1
|
Nia AM, Khanipov K, Barnette BL, Ullrich RL, Golovko G, Emmett MR. Comparative RNA-Seq transcriptome analyses reveal dynamic time-dependent effects of 56Fe, 16O, and 28Si irradiation on the induction of murine hepatocellular carcinoma. BMC Genomics 2020; 21:453. [PMID: 32611366 PMCID: PMC7329445 DOI: 10.1186/s12864-020-06869-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/24/2020] [Indexed: 01/04/2023] Open
Abstract
Background One of the health risks posed to astronauts during deep space flights is exposure to high charge, high-energy (HZE) ions (Z > 13), which can lead to the induction of hepatocellular carcinoma (HCC). However, little is known on the molecular mechanisms of HZE irradiation-induced HCC. Results We performed comparative RNA-Seq transcriptomic analyses to assess the carcinogenic effects of 600 MeV/n 56Fe (0.2 Gy), 1 GeV/n 16O (0.2 Gy), and 350 MeV/n 28Si (0.2 Gy) ions in a mouse model for irradiation-induced HCC. C3H/HeNCrl mice were subjected to total body irradiation to simulate space environment HZE-irradiation, and liver tissues were extracted at five different time points post-irradiation to investigate the time-dependent carcinogenic response at the transcriptomic level. Our data demonstrated a clear difference in the biological effects of these HZE ions, particularly immunological, such as Acute Phase Response Signaling, B Cell Receptor Signaling, IL-8 Signaling, and ROS Production in Macrophages. Also seen in this study were novel unannotated transcripts that were significantly affected by HZE. To investigate the biological functions of these novel transcripts, we used a machine learning technique known as self-organizing maps (SOMs) to characterize the transcriptome expression profiles of 60 samples (45 HZE-irradiated, 15 non-irradiated control) from liver tissues. A handful of localized modules in the maps emerged as groups of co-regulated and co-expressed transcripts. The functional context of these modules was discovered using overrepresentation analysis. We found that these spots typically contained enriched populations of transcripts related to specific immunological molecular processes (e.g., Acute Phase Response Signaling, B Cell Receptor Signaling, IL-3 Signaling), and RNA Transcription/Expression. Conclusions A large number of transcripts were found differentially expressed post-HZE irradiation. These results provide valuable information for uncovering the differences in molecular mechanisms underlying HZE specific induced HCC carcinogenesis. Additionally, a handful of novel differentially expressed unannotated transcripts were discovered for each HZE ion. Taken together, these findings may provide a better understanding of biological mechanisms underlying risks for HCC after HZE irradiation and may also have important implications for the discovery of potential countermeasures against and identification of biomarkers for HZE-induced HCC.
Collapse
Affiliation(s)
- Anna M Nia
- Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA
| | - Kamil Khanipov
- Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA
| | - Brooke L Barnette
- Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA
| | - Robert L Ullrich
- The Radiation Effects Research Foundation (RERF), Hiroshima, Japan
| | - George Golovko
- Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA
| | - Mark R Emmett
- Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA. .,Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA.
| |
Collapse
|
2
|
Dai X, Li L, Liu X, Hu W, Yang Y, Bai Z. Cooperation of DLC1 and CDK6 affects breast cancer clinical outcome. G3 (BETHESDA, MD.) 2014; 5:81-91. [PMID: 25425654 PMCID: PMC4291472 DOI: 10.1534/g3.114.014894] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Low DLC1 expression is found to frequently co-occur with aberrant expression of cell cycle genes including CDK6 in human lung and colon cancer. Here, we explore the influence of the synergistic effect of DLC1 and CDK6 on human breast cancer survival at the genetic, transcriptional, and translational levels. We found that high DLC1 and low CDK6 expression are associated with good prognosis. The DLC1 intronic SNP rs561681 is found to fit a recessive model, complying with the tumor suppressive role of DLC1. The heterozygote of the DLC1 SNP is found to increase the hazard when the CDK6 intronic SNP rs3731343 is rare homozygous, and it becomes protective when rs3731343 is common homozygous. We propose that DLC1 expression is the lowest in patients harboring the rare homozygote of rs561681 and functional DLC1 is the lowest when rs561681 is heterozygous and rs3731343 is rare homozygous. We are the first to report such synergistic effects of DLC1 and CDK6 on breast cancer survival at the transcriptional level, the overdominant model fitted by the SNP pair, and the dominant negative effect at the translational level. These findings link the germline genetic polymorphisms and synergistic effect of DLC1 and CDK6 with breast cancer progression, which provide the basis for experimentally elucidating the mechanisms driving differential tumor progression and avail in tailoring the clinical treatments for such patients based on their genetic susceptibility.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China School of Biotechnology, Jiangnan University, Wuxi 214122, China Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Lu Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Weiguo Hu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Bolduc C, Yoshioka M, St-Amand J. Transcriptomic characterization of the long-term dihydrotestosterone effects in adipose tissue. Obesity (Silver Spring) 2007; 15:1107-32. [PMID: 17495187 DOI: 10.1038/oby.2007.623] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To study the long-term transcriptomic effects of dihydrotestosterone (DHT) in adipose tissue. Fat distribution is regulated by sexual hormones. It is still unclear if androgens are promoting or reducing intra-abdominal fat accumulation. RESEARCH METHODS AND PROCEDURES Retroperitoneal adipose tissue were isolated from each group of gonadectomized (GDX) C57BL6 male mice treated with vehicle or DHT for 21 days. Serial analysis of gene expression (SAGE) was performed to generate approximately 150,000 SAGE tags from each sample. RESULTS Among the numerous genes regulated by DHT, transcripts involved in glycolysis, such as aldolase 1 A isoform and pyruvate kinase muscle as well as lipogenic transcripts, such as malic enzyme supernatant and ELOVL family member 6 elongation of long chain fatty acids were down-regulated by androgen supplementation. In contrast, transcripts involved in lipolysis and fatty acid oxidation, such as carboxylesterase 3, acetyl-coenzyme A acyltransferase 1, 3-ketoacyl-CoA thiolase B and enoyl-coenzyme A hydratase/3-hydroxyacyl coenzyme A dehydrogenase were up-regulated by DHT. Pro-apoptotic transcripts such as cell death-inducing DFFA-like effector c, BCL2/adenovirus E1B 19 kDa-interacting protein 1 NIP3 and -interacting protein 3-like were up-regulated by DHT, whereas transcripts involved in promotion of cell cycle such as cyclin D2 were down-regulated by DHT. DISCUSSION These results suggest that chronic androgen treatment may help to improve metabolic profile by regulating various critical pathways involved in adipose tissue physiology. In addition, several genes associated with a healthier metabolic profile, such as adiponectin and CD36 antigen, were up-regulated by 21 days of DHT treatment.
Collapse
Affiliation(s)
- Carl Bolduc
- Functional Genomics Laboratory, Molecular Endocrinology and Oncology Research Center, Laval University Medical Center, 2705 Boulevard Laurier, Quebec City, Quebec, G1V 4G2 Canada
| | | | | |
Collapse
|
4
|
Tu HP, Chen YT, Shieh YS, Chin YT, Huang RY, Yang SF, Gau CH, Fu E. Cyclosporin-induced downregulation of the expression of E-cadherin during proliferation of edentulous gingival epithelium in rats. J Periodontol 2006; 77:832-9. [PMID: 16671876 DOI: 10.1902/jop.2006.050316] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND To examine the role of E-cadherin in epithelial hyperplasia of cyclosporin A (CsA)-induced gingival enlargement, mRNA and protein levels of E-cadherin, beta-catenin, proliferating cell nuclear antigen (PCNA), and Cyclin D1 were examined in the edentulous gingiva of rats following CsA treatment. METHODS Three weeks after the extraction of all maxillary molars, 20 male Sprague-Dawley rats were assigned to a CsA-fed group (30 mg/kg daily) or a control group. Five rats per group were sacrificed at weeks 1 and 4. Edentulous ridge specimens were taken, and the expression levels of E-cadherin, beta-catenin, Cyclin D1, and PCNA mRNAs were estimated by reverse transcription-polymerase chain reaction (RT-PCR). Tissue specimens of the week 4 groups were examined using immunohistochemical (IHC) staining for proteins. RESULTS The mRNA expression of E-cadherin was significantly weaker in the CsA-treated group than the control group at both times. Using IHC staining, a weaker level of membrane-bonded E-cadherin was also observed in the gingival epithelial cells in the CsA group than in controls. By contrast, significantly stronger beta-catenin and Cyclin D1 mRNA expressions and protein levels were found in CsA-treated rats than controls by RT-PCR and immunohistochemistry at week 4, whereas PCNA production was stronger at both times. CONCLUSIONS CsA treatment reduced the production of E-cadherin but increased the production of beta-catenin, Cyclin D1, and PCNA. Thus, CsA may downregulate E-cadherin gene expression, leading to the epithelial cell proliferation of gingival overgrowth.
Collapse
Affiliation(s)
- Hsiao-Pei Tu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Carthon BC, Neumann CA, Das M, Pawlyk B, Li T, Geng Y, Sicinski P. Genetic replacement of cyclin D1 function in mouse development by cyclin D2. Mol Cell Biol 2005; 25:1081-8. [PMID: 15657434 PMCID: PMC544006 DOI: 10.1128/mcb.25.3.1081-1088.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
D cyclins (D1, D2, and D3) are components of the core cell cycle machinery in mammalian cells. It is unclear whether each of the D cyclins performs unique, tissue-specific functions or the three proteins have virtually identical functions and differ mainly in their pattern of expression. We previously generated mice lacking cyclin D1, and we observed that these animals displayed hypoplastic retinas and underdeveloped mammary glands and a presented developmental neurological abnormality. We now asked whether the specific requirement for cyclin D1 in these tissues reflected a unique pattern of D cyclin expression or the presence of specialized functions for cyclin D1 in cyclin D1-dependent compartments. We generated a knock-in strain of mice expressing cyclin D2 in place of D1. Cyclin D2 was able to drive nearly normal development of retinas and mammary glands, and it partially replaced cyclin D1's function in neurological development. We conclude that the differences between these two D cyclins lie mostly in the tissue-specific pattern of their expression. However, we propose that subtle differences between the two D cyclins do exist and they may allow D cyclins to function in a highly optimized fashion. We reason that the acquisition of multiple D cyclins may allow mammalian cells to drive optimal proliferation of a diverse array of cell types.
Collapse
Affiliation(s)
- Bradley C Carthon
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Pasumarthi KBS, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 2004; 96:110-8. [PMID: 15576649 DOI: 10.1161/01.res.0000152326.91223.4f] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Restriction point transit and commitment to a new round of cell division is regulated by the activity of cyclin-dependent kinase 4 and its obligate activating partners, the D-type cyclins. In this study, we examined the ability of D-type cyclins to promote cardiomyocyte cell cycle activity. Adult transgenic mice expressing cyclin D1, D2, or D3 under the regulation of the alpha cardiac myosin heavy chain promoter exhibited high rates of cardiomyocyte DNA synthesis under baseline conditions. Cardiac injury in mice expressing cyclin D1 or D3 resulted in cytoplasmic cyclin D accumulation, with a concomitant reduction in the level of cardiomyocyte DNA synthesis. In contrast, cardiac injury in mice expressing cyclin D2 did not alter subcellular cyclin localization. Consequently, cardiomyocyte cell cycle activity persisted in injured hearts expressing cyclin D2, ultimately resulting in infarct regression. These data suggested that modulation of D-type cyclins could be exploited to promote regenerative growth in injured hearts.
Collapse
Affiliation(s)
- Kishore B S Pasumarthi
- Wells Center for Pediatric Research and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Ind 46202-5225, USA
| | | | | | | | | |
Collapse
|
7
|
Denicourt C, Kozak CA, Rassart E. Gris1, a new common integration site in Graffi murine leukemia virus-induced leukemias: overexpression of a truncated cyclin D2 due to alternative splicing. J Virol 2003; 77:37-44. [PMID: 12477808 PMCID: PMC140601 DOI: 10.1128/jvi.77.1.37-44.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Graffi murine leukemia virus is a nondefective ecotropic retrovirus that was originally reported to induce myeloid leukemia in some strains of mice (A. Graffi, Ann. N.Y. Acad. Sci. 68:540-558, 1957). Using provirus-flanking sequences as DNA probes, we identified a new common retroviral integration site called Gris1 (for Graffi integration site 1). Viral integrations in Gris1 were detected in 13% of the tumors analyzed. The Gris1 locus was mapped to the distal region of mouse chromosome 6, 85 kb upstream of the cyclin D2 gene. Such viral integration in Gris1 causes overexpression of the normal 6.5-kb major transcript of cyclin D2 but also induces the expression of a new, alternatively spliced 1.1-kb transcript from the cyclin D2 gene that encodes a truncated cyclin D2 of 17 kDa. The expression of this 1.1-kb transcript is specific to tumors in which Gris1 is rearranged but is also detected at low levels in normal tissue.
Collapse
Affiliation(s)
- Catherine Denicourt
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal, Canada
| | | | | |
Collapse
|
8
|
El-Hefnawy T, Zeleznik AJ. Synergism between FSH and activin in the regulation of proliferating cell nuclear antigen (PCNA) and cyclin D2 expression in rat granulosa cells. Endocrinology 2001; 142:4357-62. [PMID: 11564698 DOI: 10.1210/endo.142.10.8438] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Follicular development is associated with both proliferation and differentiation of granulosa cells under the control of FSH. We show that regulation of genes involved in cellular proliferation by FSH can be functionally separated from the regulation of genes involved in granulosa cell differentiation by synergistic actions of activin and T. Incubation of undifferentiated rat granulosa cells with FSH, forskolin, activin-A, or T alone did not influence either the expression of the proliferation-associated genes cyclin D2 and proliferating cell nuclear antigen or the differentiation-associated genes P450 aromatase, LH receptor, P450 cholesterol side-chain cleavage enzyme, and 3 beta-hydroxysteroid dehydrogenase. However, when granulosa cells were stimulated with either FSH or forskolin in the presence of activin-A, significant increases (P < 0.05) were observed for cyclin D2 and proliferating cell nuclear antigen at both the mRNA and protein levels as well as mRNAs for P450 aromatase, LH receptor, P450 cholesterol side-chain cleavage enzyme and 3 beta-hydroxysteroid dehydrogenase. Although T synergized with FSH to increase the expression of mRNAs for P450 aromatase, LH receptor, P450 cholesterol side-chain cleavage enzyme, and 3 beta-hydroxysteroid dehydrogenase, it did not interact with FSH to increase the expression of mRNAs for cyclin D2 and proliferating cell nuclear antigen. The differences in the actions of activin and T could provide a cellular mechanism by which FSH-regulated granulosa cell proliferation could be functionally separated from FSH-regulated granulosa cell differentiation.
Collapse
Affiliation(s)
- T El-Hefnawy
- Department of Physiology and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
9
|
Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG. NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev 2001; 12:73-90. [PMID: 11312120 DOI: 10.1016/s1359-6101(00)00018-6] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cyclins are a family of proteins that are centrally involved in cell cycle regulation and which are structurally identified by conserved "cyclin box" regions. They are regulatory subunits of holoenzyme cyclin-dependent kinase (CDK) complexes controlling progression through cell cycle checkpoints by phosphorylating and inactivating target substrates. CDK activity is controlled by cyclin abundance and subcellular location and by the activity of two families of inhibitors, the cyclin-dependent kinase inhibitors (CKI). Many hormones and growth factors influence cell growth through signal transduction pathways that modify the activity of the cyclins. Dysregulated cyclin activity in transformed cells contributes to accelerated cell cycle progression and may arise because of dysregulated activity in pathways that control the abundance of a cyclin or because of loss-of-function mutations in inhibitory proteins.Analysis of transformed cells and cells undergoing mitogen-stimulated growth implicate proteins of the NF-kappaB family in cell cycle regulation, through actions on the CDK/CKI system. The mammalian members of this family are Rel-A (p65), NF-kappaB(1) (p50; p105), NF-kappaB(2) (p52; p100), c-Rel and Rel-B. These proteins are structurally identified by an amino-terminal region of about 300 amino acids, known as the Rel-homology domain. They exist in cytoplasmic complexes with inhibitory proteins of the IkappaB family, and translocate to the nucleus to act as transcription factors when activated. NF-kappaB pathway activation occurs during transformation induced by a number of classical oncogenes, including Bcr/Abl, Ras and Rac, and is necessary for full transforming potential. The avian viral oncogene, v-Rel is an NF-kappaB protein. The best explored link between NF-kappaB activation and cell cycle progression involves cyclin D(1), a cyclin which is expressed relatively early in the cell cycle and which is crucial to commitment to DNA synthesis. This review examines the interactions between NF-kappaB signaling and the CDK/CKI system in cell cycle progression in normal and transformed cells. The growth-promoting actions of NF-kappaB factors are accompanied, in some instances, by inhibition of cellular differentiation and by inhibition of programmed cell death, which involve related response pathways and which contribute to the overall increase in mass of undifferentiated tissue.
Collapse
Affiliation(s)
- D Joyce
- Department of Pharmacology, The University of Western Australia, Nedlands, WA 6907, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Hu X, Zuckerman KS. Transforming growth factor: signal transduction pathways, cell cycle mediation, and effects on hematopoiesis. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2001; 10:67-74. [PMID: 11276360 DOI: 10.1089/152581601750098255] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a potent growth inhibitor of various cell types including hematopoietic cells. Two receptors, TGFbetaRI and TGFbetaRII, govern the interaction between the cell and the TGF-beta ligand. Primary binding of the ligand occurs with the RII receptor, promoting formation of a heterodimer with RI and activation of signaling. This induces transient association of Smad proteins with the receptors. Smad 3 and 4 may be involved in the TGF-beta-induced G(1) arrest. TGF-beta(1) down-regulates G(1) and G(2) cyclin-dependent kinases (cdks) and cyclins in terms of both kinase activity and protein amount. TGF- beta (1) also inhibits phosphorylation of the product of the retinoblastoma tumor suppressor gene (pRb) at multiple serine and threonine residues in human myeloid leukemia cells. The underphosphorylated pRb associates with transcription factor E2F-4 in G(1) phase, whereas the phosphorylated pRb mainly binds to E2F-1 and E2F-3. Because TGF-beta(1) up-regulates p130(pRb family member)/E2F-4 complex formation and down-regulates p107(pRb family member)/E2F-4 complex formation, with E2F-4 levels remaining constant, these results suggest that E2F-4 is switched from p107 to pRb and p130 when cells exit from the cell cycle and arrest in G(1) by the action of TGF-beta(1). The "cdk inhibitor" p27 is both a positive and a negative regulator of TGF-beta(1)-mediated cell cycle control. Although TGF-beta(1) has been reported to be a selected inhibitor of normal primitive hematopoietic stem cells, TGF-beta inhibits both primitive and more differentiated myeloid leukemia cell lines.
Collapse
Affiliation(s)
- X Hu
- Interdisciplinary Oncology Program, University of South Florida, and H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA.
| | | |
Collapse
|
11
|
Turchi L, Loubat A, Rochet N, Rossi B, Ponzio G. Evidence for a direct correlation between c-Jun NH2 terminal kinase 1 activation, cyclin D2 expression, and G(1)/S phase transition in the murine hybridoma 7TD1 cells. Exp Cell Res 2000; 261:220-8. [PMID: 11082292 DOI: 10.1006/excr.2000.5060] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study we show that the addition of fresh culture medium to high-density growth-arrested 7TD1 cells induces a strong and transient stimulation of the c-Jun NH2 terminal kinase activity (Jun kinase/JNK), a marked increase in cyclin D2 expression, the phosphorylation of pRb, and the transition from G(1) to S phase. The stimulation of cyclin D2 expression and the induction of JNK activity appear to be the consequences of the alkalinization of the extracellular medium. Indeed both parameters (i) can be induced, regardless of cell dilution, by the addition of a weak base such as triethylamine, and (ii) are together inhibited by (N-ethyl-N-isopropyl)amiloride, a specific inhibitor of the Na(+)/H(+) exchanger. We provide a strong argument indicating the existence of a direct correlation between JNK1 activation and cyclin D2 stimulation. Indeed, we demonstrate that cyclin D2 expression is blocked by SB 202190, an agent known to inhibit both JNK and p38(MAPK), but not by SB 203580, a specific inhibitor of p38(MAPK). Furthermore, we also observed that DMSO and forskolin, two agents that inhibit the proliferation of 7TD1 cells, inhibit in parallel cyclin D2 and JNK1. Altogether our results suggest that (i) JNK1 participates in the signaling pathway which controls the expression of cyclin D2 and (ii) that the inhibition of JNK1 by DMSO and forskolin could explain, at least in part, the antiproliferative action of these drugs in 7TD1 cells.
Collapse
Affiliation(s)
- L Turchi
- "Biologie et Physiopathologie de la peau" Faculté de Médecine, INSERM U385, France
| | | | | | | | | |
Collapse
|
12
|
Rodriguez-Puebla ML, LaCava M, Miliani De Marval PL, Jorcano JL, Richie ER, Conti CJ. Cyclin D2 overexpression in transgenic mice induces thymic and epidermal hyperplasia whereas cyclin D3 expression results only in epidermal hyperplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:1039-50. [PMID: 10980142 PMCID: PMC1885715 DOI: 10.1016/s0002-9440(10)64616-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In a previous report, we described the effects of cyclin D1 expression in epithelial tissues of transgenic mice. To study the involvement of D-type cyclins (D1, D2, and D3) in epithelial growth and differentiation and their putative role as oncogenes in skin, transgenic mice were developed which carry cyclin D2 or D3 genes driven by a keratin 5 promoter. As expected, both transgenic lines showed expression of these proteins in most of the squamous tissues analyzed. Epidermal proliferation increased in transgenic animals and basal cell hyperplasia was observed. All of the animals also had a minor thickening of the epidermis. The pattern of expression of keratin 1 and keratin 5 indicated that epidermal differentiation was not affected. Transgenic K5D2 mice developed mild thymic hyperplasia that reversed at 4 months of age. On the other hand, high expression of cyclin D3 in the thymus did not produce hyperplasia. This model provides in vivo evidence of the action of cyclin D2 and cyclin D3 as mediators of proliferation in squamous epithelial cells. A direct comparison among the three D-type cyclin transgenic mice suggests that cyclin D1 and cyclin D2 have similar roles in epithelial thymus cells. However, overexpression of each D-type cyclin produces a distinct phenotype in thymic epithelial cells.
Collapse
Affiliation(s)
- M L Rodriguez-Puebla
- University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Hu X, Zuckerman KS. Cell cycle and transcriptional control of human myeloid leukemic cells by transforming growth factor beta. Leuk Lymphoma 2000; 38:235-46. [PMID: 10830731 DOI: 10.3109/10428190009087015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
TGFbeta1 is a potent growth inhibitor of both primitive and more differentiated human myeloid leukemic cells. The extent of the growth inhibitory response to TGFbeta varies with cell type, and is not linked to stages of differentiation of cell lines. Downregulation of multiple cell cycle-regulatory molecules is a dominant event in TGFbeta1-mediated growth inhibition of human MV4-11 myeloid leukemia cells. Both G1-phase and G2-phase cyclins and cdks participate in the regulation of TGFbeta1-mediated growth inhibition of MV4-11 cells. By both depressing cdk2 synthesis and up-regulating cyclin E-associated p27, TGFbeta1 may magnify its inhibitory efficiency. TGFbeta1 also rapidly inhibits phosphorylation of pRb at several serine and threonine residues. The underphosphorylated pRb associates with E2F-4 in G1 phase, whereas the phosphorylated pRb mainly binds to E2F-1 and E2F-3 in proliferating MV4-11 cells. Since TGFbeta1 upregulates p130/E2F-4 complex formation and downregulates p107/E2F-4 complex formation, with E2F-4 levels remaining constant, our results suggest that E2F-4 is switched from p107 to pRb and p130 when cells exit from the cell cycle and arrest in G1 by TGFbeta1. In summary, TGFbeta1 inhibits growth of human myeloid leukemic cells through multiple pathways, whereas the "cdk inhibitor" p27 is both a positive and negative regulator.
Collapse
Affiliation(s)
- X Hu
- Department of Internal Medicine, University of South Florida, and H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, USA.
| | | |
Collapse
|
14
|
Abstract
Oxidative stress and the damage that results from it have been implicated in a wide number of disease processes including atherosclerosis, autoimmune disorders, neuronal degeneration, and cancer. Reactive oxygen species (ROS) are ubiquitous and occur naturally in all aerobic species, coming from both exogenous and endogenous sources. ROS are quite reactive and readily damage biological molecules, including DNA. While the damaging effects of ROS on DNA have been intensively studied, the effects of oxidative damage on cell cycle checkpoint function have not. Here will we review several biologically important ROS and their sources, the cell cycle, checkpoints, and current knowledge about the effects of ROS on initiating checkpoint responses.
Collapse
Affiliation(s)
- R E Shackelford
- Growth Control and Cancer Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
15
|
Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev 1999; 20:501-34. [PMID: 10453356 DOI: 10.1210/edrv.20.4.0373] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- R G Pestell
- Albert Einstein Cancer Center, Department of Developmental and Molecular Biology, Morris Park, Bronx, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Mai S, Hanley-Hyde J, Rainey GJ, Kuschak TI, Paul JT, Littlewood TD, Mischak H, Stevens LM, Henderson DW, Mushinski JF. Chromosomal and extrachromosomal instability of the cyclin D2 gene is induced by Myc overexpression. Neoplasia 1999; 1:241-52. [PMID: 10935479 PMCID: PMC1508077 DOI: 10.1038/sj.neo.7900030] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/1999] [Accepted: 05/25/1999] [Indexed: 11/08/2022]
Abstract
We examined the expression of cyclins D1, D2, D3, and E in mouse B-lymphocytic tumors. Cyclin D2 mRNA was consistently elevated in plasmacytomas, which characteristically contain Myc-activating chromosome translocations and constitutive c-Myc mRNA and protein expression. We examined the nature of cyclin D2 overexpression in plasmacytomas and other tumors. Human and mouse tumor cell lines that exhibited c-Myc dysregulation displayed instability of the cyclin D2 gene, detected by Southern blot, fluorescent in situ hybridization (FISH), and in extrachromosomal preparations (Hirt extracts). Cyclin D2 instability was not seen in cells with low levels of c-Myc protein. To unequivocally demonstrate a role of c-Myc in the instability of the cyclin D2 gene, a Myc-estrogen receptor chimera was activated in two mouse cell lines. After 3 to 4 days of Myc-ER activation, instability at the cyclin D2 locus was seen in the form of extrachromosomal elements, determined by FISH of metaphase and interphase nuclei and of purified extrachromosomal elements. At the same time points, Northern and Western blot analyses detected increased cyclin D2 mRNA and protein levels. These data suggest that Myc-induced genomic instability may contribute to neoplasia by increasing the levels of a cell cycle-regulating protein, cyclin D2, via intrachromosomal amplification of its gene or generation of extrachromosomal copies.
Collapse
Affiliation(s)
- S Mai
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shackelford RE, Kaufmann WK, Paules RS. Cell cycle control, checkpoint mechanisms, and genotoxic stress. ENVIRONMENTAL HEALTH PERSPECTIVES 1999; 107 Suppl 1:5-24. [PMID: 10229703 PMCID: PMC1566366 DOI: 10.1289/ehp.99107s15] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ability of cells to maintain genomic integrity is vital for cell survival and proliferation. Lack of fidelity in DNA replication and maintenance can result in deleterious mutations leading to cell death or, in multicellular organisms, cancer. The purpose of this review is to discuss the known signal transduction pathways that regulate cell cycle progression and the mechanisms cells employ to insure DNA stability in the face of genotoxic stress. In particular, we focus on mammalian cell cycle checkpoint functions, their role in maintaining DNA stability during the cell cycle following exposure to genotoxic agents, and the gene products that act in checkpoint function signal transduction cascades. Key transitions in the cell cycle are regulated by the activities of various protein kinase complexes composed of cyclin and cyclin-dependent kinase (Cdk) molecules. Surveillance control mechanisms that check to ensure proper completion of early events and cellular integrity before initiation of subsequent events in cell cycle progression are referred to as cell cycle checkpoints and can generate a transient delay that provides the cell more time to repair damage before progressing to the next phase of the cycle. A variety of cellular responses are elicited that function in checkpoint signaling to inhibit cyclin/Cdk activities. These responses include the p53-dependent and p53-independent induction of Cdk inhibitors and the p53-independent inhibitory phosphorylation of Cdk molecules themselves. Eliciting proper G1, S, and G2 checkpoint responses to double-strand DNA breaks requires the function of the Ataxia telangiectasia mutated gene product. Several human heritable cancer-prone syndromes known to alter DNA stability have been found to have defects in checkpoint surveillance pathways. Exposures to several common sources of genotoxic stress, including oxidative stress, ionizing radiation, UV radiation, and the genotoxic compound benzo[a]pyrene, elicit cell cycle checkpoint responses that show both similarities and differences in their molecular signaling.
Collapse
Affiliation(s)
- R E Shackelford
- Growth Control and Cancer Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
18
|
Said TK, Medina D. Interaction of retinoblastoma protein and D cyclins during cell-growth inhibition by hexamethylenebisacetamide in TM2H mouse epithelial cells. Mol Carcinog 1998. [DOI: 10.1002/(sici)1098-2744(199806)22:2<128::aid-mc8>3.0.co;2-i] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Meyyappan M, Wong H, Hull C, Riabowol KT. Increased expression of cyclin D2 during multiple states of growth arrest in primary and established cells. Mol Cell Biol 1998; 18:3163-72. [PMID: 9584157 PMCID: PMC108898 DOI: 10.1128/mcb.18.6.3163] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cyclin D2 is a member of the family of D-type cyclins that is implicated in cell cycle regulation, differentiation, and oncogenic transformation. To better understand the role of this cyclin in the control of cell proliferation, cyclin D2 expression was monitored under various growth conditions in primary human and established murine fibroblasts. In different states of cellular growth arrest initiated by contact inhibition, serum starvation, or cellular senescence, marked increases (5- to 20-fold) were seen in the expression levels of cyclin D2 mRNA and protein. Indirect immunofluorescence studies showed that cyclin D2 protein localized to the nucleus in G0, suggesting a nuclear function for cyclin D2 in quiescent cells. Cyclin D2 was also found to be associated with the cyclin-dependent kinases CDK2 and CDK4 but not CDK6 during growth arrest. Cyclin D2-CDK2 complexes increased in amounts but were inactive as histone H1 kinases in quiescent cells. Transient transfection and needle microinjection of cyclin D2 expression constructs demonstrated that overexpression of cyclin D2 protein efficiently inhibited cell cycle progression and DNA synthesis. These data suggest that in addition to a role in promoting cell cycle progression through phosphorylation of retinoblastoma family proteins in some cell systems, cyclin D2 may contribute to the induction and/or maintenance of a nonproliferative state, possibly through sequestration of the CDK2 catalytic subunit.
Collapse
Affiliation(s)
- M Meyyappan
- Departments of Medical Science, Southern Alberta Cancer Research Center, Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
20
|
Edwalds-Gilbert G, Veraldi KL, Milcarek C. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res 1997; 25:2547-61. [PMID: 9185563 PMCID: PMC146782 DOI: 10.1093/nar/25.13.2547] [Citation(s) in RCA: 410] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many genes have been described and characterized which result in alternative polyadenylation site use at the 3'-end of their mRNAs based on the cellular environment. In this survey and summary article 95 genes are discussed in which alternative polyadenylation is a consequence of tandem arrays of poly(A) signals within a single 3'-untranslated region. An additional 31 genes are described in which polyadenylation at a promoter-proximal site competes with a splicing reaction to influence expression of multiple mRNAs. Some have a composite internal/terminal exon which can be differentially processed. Others contain alternative 3'-terminal exons, the first of which can be skipped in some cells. In some cases the mRNAs formed from these three classes of genes are differentially processed from the primary transcript during the cell cycle or in a tissue-specific or developmentally specific pattern. Immunoglobulin heavy chain genes have composite exons; regulated production of two different Ig mRNAs has been shown to involve B cell stage-specific changes in trans -acting factors involved in formation of the active polyadenylation complex. Changes in the activity of some of these same factors occur during viral infection and take-over of the cellular machinery, suggesting the potential applicability of at least some aspects of the Ig model. The differential expression of a number of genes that undergo alternative poly(A) site choice or polyadenylation/splicing competition could be regulated at the level of amounts and activities of either generic or tissue-specific polyadenylation factors and/or splicing factors.
Collapse
Affiliation(s)
- G Edwalds-Gilbert
- Department of Molecular Genetics and Biochemistry and the Graduate Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261-2072, USA
| | | | | |
Collapse
|
21
|
Soonpaa MH, Koh GY, Pajak L, Jing S, Wang H, Franklin MT, Kim KK, Field LJ. Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest 1997; 99:2644-54. [PMID: 9169494 PMCID: PMC508110 DOI: 10.1172/jci119453] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
D-type cyclin/cyclin-dependent kinase (CDK) complexes regulate transit through the restriction point of the cell cycle, and thus are required for the initiation of DNA synthesis. Transgenic mice which overexpress cyclin D1 in the heart were produced to determine if D-type cyclin deregulation would alter myocardial development. Cyclin D1 overexpression resulted in a concomitant increase in CDK4 levels in the adult myocardium, as well as modest increases in proliferating cell nuclear antigen and CDK2 levels. Flow cytometric and morphologic analyses of dispersed cell preparations indicated that the adult transgenic cardiomyocytes had abnormal patterns of multinucleation. Histochemical analyses confirmed a marked increase in number of cardiomyocyte nuclei in sections prepared from the transgenic mice as compared with those from control animals. Tritiated thymidine incorporation analyses revealed sustained cardiomyocyte DNA synthesis in adult transgenic hearts.
Collapse
Affiliation(s)
- M H Soonpaa
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-4800, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Park SK, Kang SK, Lee DY, Kang MJ, Kim SH, Koh GY. Temporal expressions of cyclins and cyclin dependent kinases during renal development and compensatory growth. Kidney Int 1997; 51:762-9. [PMID: 9067908 DOI: 10.1038/ki.1997.107] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The family of cyclins and cyclin-dependent kinases (CDKs) are important participants in the regulation of eukaryotic cell cycle. Our purpose was to examine temporal expressions of cyclins and CDKs during renal development and compensatory growth. During embryonic development the mRNA levels of all cyclins were high, and after birth their levels decreased at different rates. G2 and M phase cyclins, cyclin A and B, decreased immediately after birth. G1 and S phase cyclins, cyclins D1, D2, D3, and E, were observed during all stages of development and maintained almost constant levels until seven days after birth. They decreased thereafter and expressed very low levels during the adult period. The protein levels of cdc2, CDK2, and proliferating cell nuclear antigen (PCNA) were high during embryonic renal development and slowly decreased after birth. Their levels were very low during the youth and adult periods. Levels of CDK4 protein were high and did not change during renal development. Compensatory hypertrophic renal growth (CHRG) induced by unilateral nephrectomy (Unx) did not increase any cyclins, CDKs or PCNA. Subtotal nephrectomy (Snx) did not increase any cyclins or CDKs in remaining viable renal tissue (RVRT). However, Snx increased PCNA in RVRT. An immunohistochemical study revealed that PCNA was induced in a limited area adjacent to ischemic areas. Interestingly, Western blot analysis of protein extracts from RVRT showed the induction of a new 40 kDa protein that cross-reacted with the cyclin D3 antibody. These findings suggest that the marked reductions in mitotic cyclins may be associated with the withdrawal of renal cell cycle after birth. In addition, expressions of cyclins and CDKs did not change in the adult kidney during active phase of compensatory hypertrophic growth.
Collapse
Affiliation(s)
- S K Park
- Department of Internal Medicine, Chonbuk National University Medical School, Chonju, Korea
| | | | | | | | | | | |
Collapse
|
23
|
Hamel PA, Hanley-Hyde J. G1 cyclins and control of the cell division cycle in normal and transformed cells. Cancer Invest 1997; 15:143-52. [PMID: 9095210 DOI: 10.3109/07357909709115767] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The G1 cyclins are clearly important factors that control progression through the eukaryotic cell cycle. The expression and activity of these factors are regulated at many different levels and in response to a large number of signals. Such complicated, multilevel controls on expression and activation of cyclin/cdk complexes permit exquisite and necessary coordination of the stages of the cell cycle. Any of the large number of pathways involved in the regulation of cyclin activity also can be disrupted, leading to inappropriate expression and/or activity of complexes containing cyclins D1, D2, D3, and E. Characterization of these regulatory mechanisms and their synergistic effects on the G1 cyclins and cell cycle progression is a major area of investigation. While little evidence exists indicating that dysregulation of cyclin activity is an initiating event leading to malignant transformation, many studies indicate that disruption of the normal expression and/or activity of the G1 cyclins contributes to the transformed phenotype, potentially by overcoming negative proliferative signals in G1.
Collapse
Affiliation(s)
- P A Hamel
- Department of Cellular and Molecular Pathology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Nakayama H, Nishiyama H, Higuchi T, Kaneko Y, Fukumoto M, Fujita J. Change of cyclin D2 mRNA expression during murine testis development detected by fragmented cDNA subtraction method. Dev Growth Differ 1996. [DOI: 10.1046/j.1440-169x.1996.t01-1-00003.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Brown DT, Alexander BT, Sittman DB. Differential effect of H1 variant overexpression on cell cycle progression and gene expression. Nucleic Acids Res 1996; 24:486-93. [PMID: 8602362 PMCID: PMC145659 DOI: 10.1093/nar/24.3.486] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To identify functional differences among non-allelic variants of the mammalian H1 linker histones a system for the overexpression of individual H1 variants in vivo was developed. Mouse 3T3 cells were transformed with an expression vector containing the coding regions for the H1c or H10 variant under the control of an inducible promoter. Stable, single colony transformants, in which the normal stoichiometry of H1 variants was perturbed, displayed normal viability, unaltered morphology and no long-term growth arrest. However, upon release from synchronization at different points in the cell cycle transformants significantly overproducing H10 exhibited transient inhibition of both G1 and S phase progression. Overexpression of H1c to comparable levels had no effect on cell cycle progression. Analysis of transcript levels for several cell cycle-regulated and housekeeping genes indicated that overexpression of H10 resulted in significantly reduced expression of all genes tested. Surprisingly, overexpression of H1c to comparable levels resulted in either a negligible effect or, in some cases, a dramatic increase in transcript levels. These results support the suggestion that functional differences exist among H1 variants.
Collapse
Affiliation(s)
- D T Brown
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | |
Collapse
|
26
|
Müllner EW, Dolznig H, Beug H. Cell cycle regulation and erythroid differentiation. Curr Top Microbiol Immunol 1996; 212:175-94. [PMID: 8934819 DOI: 10.1007/978-3-642-80057-3_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- E W Müllner
- Institute of Molecular Biology, Vienna Biocenter, Austria
| | | | | |
Collapse
|
27
|
Dou QP, Pardee AB. Transcriptional activation of thymidine kinase, a marker for cell cycle control. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 53:197-217. [PMID: 8650303 DOI: 10.1016/s0079-6603(08)60145-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Q P Dou
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | |
Collapse
|
28
|
Miyatake S, Nakano H, Park SY, Yamazaki T, Takase K, Matsushime H, Kato A, Saito T. Induction of G1 arrest by down-regulation of cyclin D3 in T cell hybridomas. J Exp Med 1995; 182:401-8. [PMID: 7629502 PMCID: PMC2192146 DOI: 10.1084/jem.182.2.401] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The relationship between activation-induced growth inhibition and regulation of the cell cycle progression was investigated in T cell hybridomas by studying the function of the cell cycle-regulating genes such as G1 cyclins and their associated kinases. Activation of T cell hybridomas by anti-T cell receptor antibody induces growth arrest at G1 phase of the cell cycle and subsequently results in activation-driven cell death. Rapid reduction of both messenger RNA and protein level of the cyclin D3 is accompanied by growth arrest upon activation. Although the residual cyclin D3 protein forms a complex with cdk4 protein, cyclin D3-dependent kinase activity is severely impaired. Stable transfectants engineered to express cyclin D3 override the growth arrest upon activation. These results imply that the activation signal through T cell receptor induces the down-regulation of cyclin D3 expression and cyclin D3-dependent kinase activity, leading to growth arrest in G1 phase of the cell cycle in T cells.
Collapse
Affiliation(s)
- S Miyatake
- Division of Molecular Genetics, School of Medicine, Chiba University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lukas J, Bartkova J, Rohde M, Strauss M, Bartek J. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity. Mol Cell Biol 1995; 15:2600-11. [PMID: 7739541 PMCID: PMC230490 DOI: 10.1128/mcb.15.5.2600] [Citation(s) in RCA: 302] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To elucidate the regulator-versus-target relationship in the cyclin D1/cdk4/retinoblastoma protein (pRB) pathway, we examined fibroblasts from RB-1 gene-deficient and RB-1 wild-type littermate mouse embryos (ME) and in human tumor cell lines that differed in the status of the RB-1 gene. The RB+/+ and RB-/- ME fibroblasts expressed similar protein levels of D-type cyclins, cdk4, and cdk6, showed analogous spectra and abundance of cellular proteins complexed with cdk4 and/or cyclins D1 and D2, and exhibited comparable associated kinase activities. Of the two human cell lines established from the same sarcoma biopsy, the RB-positive SKUT1B cells contained cdk4 that was mainly associated with D-type cyclins, contrary to a predominant cdk4-p16INK4 complex in the RB-deficient SKUT1A cells. Antibody-mediated neutralization of cyclin D1 arrested the RB-positive ME and SKUT1B cells in G1, whereas this cyclin appeared dispensable in the RB-deficient ME and SKUT1A cells. Lack of requirement for cyclin D1 therefore correlated with absence of functional pRB, regardless of whether active cyclin D1/cdk4 holoenzyme was present in the cells under study. Consistent with a potential role of cyclin D/cdk4 in phosphorylation of pRB, monoclonal anti-cyclin D1 antibodies supporting the associated kinase activity failed to significantly affect proliferation of RB-positive cells, whereas the antibody DCS-6, unable to coprecipitate cdk4, efficiently inhibited G1 progression and prevented pRB phosphorylation in vivo. These data provide evidence for an upstream control function of cyclin D1/cdk4, and a downstream role for pRB, in the order of events regulating transition through late G1 phase of the mammalian cell division cycle.
Collapse
Affiliation(s)
- J Lukas
- Division of Cancer Biology, Danish Cancer Society, Copenhagen
| | | | | | | | | |
Collapse
|
30
|
Ewen ME, Oliver CJ, Sluss HK, Miller SJ, Peeper DS. p53-dependent repression of CDK4 translation in TGF-beta-induced G1 cell-cycle arrest. Genes Dev 1995; 9:204-17. [PMID: 7851794 DOI: 10.1101/gad.9.2.204] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transforming growth factor beta 1 (TGF-beta 1) can cause a cell-cycle arrest in G1. Inhibition of cyclin-dependent kinase 4 (cdk4) synthesis plays a significant role in the mechanism by which this cytokine causes G1 growth arrest. Deregulated expression of cdk4 confers resistance to TGF-beta 1. Here, we show that TGF-beta 1 down-regulates cdk4 expression by inhibiting its translation. Moreover, mutant p53 confers resistance to TGF-beta 1 by interfering with the down-regulation of cdk4 in response to the cytokine. In contrast, we demonstrate that wild-type p53 represses the translation of CDK4. Regulation of cdk4 synthesis by both p53 and TGF-beta 1 is mediated by the 5'-untranslated region of the CDK4 message. Thus, regulation of CDK4 translation may be involved in control of G1 progression by p53.
Collapse
Affiliation(s)
- M E Ewen
- Dana-Farber Cancer Institute, Boston Massachusetts
| | | | | | | | | |
Collapse
|
31
|
Abstract
To determine the genomic organization of the mouse cyclin D1 locus (Cyl-1), a series of cosmids and cDNAs were recovered by hybridization with a genomic probe representing the 5' end of the homologous human gene, CCND1. Primer extension indicated that transcripts originate from one of three adjacent nucleotides at a single start site. Two overlapping cDNA clones that essentially accounted for the complete sequence of the larger 4.0-kb Cyl-1 transcript were characterized. A combination of RNase protection and sequencing across intron-exon boundaries established that the gene is organized into five coding exons with a long 3' untranslated region. Repeated attempts to isolate clones corresponding to the minor 3.5-kb RNA were compromised by the presence of an internal poly(A) domain. However, hybridization with specific probes revealed that the minor transcript lacks approximately 800 nucleotides from the 3' end of the major transcript and may be generated by a novel mechanism or by RNA processing.
Collapse
Affiliation(s)
- R Smith
- Imperial Cancer Research Fund Laboratories, London, United Kingdom
| | | | | |
Collapse
|
32
|
Suppression of cyclin-dependent kinase 4 during induced differentiation of erythroleukemia cells. Mol Cell Biol 1994. [PMID: 7935434 DOI: 10.1128/mcb.14.11.7195] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differentiation of murine erythroleukemia cells induced by hexamethylene bisacetamide (HMBA) is associated with accumulation of underphosphorylated retinoblastoma protein (pRB) and an increase in retinoblastoma (RB) gene expression. Here we show that HMBA causes a rapid decrease in the level of cyclin-dependent kinase 4 (cdk4) protein. This decrease results from decreased stability of the protein, while the rate of synthesis of the protein is not affected by HMBA. The decrease in the level of cdk4 protein is followed by suppression of the pRB kinase activity associated with cdk4. Cyclin D3, which can bind and activated cdk4, is increased in HMBA-induced cells and is found in complex with pRB and the transcription factor E2F. In uninduced cells cyclin D3 complexes with pRB and E2F are barely detected. At the later stages of differentiation, MEL cells become arrested in G1 and cdk2 kinase activity is suppressed; this is accompanied by a decrease in the level of cyclin A and cdk2 proteins. Cells transfected with cdk4, which continue to overexpress cdk4 protein during culture with HMBA, are resistant to HMBA-induced differentiation. In contrast, overexpression of cdk2 protein does not inhibit induced differentiation. These findings suggest that suppression of cdk4 is a critical event in the pathway leading to terminal differentiation of erythroleukemia cells.
Collapse
|
33
|
Kiyokawa H, Richon VM, Rifkind RA, Marks PA. Suppression of cyclin-dependent kinase 4 during induced differentiation of erythroleukemia cells. Mol Cell Biol 1994; 14:7195-203. [PMID: 7935434 PMCID: PMC359253 DOI: 10.1128/mcb.14.11.7195-7203.1994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Differentiation of murine erythroleukemia cells induced by hexamethylene bisacetamide (HMBA) is associated with accumulation of underphosphorylated retinoblastoma protein (pRB) and an increase in retinoblastoma (RB) gene expression. Here we show that HMBA causes a rapid decrease in the level of cyclin-dependent kinase 4 (cdk4) protein. This decrease results from decreased stability of the protein, while the rate of synthesis of the protein is not affected by HMBA. The decrease in the level of cdk4 protein is followed by suppression of the pRB kinase activity associated with cdk4. Cyclin D3, which can bind and activated cdk4, is increased in HMBA-induced cells and is found in complex with pRB and the transcription factor E2F. In uninduced cells cyclin D3 complexes with pRB and E2F are barely detected. At the later stages of differentiation, MEL cells become arrested in G1 and cdk2 kinase activity is suppressed; this is accompanied by a decrease in the level of cyclin A and cdk2 proteins. Cells transfected with cdk4, which continue to overexpress cdk4 protein during culture with HMBA, are resistant to HMBA-induced differentiation. In contrast, overexpression of cdk2 protein does not inhibit induced differentiation. These findings suggest that suppression of cdk4 is a critical event in the pathway leading to terminal differentiation of erythroleukemia cells.
Collapse
MESH Headings
- Acetamides/pharmacology
- Amino Acid Sequence
- Animals
- Base Sequence
- CDC2-CDC28 Kinases
- Carrier Proteins
- Cell Cycle Proteins
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Cell Division
- Cyclin D3
- Cyclin-Dependent Kinase 2
- Cyclin-Dependent Kinase 4
- Cyclin-Dependent Kinases
- Cyclins/metabolism
- DNA, Complementary/genetics
- DNA-Binding Proteins
- E2F Transcription Factors
- Enzyme Stability/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Retinoblastoma
- Leukemia, Erythroblastic, Acute/enzymology
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Mice
- Molecular Sequence Data
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins
- Retinoblastoma Protein/metabolism
- Retinoblastoma-Binding Protein 1
- Transcription Factor DP1
- Transcription Factors/metabolism
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/enzymology
- Tumor Cells, Cultured/pathology
Collapse
Affiliation(s)
- H Kiyokawa
- Program of Cell Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | | | | | |
Collapse
|
34
|
Marks PA, Richon VM, Kiyokawa H, Rifkind RA. Inducing differentiation of transformed cells with hybrid polar compounds: a cell cycle-dependent process. Proc Natl Acad Sci U S A 1994; 91:10251-4. [PMID: 7937935 PMCID: PMC44997 DOI: 10.1073/pnas.91.22.10251] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transformed cells do not necessarily lose their capacity to differentiate. Various agents can induce many types of neoplastic cells to terminal differentiation. Among such inducers, a particularly potent group consists of hybrid polar compounds; hexamethylene bisacetamide (HMBA) is the prototype of this group. With virus-transformed murine erythroleukemia cells as a model, HMBA was shown to cause these cells to arrest in G1 phase and express globin genes. This review focuses on HMBA-induced modulation of factors regulating G1-to-S phase progression, including a decrease in the G1 cyclin-dependent kinase cdk4, associated with inhibition of phosphorylation of the retinoblastoma protein pRB and possibly other related proteins that, in turn, sequester factors required for initiation of DNA synthesis; this provides a possible mechanism for HMBA-induced terminal cell division. Evidence that hybrid polar compounds have therapeutic potential for cancer treatment will also be reviewed.
Collapse
Affiliation(s)
- P A Marks
- Program of Cell Biology and Genetics, DeWitt Wallace Research Laboratory, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | | | | | | |
Collapse
|
35
|
Hatakeyama M, Brill JA, Fink GR, Weinberg RA. Collaboration of G1 cyclins in the functional inactivation of the retinoblastoma protein. Genes Dev 1994; 8:1759-71. [PMID: 7958855 DOI: 10.1101/gad.8.15.1759] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The retinoblastoma gene product (pRB) constrains cell proliferation by preventing cell-cycle progression from the G1 to S phase. Its growth-inhibitory effects appear to be reversed by hyperphosphorylation occurring during G1. This process is thought to involve G1 cyclins and cyclin-dependent kinases (cdks). Here we report that the cell cycle-dependent phosphorylation of mammalian pRB is faithfully reproduced when it is expressed in Saccharomyces cerevisiae. As is the case in mammalian cells, this phosphorylation requires an intact oncoprotein-binding domain and is inhibited by a negative growth factor, in this case a mating pheromone. Expression of pRB in cln (-) mutants indicates that specific combinations of endogenous G1 cyclins, Cln3 and either Cln1 or Cln2 are required for pRB hyperphosphorylation in yeast. Moreover, expression of mammalian G1 cyclins in cln (-) yeast cells indicates that the functions of Cln2 and Cln3 in pRB hyperphosphorylation can be complemented by human cyclin E and cyclin D1, respectively. These observations suggest a functional heterogeneity among G1 cyclin-cdk complexes and indicate a need for the involvement of multiple G1 cyclins in promoting pRB hyperphosphorylation and resulting cell-cycle progression.
Collapse
Affiliation(s)
- M Hatakeyama
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | | | | | | |
Collapse
|
36
|
Abstract
The accumulation of assembled holoenzymes composed of regulatory D-type cyclins and their catalytic partner, cyclin-dependent kinase 4 (cdk4), is rate limiting for progression through the G1 phase of the cell cycle in mammalian fibroblasts. Both the synthesis and assembly of D-type cyclins and cdk4 depend upon serum stimulation, but even when both subunits are ectopically overproduced, they do not assemble into complexes in serum-deprived cells. When coexpressed from baculoviral vectors in intact Sf9 insect cells, cdk4 assembles with D-type cyclins to form active protein kinases. In contrast, recombinant D-type cyclin and cdk4 subunits produced in insect cells or in bacteria do not assemble as efficiently into functional holoenzymes when combined in vitro but can be activated in the presence of lysates obtained from proliferating mammalian cells. Assembly of cyclin D-cdk4 complexes in coinfected Sf9 cells facilitates phosphorylation of cdk4 on threonine 172 by a cdk-activating kinase (CAK). Assembly can proceed in the absence of this modification, but cdk4 mutants which cannot be phosphorylated by CAK remain catalytically inactive. Therefore, formation of the cyclin D-cdk4 complex and phosphorylation of the bound catalytic subunit are independently regulated, and in addition to the requirement for CAK activity, serum stimulation is required to promote assembly of the complexes in mammalian cells.
Collapse
|
37
|
Kato JY, Matsuoka M, Strom DK, Sherr CJ. Regulation of cyclin D-dependent kinase 4 (cdk4) by cdk4-activating kinase. Mol Cell Biol 1994; 14:2713-21. [PMID: 8139570 PMCID: PMC358637 DOI: 10.1128/mcb.14.4.2713-2721.1994] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The accumulation of assembled holoenzymes composed of regulatory D-type cyclins and their catalytic partner, cyclin-dependent kinase 4 (cdk4), is rate limiting for progression through the G1 phase of the cell cycle in mammalian fibroblasts. Both the synthesis and assembly of D-type cyclins and cdk4 depend upon serum stimulation, but even when both subunits are ectopically overproduced, they do not assemble into complexes in serum-deprived cells. When coexpressed from baculoviral vectors in intact Sf9 insect cells, cdk4 assembles with D-type cyclins to form active protein kinases. In contrast, recombinant D-type cyclin and cdk4 subunits produced in insect cells or in bacteria do not assemble as efficiently into functional holoenzymes when combined in vitro but can be activated in the presence of lysates obtained from proliferating mammalian cells. Assembly of cyclin D-cdk4 complexes in coinfected Sf9 cells facilitates phosphorylation of cdk4 on threonine 172 by a cdk-activating kinase (CAK). Assembly can proceed in the absence of this modification, but cdk4 mutants which cannot be phosphorylated by CAK remain catalytically inactive. Therefore, formation of the cyclin D-cdk4 complex and phosphorylation of the bound catalytic subunit are independently regulated, and in addition to the requirement for CAK activity, serum stimulation is required to promote assembly of the complexes in mammalian cells.
Collapse
Affiliation(s)
- J Y Kato
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | | | |
Collapse
|
38
|
Abstract
D-type cyclin-dependent kinase activities have not so far been detected in mammalian cells. Lysis of rodent fibroblasts, mouse macrophages, or myeloid cells with Tween 20 followed by precipitation with antibodies to cyclins D1, D2, and D3 or to their major catalytic partner, cyclin-dependent kinase 4 (cdk4), yielded kinase activities in immune complexes which readily phosphorylated the retinoblastoma protein (pRb) but not histone H1 or casein. Virtually all cyclin D1-dependent kinase activity in proliferating macrophages and fibroblasts could be attributed to cdk4. When quiescent cells were stimulated by growth factors to enter the cell cycle, cyclin D1-dependent kinase activity was first detected in mid G1, reached a maximum near the G1/S transition, and remained elevated in proliferating cells. The rate of appearance of kinase activity during G1 phase lagged significantly behind cyclin induction and correlated with the more delayed accumulation of cdk4 and formation of cyclin D1-cdk4 complexes. Thus, cyclin D1-associated kinase activity was not detected during the G0-to-G1 transition, which occurs within the first few hours following growth factor stimulation. Rodent fibroblasts engineered to constitutively overexpress either cyclin D1 alone or cyclin D3 together with cdk4 exhibited greatly elevated cyclin D-dependent kinase activity, which remained absent in quiescent cells but rose to supraphysiologic levels as cells progressed through G1. Therefore, despite continued enforced overproduction of cyclins and cdk4, the assembly of cyclin D-cdk4 complexes and the appearance of their kinase activities remained dependent upon serum stimulation, indicating that upstream regulators must govern formation of the active enzymes.
Collapse
|
39
|
Abstract
A family of vertebrate cdc2-related kinases has been identified, and these kinases are candidates for roles in cell cycle regulation. Here, we show that the human PLSTIRE gene product is a novel cyclin-dependent kinase, cdk6. The cdk6 kinase is associated with cyclins D1, D2, and D3 in lysates of human cells and is activated by coexpression with D-type cyclins in Sf9 insect cells. Furthermore, we demonstrate that endogenous cdk6 from human cell extracts is an active kinase which can phosphorylate pRB, the product of the retinoblastoma tumor suppressor gene. The activation of cdk6 kinase occurs during mid-G1 in phytohemagglutinin-stimulated T cells, well prior to the activation of cdk2 kinase. This timing suggests that cdk6, and by analogy its homolog cdk4, links growth factor stimulation with the onset of cell cycle progression.
Collapse
|
40
|
Abstract
A family of vertebrate cdc2-related kinases has been identified, and these kinases are candidates for roles in cell cycle regulation. Here, we show that the human PLSTIRE gene product is a novel cyclin-dependent kinase, cdk6. The cdk6 kinase is associated with cyclins D1, D2, and D3 in lysates of human cells and is activated by coexpression with D-type cyclins in Sf9 insect cells. Furthermore, we demonstrate that endogenous cdk6 from human cell extracts is an active kinase which can phosphorylate pRB, the product of the retinoblastoma tumor suppressor gene. The activation of cdk6 kinase occurs during mid-G1 in phytohemagglutinin-stimulated T cells, well prior to the activation of cdk2 kinase. This timing suggests that cdk6, and by analogy its homolog cdk4, links growth factor stimulation with the onset of cell cycle progression.
Collapse
Affiliation(s)
- M Meyerson
- Massachusetts General Hospital Cancer Center, Charlestown 02129
| | | |
Collapse
|
41
|
Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ, Kato JY. D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol 1994; 14:2066-76. [PMID: 8114738 PMCID: PMC358567 DOI: 10.1128/mcb.14.3.2066-2076.1994] [Citation(s) in RCA: 344] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
D-type cyclin-dependent kinase activities have not so far been detected in mammalian cells. Lysis of rodent fibroblasts, mouse macrophages, or myeloid cells with Tween 20 followed by precipitation with antibodies to cyclins D1, D2, and D3 or to their major catalytic partner, cyclin-dependent kinase 4 (cdk4), yielded kinase activities in immune complexes which readily phosphorylated the retinoblastoma protein (pRb) but not histone H1 or casein. Virtually all cyclin D1-dependent kinase activity in proliferating macrophages and fibroblasts could be attributed to cdk4. When quiescent cells were stimulated by growth factors to enter the cell cycle, cyclin D1-dependent kinase activity was first detected in mid G1, reached a maximum near the G1/S transition, and remained elevated in proliferating cells. The rate of appearance of kinase activity during G1 phase lagged significantly behind cyclin induction and correlated with the more delayed accumulation of cdk4 and formation of cyclin D1-cdk4 complexes. Thus, cyclin D1-associated kinase activity was not detected during the G0-to-G1 transition, which occurs within the first few hours following growth factor stimulation. Rodent fibroblasts engineered to constitutively overexpress either cyclin D1 alone or cyclin D3 together with cdk4 exhibited greatly elevated cyclin D-dependent kinase activity, which remained absent in quiescent cells but rose to supraphysiologic levels as cells progressed through G1. Therefore, despite continued enforced overproduction of cyclins and cdk4, the assembly of cyclin D-cdk4 complexes and the appearance of their kinase activities remained dependent upon serum stimulation, indicating that upstream regulators must govern formation of the active enzymes.
Collapse
Affiliation(s)
- H Matsushime
- Department of Genetics, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Tumor formation results from alterations in the control of normal cell proliferation. To further our understanding of the molecular mechanisms underlying the deregulation of cell proliferation much attention, over the past decade, has been focused on the function of proto-oncogenes. Cellular oncogenes are thought to be growth promoting. More recently, a class of genes known as tumor suppressors have come under intense study. Tumor suppressors are largely thought to restrain cell proliferation. The retinoblastoma protein (Rb) is one of a growing list of tumor suppressors. Concurrent with the study of tumor suppressor genes has been a rapid increase in our understanding of the cell cycle at the molecular level. Rb and a related protein p107 are involved in the processes of cell proliferation and differentiation. Each functionally interacts with and affects the activity of the transcription factor E2F as well as other transcription factors involved in cell proliferation and differentiation. Additionally, Rb and p107 are modified by, and/or form specific complexes with, several elements of the basic cell cycle machinery. Specifically, Rb and p107 interact with and are modified by various cyclins and cyclin dependent kinases (cdk), some of which have been shown to be essential for cell cycle progression and in some cases their deregulation has been implicated in the development of cancer. This review will attempt to convey our current functional and mechanistic understanding of the biological roles Rb and p107 play in proliferation, development and differentiation. A knowledge of the interplay between these positive and negative regulators of cell proliferation and differentiation, noted above, is central to our understanding of human cancer.
Collapse
Affiliation(s)
- M E Ewen
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
43
|
Richardson HE, O'Keefe LV, Reed SI, Saint R. A Drosophila G1-specific cyclin E homolog exhibits different modes of expression during embryogenesis. Development 1993; 119:673-90. [PMID: 8187637 DOI: 10.1242/dev.119.3.673] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have isolated a Drosophila homolog of the human G1-specific cyclin E gene. Cyclin E proteins thus constitute an evolutionarily conserved subfamily of metazoan cyclins. The Drosophila cyclin E gene, DmcycE, encodes two proteins with a common C-terminal region and unique N-terminal regions. Unlike other Drosophila cyclins, DmcycE exhibits a dynamic pattern of expression during development. DmcycE is supplied maternally, but at the completion of the cleavage divisions and prior to mitosis 14, the maternal transcripts are rapidly degraded in all cells except the pole (germ) cells. Two modes of DmcycE expression are observed in the subsequent divisions. During cycles 14, 15 and 16 in non-neural cells, DmcycE mRNA levels show no cell-cycle-associated variation. DmcycE expression in these cells is therefore independent of the cell cycle phase. In contrast, expression in proliferating embryonic peripheral nervous system cells occurs during interphase as a brief pulse that initiates before and overlaps with S phase, demonstrating the presence of a G1 phase in these embryonic neural cell cycles. DmcycE appears not to be expressed in cells that undergo endoreplication cycles during polytenization. The structural homology to human cyclin E, the ability of DmcycE to rescue a G1 cyclin-deficient yeast strain, the presence of multiple PEST sequences characteristic of G1-specific cyclins and expression during G1 phase in proliferating peripheral nervous system cells all argue that Drosophila cyclin E is a G1 cyclin. Constitutive DmcycE expression in embryonic cycles lacking a G1 phase, in contrast to expression during the G1-S phase transition in cycles exhibiting a G1 phase, implicates DmcycE expression in the regulation of the G1 to S phase transition during Drosophila embryogenesis.
Collapse
Affiliation(s)
- H E Richardson
- Department of Biochemistry, University of Adelaide, Australia
| | | | | | | |
Collapse
|
44
|
Kiyokawa H, Richon VM, Venta-Perez G, Rifkind RA, Marks PA. Hexamethylenebisacetamide-induced erythroleukemia cell differentiation involves modulation of events required for cell cycle progression through G1. Proc Natl Acad Sci U S A 1993; 90:6746-50. [PMID: 8341693 PMCID: PMC47009 DOI: 10.1073/pnas.90.14.6746] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hexamethylenebisacetamide (HMBA), a potent inducer of differentiation of transformed cells such as murine erythroleukemia cells, causes a prolongation of the G1 phase of the cell cycle during which commitment to terminal differentiation is first detected. Removal of HMBA prior to the G1 phase aborts commitment. To further define the relationship between the G1 phase and commitment to differentiation, we used two inhibitors of cell cycle progression: aphidicolin, which blocks cells at the G1/S interphase, and deferoxamine, which blocks cells at an earlier stage during G1. HMBA-induced prolongation of G1 is associated with the accumulation of underphosphorylated retinoblastoma protein, decrease in cyclin A protein levels, and commitment to differentiation. G1 arrest of murine erythroleukemia cells induced by aphidicolin or deferoxamine is not associated with accumulation of under-phosphorylated retinoblastoma protein, suppression of cyclin A protein, or commitment of cells to terminal differentiation. Neither of the cell cycle inhibitors alters the effect of HMBA in inducing the G1-associated changes or commitment to differentiation. Taken together, the present findings indicate that the site of action of HMBA which leads to commitment is in a stage of the G1 phase prior to the point of cell cycle block caused by deferoxamine or aphidicolin. HMBA appears to cause cell differentiation with suppression of cell cycle progression by an action that affects events required for cell progression through G1, including accumulation of underphosphorylated retinoblastoma protein and changes in regulation of cyclin levels.
Collapse
Affiliation(s)
- H Kiyokawa
- Program of Cell Biology and Genetics, DeWitt Wallace Research Laboratory, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | | | | | | |
Collapse
|
45
|
Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 1993; 7:812-21. [PMID: 8491378 DOI: 10.1101/gad.7.5.812] [Citation(s) in RCA: 1226] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A cascade of events is triggered upon the addition of growth factor to quiescent mammalian cells, which ultimately restarts proliferation by inducing the transition from G0/G1 to S-phase. We have studied cyclin D1, a putative G1 cyclin, in normal diploid human fibroblasts. Cyclin D1 accumulated and reached a maximum level before S-phase upon the addition of serum to quiescent cells. The protein was localized to the nucleus, and it disappeared from the nucleus as cells proceeded into S-phase. Microinjection of anti-cyclin D1 antibodies or antisense plasmid prevented cells from entering S-phase, and the kinetics of inhibition showed that cyclin D1 is required at a point in the cell cycle earlier than cyclin A. These results demonstrate that cyclin D1 is a critical target of proliferative signals in G1.
Collapse
Affiliation(s)
- V Baldin
- Differentiation Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
46
|
Won KA, Xiong Y, Beach D, Gilman MZ. Growth-regulated expression of D-type cyclin genes in human diploid fibroblasts. Proc Natl Acad Sci U S A 1992; 89:9910-4. [PMID: 1409718 PMCID: PMC50243 DOI: 10.1073/pnas.89.20.9910] [Citation(s) in RCA: 206] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The human CCND1 cyclin D1/PRAD1 gene was previously identified by a genetic screen for G1 cyclin function in Saccharomyces cerevisiae and also was identified as the putative BCL1 oncogene. However, its role in human cell proliferation is not known. To determine if expression of human D-type cyclin genes correlates with the state of cell growth, we examined the level of mRNAs for CCND1 and a related gene, CCND3, in normal human diploid fibroblasts (HDF). The levels of both mRNAs decrease upon serum depletion or at high cell densities. Following stimulation of quiescent fibroblasts with serum, the mRNA levels increase gradually to a peak at about 12 hr, prior to the onset of S phase. Induction of cyclin gene expression by serum is reduced concomitantly with the decline in FOS induction in aging HDFs, suggesting a possible relationship to the decrease in the proliferative response to mitogens during cellular senescence. Cycloheximide partially blocks the induction of CCND1 and CCND3 gene expression by serum, suggesting that both de novo protein synthesis-dependent and -independent pathways contribute to induction. Treatment of HDFs with defined growth factors suggests a correlation between CCND mRNA induction and DNA synthesis. However, induction of these genes is not sufficient for the transition from quiescence through G1 into S phase.
Collapse
Affiliation(s)
- K A Won
- Cold Spring Harbor Laboratory, NY 11724
| | | | | | | |
Collapse
|
47
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:3257-75. [PMID: 1620629 PMCID: PMC312473 DOI: 10.1093/nar/20.12.3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|