose product participates in several aspects of development or can be due to the deletion of a number of tightly linked genes, each adding its own effect to the syndrome. The p6H deletion in mouse chromosome 7 presents a good model with which to address this question of multigene vs. single-gene pleiotropy. Mice homozygous for the p6H deletion are diluted in pigmentation, are smaller than their littermates, and manifest a nervous jerky-gait phenotype. Male homozygotes are sterile and exhibit profound abnormalities in spermiogenesis. By using N-ethyl-N-nitrosourea (EtNU) mutagenesis and a breeding protocol designed to recover recessive mutations expressed hemizygously opposite a large p-locus deletion, we have generated three noncomplementing mutations that map to the p6H deletion. Each of these EtNU-induced mutations has adverse effects on the size, nervous behavior, and progression of spermiogenesis that characterize p6H deletion homozygotes. Because EtNU is thought to induce primarily intragenic (point) mutations in mouse stem-cell spermatogonia, we propose that the trio of phenotypes (runtiness, nervous jerky gait, and male sterility) expressed in p6H deletion homozygotes is the result of deletion of a single highly pleiotropic gene. We also predict that a homologous single locus, quite possibly tightly linked and distal to the D15S12 (P) locus in human chromosome 15q11-q13, may be associated with similar developmental abnormalities in humans.
Collapse
Affiliation(s)
- E M Rinchik
- Biology Division, Oak Ridge National Laboratory, TN 37831-8077, USA
| | | | | |
Collapse
|
29
|
Potter MD, Klebig ML, Carpenter DA, Rinchik EM. Genetic and physical mapping of the fitness 1 (fit1) locus within the Fes-Hbb region of mouse chromosome 7. Mamm Genome 1995; 6:70-5. [PMID: 7767008 DOI: 10.1007/bf00303247] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations at the fit1 locus affect normal pre- and post-natal development by retarding growth and reducing viability. We report mapping of the fit1 locus, by trans-complementation crosses to mice carrying deletions of the albino (c) locus in Chromosome (Chr) 7, to a subregion of the c-deletion complex within the Mod2-sh1 interval. The fit1 locus, which is currently defined by five N-ethyl-N-nitrosourea (ENU)-induced mutations, was found to map in a subregion between the eed and exed loci. A restriction fragment containing a deletion breakpoint that genetically defines the proximal border of fit1 was cloned, providing a DNA probe (RN302) that maps proximal to fit1. Long-range mapping with this probe, and with a DNA probe that maps distal to the fit1 interval, established that the region containing at least part of the fit1 gene is 530 kb or less. Positioning of fit1 between deletion breakpoints, and the isolation and mapping of a DNA probe proximal to it, should facilitate the cloning and molecular characterization of fit1, as well as of the eed locus and the tightly linked l(7)5Rn and l(7)6Rn loci.
Collapse
Affiliation(s)
- M D Potter
- University of Tennessee-Oak Ridge Graduate School of Biomedical Sciences 37831-8077, USA
| | | | | | | |
Collapse
|
30
|
Hahn SH, Krasnewich D, Brantly M, Kvittingen EA, Gahl WA. Heterozygosity for an exon 12 splicing mutation and a W234G missense mutation in an American child with chronic tyrosinemia type 1. Hum Mutat 1995; 6:66-73. [PMID: 7550234 DOI: 10.1002/humu.1380060113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hereditary tyrosinemia type 1, an autosomal recessive disorder caused by deficiency of fumarylace-toacetate hydrolase (FAH), manifests in either an acute or a chronic form. We used reverse transcription and the polymerase chain reaction to amplify the FAH cDNA of a 12-year-old American boy with chronic tyrosinemia type 1. The patient is a compound heterozygote for mutations in the FAH gene. One allele contains a missense mutation in codon 234 changing a tryptophan to a glycine; this allele was of maternal origin. Mutagenesis and transfection into COS cells demonstrated that the W234G mutation abolishes FAH activity. The patient's paternally derived allele is a splicing mutation in the +5 position of intron 12, causing either insertion of a 105 bp fragment due to a cryptic splice site, or skipping of exon 12, or skipping of both exons 12 and 13. The chronic phenotype of tyrosinemia type 1 in this patient may be due to some residual, correct splicing by the allele with the splicing mutation.
Collapse
Affiliation(s)
- S H Hahn
- Section of Human Biochemical Genetics, Human Genetics Branch, NICHD, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
31
|
Lloyd AJ, Gray RG, Green A. Tyrosinaemia type 1 and glutathione synthetase deficiency: two disorders with reduced hepatic thiol group concentrations and a liver 4-fumarylacetoacetate hydrolase deficiency. J Inherit Metab Dis 1995; 18:48-55. [PMID: 7623442 DOI: 10.1007/bf00711372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thiol groups are important components of proteins and their oxidation can lead to a substantial loss of protein function. Patients with two apparently unrelated inborn errors of metabolism, tyrosinaemia type 1 and glutathione synthetase deficiency, have been reported to show reduced cell glutathione concentrations. We have found that not only glutathione but also protein thiol concentrations are reduced in the liver in tyrosinaemia type 1 patients. We also report a case of glutathione synthetase deficiency with a substantial deficiency of liver 4-fumarylacetoacetate hydrolase and provide evidence that glutathione, or some small-molecular-weight thiol, is essential for maintaining stability of this enzyme in vitro. Our results suggest that the availability of thiol groups may modify the phenotype of tyrosinaemia type 1 and that liver 4-fumarylacetoacetate hydrolase deficiency may be a secondary complicating factor in some forms of glutathione synthetase deficiency.
Collapse
Affiliation(s)
- A J Lloyd
- Department of Clinical Chemistry, Children's Hospital, Birmingham, UK
| | | | | |
Collapse
|
32
|
Endo F, Awata H, Katoh H, Matsuda I. A nonsense mutation in the 4-hydroxyphenylpyruvic acid dioxygenase gene (Hpd) causes skipping of the constitutive exon and hypertyrosinemia in mouse strain III. Genomics 1995; 25:164-9. [PMID: 7774914 DOI: 10.1016/0888-7543(95)80122-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
4-Hydroxyphenylpyruvic acid dioxygenase (HPD; EC 1.13.11.27) is an important enzyme in tyrosine catabolism in most organisms. Decreased activity of 4-hydroxyphenylpyruvic acid dioxygenase in the liver of mouse strain III is associated with tyrosinemia. We report a nucleotide substitution that generates a termination codon in exon 7 of the 4-hydroxyphenylpyruvic acid dioxygenase gene in III mice. This mutation is associated with partial exon skipping, and most of the mRNA lacks sequences corresponding to exon 7. The partial exon skipping apparently is the result of a nonsense mutation in the exon. Mouse strain III is a model for human tyrosinemia type 3 (McKusick 276710), and this strain together with recently established models for tyrosinemia type 1 will facilitate studies of hereditary tyrosinemias.
Collapse
Affiliation(s)
- F Endo
- Department of Pediatrics, Kumamoto University, School of Medicine, Japan
| | | | | | | |
Collapse
|
33
|
Rinchik EM. Molecular genetics of the brown (b)-locus region of mouse chromosome 4. II. Complementation analyses of lethal brown deletions. Genetics 1994; 137:855-65. [PMID: 8088529 PMCID: PMC1206045 DOI: 10.1093/genetics/137.3.855] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Numerous new mutations at the brown (b) locus in mouse chromosome 4 have been recovered over the years in germ-cell mutagenesis experiments performed at the Oak Ridge National Laboratory. A large series of radiation- and chemical-induced b mutations known to be chromosomal deletions, and also known to be prenatally lethal when homozygous, were analyzed by pairwise complementation crosses as well as by pseudodominance tests involving flanking loci defined by externally visible phenotypes. These crosses were designed to determine the extent of each deletion on the genetic and phenotype map of the chromosomal region surrounding the b locus; the crosses also provided basic data that assigned deletions to complementation groups and defined four new loci associated with aberrancies in normal development. Specifically, the pseudodominance tests identified deletions that include the proximally mapping whirler (wi) and the distally mapping depilated (dep) genes, thereby bracketing these loci defined by visible developmental abnormalities with landmarks (deletion breakpoints) that are easily identified on the physical map. Furthermore, the complementation crosses, which were supplemented with additional crosses that allowed determination of the gross time of lethality of selected deletions, defined four new loci required for normal development. Homozygous deletion of one of these loci (b-associated fitness, baf) results in a runting syndrome evident during postnatal development; deletion of one locus [l(4)2Rn] causes death in the late gestation/neonatal period; and deletion of either of two loci [l(4)1Rn or l(4)3Rn] results in embryonic death, most likely in pre-, peri- or postimplantation stages. The placement of these new functionally defined loci on the evolving molecular map of the b region should be useful for continuing the analysis of the roles played in development by genes in this segment of chromosome 4.
Collapse
Affiliation(s)
- E M Rinchik
- Biology Division, Oak Ridge National Laboratory, Tennessee 37831-8077
| |
Collapse
|
34
|
Abstract
Mesoderm induction is fundamental for establishing the basic body plan of the vertebrate embryo and mutations are critical for dissecting this process. Mouse embryos lacking msd (mesoderm deficiency) do not produce mesoderm but have well-defined extraembryonic and thickened embryonic ectoderm. Distribution of transcripts indicate that temporal regulation of gene expression relevant to gastrulation has begun but primitive-streak formation and mesoderm induction are blocked. Both msd-deficient embryos and embryonic stem (ES) cells fail to form highly differentiated structures of mesoderm origin, but are capable of ectodermal differentiation. Thus, the effects of the msd mutation are restricted to mesoderm formation and could result from the inability to respond to an inducing signal.
Collapse
Affiliation(s)
- B C Holdener
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106-4955
| | | | | | | |
Collapse
|
35
|
Affiliation(s)
- B C Holdener
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106-4955
| | | |
Collapse
|
36
|
Russell LB. Role of mouse germ-cell mutagenesis in understanding genetic risk and in generating mutations that are prime tools for studies in modern biology. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1994; 23 Suppl 24:23-29. [PMID: 8162903 DOI: 10.1002/em.2850230608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Highlights are presented on (1) the role mouse germ-cell mutagenesis has played in assessing the genetic harm from radiations and chemicals, and (2) the contributions to the field of modern biology that are being made by the products of this research--the propagated mutations. Among the numerous findings in radiation mutagenesis were the humped dose-effect curve for spermatogonial stem cells, the major differences between the sexes and between germ-cell stages of each sex in both yield and nature of mutations, the dose-rate effect, which provided the first evidence for repair of mutational (or premutational) damage, the augmenting effect of certain regimes of dose fractionation, and many others. Chemical mutagenesis studies that followed revealed at least three patterns of mutation yield and demonstrated that germ-cell stage--much more than the nature of the chemical--governs the nature of the DNA lesions induced. Two "supermutagens," one for intragenic mutations and one for deletions and other rearrangements, have become very useful in the manufacture of mutations for specific purposes. The mutations propagated from radiation- and chemical-mutagenesis experiments are providing prime resources for basic studies in genome organization, gene structure, and function. DNA lesions that involve specific loci have made possible increasingly detailed characterization of extensive deletion complexes that facilitate high-intensity physical and functional mapping within them. Numerous loci associated with interesting developmental anomalies have been identified and have become accessible to positional cloning. Several of the genes accessed with the aid of induced mutations (deletions, other rearrangements, and point mutations) are furnishing prime reagents for elucidating human disease conditions.
Collapse
Affiliation(s)
- L B Russell
- Biology Division, Oak Ridge National Laboratory, Tennessee 37831-8077
| |
Collapse
|
37
|
Abstract
Details are given of 214 loci known to be associated with human hereditary disease, which have been mapped on both human and mouse chromosomes. Forty two of these have pathological variants in both species; in general the mouse variants are similar in their effects to the corresponding human ones, but exceptions include the Dmd/DMD and Hprt/HPRT mutations which cause little, if any, harm in mice. Possible reasons for phenotypic differences are discussed. In most pathological variants the gene product seems to be absent or greatly reduced in both species. The extensive data on conserved segments between human and mouse chromosomes are used to predict locations in the mouse of over 50 loci of medical interest which are mapped so far only on human chromosomes. In about 80% of these a fairly confident prediction can be made. Some likely homologies between mapped mouse loci and unmapped human ones are also given. Sixty six human and mouse proto-oncogene and growth factor gene homologies are also listed; those of confirmed location are all in known conserved segments. A survey of 18 mapped human disease loci and chromosome regions in which the manifestation or severity of pathological effects is thought to be the result of genomic imprinting shows that most of the homologous regions in the mouse are also associated with imprinting, especially those with homologues on human chromosomes 11p and 15q. Useful methods of accelerating the production of mouse models of human hereditary disease include (1) use of a supermutagen, such as ethylnitrosourea (ENU), (2) targeted mutagenesis involving ES cells, and (3) use of gene transfer techniques, with production of 'knockout mutations'.
Collapse
Affiliation(s)
- A G Searle
- MRC Radiobiology Unit, Chilton, Didcot, Oxon, UK
| | | | | |
Collapse
|
38
|
Rinchik EM, Tönjes RR, Paul D, Potter MD. Molecular analysis of radiation-induced albino (c)-locus mutations that cause death at preimplantation stages of development. Genetics 1993; 135:1107-16. [PMID: 8307326 PMCID: PMC1205742 DOI: 10.1093/genetics/135.4.1107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Deletion mutations at the albino (c) locus have been useful for continuing the development of fine-structure physical and functional maps of the Fes-Hbb region of mouse chromosome 7. This report describes the molecular analysis of a number of radiation-induced c deletions that, when homozygous, cause death of the embryo during preimplantation stages. The distal extent of these deletions defines a locus, pid, (preimplantation development) genetically associated with this phenotype. The proximal breakpoints of eight of these deletions were mapped with respect to the Tyr (tyrosinase; albino) gene as well as to anonymous loci within the Fah-Tyr region that are defined by the Pmv-31 viral integration site and by chromosome-microdissection clones. Rearrangements corresponding to the proximal breakpoints of two of these deletions were detected by Southern blot analysis, and a size-altered restriction fragment carrying the breakpoint of one of them was cloned. A probe derived from this deletion fusion fragment defines a locus, D7Rn6, which maps within (or distal to) the pid region, and which discriminates among the distal extents of deletions eliciting the pid phenotype. Extension of physical maps from D7Rn6 should provide access both to the pid region and to loci mapping distal to pid that are defined by N-ethyl-N-nitrosourea-induced lethal mutations.
Collapse
Affiliation(s)
- E M Rinchik
- Biology Division, Oak Ridge National Laboratory, Tennessee 37831-8077
| | | | | | | |
Collapse
|
39
|
Rinchik EM, Carpenter DA, Long CL. Deletion mapping of four loci defined by N-ethyl-N-nitrosourea-induced postimplantation-lethal mutations within the pid-Hbb region of mouse chromosome 7. Genetics 1993; 135:1117-23. [PMID: 8307327 PMCID: PMC1205743 DOI: 10.1093/genetics/135.4.1117] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
As part of a long-term effort to refine the physical and functional maps of the Fes-Hbb region of mouse chromosome 7, four loci [l(7)1Rn, l(7)2Rn, l(7)3Rn, l(7)4Rn] defined by N-ethyl-N-nitrosourea (ENU)-induced, prenatally lethal mutations were mapped by means of trans complementation crosses to mice carrying lethal deletions of the mouse chromosome-7 albino (c) locus. Each locus was assigned to a defined subregion of the deletion map at the distal end of the Fes-Hbb interval. Of particular use for this mapping were preimplantation-lethal deletions having distal breakpoints localized between pid and Omp. Hemizygosity or homozygosity for each of the ENU-induced lethals was found to arrest development after uterine implantation; the specific time of postimplantation death varied, and depended on both the mutation itself and on whether it was hemizygous or homozygous. Based on their map positions outside of and distal to deletions that cause death at preimplantation stages, these ENU-induced mutations identify loci, necessary for postimplantation development, that could not have been discovered by phenotypic analyses of mice homozygous for any albino deletion. The mapping of these loci to specific genetic intervals defined by deletion breakpoints suggests a number of positional-cloning strategies for the molecular isolation of these genes. Phenotypic and genetic analyses of these mutations should provide useful information on the functional composition of the corresponding segment of the human genome (perhaps human 11q13.5).
Collapse
Affiliation(s)
- E M Rinchik
- Biology Division, Oak Ridge National Laboratory, Tennessee 37831-8077
| | | | | |
Collapse
|
40
|
Goss SJ. A fresh look at the somatic cell genetics of hepatoma differentiation. J Cell Sci 1993; 104 ( Pt 2):231-5. [PMID: 8505357 DOI: 10.1242/jcs.104.2.231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- S J Goss
- Sir William Dunn School of Pathology, Oxford, UK
| |
Collapse
|
41
|
Rinchik EM, Carpenter DA. N-ethyl-N-nitrosourea-induced prenatally lethal mutations define at least two complementation groups within the embryonic ectoderm development (eed) locus in mouse chromosome 7. Mamm Genome 1993; 4:349-53. [PMID: 8358168 DOI: 10.1007/bf00360583] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Two loci [l(7)5Rn and l(7)6Rn] defined by N-ethyl-N-nitrosourea (ENU)-induced, prenatally lethal mutations were mapped by means of trans complementation crosses to mice carrying lethal deletions of the albino (c) locus in Chromosome (Chr) 7. Both loci were found to map to the subregion of the Mod-2-sh-1 interval that contains the eed (embryonic ectoderm development) locus, eed has been defined by the inability of embryos homozygous for certain c deletions to develop beyond the early stages of gastrulation. Evidence for at least two loci necessary for normal prenatal development, rather than one locus, that map within the eed interval came from the observation that two prenatally lethal mutations, 3354SB [l(7)5Rn3354SB] and 4234SB [l(7)6Rn4234SB], could complement each other in trans, but could not each be complemented individually by c deletions known to include the eed locus. A somewhat leaky allele of l(7)5Rn [l(7)5Rn1989SB] was also recovered, in which hemizygotes are often stillborn and homozygotes exhibit variable fitness and survival. The mapping of the loci defined by these mutations is likely to be useful for genetic, molecular, and phenotypic characterization of the eed region, and mutations at either locus (or both loci) may contribute to the eed phenotype.
Collapse
Affiliation(s)
- E M Rinchik
- Biology Division, Oak Ridge National Laboratory, Tennessee 37831-8077
| | | |
Collapse
|
42
|
Holdener-Kenny B, Sharan SK, Magnuson T. Mouse albino-deletions: From genetics to genes in development. Bioessays 1992; 14:831-9. [PMID: 1365899 DOI: 10.1002/bies.950141208] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Six essential genes located near the mouse albino locus have been identified as required during specific periods of development. Amongst these six, each is required either during the preimplantation stages of development, at specific times during gastrulation, within 12 hrs after birth or during juvenile development. These genes were identified as a result of extensive genetic complementation analysis using embryos homozygous for the albino deletions. Although, in principal, the associated developmental abnormalities could result from loss of multiple genes, the deletion phenotype in one case is identical to that induced by chemical mutagenesis. These results indicate that the abnormalities observed in deletion homozygotes may result from single gene loss. The deletions have proven useful not only as genetic tools to localize the position of the genes, but also as molecular entry points to the regions containing these genes. The current methodology being used to isolate candidate genes from the albino region is also reviewed here.
Collapse
Affiliation(s)
- B Holdener-Kenny
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106-4955
| | | | | |
Collapse
|
43
|
Phaneuf D, Lambert M, Laframboise R, Mitchell G, Lettre F, Tanguay RM. Type 1 hereditary tyrosinemia. Evidence for molecular heterogeneity and identification of a causal mutation in a French Canadian patient. J Clin Invest 1992; 90:1185-92. [PMID: 1401056 PMCID: PMC443158 DOI: 10.1172/jci115979] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Type 1 hereditary tyrosinemia (HT1) is a metabolic disorder caused by a deficiency of fumarylacetoacetate hydrolase (FAH). Using a full-length FAH cDNA and specific antibodies, we investigated liver specimens from seven unrelated HT1 patients (six of French Canadian and one of Scandinavian origin). The expression of FAH in livers of these individuals was analyzed at several molecular levels including mRNA, immunoreactive material (IRM), and enzymatic activity. Four phenotypic variants were differentiated by these assays: (i) presence of FAH mRNA without any IRM or enzymatic activity, (ii) decreased FAH mRNA, IRM, and enzymatic activity, (iii) moderately decreased FAH mRNA and IRM with severely reduced enzymatic activity, and (iv) undetectable FAH mRNA, IRM, and enzymatic activity. These various molecular phenotypes suggest that this disorder may be caused by a variety of FAH mutations. Interestingly, we found no apparent relationship between the clinical and the molecular phenotypes, except that patients with absent IRM and enzymatic activity tend to have higher levels of serum alpha-fetoprotein and an earlier clinical onset. To further analyze the molecular basis of HT1, the FAH cDNA of a patient designated as variant A was amplified and sequenced. An A-to-T transversion, which substitutes asparagine16 with isoleucine (N16I), was identified. This patient was heterozygous as shown by direct sequencing of the amplified region and hybridization with allele-specific oligonucleotide probes. The N16I allele originates from the father and the second allele appears not to be expressed in the liver of the proband. CV-1 cells transfected with the mutant cDNA produced FAH mRNA, but no protein or hydrolytic activity, as predicted by the "A" phenotype of the patient. This is the first demonstration of heterogeneity in the expression of FAH at the levels of protein, mRNA, and enzymatic activity in the livers of HT1 patients and is the first identification of a causal mutationin this disease.
Collapse
Affiliation(s)
- D Phaneuf
- Département de Pédiatrie, Centre Hospitalier Université Laval, Ste-Foy, Québec, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Ruppert S, Kelsey G, Schedl A, Schmid E, Thies E, Schütz G. Deficiency of an enzyme of tyrosine metabolism underlies altered gene expression in newborn liver of lethal albino mice. Genes Dev 1992; 6:1430-43. [PMID: 1644288 DOI: 10.1101/gad.6.8.1430] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mice homozygous for albino deletions encompassing the locus alf/hsdr-1 die shortly after birth. Lethality is thought to be the consequence of hypoglycemia, which results from the failure to activate hormone-dependent genes in liver and kidney encoding enzymes important for gluconeogenesis. Within the region in which alf/hsdr-1 has been defined by physical mapping, we identified the gene encoding fumarylacetoacetate hydrolase (FAH), an enzyme of tyrosine metabolism. Lack of FAH activity should lead to accumulation of toxic tyrosine metabolites. In man, genetically determined FAH deficiency is the primary defect in tyrosinemia type I, a fatal liver disease of infants. Northern blot and in situ hybridization analysis of mouse tissues showed that the cell types that normally express FAH correspond to those that exhibit a phenotype in alf/hsdr-1 deletion mice. Moreover, we could mimic aspects of the alf/hsdr-1 deletion phenotype in vitro by treating primary hepatocyte cultures with an intermediate of tyrosine metabolism. These findings strongly suggest that alf/hsdr-1 encodes FAH and that absence of FAH is responsible for neonatal lethality in albino deletion mice. Mechanisms by which this metabolic defect might bring about alterations in gene expression characteristic of the alf/hsdr-1 deletion phenotype are discussed.
Collapse
Affiliation(s)
- S Ruppert
- Institute of Cell and Tumor Biology, German Cancer Research Center, Heidelberg
| | | | | | | | | | | |
Collapse
|
45
|
Zaret KS, Milos P, Lia M, Bali D, Gluecksohn-Waelsch S. Selective loss of a DNase I hypersensitive site upstream of the tyrosine aminotransferase gene in mice homozygous for lethal albino deletions. Proc Natl Acad Sci U S A 1992; 89:6540-4. [PMID: 1378630 PMCID: PMC49537 DOI: 10.1073/pnas.89.14.6540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several overlapping chromosomal deletions spanning the albino locus in the mouse cause perinatal lethality when homozygous and a block in the transcriptional induction of various unlinked hepatocyte-specific genes. Studies of such lethal albino deletion homozygotes in perinatal stages revealed a deficiency in the transcriptional inducibility of the tyrosine aminotransferase (TAT) gene by glucocorticoids; yet, glucocorticoid receptor and hormone levels were shown to be unaffected. To identify a molecular defect underlying the failure of inducible expression, we examined the chromatin structure of the TAT gene. Whereas in wild-type animals the TAT promoter becomes DNase I hypersensitive at birth, such hypersensitivity fails to develop in lethal albino deletion homozygotes. By contrast, the deletions do not affect the appearance of three DNase I-hypersensitive sites upstream of the TAT promoter in the liver, nor do they affect two hypersensitive sites upstream of the expressed alpha-fetoprotein gene. These findings demonstrate that the abnormality of chromatin structure identified in lethal albino deletion homozygotes occurs on a highly selective basis. Specifically, normal differentiation of the TAT promoter chromatin appears to depend directly or indirectly on the action and product of a gene mapping within the deleted region.
Collapse
Affiliation(s)
- K S Zaret
- Section of Biochemistry, Brown University, Providence, RI 02912
| | | | | | | | | |
Collapse
|
46
|
Abstract
Mouse models of human genetic disorders provide a valuable resource for investigating the pathogenesis of genetic disease and for testing potential therapies. The high degree of resolution of linkage mapping in the mouse allows mutant phenotypes to be mapped precisely which, combined with the accurate definition of areas of homology between the mouse and human genomes, greatly facilitates the identification of mouse models. We describe here mouse models of human single gene disorders dividing them into three categories depending on the information available; phenotypic similarities, comparative mapping and identification of the underlying genetic lesion.
Collapse
|
47
|
Rinchik EM, Magnuson T, Holdener-Kenny B, Kelsey G, Bianchi A, Conti CJ, Chartier F, Brown KA, Brown SD, Peters J. Mouse chromosome 7. Mamm Genome 1992; 3 Spec No:S104-20. [PMID: 1498426 DOI: 10.1007/bf00648425] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- E M Rinchik
- Biology Division, Oak Ridge National Laboratory, Tennessee 37831-8077
| | | | | | | | | | | | | | | | | | | |
Collapse
|