1
|
Schansker G. Determining photosynthetic control, a probe for the balance between electron transport and Calvin-Benson cycle activity, with the DUAL-KLAS-NIR. PHOTOSYNTHESIS RESEARCH 2022; 153:191-204. [PMID: 35844008 DOI: 10.1007/s11120-022-00934-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic Control is defined as the control imposed on photosynthetic electron transport by the lumen-pH-sensitive re-oxidation of plastoquinol (PQH2) by cytochrome b6f. Photosynthetic Control leads at higher actinic light intensities to an electron transport chain with a (relatively) reduced photosystem (PS) II and PQ pool and a (relatively) oxidized PS I. Making Light Curves of more than 33 plant species with the recently introduced DUAL-KLAS-NIR (Chl a fluorescence + the redox states of plastocyanin (PC), P700, and ferredoxin (Fd)) the light intensity-dependent induction of Photosynthetic Control was probed and characterized. It was observed that PC became completely oxidized at light intensities ≤ 400 µmol photons m-2 s-1 (at lower light intensities in shade than in sun leaves). The relationship between qP and P700(red) was used to determine the extent of Photosynthetic Control. Instead of measuring the whole Light Curve, it was shown that a single moderate light intensity can be used to characterize the status of a leaf relative to that of other leaves. It was further found that in some shade-acclimated leaves Fd becomes again more oxidized at high light intensities indicating that electron transfer from the PQ pool to P700 cannot keep up with the outflow of electrons on the acceptor side of PS I. It was observed as well that for NPQ-induction a lower light intensity (less acidified lumen) was needed than for the induction of Photosynthetic Control. The measurements were also used to make a comparison between the parameters qP and qL, a comparison suggesting that qP was the more relevant parameter.
Collapse
Affiliation(s)
- Gert Schansker
- Heinz Walz GmbH, Eichenring 6, 91090, Effeltrich, Germany.
| |
Collapse
|
2
|
Ruban A, Saccon F. Chlorophyll a De-Excitation Pathways in the LHCII antenna. J Chem Phys 2022; 156:070902. [DOI: 10.1063/5.0073825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexander Ruban
- SBBS, Queen Mary University of London - Mile End Campus, United Kingdom
| | - Francesco Saccon
- School of Biological and Chemical Sciences, Queen Mary University of London - Mile End Campus, United Kingdom
| |
Collapse
|
3
|
Fernández-Marín B, Roach T, Verhoeven A, García-Plazaola JI. Shedding light on the dark side of xanthophyll cycles. THE NEW PHYTOLOGIST 2021; 230:1336-1344. [PMID: 33452715 DOI: 10.1111/nph.17191] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Xanthophyll cycles are broadly important in photoprotection, and the reversible de-epoxidation of xanthophylls typically occurs in excess light conditions. However, as presented in this review, compiling evidence in a wide range of photosynthetic eukaryotes shows that xanthophyll de-epoxidation also occurs under diverse abiotic stress conditions in darkness. Light-driven photochemistry usually leads to the pH changes that activate de-epoxidases (e.g. violaxanthin de-epoxidase), but in darkness alternative electron transport pathways and luminal domains enriched in monogalactosyl diacyl glycerol (which enhance de-epoxidase activity) likely enable de-epoxidation. Another 'dark side' to sustaining xanthophyll de-epoxidation is inactivation and/or degradation of epoxidases (e.g. zeaxanthin epoxidase). There are obvious benefits of such activity regarding stress tolerance, and indeed this phenomenon has only been reported in stressful conditions. However, more research is required to unravel the mechanisms and understand the physiological roles of dark-induced formation of zeaxanthin. Notably, the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin in darkness is still a frequently ignored process, perhaps because it questions a previous paradigm. With that in mind, this review seeks to shed some light on the dark side of xanthophyll de-epoxidation, and point out areas for future work.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Tenerife, 38200, Spain
| | - Thomas Roach
- Department of Botany, University of Innsbruck and Center for Molecular Biosciences Innsbruck (CMBI), Sternwartestrasse 15, Innsbruck, 6020, Austria
| | - Amy Verhoeven
- Department of Biology, University of St Thomas, 2115 Summit Ave, St Paul, MN, 55105, USA
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| |
Collapse
|
4
|
Liu B, Wang XY, Cao Y, Arora R, Zhou H, Xia YP. Factors affecting freezing tolerance: a comparative transcriptomics study between field and artificial cold acclimations in overwintering evergreens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2279-2300. [PMID: 32593208 DOI: 10.1111/tpj.14899] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 05/06/2023]
Abstract
Cold acclimation (CA) is a well-known strategy employed by plants to enhance freezing tolerance (FT) in winter. Global warming could disturb CA and increase the potential for winter freeze-injury. Thus, developing robust FT through complete CA is essential. To explore the molecular mechanisms of CA in woody perennials, we compared field and artificial CAs. Transcriptomic data showed that photosynthesis/photoprotection and fatty acid metabolism pathways were specifically enriched in field CA; carbohydrate metabolism, secondary metabolism and circadian rhythm pathways were commonly enriched in both field and artificial CAs. When compared with plants in vegetative growth in the chamber, we found that the light signals with warm air temperatures in the fall might induce the accumulation of leaf abscisic acid (ABA) and jasmonic acid (JA) concentrations, and activate Ca2+ , ABA and JA signaling transductions in plants. With the gradual cooling occurrence in winter, more accumulation of anthocyanin, chlorophyll degradation, closure/degradation of photosystem II reaction centers, and substantial accumulation of glucose and fructose contributed to obtaining robust FT during field CA. Moreover, we observed that in Rhododendron 'Elsie Lee', ABA and JA decreased in winter, which may be due to the strong requirement of zeaxanthin for rapid thermal dissipation and unsaturated fatty acids for membrane fluidity. Taken together, our results indicate that artificial CA has limitations to understand the field CA and field light signals (like short photoperiod, light intensity and/or light quality) before the low temperature in fall might be essential for complete CA.
Collapse
Affiliation(s)
- Bing Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| | - Xiu-Yun Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| | - Yan Cao
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, IA, 50010, USA
| | - Hong Zhou
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| | - Yi-Ping Xia
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| |
Collapse
|
5
|
Khuong TTH, Robaglia C, Caffarri S. Photoprotection and growth under different lights of Arabidopsis single and double mutants for energy dissipation (npq4) and state transitions (pph1). PLANT CELL REPORTS 2019; 38:741-753. [PMID: 30915529 DOI: 10.1007/s00299-019-02403-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/13/2019] [Indexed: 05/22/2023]
Abstract
Arabidopsis single and double mutants for energy dissipation (npq4) and state transitions (pph1, blocked in State II) show enhanced growth and flowers + siliques production under controlled low-light conditions. Non-photochemical quenching (NPQ) is a short-term regulation important to maintain efficient photosynthesis and to avoid photooxidative damages by dissipation of excess energy. Full activation of NPQ in plants requires the protonation of the PsbS protein, which is the sensor of the low lumenal pH triggering the thermal dissipation. State transitions are a second important photosynthetic regulation to respond to changes in light quality and unbalanced excitation of photosystems. State transitions allow energy redistribution between PSI and PSII through the reversible exchange of LHCII antenna complexes between photosystems thanks to the opposite action of the STN7 kinase and PPH1 phosphatase: phosphorylation of LHCII promotes its mobilization from PSII to PSI, while dephosphorylation has the opposite effect. In this work, we produced the pph1/npq4 double mutant and characterized some photosynthetic, growth and reproduction properties in comparison with wild-type and single-mutant plants in high- and low-light conditions. Results indicate that in high light, the pph1 mutant maintains good photoprotection ability, while npq4 plants show more susceptibility to photodamages. The pph1/npq4 double mutant showed a resistance to high-light stress similar to that of the single npq4 mutant. In low-light condition, the single mutants showed a significant increase of growth and flowering compared to wild-type plants and this effect was further enhanced in the pph1/npq4 double mutant. Results suggest that photosynthetic optimisation to improve crop growth and productivity might be possible, at least under controlled low-light conditions, by modifying NPQ and regulation of state transitions.
Collapse
Affiliation(s)
- Thi Thu Huong Khuong
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France.
- Cell Technology Laboratory-CFB, Vietnam National University of Forestry, Hanoi, Vietnam.
- The Key Laboratory of Enzyme and Protein Technology (KLEPT), Hanoi University of Science (HUS), Vietnam National University in Hanoi (VNU), Hanoi, Vietnam.
| | - Christophe Robaglia
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France
| | - Stefano Caffarri
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France.
| |
Collapse
|
6
|
Alencar VTCB, Lobo AKM, Carvalho FEL, Silveira JAG. High ammonium supply impairs photosynthetic efficiency in rice exposed to excess light. PHOTOSYNTHESIS RESEARCH 2019; 140:321-335. [PMID: 30694432 DOI: 10.1007/s11120-019-00614-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Mechanisms involving ammonium toxicity, excess light, and photosynthesis are scarcely known in plants. We tested the hypothesis that high NH4+ supply in presence of high light decreases photosynthetic efficiency of rice plants, an allegedly tolerant species. Mature rice plants were previously supplied with 10 mM NH4+ or 10 mM NO3- and subsequently exposed to 400 µmol m-2 s-1 (moderate light-ML) or 2000 µmol m-2 s-1 (high light-HL) for 8 h. HL greatly stimulated NH4+ accumulation in roots and in a minor extent in leaves. These plants displayed significant delay in D1 protein recovery in the dark, compared to nitrate-supplied plants. These responses were related to reduction of both PSII and PSI quantum efficiencies and induction of non-photochemical quenching. These changes were also associated with higher limitation in the donor side and lower restriction in the acceptor side of PSI. This later response was closely related to prominent decrease in stomatal conductance and net CO2 assimilation that could have strongly affected the energy balance in chloroplast, favoring ATP accumulation and NPQ induction. In parallel, NH4+ induced a strong increase in the electron flux to photorespiration and, inversely, it decreased the flux to Rubisco carboxylation. Overall, ammonium supply negatively interacts with excess light, possibly by enhancing ammonium transport towards leaves, causing negative effects on some photosynthetic steps. We propose that high ammonium supply to rice combined with excess light is capable to induce strong delay in D1 protein turnover and restriction in stomatal conductance, which might have contributed to generalized disturbances on photosynthetic efficiency.
Collapse
Affiliation(s)
- V T C B Alencar
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Metabolismo de Plantas, Universidade Federal do Ceará, Av. Humberto Monte 2825, Campus do Pici, Bl. 907, CP 6020, Fortaleza, Ceará, CEP 60451-970, Brazil
| | - A K M Lobo
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Metabolismo de Plantas, Universidade Federal do Ceará, Av. Humberto Monte 2825, Campus do Pici, Bl. 907, CP 6020, Fortaleza, Ceará, CEP 60451-970, Brazil
| | - F E L Carvalho
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Metabolismo de Plantas, Universidade Federal do Ceará, Av. Humberto Monte 2825, Campus do Pici, Bl. 907, CP 6020, Fortaleza, Ceará, CEP 60451-970, Brazil
| | - J A G Silveira
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Metabolismo de Plantas, Universidade Federal do Ceará, Av. Humberto Monte 2825, Campus do Pici, Bl. 907, CP 6020, Fortaleza, Ceará, CEP 60451-970, Brazil.
| |
Collapse
|
7
|
Kuthanová Trsková E, Belgio E, Yeates AM, Sobotka R, Ruban AV, Kaňa R. Antenna proton sensitivity determines photosynthetic light harvesting strategy. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4483-4493. [PMID: 29955883 PMCID: PMC6093471 DOI: 10.1093/jxb/ery240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/26/2018] [Indexed: 05/25/2023]
Abstract
Photoprotective non-photochemical quenching (NPQ) represents an effective way to dissipate the light energy absorbed in excess by most phototrophs. It is often claimed that NPQ formation/relaxation kinetics are determined by xanthophyll composition. We, however, found that, for the alveolate alga Chromera velia, this is not the case. In the present paper, we investigated the reasons for the constitutive high rate of quenching displayed by the alga by comparing its light harvesting strategies with those of a model phototroph, the land plant Spinacia oleracea. Experimental results and in silico studies support the idea that fast quenching is due not to xanthophylls, but to intrinsic properties of the Chromera light harvesting complex (CLH) protein, related to amino acid composition and protein folding. The pKa for CLH quenching was shifted by 0.5 units to a higher pH compared with higher plant antennas (light harvesting complex II; LHCII). We conclude that, whilst higher plant LHCIIs are better suited for light harvesting, CLHs are 'natural quenchers' ready to switch into a dissipative state. We propose that organisms with antenna proteins intrinsically more sensitive to protons, such as C. velia, carry a relatively high concentration of violaxanthin to improve their light harvesting. In contrast, higher plants need less violaxanthin per chlorophyll because LHCII proteins are more efficient light harvesters and instead require co-factors such as zeaxanthin and PsbS to accelerate and enhance quenching.
Collapse
Affiliation(s)
- Eliška Kuthanová Trsková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, Czech Republic
- University of South Bohemia in České Budějovice, Faculty of Science, Branišovská, České Budějovice, Czech republic
| | - Erica Belgio
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, Czech Republic
| | - Anna M Yeates
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, Czech Republic
- University of South Bohemia in České Budějovice, Faculty of Science, Branišovská, České Budějovice, Czech republic
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Radek Kaňa
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, Czech Republic
- University of South Bohemia in České Budějovice, Faculty of Science, Branišovská, České Budějovice, Czech republic
| |
Collapse
|
8
|
Da Q, Sun T, Wang M, Jin H, Li M, Feng D, Wang J, Wang HB, Liu B. M-type thioredoxins are involved in the xanthophyll cycle and proton motive force to alter NPQ under low-light conditions in Arabidopsis. PLANT CELL REPORTS 2018; 37:279-291. [PMID: 29080907 DOI: 10.1007/s00299-017-2229-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
M-type thioredoxins are required to regulate zeaxanthin epoxidase activity and to maintain the steady-state level of the proton motive force, thereby influencing NPQ properties under low-light conditions in Arabidopsis. Non-photochemical quenching (NPQ) helps protect photosynthetic organisms from photooxidative damage via the non-radiative dissipation of energy as heat. Energy-dependent quenching (qE) is a major constituent of NPQ. However, the mechanism underlying the regulation of qE is not well understood. In this study, we demonstrate that the m-type thioredoxins TRX-m1, TRX-m2, and TRX-m4 (TRX-ms) interact with the xanthophyll cycle enzyme zeaxanthin epoxidase (ZE) and are required for maintaining the redox-dependent stabilization of ZE by regulating its intermolecular disulfide bridges. Reduced ZE activity and accumulated zeaxanthin levels were observed under TRX-ms deficiency. Furthermore, concurrent deficiency of TRX-ms resulted in a significant increase in proton motive force (pmf) and acidification of the thylakoid lumen under low irradiance, perhaps due to the significantly reduced ATP synthase activity under TRX-ms deficiency. The increased pmf, combined with acidification of the thylakoid lumen and the accumulation of zeaxanthin, ultimately contribute to the elevated stable qE in VIGS-TRX-m2m4/m1 plants under low-light conditions. Taken together, these results indicate that TRX-ms are involved in regulating NPQ-dependent photoprotection in Arabidopsis.
Collapse
Affiliation(s)
- Qingen Da
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Ting Sun
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Menglong Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Honglei Jin
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Mengshu Li
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Dongru Feng
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Jinfa Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Hong-Bin Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Bing Liu
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
| |
Collapse
|
9
|
Rudenko NN, Ignatova LK, Fedorchuk TP, Ivanov BN. Carbonic anhydrases in photosynthetic cells of higher plants. BIOCHEMISTRY (MOSCOW) 2016; 80:674-87. [PMID: 26531014 DOI: 10.1134/s0006297915060048] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review presents information about carbonic anhydrases, enzymes catalyzing the reversible hydration of carbon dioxide in aqueous solutions. The families of carbonic anhydrases are described, and data concerning the presence of their representatives in organisms of different classes, and especially in the higher plants, are considered. Proven and hypothetical functions of carbonic anhydrases in living organisms are listed. Particular attention is given to those functions of the enzyme that are relevant to photosynthetic reactions. These functions in algae are briefly described. Data about probable functions of carbonic anhydrases in plasma membrane, mitochondria, and chloroplast stroma of higher plants are discussed. Update concerning carbonic anhydrases in chloroplast thylakoids of higher plants, i.e. their quantity and possible participation in photosynthetic reactions, is given in detail.
Collapse
Affiliation(s)
- N N Rudenko
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | |
Collapse
|
10
|
Zhou J, Zeng L, Liu J, Xing D. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum. PLoS Pathog 2015; 11:e1004878. [PMID: 25993128 PMCID: PMC4439079 DOI: 10.1371/journal.ppat.1004878] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/13/2015] [Indexed: 11/19/2022] Open
Abstract
The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol) or a defect (in the npq1-2 mutant) of violaxanthin de-epoxidase (VDE) abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA) biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites.
Collapse
Affiliation(s)
- Jun Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Lizhang Zeng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jian Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- * E-mail: ,
| |
Collapse
|
11
|
Non-Photochemical Quenching Mechanisms in Intact Organisms as Derived from Ultrafast-Fluorescence Kinetic Studies. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Petrou K, Belgio E, Ruban AV. pH sensitivity of chlorophyll fluorescence quenching is determined by the detergent/protein ratio and the state of LHCII aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1533-9. [PMID: 24321504 DOI: 10.1016/j.bbabio.2013.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 12/31/2022]
Abstract
Here we show how the protein environment in terms of detergent concentration/protein aggregation state, affects the sensitivity to pH of isolated, native LHCII, in terms of chlorophyll fluorescence quenching. Three detergent concentrations (200, 20 and 6μM n-dodecyl β-d-maltoside) have been tested. It was found that at the detergent concentration of 6μM, low pH quenching of LHCII is close to the physiological response to lumen acidification possessing pK of 5.5. The analysis has been conducted both using arbitrary PAM fluorimetry measurements and chlorophyll fluorescence lifetime component analysis. The second led to the conclusion that the 3.5ns component lifetime corresponds to an unnatural state of LHCII, induced by the detergent used for solubilising the protein, whilst the 2ns component is rather the most representative lifetime component of the conformational state of LHCII in the natural thylakoid membrane environment when the non-photochemical quenching (NPQ) was absent. The 2ns component is related to a pre-aggregated LHCII that makes it more sensitive to pH than the trimeric LHCII with the dominating 3.5ns lifetime component. The pre-aggregated LHCII displayed both a faster response to protons and a shift in the pK for quenching to higher values, from 4.2 to 4.9. We concluded that environmental factors like lipids, zeaxanthin and PsbS protein that modulate NPQ in vivo could control the state of LHCII aggregation in the dark that makes it more or less sensitive to the lumen acidification. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- Katherina Petrou
- Plant Functional Biology & Climate Change Cluster, University of Technology, Sydney, Australia
| | - Erica Belgio
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, UK.
| |
Collapse
|
13
|
Verhoeven AS. Recovery kinetics of photochemical efficiency in winter stressed conifers: the effects of growth light environment, extent of the season and species. PHYSIOLOGIA PLANTARUM 2013; 147:147-158. [PMID: 22575048 DOI: 10.1111/j.1399-3054.2012.01644.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Evergreens undergo reductions in maximal photochemical efficiency (F(v)/F(m)) during winter due to increases in sustained thermal energy dissipation. Upon removing winter stressed leaves to room temperature and low light, F(v)/F(m) recovers and can include both a rapid and a slow phase. The goal of this study was to determine whether the rapid component to recovery exists in winter stressed conifers at any point during the season in a seasonally extreme environment. Additional goals were to compare the effects of species, growth light environment and the extent of the winter season on recovery kinetics in conifers. Four species (sun and shade needle) were monitored during the winter of 2007/2008: eastern white pine (Pinus strobus), balsam fir (Abies balsamea), Taxus cuspidata and white spruce (Picea glauca). F(v)/F(m) was measured in the field, and then monitored indoors at room temperature and low light for 6 days. The results showed that all species showed a rapid component to recovery in early winter that disappeared later in the season in sun needles but was present in shade needles on most days monitored during winter. There were differences among species in the recovery kinetics across the season, with pine recovering the most slowly and spruce the most quickly. The results suggest an important role for the rapidly reversible form of energy dissipation in early winter, as well as important differences between species in their rate of recovery in late winter/early spring which may have implications for spring onset of photosynthesis.
Collapse
Affiliation(s)
- Amy S Verhoeven
- Biology Department, University of St. Thomas, St. Paul, MN 55105, USA.
| |
Collapse
|
14
|
Loyola J, Verdugo I, González E, Casaretto JA, Ruiz-Lara S. Plastidic isoprenoid biosynthesis in tomato: physiological and molecular analysis in genotypes resistant and sensitive to drought stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:149-56. [PMID: 21974688 DOI: 10.1111/j.1438-8677.2011.00465.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Isoprenoid compounds synthesised in the plastids are involved in plant response to water deficit. The functionality of the biosynthetic pathway of these compounds under drought stress has been analysed at the physiological and molecular levels in two related species of tomato (Solanum chilense and Solanum lycopersicum) that differ in their tolerance to abiotic challenge. Expression analysis of the genes encoding enzymes of these pathways (DXS, IPI, GGPPS, PSY1, NCED and HPT1) in plants at different RWC values shows significant differences for only GGPPS and HPT1, with higher expression in the tolerant S. chilense. Chlorophyll, carotenoids, α-tocopherol and ABA content was also determined in both species under different drought conditions. In agreement with HPT1 transcriptional activity, higher α-tocopherol content was observed in S. chilense than in S. lycopersicum, which correlates with a lower degree of lipoperoxidation in the former species. These results suggest that, in addition to lower stomatal conductance, α-tocopherol biosynthesis is part of the adaptation mechanisms of S. chilense to adverse environmental conditions.
Collapse
Affiliation(s)
- J Loyola
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| | | | | | | | | |
Collapse
|
15
|
Fernández-Marín B, Míguez F, Becerril JM, García-Plazaola JI. Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: a case study in Pelvetia canaliculata. BMC PLANT BIOLOGY 2011; 11:181. [PMID: 22269024 PMCID: PMC3264673 DOI: 10.1186/1471-2229-11-181] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 12/26/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND In the violaxanthin (V) cycle, V is de-epoxidized to zeaxanthin (Z) when strong light or light combined with other stressors lead to an overexcitation of photosystems. However, plants can also suffer stress in darkness and recent reports have shown that dehydration triggers V-de-epoxidation in the absence of light. In this study, we used the highly stress-tolerant brown alga Pelvetia canaliculata as a model organism, due to its lack of lutein and its non-photochemical quenching independent of the transthylakoidal-ΔpH, to study the triggering of the V-cycle in darkness induced by abiotic stressors. RESULTS We have shown that besides desiccation, other factors such as immersion, anoxia and high temperature also induced V-de-epoxidation in darkness. This process was reversible once the treatments had ceased (with the exception of heat, which caused lethal damage). Irrespective of the stressor applied, the resulting de-epoxidised xanthophylls correlated with a decrease in Fv/Fm, suggesting a common function in the down-regulation of photosynthetical efficiency. The implication of the redox-state of the plastoquinone-pool and of the differential activity of V-cycle enzymes on V-de-epoxidation in darkness was also examined. Current results suggest that both violaxanthin de-epoxidase (VDE) and zeaxanthin-epoxidase (ZE) have a basal constitutive activity even in darkness, being ZE inhibited under stress. This inhibition leads to Z accumulation. CONCLUSION This study demonstrates that V-cycle activity is triggered by several abiotic stressors even when they occur in an absolute absence of light, leading to a decrease in Fv/Fm. This finding provides new insights into an understanding of the regulation mechanism of the V-cycle and of its ecophysiological roles.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Plant Physiology and Ecology, University of the Basque Country (UPV/EHU), Apdo 644, 48080 Bilbao, Spain
| | - Fátima Míguez
- Department of Plant Physiology and Ecology, University of the Basque Country (UPV/EHU), Apdo 644, 48080 Bilbao, Spain
| | - José María Becerril
- Department of Plant Physiology and Ecology, University of the Basque Country (UPV/EHU), Apdo 644, 48080 Bilbao, Spain
| | - José Ignacio García-Plazaola
- Department of Plant Physiology and Ecology, University of the Basque Country (UPV/EHU), Apdo 644, 48080 Bilbao, Spain
| |
Collapse
|
16
|
Niewiadomska E, Bilger W, Gruca M, Mulisch M, Miszalski Z, Krupinska K. CAM-related changes in chloroplastic metabolism of Mesembryanthemum crystallinum L. PLANTA 2011; 233:275-85. [PMID: 21046147 PMCID: PMC3026932 DOI: 10.1007/s00425-010-1302-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/12/2010] [Indexed: 05/18/2023]
Abstract
Crassulacean acid metabolism (CAM) is an intriguing metabolic strategy to maintain photosynthesis under conditions of closed stomata. A shift from C(3) photosynthesis to CAM in Mesembryanthemum crystallinum plants was induced by high salinity (0.4 M NaCl). In CAM-performing plants, the quantum efficiencies of photosystem II and I were observed to undergo distinct diurnal fluctuations that were characterized by a strong decline at the onset of the day, midday recovery, and an evening drop. The temporal recovery of both photosystems' efficiency at midday was associated with a more rapid induction of the electron transport rate at PSII. This recovery of the photosynthetic apparatus at midday was observed to be accompanied by extreme swelling of thylakoids. Despite these fluctuations, a persistent effect of CAM was the acceptor side limitation of PSI during the day, which was accompanied by a strongly decreased level of Rubisco protein. Diurnal changes in the efficiency of photosystems were parallel to corresponding changes in the levels of mRNAs for proteins of PSII and PSI reaction centers and for rbcL, reaching a maximum in CAM plants at midday. This might reflect a high demand for new protein synthesis at this time of the day. Hybridization of run-on transcripts with specific probes for plastid genes of M. crystallinum revealed that the changes in plastidic mRNA levels were regulated at the level of transcription.
Collapse
Affiliation(s)
- Ewa Niewiadomska
- Institute of Biology, The Jan Kochanowski University of Humanities and Science, Świętokrzyska 15, 25-406 Kielce, Poland.
| | | | | | | | | | | |
Collapse
|
17
|
Dodonova SO, Krupenina NA, Bulychev AA. Suppression of the plasma membrane H+-conductance on the background of high H+-pump activity in dithiothreitol-treated Chara cells. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2010. [DOI: 10.1134/s1990747810040094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Sainz M, Díaz P, Monza J, Borsani O. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus. PHYSIOLOGIA PLANTARUM 2010; 140:46-56. [PMID: 20487374 DOI: 10.1111/j.1399-3054.2010.01383.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Drought and heat stress have been studied extensively in plants, but most reports involve analysis of response to only one of these stresses. Studies in which both stresses were studied in combination have less commonly been reported. We report the combined effect of drought and heat stress on Photosystem II (PSII) of Lotus japonicus cv. Gifu plants. Photochemistry of PSII was not affected by drought or heat stress alone, but the two stresses together decreased PSII activity as determined by fluorescence emission. Heat stress alone resulted in degradation of D1 and CP47 proteins, and D2 protein was also degraded by combined drought-heat stress. None of these proteins were degraded by drought stress alone. Drought alone induced accumulation of hydrogen peroxide but the drought-heat combination led to an increase in superoxide levels and a decrease in hydrogen peroxide levels. Furthermore, combined drought-heat stress was correlated with an increase in oxidative damage as determined by increased levels of thiobarbituric acid reactive substances. Heat also induced degradation of chloroplast Cu/Zn superoxide dismutase (SOD: EC 1.15.1.1) as shown by reduced protein levels and isozyme-specific SOD activity. Loss of Cu/Zn SOD and induction of catalase (CAT: EC 1.11.1.6) activity would explain the altered balance between hydrogen peroxide and superoxide in response to drought vs combined drought-heat stress. Degradation of PSII could thus be caused by the loss of components of chloroplast antioxidant defence systems and subsequent decreased function of PSII. A possible explanation for energy dissipation by L. japonicus under stress conditions is discussed.
Collapse
Affiliation(s)
- Martha Sainz
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, CP 12900, Montevideo, Uruguay
| | | | | | | |
Collapse
|
19
|
Singh-Rawal P, Jajoo A, Mathur S, Mehta P, Bharti S. Evidence that pH can drive state transitions in isolated thylakoid membranes from spinach. Photochem Photobiol Sci 2010; 9:830-7. [PMID: 20480090 DOI: 10.1039/c0pp00055h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our observation that the F735/F685 ratio at 77 K increased when the lumenal pH decreased led us to investigate the role of pH in explaining the mechanism of state transitions in spinach (Spinacea oleracea L.) thylakoid membranes. As the lumenal pH was changed from pH 7.5 to 5.5, the quantum yield of PS II decreased, while that of PS I increased. In the presence of an uncoupler, NH(4)Cl, which sequesters protons, a reversal of the effects observed at pH 5.5 were noticed. The thylakoid membranes treated with NaF at pH 5.5, when suspended in a buffer of pH 7.5, showed enhanced PS II fluorescence and a decreased PS I fluorescence, suggesting migration of LHC II back to PS II from PS I. The results presented here suggest for the first time that the lumenal pH of thylakoid membranes regulates the migration of antenna, and hence the energy distribution, between the two photosystems, i.e. a low lumenal pH (pH 5.5) favors antenna migration from PS II to PS I. At pH 7.5, the deprotonation of LHC II antenna attached to PS I leads to back migration of LHC II to PS II.
Collapse
Affiliation(s)
- Pooja Singh-Rawal
- School of Life Sciences, Vigyan Bhavan, Khandwa Road, Devi Ahilya University, Indore, 452 017 (MP), India
| | | | | | | | | |
Collapse
|
20
|
Regulation of plant light harvesting by thermal dissipation of excess energy. Biochem Soc Trans 2010; 38:651-60. [DOI: 10.1042/bst0380651] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Elucidating the molecular details of qE (energy quenching) induction in higher plants has proven to be a major challenge. Identification of qE mutants has provided initial information on functional elements involved in the qE mechanism; furthermore, investigations on isolated pigment–protein complexes and analysis in vivo and in vitro by sophisticated spectroscopic methods have been used for the elucidation of mechanisms involved. The aim of the present review is to summarize the current knowledge of the phenotype of npq (non-photochemical quenching)-knockout mutants, the role of gene products involved in the qE process and compare the molecular models proposed for this process.
Collapse
|
21
|
Lambrev PH, Nilkens M, Miloslavina Y, Jahns P, Holzwarth AR. Kinetic and spectral resolution of multiple nonphotochemical quenching components in Arabidopsis leaves. PLANT PHYSIOLOGY 2010; 152:1611-24. [PMID: 20032080 PMCID: PMC2832277 DOI: 10.1104/pp.109.148213] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Using novel specially designed instrumentation, fluorescence emission spectra were recorded from Arabidopsis (Arabidopsis thaliana) leaves during the induction period of dark to high-light adaptation in order to follow the spectral changes associated with the formation of nonphotochemical quenching. In addition to an overall decrease of photosystem II fluorescence (quenching) across the entire spectrum, high light induced two specific relative changes in the spectra: (1) a decrease of the main emission band at 682 nm relative to the far-red (750-760 nm) part of the spectrum (Delta F(682)); and (2) an increase at 720 to 730 nm (Delta F(720)) relative to 750 to 760 nm. The kinetics of the two relative spectral changes and their dependence on various mutants revealed that they do not originate from the same process but rather from at least two independent processes. The Delta F(720) change is specifically associated with the rapidly reversible energy-dependent quenching. Comparison of the wild-type Arabidopsis with mutants unable to produce or overexpressing the PsbS subunit of photosystem II showed that PsbS was a necessary component for Delta F(720). The spectral change Delta F(682) is induced both by energy-dependent quenching and by PsbS-independent mechanism(s). A third novel quenching process, independent from both PsbS and zeaxanthin, is activated by a high turnover rate of photosystem II. Its induction and relaxation occur on a time scale of a few minutes. Analysis of the spectral inhomogeneity of nonphotochemical quenching allows extraction of mechanistically valuable information from the fluorescence induction kinetics when registered in a spectrally resolved fashion.
Collapse
|
22
|
Cardol P, De Paepe R, Franck F, Forti G, Finazzi G. The onset of NPQ and Deltamu(H)+ upon illumination of tobacco plants studied through the influence of mitochondrial electron transport. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:177-88. [PMID: 19836343 DOI: 10.1016/j.bbabio.2009.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/02/2009] [Accepted: 10/07/2009] [Indexed: 11/30/2022]
Abstract
The relationship between the development of photoprotective mechanisms (non-photochemical quenching, NPQ), the generation of the electrochemical proton gradient in the chloroplast and the capacity to assimilate CO(2) was studied in tobacco dark-adapted leaves at the onset of illumination with low light. These conditions induce the generation of a transient NPQ, which relaxes in the light in parallel with the activation of the Calvin cycle. Wild-type plants were compared with a CMSII mitochondrial mutant, which lacks the respiratory complex I and shows a delayed activation of photosynthesis. In the mutant, a slower onset of photosynthesis was mirrored by a decreased capacity to develop NPQ. This correlates with a reduced efficiency to reroute electrons at the PSI reducing side towards cyclic electron flow around PSI and/or other alternative acceptor pools, and with a smaller ability to generate a proton motive force in the light. Altogether, these data illustrate the tight relationship existing between the capacity to evacuate excess electrons accumulated in the intersystem carriers and the capacity to dissipate excess photons during a dark to light transition. These data also underline the essential role of respiration in modulating the photoprotective response in dark-adapted leaves, by poising the cellular redox state.
Collapse
Affiliation(s)
- Pierre Cardol
- Laboratoire de Génétique des Microorganismes, Département des Sciences la Vie, 27, Bld du rectorat, Université de Liège, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
23
|
Fernández-Marín B, Balaguer L, Esteban R, Becerril JM, García-Plazaola JI. Dark induction of the photoprotective xanthophyll cycle in response to dehydration. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1734-44. [PMID: 19539398 DOI: 10.1016/j.jplph.2009.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/22/2009] [Accepted: 04/22/2009] [Indexed: 05/07/2023]
Abstract
Some plants tolerate tissue dehydration. Dehydration conditions suppress photosynthesis, exacerbating photooxidative stress. In this study, fern samples were collected from the field, desiccated in darkness, and subsequently re-watered. During dark dehydration, zeaxanthin (Z) was formed and maximal photochemical efficiency of PS II was strongly reduced. Rehydration in the dark reversed these effects. Violaxanthin de-epoxidase was responsible for the dark formation of Z as illustrated by its complete inhibition by DTT. Nonetheless, its activity was not affected by nigericin, indicating that Z formation in the dark could be a process independent of the transmembrane pH-gradient into the thylakoids. Synthesis de novo of Z was rejected after blocking carotenogenesis with norfluorazon. Dark formation of Z was also observed in dehydrating leaves of desiccation-intolerant plants, which seems to indicate that this is a phenomenon scattered among different taxa within the plant kingdom. Plants may trigger this mechanism during dehydration, for chlorophyll protection during desiccation, and for faster acclimation when rehydrating conditions return. Violaxanthin de-epoxidation to form Z is typically a light-dependent process, but the formation induced solely by dehydration might represent an anticipatory mechanism for preventing early morning photodamage in desiccation-tolerant plants such as the fern Ceterach officinarum.
Collapse
|
24
|
Barros T, Kühlbrandt W. Crystallisation, structure and function of plant light-harvesting Complex II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:753-72. [DOI: 10.1016/j.bbabio.2009.03.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 11/15/2022]
|
25
|
Förster B, Osmond CB, Pogson BJ. De novo synthesis and degradation of Lx and V cycle pigments during shade and sun acclimation in avocado leaves. PLANT PHYSIOLOGY 2009; 149:1179-95. [PMID: 19060099 PMCID: PMC2633854 DOI: 10.1104/pp.108.131417] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 12/01/2008] [Indexed: 05/23/2023]
Abstract
The photoprotective role of the universal violaxanthin cycle that interconverts violaxanthin (V), antheraxanthin (A), and zeaxanthin (Z) is well established, but functions of the analogous conversions of lutein-5,6-epoxide (Lx) and lutein (L) in the selectively occurring Lx cycle are still unclear. We investigated carotenoid pools in Lx-rich leaves of avocado (Persea americana) during sun or shade acclimation at different developmental stages. During sun exposure of mature shade leaves, an unusual decrease in L preceded the deepoxidation of Lx to L and of V to A+Z. In addition to deepoxidation, de novo synthesis increased the L and A+Z pools. Epoxidation of L was exceptionally slow, requiring about 40 d in the shade to restore the Lx pool, and residual A+Z usually persisted overnight. In young shade leaves, the Lx cycle was reversed initially, with Lx accumulating in the sun and declining in the shade. De novo synthesis of xanthophylls did not affect alpha- and beta-carotene pools on the first day, but during long-term acclimation alpha-carotene pools changed noticeably. Nonetheless, the total change in alpha- and beta-branch carotenoid pools was equal. We discuss the implications for regulation of metabolic flux through the alpha- and beta-branches of carotenoid biosynthesis and potential roles for L in photoprotection and Lx in energy transfer to photosystem II and explore physiological roles of both xanthophyll cycles as determinants of photosystem II efficiency.
Collapse
Affiliation(s)
- Britta Förster
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | | | |
Collapse
|
26
|
Fagioni M, D’Amici GM, Timperio AM, Zolla L. Proteomic Analysis of Multiprotein Complexes in the Thylakoid Membrane upon Cadmium Treatment. J Proteome Res 2008; 8:310-26. [DOI: 10.1021/pr800507x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marco Fagioni
- Department of Environmental Sciences, Tuscia University, Viterbo, Italy
| | | | | | - Lello Zolla
- Department of Environmental Sciences, Tuscia University, Viterbo, Italy
| |
Collapse
|
27
|
Goss R, Opitz C, Lepetit B, Wilhelm C. The synthesis of NPQ-effective zeaxanthin depends on the presence of a transmembrane proton gradient and a slightly basic stromal side of the thylakoid membrane. PLANTA 2008; 228:999-1009. [PMID: 18679711 DOI: 10.1007/s00425-008-0800-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 07/23/2008] [Indexed: 05/08/2023]
Abstract
In the present study we address the question which factors during the synthesis of zeaxanthin determine its capacity to act as a non-photochemical quencher of chlorophyll fluorescence. Our results show that zeaxanthin has to be synthesized in the presence of a transmembrane proton gradient. However, it is not essential that the proton gradient is generated by the light-driven electron transport. NPQ-effective zeaxanthin can also be formed by an artificial proton gradient in the dark due to ATP hydrolysis. Zeaxanthin that is synthesized in the dark in the absence of a proton gradient by the low pH-dependent activation of violaxanthin de-epoxidase is not able to induce NPQ. The second important factor during the synthesis of zeaxanthin is the pH-value of the stromal side of the thylakoid membrane. Here we show that the stromal side has to be neutral or slightly basic in order to generate zeaxanthin which is able to induce NPQ. Thylakoid membranes in reaction medium pH 5.2, which experience low pH-values on both sides of the membrane, are unable to generate NPQ-effective zeaxanthin, even in the presence of an additional light-driven proton gradient. Analysing the pigment contents of purified photosystem II light-harvesting complexes we are further able to show that the NPQ ineffectiveness of zeaxanthin formed in the absence of a proton gradient is not caused by changes in its rebinding to the light-harvesting proteins. Purified monomeric and trimeric light-harvesting complexes contain comparable amounts of zeaxanthin when they are isolated from thylakoid membranes enriched in either NPQ-effective or ineffective zeaxanthin.
Collapse
Affiliation(s)
- Reimund Goss
- Institute of Biology I, University of Leipzig, Leipzig, Germany.
| | | | | | | |
Collapse
|
28
|
Iwai M, Kato N, Minagawa J. Distinct physiological responses to a high light and low CO2 environment revealed by fluorescence quenching in photoautotrophically grown Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2007; 94:307-14. [PMID: 17680341 DOI: 10.1007/s11120-007-9220-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 07/03/2007] [Indexed: 05/16/2023]
Abstract
Mechanisms for countering environmental stress are essential to photosynthetic organisms. Alteration of the photosynthetic apparatus, a mechanism for balancing the flux of light energy and carbon fixation, can be characterized by fluorescence properties. In this study, we have established a simple protocol to determine the extent of energy-dependent quenching (qE) and quenching by state transition (qT) in Chlamydomonas cells by examining their fluorescence properties under light fluctuations. We identified qE as the uncoupler-sensitive NPQ component that was rapidly relaxed upon transition to dark conditions. We characterized the qT component by determining low-temperature fluorescence spectra and analyzing a state-transition-less mutant. By these methods, we observed that similar abiotic stresses-high light conditions (where excess energy is supplied) and low CO2 conditions (where energy utilization is limited)-induced different types of NPQ. High light conditions induced mainly qE-quenching that increased gradually while low CO2 conditions induced mainly qT-quenching that peaked in 20 min and then decreased gradually. That high light and low carbon signals induced different physiological responses suggests that they triggered different genetic responses, which altered protein expression under each of the conditions.
Collapse
Affiliation(s)
- Masakazu Iwai
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | | | | |
Collapse
|
29
|
Gilmore AM, Yamamoto HY. Time-resolution of the Antheraxanthin- and ΔpH-dependent Chlorophyll a Fluorescence Components Associated with Photosystem II Energy Dissipation in Mantoniella squamata¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740291trotaa2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Wormit M, Dreuw A. Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes. Phys Chem Chem Phys 2007; 9:2917-31. [PMID: 17551615 DOI: 10.1039/b703028b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light harvesting complexes (LHCs) have been identified in all photosynthetic organisms. To understand their function in light harvesting and energy dissipation, detailed knowledge about possible excitation energy transfer (EET) and electron transfer (ET) processes in these pigment proteins is of prime importance. This again requires the study of electronically excited states of the involved pigment molecules, in LHCs of chlorophylls and carotenoids. This paper represents a critical review of recent quantum chemical calculations on EET and ET processes between pigment pairs relevant for the major LHCs of green plants (LHC-II) and of purple bacteria (LH2). The theoretical methodology for a meaningful investigation of such processes is described in detail, and benefits and limitations of standard methods are discussed. The current status of excited state calculations on chlorophylls and carotenoids is outlined. It is focused on the possibility of EET and ET in the context of chlorophyll fluorescence quenching in LHC-II and carotenoid radical cation formation in LH2. In the context of non-photochemical quenching of green plants, it is shown that replacement of the carotenoid violaxanthin by zeaxanthin in its binding pocket of LHC-II can not result in efficient quenching. In LH2, our computational results give strong evidence that the S(1) states of the carotenoids are involved in carotenoid cation formation. By comparison of theoretical findings with recent experimental data, a general mechanism for carotenoid radical cation formation is suggested.
Collapse
Affiliation(s)
- Michael Wormit
- Institute for Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Frankfurt, Germany
| | | |
Collapse
|
31
|
Wagner H, Gilbert M, Goss R, Wilhelm C. Light emission originating from photosystem II radical pair recombination is sensitive to zeaxanthin related non-photochemical quenching (NPQ). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 83:172-9. [PMID: 16488152 DOI: 10.1016/j.jphotobiol.2005.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 12/23/2005] [Accepted: 12/30/2005] [Indexed: 10/25/2022]
Abstract
We have used chlorophyll fluorescence, delayed luminescence and thermoluminescence measurements to study the influence of an artificial DeltapH in the presence or absence of zeaxanthin on photosystem II reactions. Energization of the pea thylakoid membranes induced non-photochemical fluorescence quenching and an increase in the overall luminescence emission of PSII during delayed luminescence and thermoluminescence measurements. This DeltapH-induced overall luminescence increase was caused by a strongly enhanced delayed luminescence in the seconds range before sample heating. In the subsequent thermoluminescence measurements the intensity of the B-band decreased after one and increased after two or more single turnover flashes. We propose that strong membrane energization shifted the redox potential of photosystem II radical pairs to more negative values causing the high delayed luminescence. The zeaxanthin-dependent non-photochemical fluorescence quenching component, however, did not alter thermoluminescence B-bands but decreased the delayed luminescence intensity by 30%. To our knowledge this is the first report that the radiative radical pair recombination, exhibited as delayed luminescence but not thermoluminescence emission, is sensitive to the antenna located zeaxanthin related non-photochemical fluorescence quenching. Our data can be interpreted within the frame of the exciton/radical pair equilibrium model that describes photosystem II as a shallow trap and incorporates the transfer of energy from the re-excitated reaction centre to the antenna of photosystem II.
Collapse
Affiliation(s)
- Heiko Wagner
- Universität Leipzig, Biologie I/Abteilung Pflanzenphysiologie, Johannisallee 23, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
32
|
Dreuw A, Fleming GR, Head-Gordon M. Role of electron-transfer quenching of chlorophyll fluorescence by carotenoids in non-photochemical quenching of green plants. Biochem Soc Trans 2005; 33:858-62. [PMID: 16042614 DOI: 10.1042/bst0330858] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NPQ (non-photochemical quenching) is a fundamental photosynthetic mechanism by which plants protect themselves against excess excitation energy and the resulting photodamage. A discussed molecular mechanism of the so-called feedback de-excitation component (qE) of NPQ involves the formation of a quenching complex. Recently, we have studied the influence of formation of a zeaxanthin–chlorophyll complex on the excited states of the pigments using high-level quantum chemical methodology. In the case of complex formation, electron-transfer quenching of chlorophyll-excited states by carotenoids is a relevant quenching mechanism. Furthermore, additionally occurring charge-transfer excited states can be exploited experimentally to prove the existence of the quenching complex during NPQ.
Collapse
Affiliation(s)
- A Dreuw
- Institute for Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Marie Curie-Str. 11, 60439 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
33
|
Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J 2005; 24:919-28. [PMID: 15719016 PMCID: PMC554132 DOI: 10.1038/sj.emboj.7600585] [Citation(s) in RCA: 583] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 01/26/2005] [Indexed: 11/08/2022] Open
Abstract
The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 A structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer. Spectral assignment of individual chlorophylls indicates the flow of energy in the complex and the mechanism of photoprotection in two close chlorophyll a-lutein pairs. We propose a simple mechanism for the xanthophyll-related, slow component of nonphotochemical quenching in LHC-II, by which excess energy is transferred to a zeaxanthin replacing violaxanthin in its binding site, and dissipated as heat. Our structure shows the complex in a quenched state, which may be relevant for the rapid, pH-induced component of nonphotochemical quenching.
Collapse
Affiliation(s)
- Jörg Standfuss
- Max Planck Institute of Biophysics, Department of Structural Biology, Frankfurt am Main, Germany
| | | | - Matteo Lamborghini
- Max Planck Institute of Biophysics, Department of Structural Biology, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Max Planck Institute of Biophysics, Department of Structural Biology, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Melkonian J, Wolfe DW, Owens TG. Effects of elevated carbon dioxide on gas exchange and photochemical and nonphotochemical quenching at low temperature in tobacco plants varying in Rubisco activity. PHOTOSYNTHESIS RESEARCH 2005; 83:63-74. [PMID: 16143908 DOI: 10.1007/s11120-004-3921-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 09/28/2004] [Indexed: 05/04/2023]
Abstract
Elevated (700 micromol mol-1) and ambient (350 micromol mol-1) CO2 effects on total ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, photosynthesis (A), and photoinhibition during 6 d at low temperature were measured on wild type (WT), and rbcS antisense DNA mutants (T3) of tobacco (Nicotiana tabacum L.) with 60% of WT total Rubisco activity. Prior to the low temperature treatment, A and quantum yield of PSII photochemistry in the light adapted state (phiPSII) were significantly lower in T3 compared to WT at each CO2 level. At this time, total nonphotochemical quenching (NPQTotal) levels were near maximal (0.75-0.85) in T3 compared to WT (0.39-0.50). A was stimulated by 107% in T3 and 25% in WT at elevated compared to ambient CO2. Pre-treatment acclimation to elevated CO2 occurred in WT resulting in lower Rubisco activity per unit leaf area and reduced stimulation of A. At low temperature, A of WT was similar at elevated and ambient CO2 while stimulation of A by elevated CO2 in T3 was reduced. In addition, at low temperature we measured significantly lower photochemical quenching at elevated CO2 compared to ambient CO2 in both genotypes. NPQTotal was similar (0.80-0.85) among all treatments. However, a larger proportion of NPQTotal was composed of qI,d, the damage subcomponent of the more slowly relaxing NPQ component, qI, in both genotypes at elevated compared to ambient CO2. Greater qI,d, at elevated CO2 during and after the low temperature treatment was not related to pre-treatment differences in total Rubisco activity.
Collapse
Affiliation(s)
- Jeffrey Melkonian
- Department of Crop and Soil Sciences, Cornell University, 1123 Bradfield Hall, Ithaca, NY 14853-1901, USA.
| | | | | |
Collapse
|
35
|
Ma YZ, Holt NE, Li XP, Niyogi KK, Fleming GR. Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc Natl Acad Sci U S A 2003; 100:4377-82. [PMID: 12676997 PMCID: PMC404687 DOI: 10.1073/pnas.0736959100] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Indexed: 11/18/2022] Open
Abstract
Nonphotochemical quenching (NPQ) refers to a process that regulates photosynthetic light harvesting in plants as a response to changes in incident light intensity. By dissipating excess excitation energy of chlorophyll molecules as heat, NPQ balances the input and utilization of light energy in photosynthesis and protects the plant against photooxidative damage. To understand the physical mechanism of NPQ, we have performed femtosecond transient absorption experiments on intact thylakoid membranes isolated from spinach and transgenic Arabidopsis thaliana plants. These plants have well defined quenching capabilities and distinct contents of xanthophyll (Xan) cycle carotenoids. The kinetics probed in the spectral region of the S(1) --> S(n) transition of Xans (530-580 nm) were found to be significantly different under the quenched and unquenched conditions, corresponding to maximum and no NPQ, respectively. The lifetime and the spectral characteristics indicate that the kinetic difference originated from the involvement of the S(1) state of a specific Xan, zeaxanthin, in the quenched case.
Collapse
Affiliation(s)
- Ying-Zhong Ma
- Department of Chemistry, University of California, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
36
|
Havaux M, Guedeney G, He Q, Grossman AR. Elimination of high-light-inducible polypeptides related to eukaryotic chlorophyll a/b-binding proteins results in aberrant photoacclimation in Synechocystis PCC6803. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1557:21-33. [PMID: 12615345 DOI: 10.1016/s0005-2728(02)00391-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hli genes, present in cyanobacteria, algae and vascular plants, encode small proteins [high-light-inducible polypeptides (HLIPs)] with a single membrane-spanning alpha-helix related to the first and third helices of eukaryotic chlorophyll a/b-binding proteins. The HLIPs are present in low amounts in low light and they accumulate transiently at high light intensities. We are investigating the function of those polypeptides in a Synechocystis PCC6803 mutant lacking four of the five hli genes. Growth of the quadruple hli mutant was adversely affected by high light intensities. The most striking effect of the quadruple hli mutation was an alteration of cell pigmentation. Pigment changes associated with cell acclimation to increasing light intensity [i.e. decrease in light-harvesting pigments, accumulation of the carotenoid myxoxanthophyll and decrease in photosystem I (PSI)-associated chlorophylls] were strongly exacerbated in the quadruple hli mutant, resulting in yellowish cultures that bleached in high light and died as light intensities exceeded (>500 micromol photon m(-2) s(-1)). However, these pigment changes were not associated with an inhibition of photosynthesis, as probed by in vivo chlorophyll fluorescence, photoacoustic and O(2)-evolution measurements. On the contrary, the HLIP deficiency was accompanied by a stimulation of the photochemical activity, especially in high-light-grown cells. Western blot analyses revealed that the PSI reaction center level (PsaA/B) was noticeably reduced in the quadruple hli mutant relative to the wild type, whereas the abundance of the PSII reaction center protein D1 was comparatively little affected. The hli mutations did not enhance photoinhibition and photooxidation when cells were exposed over a short term to a very high light intensity. Together, the results of this study indicate that HLIPs are critical in the adaptation of the cyanobacterium to variations in light intensity. The data are consistent with the idea that HLIPs are involved, through a direct or indirect means, in nonphotochemical dissipation of absorbed light energy.
Collapse
Affiliation(s)
- Michel Havaux
- CEA/Cadarache, DSV, DEVM, Laboratoire d'Ecophysiologie de la Photosynthèse, UMR 163 CNRS CEA, Univ-Méditerranée CEA 1000, F-13108 Saint-Paul-lez-Durance, France.
| | | | | | | |
Collapse
|
37
|
Cheng L. Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple leaves. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:385-393. [PMID: 12493867 DOI: 10.1093/jxb/erg011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The objective of this study was to determine xanthophyll cycle pool size and composition in response to N status and their relationships to non-photochemical quenching in apple leaves. Bench-grafted Fuji/M.26 trees were fertilized with different N concentrations (0-20 mM) in a modified Hoagland's solution for 6 weeks to create a wide range of leaf N status (1-4.4 g m(-2)). Chlorophyll content, xanthophyll cycle pool size, lutein, total carotene, and neoxanthin on a leaf area basis all increased linearly with increasing leaf N. However, only the ratios of the xanthophyll cycle pool and of lutein to chlorophyll were higher in low N leaves than in high N leaves. Under high light at midday, both zeaxanthin (Z), expressed on a chlorophyll basis, and the percentage of the xanthophyll cycle pool present as Z, increased as leaf N decreased. Thermal dissipation of excitation energy, measured as non-photochemical quenching of chlorophyll fluorescence, was positively related to, whereas efficiency of excitation transfer and photosystem II quantum efficiency were negatively related to, Z, expressed on a chlorophyll basis or on a xanthophyll cycle pool basis. It is concluded that both xanthophyll cycle pool size (on a chlorophyll basis) and conversion of violaxanthin to zeaxanthin are enhanced in response to N limitation to dissipate excessive absorbed light under high irradiance.
Collapse
Affiliation(s)
- Lailiang Cheng
- Department of Horticulture, 134A Plant Science Bldg, Cornell University, Ithaca, NY 14853-4203, USA.
| |
Collapse
|
38
|
Josue JS, Frank HA. Direct Determination of the S1 Excited-State Energies of Xanthophylls by Low-Temperature Fluorescence Spectroscopy. J Phys Chem A 2002. [DOI: 10.1021/jp014150n] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jesusa S. Josue
- Department of Chemistry, 55 North Eagleville Road, University of Connecticut, U-3060, Storrs, Connecticut 06269-3060
| | - Harry A. Frank
- Department of Chemistry, 55 North Eagleville Road, University of Connecticut, U-3060, Storrs, Connecticut 06269-3060
| |
Collapse
|
39
|
Gilmore AM, Yamamoto HY. Time-resolution of the antheraxanthin- and delta pH-dependent chlorophyll a fluorescence components associated with photosystem II energy dissipation in Mantoniella squamata. Photochem Photobiol 2001; 74:291-302. [PMID: 11547568 DOI: 10.1562/0031-8655(2001)074<0291:trotaa>2.0.co;2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The electronic excited-state behavior of photosystem II (PSII) in Mantoniella squamata, as influenced by the xanthophyll cycle and the transthylakoid pH gradient (delta pH), was examined in vivo. Mantoniella is distinguished from other photosynthetic organisms by two main features namely (1) a unique light-harvesting complex that serves both photosystems I (PSI) and II (PSII); and (2) a violaxanthin (V) cycle that undergoes only one de-epoxidation step in excess light to accumulate the monoepoxide antheraxanthin (A) as opposed to the epoxide-free zeaxanthin (Z). The cells were treated first with high light to induce the delta pH and A accumulation, followed by herbicide-induced closure of PSII traps and a chilling treatment, to sustain and stabilize the delta pH and nigericin-sensitive fluorescence level in the dark. De-epoxidation was controlled with subsaturating concentrations of dithiothreitol (DTT) and was 5-10 times more sensitive to DTT than higher plant thylakoids. The PSII energy dissipation involved two steps: (1) the pH activation of the xanthophyll binding site that was associated with a narrowing and slight attenuation of the main 2 ns (ns = 10(-9) s) fluorescence lifetime distribution; and (2) the concentration-dependent binding of A to the activated binding site yielding a second distribution centered around 0.9 ns. Consistent with the model of Gilmore et al. (1998) (Biochemistry 37, 13,582-13,593), the fractional intensity of the 0.9 ns component depended almost entirely on the A concentration and correlated linearly with the decrease of the steady-state chlorophyll alpha fluorescence intensity.
Collapse
Affiliation(s)
- A M Gilmore
- Ecosystem Dynamics Group, Research School of Biological Sciences, Institute of Advanced Studies, Australian National University, Canberra, Australia.
| | | |
Collapse
|
40
|
Müller P, Li XP, Niyogi KK. Non-photochemical quenching. A response to excess light energy. PLANT PHYSIOLOGY 2001; 125:1558-66. [PMID: 11299337 PMCID: PMC1539381 DOI: 10.1104/pp.125.4.1558] [Citation(s) in RCA: 1437] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- P Müller
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
| | | | | |
Collapse
|
41
|
Crimi M, Dorra D, Bösinger CS, Giuffra E, Holzwarth AR, Bassi R. Time-resolved fluorescence analysis of the recombinant photosystem II antenna complex CP29. Effects of zeaxanthin, pH and phosphorylation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:260-7. [PMID: 11168359 DOI: 10.1046/j.1432-1033.2001.01874.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nonradiative dissipation of excitation energy is the major photoprotective mechanism in plants. The formation of zeaxanthin in the antenna of photosystem II has been shown to correlate with the onset of nonphotochemical quenching in vivo. We have used recombinant CP29 protein, over-expressed in Escherichia coli and refolded in vitro with purified pigments, to obtain a protein indistinguishable from the native complex extracted from thylakoids, binding either violaxanthin or zeaxanthin together with lutein. These recombinant proteins and the native CP29 were used to measure steady-state chlorophyll fluorescence emission and fluorescence decay kinetics. We found that the presence of zeaxanthin bound to CP29 induces a approximately 35% decrease in fluorescence yield with respect to the control proteins (the native and zeaxanthin-free reconstituted proteins). Fluorescence decay kinetics showed that four components are always present but lifetimes (tau) as well as relative fluorescence quantum yields (rfqy) of the two long-lived components (tau3 and tau4) are modified by the presence of zeaxanthin. The most relevant changes are observed in the rfqy of tau3 and in the average lifetime ( approximately 2.4 ns with zeaxanthin and 3.2-3.4 ns in the control proteins). When studied in vitro, no significant effect of acidic pH (5.2-5.3) is observed on chlorophyll A fluorescence yield or kinetics. The data presented show that recombinant CP29 is able to bind zeaxanthin and this protein-bound zeaxanthin induces a significant quenching effect.
Collapse
Affiliation(s)
- M Crimi
- Dipartimento Scientifico e Tecnologico, Università di Verona, Strada le Grazie, Cà Vignal 1, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Sun WH, Verhoeven AS, Bugos RC, Yamamoto HY. Suppression of zeaxanthin formation does not reduce photosynthesis and growth of transgenic tobacco under field conditions. PHOTOSYNTHESIS RESEARCH 2001; 67:41-50. [PMID: 16228315 DOI: 10.1023/a:1010636511935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tobacco (Nicotiana tabacum cv. Xanthi) transformed with an antisense cDNA construct of violaxanthin de-epoxidase (VDE) was examined for the effects of suppressed xanthophyll-cycle activity on photoinhibition, photosynthesis and growth under field conditions. De-epoxidation of violaxanthin and non-photochemical quenching were highly inhibited in antisense plants relative to vector-control and wild-type plants. However, no differences were observed between antisense and control plants in photosynthetic CO(2) uptake and maximum photochemical yield [(F(m)-F(o))/F(m)] measured at predawn or in actual photochemical yield [(F(m)'-F(s))/F(m)'] measured at midday. Moreover, growth rates of the plants were the same, as were the leaf area ratio, plant height and leaf number. Similarly, antisense plants did not exhibit greater susceptibility to photoinhibition than controls under field conditions. In contrast, when chloroplast protein (D1) synthesis was inhibited by lincomycin, antisense plants were more vulnerable to photoinhibition than wild-type plants. These results indicate that photoprotection under field conditions is not strictly dependent on the levels of the de-epoxidized xanthophylls, antheraxanthin and zeaxanthin.
Collapse
Affiliation(s)
- W H Sun
- Department of Molecular Biosciences and Biosystems Engineering, University of Hawaii at Manoa, 1955 East West Road, Ag Sci 218, Honolulu, HI, 96822, USA
| | | | | | | |
Collapse
|
43
|
Verhoeven AS, Bugos RC, Yamamoto HY. Transgenic tobacco with suppressed zeaxanthin formation is susceptible to stress-induced photoinhibition. PHOTOSYNTHESIS RESEARCH 2001; 67:27-39. [PMID: 16228314 DOI: 10.1023/a:1010684327864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tobacco (Nicotiana tabacum cv. Xanthi) transformed with the antisense construct of tobacco violaxanthin de-epoxidase was analyzed for responses in growth chambers to both short and long-term stress treatments. Following a short-term (2 or 3 h) high-light treatment, antisense plants had a greater reduction in F(v)/F(m) relative to wild-type, indicating a greater susceptibility to photoinhibition. The responses of antisense plants to long-term stress were examined in two separate experiments, one with high light alone and the other wherein high light and water stress were combined. In the light-stress experiment, plants were grown at 1300 mumol photons m(-2) s(-1) under a 12 h photoperiod. In the light and water-stress experiment, plants were grown under moderately high light of 900 mumol photons m(-2) s(-1), under a 16 h photoperiod, in combination with water stress. Both conditions caused formation of high antheraxanthin and zeaxanthin levels in wild-type plants but not in antisense plants. In both cases, antisense plants showed significant reductions in F(v)/F(m) and total leaf-pigment content relative to wild-type. The data demonstrate a critical photoprotective function of the xanthophyll cycle-dependent energy dissipation in tobacco exposed suddenly to high amounts of excess light over extended times.
Collapse
Affiliation(s)
- A S Verhoeven
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St. Paul, MN, 55105-1096, USA
| | | | | |
Collapse
|
44
|
Goss R, Garab G. Non-photochemical chlorophyll fluorescence quenching and structural rearrangements induced by low pH in intact cells of Chlorella fusca (Chlorophyceae) and Mantoniella squamata (Prasinophyceae). PHOTOSYNTHESIS RESEARCH 2001; 67:185-97. [PMID: 16228306 DOI: 10.1023/a:1010681511105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have used circular dichroism (CD) spectroscopy and chlorophyll fluorescence induction measurements in order to examine low-pH-induced changes in the chiral macro-organization of the chromophores and in the efficiency of non-photochemical quenching of the chlorophyll a fluorescence (NPQ) in intact, dark-adapted cells of Chlorella fusca (Chlorophyceae) and Mantoniella squamata (Prasinophyceae). We found that: (i) high proton concentrations enhanced the formation of chiral macrodomains of the complexes, i.e. the formation of large aggregates with long-range chiral order of pigment dipoles; this was largely independent of the low-pH-induced accumulation of de-epoxidized xanthophylls; (ii) lowering the pH led to NPQ; however, efficient energy dissipation, in the absence of excess light, could only be achieved if a substantial part of violaxanthin was converted to zeaxanthin and antheraxanthin in Chlorella and Mantoniella, respectively; (iii) the low-pH-induced changes in the chiral macro-organization of pigments were fully reversed by titrating the cells to neutral pH; (iv) at neutral pH, the presence of antheraxanthin or zeaxanthin did not bring about a sizeable NPQ. Hence, low-pH-induced NPQ in dark adapted algal cells appears to be associated both with the presence of de-epoxidized xanthophylls and structural changes in the chiral macrodomains. It is proposed that the macrodomains, by providing a suitable structure for long-distance migration of the excitation energy, in the presence of quenchers associated with de-epoxidized xanthophylls, facilitate significantly the dissipation of unused excitation energy.
Collapse
Affiliation(s)
- R Goss
- Institut für Botanik, Universität Leipzig, Johannisallee 21-23, D-04103, Leipzig, Germany
| | | |
Collapse
|
45
|
Yamasaki H. Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond B Biol Sci 2000; 355:1477-88. [PMID: 11128001 PMCID: PMC1692879 DOI: 10.1098/rstb.2000.0708] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Air pollution studies have shown that nitric oxide (NO), a gaseous free radical, is a potent photosynthetic inhibitor that reduces CO2 uptake activity in leaves. It is now recognized that NO is not only an air pollutant but also an endogenously produced metabolite, which may play a role in regulating plant cell functions. Although many studies have suggested the presence of mammalian-type NO synthase (NOS) in plants, the source of NO is still not clear. There has been a number of studies indicating that plant cells possess a nitrite-dependent NO production pathway which can be distinguished from the NOS-mediated reaction. Nitrate reductase (NR) has been recently found to be capable of producing NO through one-electron reduction of nitrite using NAD(P)H as an electron donor. This review focuses on current understanding of the mechanism for the nitrite-dependent NO production in plants. Impacts of NO produced by NR on photosynthesis are discussed in association with photo-oxidative stress in leaves.
Collapse
Affiliation(s)
- H Yamasaki
- Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan.
| |
Collapse
|
46
|
Hieber AD, Bugos RC, Yamamoto HY. Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1482:84-91. [PMID: 11058750 DOI: 10.1016/s0167-4838(00)00141-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Violaxanthin de-epoxidase and zeaxanthin epoxidase catalyze the interconversions between the carotenoids violaxanthin, antheraxanthin and zeaxanthin in plants. These interconversions form the violaxanthin or xanthophyll cycle that protects the photosynthetic system of plants against damage by excess light. These enzymes are the first reported lipocalin proteins identified from plants and are only the second examples of lipocalin proteins with enzymatic activity. This review summarizes the discovery and characterization of these two unique lipocalin enzymes and examines the possibility of other potential plant lipocalin proteins.
Collapse
Affiliation(s)
- A D Hieber
- Department of Plant Molecular Physiology, University of Hawai'i-Manoa, 3190 Maile Way, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
47
|
Bugos RC, Chang SH, Yamamoto HY. Developmental expression of violaxanthin de-epoxidase in leaves of tobacco growing under high and low light. PLANT PHYSIOLOGY 1999; 121:207-14. [PMID: 10482676 PMCID: PMC59369 DOI: 10.1104/pp.121.1.207] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/1998] [Accepted: 05/30/1999] [Indexed: 05/20/2023]
Abstract
Violaxanthin de-epoxidase (VDE) is a lumen-localized enzyme that catalyzes the de-epoxidation of violaxanthin in the thylakoid membrane upon formation of a transthylakoid pH gradient. We investigated the developmental expression of VDE in leaves of mature tobacco (Nicotiana tabacum) plants grown under high-light conditions (in the field) and low-light conditions (in a growth chamber). The difference in light conditions was evident by the increased pool size (violaxanthin + antheraxanthin + zeaxanthin, VAZ) throughout leaf development in field-grown plants. VDE activity based on chlorophyll or leaf area was low in the youngest leaves, with the levels increasing with increasing leaf age in both high- and low-light-grown plants. However, in high-light-grown plants, the younger leaves in early leaf expansion showed a more rapid increase in VDE activity and maintained higher levels of VDE transcript in more leaves, indicating that high light may induce greater levels of VDE. VDE transcript levels decreased substantially in leaves of mid-leaf expansion, while the levels of enzyme continued to increase, suggesting that the VDE enzyme does not turn over rapidly. The level of VDE changed in an inverse, nonlinear relationship with respect to the VAZ pool, suggesting that enzyme levels could be indirectly regulated by the VAZ pool.
Collapse
Affiliation(s)
- R C Bugos
- Department of Plant Molecular Physiology, University of Hawaii-Manoa, 3190 Maile Way, Honolulu, Hawaii 96822, USA
| | | | | |
Collapse
|
48
|
Ruban, Horton. The xanthophyll cycle modulates the kinetics of nonphotochemical energy dissipation in isolated light-harvesting complexes, intact chloroplasts, and leaves of spinach. PLANT PHYSIOLOGY 1999; 119:531-42. [PMID: 9952449 PMCID: PMC32130 DOI: 10.1104/pp.119.2.531] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/1998] [Accepted: 10/14/1998] [Indexed: 05/19/2023]
Abstract
We analyzed the kinetics of nonphotochemical quenching of chlorophyll fluorescence (qN) in spinach (Spinacia oleracea) leaves, chloroplasts, and purified light-harvesting complexes. The characteristic biphasic pattern of fluorescence quenching in dark-adapted leaves, which was removed by preillumination, was evidence of light activation of qN, a process correlated with the de-epoxidation state of the xanthophyll cycle carotenoids. Chloroplasts isolated from dark-adapted and light-activated leaves confirmed the nature of light activation: faster and greater quenching at a subsaturating transthylakoid pH gradient. The light-harvesting chlorophyll a/b-binding complexes of photosystem II were isolated from dark-adapted and light-activated leaves. When isolated from light-activated leaves, these complexes showed an increase in the rate of quenching in vitro compared with samples prepared from dark-adapted leaves. In all cases, the quenching kinetics were fitted to a single component hyperbolic function. For leaves, chloroplasts, and light-harvesting complexes, the presence of zeaxanthin was associated with an increased rate constant for the induction of quenching. We discuss the significance of these observations in terms of the mechanism and control of qN.
Collapse
Affiliation(s)
- Ruban
- Robert Hill Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
49
|
Delphin E, Duval JC, Etienne AL, Kirilovsky D. DeltapH-dependent photosystem II fluorescence quenching induced by saturating, multiturnover pulses in red algae. PLANT PHYSIOLOGY 1998; 118:103-13. [PMID: 9733530 PMCID: PMC34847 DOI: 10.1104/pp.118.1.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/1998] [Accepted: 05/29/1998] [Indexed: 05/20/2023]
Abstract
We have previously shown that in the red alga Rhodella violacea, exposure to continuous low intensities of light 2 (green light) or near-saturating intensities of white light induces a DeltapH-dependent PSII fluorescence quenching. In this article we further characterize this fluorescence quenching by using white, saturating, multiturnover pulses. Even though the pulses are necessary to induce the DeltapH and the quenching, the development of the latter occurred in darkness and required several tens of seconds. In darkness or in the light in the presence of 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, the dissipation of the quenching was very slow (more than 15 min) due to a low consumption of the DeltapH, which corresponds to an inactive ATP synthase. In contrast, under far-red illumination or in the presence of 3-(3,4-dichlorophenyl)-1,1'-dimethylurea (only in light), the fluorescence quenching relaxed in a few seconds. The presence of N, N'-dicyclohexyl carbodiimide hindered this relaxation. We propose that the quenching relaxation is related to the consumption of DeltapH by ATP synthase, which remains active under conditions favoring pseudolinear and cyclic electron transfer.
Collapse
Affiliation(s)
- E Delphin
- Photoregulation et Dynamique des Membranes Vegetales, Unite de Recherche Associee 1810, Centre National de la Recherche Scientifique, Ecole Normale Superieure, 46 rue d'Ulm, 75230 Paris cedex 05, France
| | | | | | | |
Collapse
|
50
|
Bugos RC, Hieber AD, Yamamoto HY. Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants. J Biol Chem 1998; 273:15321-4. [PMID: 9624110 DOI: 10.1074/jbc.273.25.15321] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Violaxanthin de-epoxidase and zeaxanthin epoxidase catalyze the addition and removal of epoxide groups in carotenoids of the xanthophyll cycle in plants. The xanthophyll cycle is implicated in protecting the photosynthetic apparatus from excessive light. Two new sequences for violaxanthin de-epoxidase from tobacco and Arabidopsis are described. Although the mature proteins are well conserved, the transit peptides of these proteins are divergent, in contrast to transit peptides from other proteins targeted to the thylakoid lumen. Sequence analyses of both violaxanthin de-epoxidase and zeaxanthin epoxidase establish the xanthophyll cycle enzymes as members of the lipocalin family of proteins. The lipocalin family is a diverse group of proteins that bind small hydrophobic (lipophilic) molecules and share a conserved tertiary structure of eight beta-strands forming a barrel configuration. This is the first reported identification of lipocalin proteins in plants.
Collapse
Affiliation(s)
- R C Bugos
- Department of Plant Molecular Physiology, University of Hawaii-Manoa, Honolulu, Hawaii 96822, USA
| | | | | |
Collapse
|