1
|
Seabaugh JA, Anderson DM. Pathogenicity and virulence of Yersinia. Virulence 2024; 15:2316439. [PMID: 38389313 PMCID: PMC10896167 DOI: 10.1080/21505594.2024.2316439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The genus Yersinia includes human, animal, insect, and plant pathogens as well as many symbionts and harmless bacteria. Within this genus are Yersinia enterocolitica and the Yersinia pseudotuberculosis complex, with four human pathogenic species that are highly related at the genomic level including the causative agent of plague, Yersinia pestis. Extensive laboratory, field work, and clinical research have been conducted to understand the underlying pathogenesis and zoonotic transmission of these pathogens. There are presently more than 500 whole genome sequences from which an evolutionary footprint can be developed that details shared and unique virulence properties. Whereas the virulence of Y. pestis now seems in apparent homoeostasis within its flea transmission cycle, substantial evolutionary changes that affect transmission and disease severity continue to ndergo apparent selective pressure within the other Yersiniae that cause intestinal diseases. In this review, we will summarize the present understanding of the virulence and pathogenesis of Yersinia, highlighting shared mechanisms of virulence and the differences that determine the infection niche and disease severity.
Collapse
Affiliation(s)
- Jarett A. Seabaugh
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| |
Collapse
|
2
|
Andrews K, Landeryou T, Sicheritz-Pontén T, Nale JY. Diverse Prophage Elements of Salmonella enterica Serovars Show Potential Roles in Bacterial Pathogenicity. Cells 2024; 13:514. [PMID: 38534358 DOI: 10.3390/cells13060514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Nontyphoidal salmonellosis is an important foodborne and zoonotic infection that causes significant global public health concern. Diverse serovars are multidrug-resistant and encode several virulence indicators; however, little is known on the role prophages play in driving these traits. Here, we extracted prophages from seventy-five Salmonella genomes which represent the fifteen important serovars in the United Kingdom. We analyzed the intact prophages for the presence of virulence genes and established their genomic relationships. We identified 615 prophages from the Salmonella strains, from which 195 prophages are intact, 332 are incomplete, while 88 are questionable. The average prophage carriage was found to be 'extreme' in S. Heidelberg, S. Inverness, and S. Newport (10.2-11.6 prophages/strain), 'high' in S. Infantis, S. Stanley, S. Typhimurium, and S. Virchow (8.2-9.0 prophages/strain), 'moderate' in S. Agona, S. Braenderup, S. Bovismorbificans, S. Choleraesuis, S. Dublin, and S. Java (6.0-7.8 prophages/strain), and 'low' in S. Javiana and S. Enteritidis (5.8 prophages/strain). Cumulatively, 61 virulence genes (1500 gene copies) were detected from representative intact prophages and linked to Salmonella delivery/secretion system (42.62%), adherence (32.7%), magnesium uptake (3.88%), regulation (5%), stress/survival (1.6%), toxins (10%), and antivirulence (1.6%). Diverse clusters were formed among the intact prophages and with bacteriophages of other enterobacteria, suggesting different lineages and associations. Our work provides a strong body of data to support the contributions diverse prophages make to the pathogenicity of Salmonella, including thirteen previously unexplored serovars.
Collapse
Affiliation(s)
- Kirstie Andrews
- Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland's Rural College, Inverness IV2 5NA, UK
| | - Toby Landeryou
- Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland's Rural College, Inverness IV2 5NA, UK
| | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Janet Yakubu Nale
- Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland's Rural College, Inverness IV2 5NA, UK
| |
Collapse
|
3
|
Wu F, Ren F, Xie X, Meng J, Wu X. The implication of viability and pathogenicity by truncated lipopolysaccharide in Yersinia enterocolitica. Appl Microbiol Biotechnol 2023; 107:7165-7180. [PMID: 37728625 DOI: 10.1007/s00253-023-12785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
The fast envelope stress responses play a key role in the transmission and pathogenesis of Yersinia enterocolitica, one of the most common foodborne pathogens. Our previous study showed that deletion of the waaF gene, essential for the biosynthesis of lipopolysaccharide (LPS) core polysaccharides, led to the formation of a truncated LPS structure and induced cell envelope stress. This envelope stress may disturb the intracellular signal transduction, thereby affecting the physiological functions of Y. enterocolitica. In this study, truncated LPS caused by waaF deletion was used as a model of envelope stress in Y. enterocolitica. We investigated the mechanisms of envelope stress responses and the cellular functions affected by truncated LPS. Transcriptome analysis and phenotypic validation showed that LPS truncation reduced flagellar assembly, bacterial chemotaxis, and inositol phosphate metabolism, presenting lower pathogenicity and viability both in vivo and in vitro environments. Further 4D label-free phosphorylation analysis confirmed that truncated LPS perturbed multiple intracellular signal transduction pathways. Specifically, a comprehensive discussion was conducted on the mechanisms by which chemotactic signal transduction and Rcs system contribute to the inhibition of chemotaxis. Finally, the pathogenicity of Y. enterocolitica with truncated LPS was evaluated in vitro using IPEC-J2 cells as models, and it was found that truncated LPS exhibited reduced adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. Our research provides an understanding of LPS in the regulation of Y. enterocolitica viability and pathogenicity and, thus, opening new avenues to develop novel food safety strategies or drugs to prevent and control Y. enterocolitica infections. KEY POINTS: • Truncated LPS reduces flagellar assembly, chemotaxis, and inositol phosphate metabolism in Y. enterocolitica. • Truncated LPS reduces adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. • Truncated LPS regulates intracellular signal transduction of Y. enterocolitica.
Collapse
Affiliation(s)
- Fan Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Fengyun Ren
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jiao Meng
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China.
| | - Xin Wu
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China
| |
Collapse
|
4
|
Böhme K, Heroven AK, Lobedann S, Guo Y, Stolle AS, Dersch P. The Small Protein YmoA Controls the Csr System and Adjusts Expression of Virulence-Relevant Traits of Yersinia pseudotuberculosis. Front Microbiol 2021; 12:706934. [PMID: 34413840 PMCID: PMC8369931 DOI: 10.3389/fmicb.2021.706934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
Virulence gene expression of Yersinia pseudotuberculosis changes during the different stages of infection and this is tightly controlled by environmental cues. In this study, we show that the small protein YmoA, a member of the Hha family, is part of this process. It controls temperature- and nutrient-dependent early and later stage virulence genes in an opposing manner and co-regulates bacterial stress responses and metabolic functions. Our analysis further revealed that YmoA exerts this function by modulating the global post-transcriptional regulatory Csr system. YmoA pre-dominantly enhances the stability of the regulatory RNA CsrC. This involves a stabilizing stem-loop structure within the 5'-region of CsrC. YmoA-mediated CsrC stabilization depends on H-NS, but not on the RNA chaperone Hfq. YmoA-promoted reprogramming of the Csr system has severe consequences for the cell: we found that a mutant deficient of ymoA is strongly reduced in its ability to enter host cells and to disseminate to the Peyer's patches, mesenteric lymph nodes, liver and spleen in mice. We propose a model in which YmoA controls transition from the initial colonization phase in the intestine toward the host defense phase important for the long-term establishment of the infection in underlying tissues.
Collapse
Affiliation(s)
- Katja Böhme
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephanie Lobedann
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Yuzhu Guo
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), Medical Faculty Münster, University of Münster, Münster, Germany
| | - Anne-Sophie Stolle
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), Medical Faculty Münster, University of Münster, Münster, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), Medical Faculty Münster, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Wimmi S, Balinovic A, Jeckel H, Selinger L, Lampaki D, Eisemann E, Meuskens I, Linke D, Drescher K, Endesfelder U, Diepold A. Dynamic relocalization of cytosolic type III secretion system components prevents premature protein secretion at low external pH. Nat Commun 2021; 12:1625. [PMID: 33712575 PMCID: PMC7954860 DOI: 10.1038/s41467-021-21863-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
Many bacterial pathogens use a type III secretion system (T3SS) to manipulate host cells. Protein secretion by the T3SS injectisome is activated upon contact to any host cell, and it has been unclear how premature secretion is prevented during infection. Here we report that in the gastrointestinal pathogens Yersinia enterocolitica and Shigella flexneri, cytosolic injectisome components are temporarily released from the proximal interface of the injectisome at low external pH, preventing protein secretion in acidic environments, such as the stomach. We show that in Yersinia enterocolitica, low external pH is detected in the periplasm and leads to a partial dissociation of the inner membrane injectisome component SctD, which in turn causes the dissociation of the cytosolic T3SS components. This effect is reversed upon restoration of neutral pH, allowing a fast activation of the T3SS at the native target regions within the host. These findings indicate that the cytosolic components form an adaptive regulatory interface, which regulates T3SS activity in response to environmental conditions.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Alexander Balinovic
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hannah Jeckel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Lisa Selinger
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dimitrios Lampaki
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg, Germany
| | - Emma Eisemann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- James Madison University, Harrisonburg, VA, USA
| | - Ina Meuskens
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Ulrike Endesfelder
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
6
|
Lemarignier M, Pizarro-Cerdá J. Autophagy and Intracellular Membrane Trafficking Subversion by Pathogenic Yersinia Species. Biomolecules 2020; 10:E1637. [PMID: 33291818 PMCID: PMC7762052 DOI: 10.3390/biom10121637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Yersinia pseudotuberculosis, Y. enterocolitica and Y. pestis are pathogenic bacteria capable of causing disease in humans by growing extracellularly in lymph nodes and during systemic infections. While the capacity of these bacteria to invade, replicate, and survive within host cells has been known for long, it is only in recent years that their intracellular stages have been explored in more detail. Current evidence suggests that pathogenic Yersinia are capable of activating autophagy in both phagocytic and epithelial cells, subverting autophagosome formation to create a niche supporting bacterial intracellular replication. In this review, we discuss recent results opening novel perspectives to the understanding of intimate host-pathogens interactions taking place during enteric yersiniosis and plague.
Collapse
Affiliation(s)
- Marion Lemarignier
- Yersinia Research Unit, Institut Pasteur, F-75015 Paris, France;
- Université de Paris, Sorbonne Paris Cité, F-75013 Paris, France
| | - Javier Pizarro-Cerdá
- Yersinia Research Unit, Institut Pasteur, F-75015 Paris, France;
- ‘Plague Maintenance, Spread and Evolution’ Pasteur International Unit, F-75015 Paris, France
- ‘Plague and Other Yersinioses’ National Reference Laboratory, F-75015 Paris, France
- WHO Collaborative Centre for Plague FRA-140, F-75015 Paris, France
| |
Collapse
|
7
|
Silver-Polystyrene (Ag/PS) Nanocomposites Doped with Polyvinyl Alcohol (PVA)-Fabrication and Bactericidal Activity. NANOMATERIALS 2020; 10:nano10112245. [PMID: 33198221 PMCID: PMC7697651 DOI: 10.3390/nano10112245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023]
Abstract
In the present work, we report the studies on perfectly homogeneous nanocomposites composed of polystyrene-grafted silver nanoparticles (Ag@PS) as a bioactive fulfilment and a mixture of polystyrene (PS) and polyvinyl alcohol (PVA) as a matrix. The procedure developed by our group of the nanocomposites’ preparation consists of three steps: synthesis of narrow-dispersive AgNPs (5.96 ± 1.02 nm); grafting of narrowly dispersed polystyrene onto the surface of AgNPs; thermoforming with a mixture of PS/PVA. Kirby-Bauer (K-B) and Dynamic Shake Flask (DSF) assays revealed high antibacterial activity against a series of Gram(−) and Gram(+) bacteria strains of the fabricated nanocomposites at low silver content (0.5%). We showed that the doping of Ag/PS composites with PVA increases the antibacterial activity of composites. The hydrophilic component in the nanocomposites enables easier water migration inside the polymer matrix, which makes releasing silver nanoparticles and silver ions to the environment facile.
Collapse
|
8
|
Treatment of Yersinia similis with the cationic lipid DOTAP enhances adhesion to and invasion into intestinal epithelial cells - A proof-of-principle study. Biochem Biophys Res Commun 2020; 525:378-383. [PMID: 32098674 DOI: 10.1016/j.bbrc.2020.02.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/21/2022]
Abstract
The monocationic quaternary surfactant DOTAP has been used for the delivery of nucleic acids and peptides into mammalian cells. This study tested the applicability of DOTAP for the enhancement of adhesion and invasion frequencies of Yersinia (Y.) similis to enable the analysis of the effects of low-pathogenic bacteria on intestinal epithelial cells. Incubation of Y. similis with DOTAP ahead of infection of C2BBe1 intestinal epithelial cells increased invasion and adhesion frequency four- and five-fold, respectively, in plating assays. Proteomic approaches confirmed the increased bacterial load on infected cells: analysis of protein extracts by two-dimensional difference gel electrophoresis (2D-DIGE) revealed higher amounts of bacterial proteins present in the cells infected with DOTAP-treated bacteria. MALDI-TOF mass spectrometry of selected spots from gel-separated protein extracts confirmed the presence of both bacterial and human cell proteins in the samples. Label-free quantitative proteomics analysis identified 1170 human cell proteins and 699 bacterial proteins. Three times more bacterial proteins (279 vs. 93) were detected in C2BBe1 cells infected with DOTAP-treated bacteria compared to infections with untreated bacteria. Infections with DOTAP-treated Y. similis led to a significant upregulation of the stress-inducible ubiquitin-conjugating enzyme UBE2M in C2BBe1 cells. This points towards a stronger impact of the stress and infection responsive transcription factor AP-1 by enhanced bacterial load. DOTAP-treatment of uninfected C2BBe1 cells led to a significant downregulation of the transmembrane trafficking protein TMED10. The application of DOTAP could be helpful for investigating the impact of otherwise low adherent or invasive bacteria on cultivated mammalian cells without utilisation of genetic modifications.
Collapse
|
9
|
Valencia Lopez MJ, Schimmeck H, Gropengießer J, Middendorf L, Quitmann M, Schneider C, Holstermann B, Wacker R, Heussler V, Reimer R, Aepfelbacher M, Ruckdeschel K. Activation of the macroautophagy pathway by Yersinia enterocolitica promotes intracellular multiplication and egress of yersiniae from epithelial cells. Cell Microbiol 2019; 21:e13046. [PMID: 31099152 DOI: 10.1111/cmi.13046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
The virulence strategy of pathogenic Yersinia spp. involves cell-invasive as well as phagocytosis-preventing tactics to enable efficient colonisation of the host organism. Enteropathogenic yersiniae display an invasive phenotype in early infection stages, which facilitates penetration of the intestinal mucosa. Here we show that invasion of epithelial cells by Yersinia enterocolitica is followed by intracellular survival and multiplication of a subset of ingested bacteria. The replicating bacteria were enclosed in vacuoles with autophagy-related characteristics, showing phagophore formation, xenophagy, and recruitment of cytoplasmic autophagosomes to the bacteria-containing compartments. The subsequent fusion of these vacuoles with lysosomes and concomitant vesicle acidification were actively blocked by Yersinia. This resulted in increased intracellular proliferation and detectable egress of yersiniae from infected cells. Notably, deficiency of the core autophagy machinery component FIP200 impaired the development of autophagic features at Yersinia-containing vacuoles as well as intracellular replication and release of bacteria to the extracellular environment. These results suggest that Y. enterocolitica may take advantage of the macroautophagy pathway in epithelial cells to create an autophagosomal niche that supports intracellular bacterial survival, replication, and, eventually, spread of the bacteria from infected cells.
Collapse
Affiliation(s)
- Maria Jose Valencia Lopez
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Hanna Schimmeck
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Julia Gropengießer
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Lukas Middendorf
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Melanie Quitmann
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Carola Schneider
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Barbara Holstermann
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Rahel Wacker
- Institute for Cell Biology, University of Bern, Bern, Switzerland
| | - Volker Heussler
- Institute for Cell Biology, University of Bern, Bern, Switzerland
| | - Rudolph Reimer
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Klaus Ruckdeschel
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Bohn E, Sonnabend M, Klein K, Autenrieth IB. Bacterial adhesion and host cell factors leading to effector protein injection by type III secretion system. Int J Med Microbiol 2019; 309:344-350. [DOI: 10.1016/j.ijmm.2019.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/02/2019] [Accepted: 05/31/2019] [Indexed: 01/14/2023] Open
|
11
|
Meuskens I, Saragliadis A, Leo JC, Linke D. Type V Secretion Systems: An Overview of Passenger Domain Functions. Front Microbiol 2019; 10:1163. [PMID: 31214135 PMCID: PMC6555100 DOI: 10.3389/fmicb.2019.01163] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria secrete proteins for different purposes such as communication, virulence functions, adhesion to surfaces, nutrient acquisition, or growth inhibition of competing bacteria. For secretion of proteins, Gram-negative bacteria have evolved different secretion systems, classified as secretion systems I through IX to date. While some of these systems consist of multiple proteins building a complex spanning the cell envelope, the type V secretion system, the subject of this review, is rather minimal. Proteins of the Type V secretion system are often called autotransporters (ATs). In the simplest case, a type V secretion system consists of only one polypeptide chain with a β-barrel translocator domain in the membrane, and an extracellular passenger or effector region. Depending on the exact domain architecture of the protein, type V secretion systems can be further separated into sub-groups termed type Va through e, and possibly another recently identified subtype termed Vf. While this classification works well when it comes to the architecture of the proteins, this is not the case for the function(s) of the secreted passenger. In this review, we will give an overview of the functions of the passengers of the different AT classes, shedding more light on the variety of functions carried out by type V secretion systems.
Collapse
Affiliation(s)
| | | | | | - Dirk Linke
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Ahmad S, Raza S, Qurat-ul-Ain, Uddin R, Rungrotmongkol T, Azam SS. From phylogeny to protein dynamics: A computational hierarchical quest for potent drug identification against an emerging enteropathogen “Yersinia enterocolitica”. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Detection, virulence and antimicrobial resistance of Yersinia enterocolitica in bulk tank milk in Italy. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Yersinia pseudotuberculosis Prevalence and Diversity in Wild Boars in Northeast Germany. Appl Environ Microbiol 2018; 84:AEM.00675-18. [PMID: 29980552 DOI: 10.1128/aem.00675-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
In this study, the prevalence of Yersinia pseudotuberculosis in wild boars in northeast Germany was determined. For that purpose, the tonsils of 503 wild boars were sampled. The presence of Y. pseudotuberculosis was studied by diagnostic PCR. Positive samples were analyzed by cultural detection using a modified cold enrichment protocol. Ten Y. pseudotuberculosis isolates were obtained, which were characterized by biotyping, molecular serotyping, and multilocus sequence typing (MLST). In addition, whole-genome sequences and the antimicrobial susceptibility of the isolates were analyzed. Yersinia pseudotuberculosis was isolated from male and female animals, most of which were younger than 1 year. A prevalence of 2% (10/503) was determined by cultural detection, while 6.4% (32/503) of the animals were positive by PCR. The isolates belonged to the biotypes 1 and 2 and serotypes O:1a (n = 7), O:1b (n = 2), and O:4a (n = 1). MLST analysis revealed three sequence types, ST9, ST23, and ST42. Except one isolate, all isolates revealed a strong resistance to colistin. The relationship of the isolates was studied by whole-genome sequencing demonstrating that they belonged to four clades, exhibiting five different pulsed-field gel electrophoresis (PFGE) restriction patterns and a diverse composition of virulence genes. Six isolates harbored the virulence plasmid pYV. Besides two isolates, all isolates contained ail and inv genes and a complete or incomplete high-pathogenicity island (HPI). None of them possessed a gene for the superantigen YPM. The study shows that various Y. pseudotuberculosis strains exist in wild boars in northeast Germany, which may pose a risk to humans.IMPORTANCEYersinia pseudotuberculosis is a foodborne pathogen whose occurrence is poorly understood. One reason for this situation is the difficulty in isolating the species. The methods developed for the isolation of Yersinia enterocolitica are not well suited for Y. pseudotuberculosis We therefore designed a protocol which enabled the isolation of Y. pseudotuberculosis from a relatively high proportion of PCR-positive wild boar tonsils. The study indicates that wild boars in northeast Germany may carry a variety of Y. pseudotuberculosis strains, which differ in terms of their pathogenic potential and other properties. Since wild boars are widely distributed in German forests and even populate cities such as Berlin, they may transmit yersiniae to other animals and crop plants and may thus cause human infections through the consumption of contaminated food. Therefore, the prevalence of Y. pseudotuberculosis should be determined also in other animals and regions to learn more about the natural reservoir of this species.
Collapse
|
15
|
Horne S, Schroeder M, Murphy J, Prüβ B. Acetoacetate and ethyl acetoacetate as novel inhibitors of bacterial biofilm. Lett Appl Microbiol 2018; 66:329-339. [DOI: 10.1111/lam.12852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/20/2022]
Affiliation(s)
- S.M. Horne
- Department of Microbiological Sciences North Dakota State University Fargo ND USA
| | - M. Schroeder
- Department of Microbiological Sciences North Dakota State University Fargo ND USA
| | - J. Murphy
- Department of Microbiological Sciences North Dakota State University Fargo ND USA
| | - B.M. Prüβ
- Department of Microbiological Sciences North Dakota State University Fargo ND USA
| |
Collapse
|
16
|
|
17
|
Chan BK, Brown K, Kortright KE, Mao S, Turner PE. Extending the lifetime of antibiotics: how can phage therapy help? Future Microbiol 2016; 11:1105-7. [DOI: 10.2217/fmb-2016-0133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Benjamin K Chan
- Department of Ecology & Evolutionary Biology, Yale University, 165 Prospect St, PO Box 208106, New Haven, CT 06520, USA
| | - Kevin Brown
- Department of Ecology & Evolutionary Biology, Yale University, 165 Prospect St, PO Box 208106, New Haven, CT 06520, USA
| | - Kaitlyn E Kortright
- Department of Ecology & Evolutionary Biology, Yale University, 165 Prospect St, PO Box 208106, New Haven, CT 06520, USA
| | - Stephanie Mao
- Department of Ecology & Evolutionary Biology, Yale University, 165 Prospect St, PO Box 208106, New Haven, CT 06520, USA
| | - Paul E Turner
- Department of Ecology & Evolutionary Biology, Yale University, 165 Prospect St, PO Box 208106, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia. Semin Cell Dev Biol 2016; 60:155-167. [PMID: 27448494 PMCID: PMC7082150 DOI: 10.1016/j.semcdb.2016.07.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023]
Abstract
Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes.
Collapse
|
19
|
McNally A, Thomson NR, Reuter S, Wren BW. 'Add, stir and reduce': Yersinia spp. as model bacteria for pathogen evolution. Nat Rev Microbiol 2016; 14:177-90. [PMID: 26876035 DOI: 10.1038/nrmicro.2015.29] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pathogenic species in the Yersinia genus have historically been targets for research aimed at understanding how bacteria evolve into mammalian pathogens. The advent of large-scale population genomic studies has greatly accelerated the progress in this field, and Yersinia pestis, Yersinia pseudotuberculosis and Yersinia enterocolitica have once again acted as model organisms to help shape our understanding of the evolutionary processes involved in pathogenesis. In this Review, we highlight the gene gain, gene loss and genome rearrangement events that have been identified by genomic studies in pathogenic Yersinia species, and we discuss how these findings are changing our understanding of pathogen evolution. Finally, as these traits are also found in the genomes of other species in the Enterobacteriaceae, we suggest that they provide a blueprint for the evolution of enteropathogenic bacteria.
Collapse
Affiliation(s)
- Alan McNally
- Pathogen Research Group, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Nicholas R Thomson
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Sandra Reuter
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
20
|
Role of Host Type IA Phosphoinositide 3-Kinase Pathway Components in Invasin-Mediated Internalization of Yersinia enterocolitica. Infect Immun 2016; 84:1826-1841. [PMID: 27068087 DOI: 10.1128/iai.00142-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/03/2016] [Indexed: 02/07/2023] Open
Abstract
Many bacterial pathogens subvert mammalian type IA phosphoinositide 3-kinase (PI3K) in order to induce their internalization into host cells. How PI3K promotes internalization is not well understood. Also unclear is whether type IA PI3K affects different pathogens through similar or distinct mechanisms. Here, we performed an RNA interference (RNAi)-based screen to identify components of the type IA PI3K pathway involved in invasin-mediated entry of Yersinia enterocolitica, an enteropathogen that causes enteritis and lymphadenitis. The 69 genes targeted encode known upstream regulators or downstream effectors of PI3K. A similar RNAi screen was previously performed with the food-borne bacterium Listeria monocytogenes The results of the screen with Y. enterocolitica indicate that at least nine members of the PI3K pathway are needed for invasin-mediated entry. Several of these proteins, including centaurin-α1, Dock180, focal adhesion kinase (FAK), Grp1, LL5α, LL5β, and PLD2 (phospholipase D2), were recruited to sites of entry. In addition, centaurin-α1, FAK, PLD2, and mTOR were required for remodeling of the actin cytoskeleton during entry. Six of the human proteins affecting invasin-dependent internalization also promote InlB-mediated entry of L. monocytogenes Our results identify several host proteins that mediate invasin-induced effects on the actin cytoskeleton and indicate that a subset of PI3K pathway components promote internalization of both Y. enterocolitica and L. monocytogenes.
Collapse
|
21
|
Mononuclear phagocytes contribute to intestinal invasion and dissemination of Yersinia enterocolitica. Int J Med Microbiol 2016; 306:357-66. [PMID: 27107739 DOI: 10.1016/j.ijmm.2016.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/30/2022] Open
Abstract
Enteropathogenic Yersinia enterocolitica (Ye) enters the host via contaminated food. After colonisation of the small intestine Ye invades the Peyer's patches (PPs) via M cells and disseminates to the mesenteric lymph nodes (MLNs), spleen and liver. Whether Ye uses other invasion routes and which pathogenicity factors are required remains elusive. Oral infection of lymphotoxin-β-receptor deficient mice lacking PPs and MLNs with Ye revealed similar bacterial load in the spleen 1h post infection as wild-type mice, demonstrating a PP-independent dissemination route for Ye. Immunohistological analysis of the small intestine revealed Ye in close contact with mononuclear phagocytes (MPs), specifically CX3CR1(+) monocyte-derived cells (MCs) as well as CD103(+) dendritic cells (DCs). This finding was confirmed by flow cytometry and imaging flow cytometry analysis of lamina propria (LP) leukocytes showing CD103(+) DCs and MCs with intracellular Ye. Uptake of Ye by LP CD103(+) DCs and MCs was dependent on the pathogenicity factor invasin, whereas the adhesin YadA was dispensable as demonstrated by Ye deletion mutants. Furthermore, Ye were found exclusively associated with CD103(+) DCs in the MLNs from wild-type mice, but not from CCR7(-/-) mice, demonstrating a CCR7 dependent transport of Ye by CD103(+) DCs from LP to the MLNs. In contrast, dissemination of Ye to the spleen was dependent on MCs as significantly less Ye could be recovered from the spleen of CX3CR1(GFP/GFP) mice compared to wild-type mice. Altogether, MCs and CD103(+) DCs contribute to immediate invasion and dissemination of Ye. This together with data from other bacteria suggests MPs as general pathogenic entry site in the intestine.
Collapse
|
22
|
Kenngott EE, Kiefer R, Schneider-Daum N, Hamann A, Schneider M, Schmitt MJ, Breinig F. Surface-modified yeast cells: A novel eukaryotic carrier for oral application. J Control Release 2016; 224:1-7. [DOI: 10.1016/j.jconrel.2015.12.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 12/11/2022]
|
23
|
Nieckarz M, Raczkowska A, Dębski J, Kistowski M, Dadlez M, Heesemann J, Rossier O, Brzostek K. Impact of OmpR on the membrane proteome of Yersinia enterocolitica in different environments: repression of major adhesin YadA and heme receptor HemR. Environ Microbiol 2016; 18:997-1021. [PMID: 26627632 DOI: 10.1111/1462-2920.13165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 01/22/2023]
Abstract
Enteropathogenic Yersinia enterocolitica is able to grow within or outside the mammalian host. Previous transcriptomic studies have indicated that the regulator OmpR plays a role in the expression of hundreds of genes in enterobacteria. Here, we have examined the impact of OmpR on the production of Y. enterocolitica membrane proteins upon changes in temperature, osmolarity and pH. Proteomic analysis indicated that the loss of OmpR affects the production of 120 proteins, a third of which are involved in uptake/transport, including several that participate in iron or heme acquisition. A set of proteins associated with virulence was also affected. The influence of OmpR on the abundance of adhesin YadA and heme receptor HemR was examined in more detail. OmpR was found to repress YadA production and bind to the yadA promoter, suggesting a direct regulatory effect. In contrast, the repression of hemR expression by OmpR appears to be indirect. These findings provide new insights into the role of OmpR in remodelling the cell surface and the adaptation of Y. enterocolitica to different environmental niches, including the host.
Collapse
Affiliation(s)
- Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Janusz Dębski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Kistowski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Dadlez
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, Warsaw, 02-106, Poland.,Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Jürgen Heesemann
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Ombeline Rossier
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
24
|
Role of β1 integrins and bacterial adhesins for Yop injection into leukocytes in Yersinia enterocolitica systemic mouse infection. Int J Med Microbiol 2015; 306:77-88. [PMID: 26718660 DOI: 10.1016/j.ijmm.2015.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/19/2015] [Accepted: 12/13/2015] [Indexed: 11/22/2022] Open
Abstract
Injection of Yersinia outer proteins (Yops) into host cells by a type III secretion system is an important immune evasion mechanism of Yersinia enterocolitica (Ye). In this process Ye invasin (Inv) binds directly while Yersinia adhesin A (YadA) binds indirectly via extracellular matrix (ECM) proteins to β1 integrins on host cells. Although leukocytes turned out to be an important target of Yop injection by Ye, it was unclear which Ye adhesins and which leukocyte receptors are required for Yop injection. To explain this, we investigated the role of YadA, Inv and β1 integrins for Yop injection into leukocytes and their impact on the course of systemic Ye infection in mice. Ex vivo infection experiments revealed that adhesion of Ye via Inv or YadA is sufficient to promote Yop injection into leukocytes as revealed by a β-lactamase reporter assay. Serum factors inhibit YadA- but not Inv-mediated Yop injection into B and T cells, shifting YadA-mediated Yop injection in the direction of neutrophils and other myeloid cells. Systemic Ye mouse infection experiments demonstrated that YadA is essential for Ye virulence and Yop injection into leukocytes, while Inv is dispensable for virulence and plays only a transient and minor role for Yop injection in the early phase of infection. Ye infection of mice with β1 integrin-depleted leukocytes demonstrated that β1 integrins are dispensable for YadA-mediated Yop injection into leukocytes, but contribute to Inv-mediated Yop injection. Despite reduced Yop injection into leukocytes, β1 integrin-deficient mice exhibited an increased susceptibility for Ye infection, suggesting an important role of β1 integrins in immune defense against Ye. This study demonstrates that Yop injection into leukocytes by Ye is largely mediated by YadA exploiting, as yet unknown, leukocyte receptors.
Collapse
|
25
|
Wang B, Li B, Liang Y, Li J, Gao L, Chen L, Duan K, Shen L. Pleiotropic effects of temperature-regulated 2-OH-lauroytransferase (PA0011) on Pseudomonas aeruginosa antibiotic resistance, virulence and type III secretion system. Microb Pathog 2015; 91:5-17. [PMID: 26596709 DOI: 10.1016/j.micpath.2015.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/24/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
Abstract
Pseudomonas aeruginosa is an important human pathogen which adapts to changing environment, such as temperature variations and entering host by regulating their gene expression. Here, we report that gene PA0011 in P. aeruginosa PAO1, which encodes a 2-OH-lauroytransferase participating in lipid A biosynthesis, is involved in carbapenem resistance and virulence in a temperature-regulated manner in PAO1. The expression of PA0011 was higher at an environment temperature (21 °C) than that at a body temperature (37 °C). The inactivation of PA0011 rendered increased antibiotic susceptibility and decreased virulence both in vivo and in vitro. The impaired integrity and the decreased stability of the outer membrane were the cause of the increased susceptibility of PAO1(Δ0011) to carbapenem and many other common antibiotics. The reduced endotoxic activity of lipopolysaccharide (LPS) contributed to the decreased virulence both at 21 °C and 37 °C in PAO1 (Δ0011). In addition, we have found that PA0011 repressed the expression of TTSS virulence factors both at transcriptional and translational levels, similar to the effect of O antigen of LPS but unlike any effect of its homologue reported in other bacteria. The effect of PA0011 on resistance to many antibiotics including carbapenem and virulence in P. aeruginosa makes it a target for novel antimicrobial therapies.
Collapse
Affiliation(s)
- Bobo Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Bo Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ying Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jing Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Lang Gao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Lin Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Kangmin Duan
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China; Department of Oral Biology; Department of Medical Microbiology, University of Manitoba, 780 Bannatyne Ave., Winnipeg, MB, R3E 0W2, Canada.
| | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
26
|
Yersinia enterocolitica Isolates from Wild Boars Hunted in Lower Saxony, Germany. Appl Environ Microbiol 2015; 81:4835-40. [PMID: 25956779 DOI: 10.1128/aem.00550-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/05/2015] [Indexed: 11/20/2022] Open
Abstract
Yersiniosis is strongly associated with the consumption of pork contaminated with enteropathogenic Yersinia enterocolitica, which is harbored by domestic pigs without showing clinical signs of disease. In contrast to data on Y. enterocolitica isolated from conventionally reared swine, investigations into the occurrence of Y. enterocolitica in wild boars in Germany are rare. The objectives of the study were to get knowledge about these bacteria and their occurrence in wild boars hunted in northern Germany by isolation of the bacteria from the tonsils, identification of the bioserotypes, determination of selected virulence factors, macrorestriction analysis, multilocus sequence typing (MLST), and testing of antimicrobial susceptibility. Altogether, tonsils from 17.1% of 111 tested wild boars were positive for Y. enterocolitica by culture methods. All but two isolates belonged to biotype (BT) 1A, with the majority of isolates bearing a ystB nucleotide sequence which was revealed to have 85% identity to internal regions of Y. enterocolitica heat-stable enterotoxin type B genes. The remaining Y. enterocolitica isolates were identified to be BT 1B and did not carry the virulence plasmid. However, two BT 1A isolates carried the ail gene. Macrorestriction analysis and results from MLST showed a high degree of genetic diversity of the isolates, although the region where the samples were taken was restricted to Lower Saxony, Germany, and wild boars were shot during one hunting season. In conclusion, most Y. enterocolitica isolates from wild boars investigated in this study belonged to biotype 1A. Enteropathogenic Y. enterocolitica bioserotypes 4/O:3 and 2/O:9, usually harbored by commercially raised pigs in Europe, could not be identified.
Collapse
|
27
|
Schneeberger M, Brodard I, Overesch G. Virulence-associated gene pattern of porcine and human Yersinia enterocolitica biotype 4 isolates. Int J Food Microbiol 2015; 198:70-4. [DOI: 10.1016/j.ijfoodmicro.2014.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
|
28
|
Keller B, Mühlenkamp M, Deuschle E, Siegfried A, Mössner S, Schade J, Griesinger T, Katava N, Braunsdorf C, Fehrenbacher B, Jiménez‐Soto LF, Schaller M, Haas R, Genth H, Retta SF, Meyer H, Böttcher RT, Zent R, Schütz M, Autenrieth IB, Bohn E. Yersinia enterocolitica
exploits different pathways to accomplish adhesion and toxin injection into host cells. Cell Microbiol 2015; 17:1179-204. [DOI: 10.1111/cmi.12429] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Birgit Keller
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Melanie Mühlenkamp
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Eva Deuschle
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Alexandra Siegfried
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Sara Mössner
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Jessica Schade
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Tanja Griesinger
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Nenad Katava
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | | | | | | | - Martin Schaller
- Department of Dermatology Eberhard Karls University Tübingen Germany
| | - Rainer Haas
- Max von Pettenkofer‐Institut Ludwig‐Maximilians University Munich Germany
| | - Harald Genth
- Institute of Toxicology Medical School Hannover Hannover Germany
| | - Saverio F. Retta
- Department of Clinical and Biological Sciences University of Torino Orbassano Italy
| | - Hannelore Meyer
- Max Planck Institut für Biochemie Martinsried Germany
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene Technische Universität München Germany
| | | | - Roy Zent
- Department of Medicine (Division of Nephrology) Vanderbilt University Medical Center Nashville TN USA
| | - Monika Schütz
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
- Department of Medicine (Division of Nephrology) Vanderbilt University Medical Center Nashville TN USA
| | - Ingo B. Autenrieth
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
- German Centre of Infection Research (DZIF) Partner Site Tübingen Germany
| | - Erwin Bohn
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| |
Collapse
|
29
|
Valentin-Weigand P, Heesemann J, Dersch P. Unique virulence properties of Yersinia enterocolitica O:3 – An emerging zoonotic pathogen using pigs as preferred reservoir host. Int J Med Microbiol 2014; 304:824-34. [DOI: 10.1016/j.ijmm.2014.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
30
|
|
31
|
Dhar MS, Virdi JS. Strategies used by Yersinia enterocolitica to evade killing by the host: thinking beyond Yops. Microbes Infect 2014; 16:87-95. [DOI: 10.1016/j.micinf.2013.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/04/2013] [Accepted: 11/05/2013] [Indexed: 02/07/2023]
|
32
|
Kakoschke T, Kakoschke S, Magistro G, Schubert S, Borath M, Heesemann J, Rossier O. The RNA chaperone Hfq impacts growth, metabolism and production of virulence factors in Yersinia enterocolitica. PLoS One 2014; 9:e86113. [PMID: 24454955 PMCID: PMC3893282 DOI: 10.1371/journal.pone.0086113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/05/2013] [Indexed: 11/18/2022] Open
Abstract
To adapt to changes in environmental conditions, bacteria regulate their gene expression at the transcriptional but also at the post-transcriptional level, e.g. by small RNAs (sRNAs) which modulate mRNA stability and translation. The conserved RNA chaperone Hfq mediates the interaction of many sRNAs with their target mRNAs, thereby playing a global role in fine-tuning protein production. In this study, we investigated the significance of Hfq for the enteropathogen Yersina enterocolitica serotype O:8. Hfq facilitated optimal growth in complex and minimal media. Our comparative protein analysis of parental and hfq-negative strains suggested that Hfq promotes lipid metabolism and transport, cell redox homeostasis, mRNA translation and ATP synthesis, and negatively affects carbon and nitrogen metabolism, transport of siderophore and peptides and tRNA synthesis. Accordingly, biochemical tests indicated that Hfq represses ornithine decarboxylase activity, indole production and utilization of glucose, mannitol, inositol and 1,2-propanediol. Moreover, Hfq repressed production of the siderophore yersiniabactin and its outer membrane receptor FyuA. In contrast, hfq mutants exhibited reduced urease production. Finally, strains lacking hfq were more susceptible to acidic pH and oxidative stress. Unlike previous reports in other Gram-negative bacteria, Hfq was dispensable for type III secretion encoded by the virulence plasmid. Using a chromosomally encoded FLAG-tagged Hfq, we observed increased production of Hfq-FLAG in late exponential and stationary phases. Overall, Hfq has a profound effect on metabolism, resistance to stress and modulates the production of two virulence factors in Y. enterocolitica, namely urease and yersiniabactin.
Collapse
Affiliation(s)
- Tamara Kakoschke
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Sara Kakoschke
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Giuseppe Magistro
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Sören Schubert
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Marc Borath
- Protein Analysis Unit, Adolf-Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Ombeline Rossier
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
- * E-mail:
| |
Collapse
|
33
|
Essential role of invasin for colonization and persistence of Yersinia enterocolitica in its natural reservoir host, the pig. Infect Immun 2013; 82:960-9. [PMID: 24343656 DOI: 10.1128/iai.01001-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, an oral minipig infection model was established to investigate the pathogenicity of Yersinia enterocolitica bioserotype 4/O:3. O:3 strains are highly prevalent in pigs, which are usually symptomless carriers, and they represent the most common cause of human yersiniosis. To assess the pathogenic potential of the O:3 serotype, we compared the colonization properties of Y. enterocolitica O:3 with O:8, a highly mouse-virulent Y. enterocolitica serotype, in minipigs and mice. We found that O:3 is a significantly better colonizer of swine than is O:8. Coinfection studies with O:3 mutant strains demonstrated that small variations within the O:3 genome leading to higher amounts of the primary adhesion factor invasin (InvA) improved colonization and/or survival of this serotype in swine but had only a minor effect on the colonization of mice. We further demonstrated that a deletion of the invA gene abolished long-term colonization in the pigs. Our results indicate a primary role for invasin in naturally occurring Y. enterocolitica O:3 infections in pigs and reveal a higher adaptation of O:3 than O:8 strains to their natural pig reservoir host.
Collapse
|
34
|
Human and animal isolates of Yersinia enterocolitica show significant serotype-specific colonization and host-specific immune defense properties. Infect Immun 2013; 81:4013-25. [PMID: 23959720 DOI: 10.1128/iai.00572-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Yersinia enterocolitica is a human pathogen that is ubiquitous in livestock, especially pigs. The bacteria are able to colonize the intestinal tract of a variety of mammalian hosts, but the severity of induced gut-associated diseases (yersiniosis) differs significantly between hosts. To gain more information about the individual virulence determinants that contribute to colonization and induction of immune responses in different hosts, we analyzed and compared the interactions of different human- and animal-derived isolates of serotypes O:3, O:5,27, O:8, and O:9 with murine, porcine, and human intestinal cells and macrophages. The examined strains exhibited significant serotype-specific cell binding and entry characteristics, but adhesion and uptake into different host cells were not host specific and were independent of the source of the isolate. In contrast, survival and replication within macrophages and the induced proinflammatory response differed between murine, porcine, and human macrophages, suggesting a host-specific immune response. In fact, similar levels of the proinflammatory cytokine macrophage inflammatory protein 2 (MIP-2) were secreted by murine bone marrow-derived macrophages with all tested isolates, but the equivalent interleukin-8 (IL-8) response of porcine bone marrow-derived macrophages was strongly serotype specific and considerably lower in O:3 than in O:8 strains. In addition, all tested Y. enterocolitica strains caused a considerably higher level of secretion of the anti-inflammatory cytokine IL-10 by porcine than by murine macrophages. This could contribute to limiting the severity of the infection (in particular of serotype O:3 strains) in pigs, which are the primary reservoir of Y. enterocolitica strains pathogenic to humans.
Collapse
|
35
|
Demarcating SurA activities required for outer membrane targeting of Yersinia pseudotuberculosis adhesins. Infect Immun 2013; 81:2296-308. [PMID: 23589578 DOI: 10.1128/iai.01208-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
SurA is a periplasmic protein folding factor involved in chaperoning and trafficking of outer membrane proteins across the Gram-negative bacterial periplasm. In addition, SurA also possesses peptidyl-prolyl cis/trans isomerase activity. We have previously reported that in enteropathogenic Yersinia pseudotuberculosis, SurA is needed for bacterial virulence and envelope integrity. In this study, we investigated the role of SurA in the assembly of important Yersinia adhesins. Using genetic mutation, biochemical characterization, and an in vitro-based bacterial host cell association assay, we confirmed that surface localization of the invasin adhesin is dependent on SurA. As a surA deletion also has some impact on the levels of individual components of the BAM complex in the Yersinia outer membrane, abolished invasin surface assembly could reflect both a direct loss of SurA-dependent periplasmic targeting and a potentially compromised BAM complex assembly platform in the outer membrane. To various degrees, the assembly of two other adhesins, Ail and the pH 6 antigen fibrillum PsaA, also depends on SurA. Consequently, loss of SurA leads to a dramatic reduction in Yersinia attachment to eukaryotic host cells. Genetic complementation of surA deletion mutants indicated a prominent role for SurA chaperone function in outer membrane protein assembly. Significantly, the N terminus of SurA contributed most of this SurA chaperone function. Despite a dominant chaperoning role, it was also evident that SurA isomerization activity did make a modest contribution to this assembly process.
Collapse
|
36
|
Mikula KM, Kolodziejczyk R, Goldman A. Yersinia infection tools-characterization of structure and function of adhesins. Front Cell Infect Microbiol 2013; 2:169. [PMID: 23316485 PMCID: PMC3539135 DOI: 10.3389/fcimb.2012.00169] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/13/2012] [Indexed: 12/16/2022] Open
Abstract
Among the seventeen species of the Gram-negative genus Yersinia, three have been shown to be virulent and pathogenic to humans and animals-Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis. In order to be so, they are armoured with various factors that help them adhere to tissues and organelles, cross the cellular barrier and escape the immune system during host invasion. The group of proteins that mediate pathogen-host interactions constitute adhesins. Invasin, Ail, YadA, YadB, YadC, Pla, and pH 6 antigen belong to the most prominent and best-known Yersinia adhesins. They act at different times and stages of infection complementing each other by their ability to bind a variety of host molecules such as collagen, fibronectin, laminin, β1 integrins, and complement regulators. All the proteins are anchored in the bacterial outer membrane (OM), often forming rod-like or fimbrial-like structures that protrude to the extracellular milieu. Structural studies have shown that the anchor region forms a β-barrel composed of 8, 10, or 12 antiparallel β-strands. Depending on the protein, the extracellular part can be composed of several domains belonging to the immunoglobulin fold superfamily, or form a coiled-coil structure with globular head domain at the end, or just constitute several loops connecting individual β-strands in the β-barrel. Those extracellular regions define the activity of each adhesin. This review focuses on the structure and function of these important molecules, and their role in pathogenesis.
Collapse
Affiliation(s)
- Kornelia M Mikula
- Macromolecular X-Ray Crystallography Group, Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki Helsinki, Finland ; The National Doctoral Program in Informational and Structural Biology, Åbo Academy Turku, Finland
| | | | | |
Collapse
|
37
|
Brzóstkowska M, Raczkowska A, Brzostek K. OmpR, a response regulator of the two-component signal transduction pathway, influences inv gene expression in Yersinia enterocolitica O9. Front Cell Infect Microbiol 2012; 2:153. [PMID: 23264953 PMCID: PMC3524506 DOI: 10.3389/fcimb.2012.00153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/19/2012] [Indexed: 11/13/2022] Open
Abstract
The environmental control of invasin (inv) expression in Yersinia enterocolitica is mediated by a regulatory network composed of negative and positive regulators of inv gene transcription. Previously, we demonstrated that OmpR, a response regulator of the two-component signal transduction pathway EnvZ/OmpR, negatively regulates inv gene expression in Y. enterocolitica O9 by direct interaction with the inv promoter region. This study was undertaken to clarify the role of OmpR in the inv regulatory circuit in which RovA protein has been shown to positively regulate inv transcription. Using ompR, rovA, and ompR rovA Y. enterocolitica mutant backgrounds we showed that the inhibitory effect of OmpR on inv transcription may be observed only when RovA is present/active in Y. enterocolitica cells. To extend our research on inv regulation we examined the effect of OmpR on rovA gene expression. Analysis of rovA-lacZ transcriptional fusion in Y. enterocolitica wild-type and ompR background indicated that OmpR does not influence rovA expression. Thus, our results indicate that OmpR influences inv expression directly via binding to the inv promoter, but not through modulation of rovA expression.
Collapse
Affiliation(s)
- Marta Brzóstkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | | | | |
Collapse
|
38
|
Reinés M, Llobet E, Dahlström KM, Pérez-Gutiérrez C, Llompart CM, Torrecabota N, Salminen TA, Bengoechea JA. Deciphering the acylation pattern of Yersinia enterocolitica lipid A. PLoS Pathog 2012; 8:e1002978. [PMID: 23133372 PMCID: PMC3486919 DOI: 10.1371/journal.ppat.1002978] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/05/2012] [Indexed: 12/20/2022] Open
Abstract
Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS) lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3′-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo2-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV)-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the reduced activation of the LPS receptor by a LpxR-dependent deacylated LPS. Lipopolysaccharide (LPS) is one of the major surface components of Gram-negative bacteria. The LPS contains a molecular pattern recognized by the innate immune system. Not surprisingly, the modification of the LPS pattern is a virulence strategy of several pathogens to evade the innate immune system. Yersinia enterocolitica causes food-borne infections in animals and humans (yersiniosis). Temperature regulates most, if not all, virulence factors of yersiniae including the structure of the LPS lipid A. At 21°C, lipid A is mainly hexa-acylated and may be modified with aminoarabinose or palmitate. In contrast, at 37°C, Y. enterocolitica expresses a unique tetra-acylated lipid A. In this work, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure expressed by the pathogen at 37°C, the host temperature. Our findings also revealed that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by a Yersinia protein translocated into the cytosol of macrophages and the reduced activation of the LPS receptor complex due to the expression of a LpxR-dependent deacylated LPS.
Collapse
Affiliation(s)
- Mar Reinés
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Llobet
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
| | - Käthe M. Dahlström
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Camino Pérez-Gutiérrez
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
| | - Catalina M. Llompart
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
| | - Nuria Torrecabota
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
| | - Tiina A. Salminen
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - José A. Bengoechea
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
39
|
Molecular basis of Yersinia enterocolitica temperature-dependent resistance to antimicrobial peptides. J Bacteriol 2012; 194:3173-88. [PMID: 22505678 DOI: 10.1128/jb.00308-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial peptides (APs) belong to the arsenal of weapons of the innate immune system against infections. In the case of gram-negative bacteria, APs interact with the anionic lipid A moiety of the lipopolysaccharide (LPS). In yersiniae most virulence factors are temperature regulated. Studies from our laboratory demonstrated that Yersinia enterocolitica is more susceptible to polymyxin B, a model AP, when grown at 37°C than at 22°C (J. A. Bengoechea, R. Díaz, and I. Moriyón, Infect. Immun. 64:4891-4899, 1996), and here we have extended this observation to other APs, not structurally related to polymyxin B. Mechanistically, we demonstrate that the lipid A modifications with aminoarabinose and palmitate are downregulated at 37°C and that they contribute to AP resistance together with the LPS O-polysaccharide. Bacterial loads of lipid A mutants in Peyer's patches, liver, and spleen of orogastrically infected mice were lower than those of the wild-type strain at 3 and 7 days postinfection. PhoPQ and PmrAB two-component systems govern the expression of the loci required to modify lipid A with aminoarabinose and palmitate, and their expressions are also temperature regulated. Our findings support the notion that the temperature-dependent regulation of loci controlling lipid A modifications could be explained by H-NS-dependent negative regulation alleviated by RovA. In turn, our data also demonstrate that PhoPQ and PmrAB regulate positively the expression of rovA, the effect of PhoPQ being more important. However, rovA expression reached wild-type levels in the phoPQ pmrAB mutant background, hence indicating the existence of an unknown regulatory network controlling rovA expression in this background.
Collapse
|
40
|
Bacterial cell surface structures in Yersinia enterocolitica. Arch Immunol Ther Exp (Warsz) 2012; 60:199-209. [PMID: 22484801 DOI: 10.1007/s00005-012-0168-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 01/30/2012] [Indexed: 01/13/2023]
Abstract
Yersinia enterocolitica is a widespread member of the family of Enterobacteriaceae that contains both non-virulent and virulent isolates. Pathogenic Y. enterocolitica strains, especially belonging to serotypes O:3, O:5,27, O:8 and O:9 are etiologic agents of yersiniosis in animals and humans. Y. enterocolitica cell surface structures that play a significant role in virulence have been subject to many investigations. These include outer membrane (OM) glycolipids such as lipopolysaccharide (LPS) and enterobacterial common antigen (ECA) and several cell surface adhesion proteins present only in virulent Y. enterocolitica, i.e., Inv, YadA and Ail. While the yadA gene is located on the Yersinia virulence plasmid the Ail, Inv, LPS and ECA are chromosomally encoded. These structures ensure the correct architecture of the OM, provide adhesive properties as well as resistance to antimicrobial peptides and to host innate immune response mechanisms.
Collapse
|
41
|
Uliczka F, Dersch P. Unique virulence properties of Yersinia enterocolitica O:3. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:281-7. [PMID: 22782774 DOI: 10.1007/978-1-4614-3561-7_35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Frank Uliczka
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | |
Collapse
|
42
|
Regulation of virulence gene expression by regulatory RNA elements in Yersinia pseudotuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:315-23. [PMID: 22782778 DOI: 10.1007/978-1-4614-3561-7_39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Fàbrega A, Vila J. Yersinia enterocolitica: Pathogenesis, virulence and antimicrobial resistance. Enferm Infecc Microbiol Clin 2012; 30:24-32. [DOI: 10.1016/j.eimc.2011.07.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 12/29/2022]
|
44
|
OmpR, a Central Integrator of Several Cellular Responses in Yersinia enterocolitica. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:325-34. [DOI: 10.1007/978-1-4614-3561-7_40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Galindo CL, Rosenzweig JA, Kirtley ML, Chopra AK. Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in Human Yersiniosis. J Pathog 2011; 2011:182051. [PMID: 22567322 PMCID: PMC3335670 DOI: 10.4061/2011/182051] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/27/2011] [Accepted: 07/01/2011] [Indexed: 12/15/2022] Open
Abstract
Yersiniosis is a food-borne illness that has become more prevalent in recent years due to human transmission via the fecal-oral route and prevalence in farm animals. Yersiniosis is primarily caused by Yersinia enterocolitica and less frequently by Yersinia pseudotuberculosis. Infection is usually characterized by a self-limiting acute infection beginning in the intestine and spreading to the mesenteric lymph nodes. However, more serious infections and chronic conditions can also occur, particularly in immunocompromised individuals. Y. enterocolitica and Y. pseudotuberculosis are both heterogeneous organisms that vary considerably in their degrees of pathogenicity, although some generalizations can be ascribed to pathogenic variants. Adhesion molecules and a type III secretion system are critical for the establishment and progression of infection. Additionally, host innate and adaptive immune responses are both required for yersiniae clearance. Despite the ubiquity of enteric Yersinia species and their association as important causes of food poisoning world-wide, few national enteric pathogen surveillance programs include the yersiniae as notifiable pathogens. Moreover, no standard exists whereby identification and reporting systems can be effectively compared and global trends developed. This review discusses yersinial virulence factors, mechanisms of infection, and host responses in addition to the current state of surveillance, detection, and prevention of yersiniosis.
Collapse
Affiliation(s)
- Cristi L Galindo
- Department of Microbiology & Immunology, Sealy Center for Vaccine Development, Institute of Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1070, USA
| | | | | | | |
Collapse
|
46
|
Sabina Y, Rahman A, Ray RC, Montet D. Yersinia enterocolitica: Mode of Transmission, Molecular Insights of Virulence, and Pathogenesis of Infection. J Pathog 2011; 2011:429069. [PMID: 22567333 PMCID: PMC3335483 DOI: 10.4061/2011/429069] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/28/2011] [Accepted: 06/05/2011] [Indexed: 11/20/2022] Open
Abstract
Although Yersinia enterocolitica is usually transmitted through contaminated food and untreated water, occasional transmission such as human-to-human, animal-to-human and blood transfusion associated transmission have also identified in human disease. Of the six Y. enterocolitica biotypes, the virulence of the pathogenic biotypes, namely, 1B and 2-5 is attributed to the presence of a highly conserved 70-kb virulence plasmid, termed pYV/pCD and certain chromosomal genes. Some biotype 1A strains, despite lacking virulence plasmid (pYV) and traditional chromosomal virulence genes, are isolated frequently from humans with gastrointestinal diseases similar to that produced by isolates belonging known pathogenic biotypes. Y. enterocolitica pathogenic biotypes have evolved two major properties: the ability to penetrate the intestinal wall, which is thought to be controlled by plasmid genes, and the production of heat-stable enterotoxin, which is controlled by chromosomal genes.
Collapse
Affiliation(s)
- Yeasmin Sabina
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | | |
Collapse
|
47
|
Expression during host infection and localization of Yersinia pestis autotransporter proteins. J Bacteriol 2011; 193:5936-49. [PMID: 21873491 DOI: 10.1128/jb.05877-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Yersinia pestis CO92 has 12 open reading frames encoding putative conventional autotransporters (yaps), nine of which appear to produce functional proteins. Here, we demonstrate the ability of the Yap proteins to localize to the cell surface of both Escherichia coli and Yersinia pestis and show that a subset of these proteins undergoes processing by bacterial surface omptins to be released into the supernatant. Numerous autotransporters have been implicated in pathogenesis, suggesting a role for the Yaps as virulence factors in Y. pestis. Using the C57BL/6 mouse models of bubonic and pneumonic plague, we determined that all of these genes are transcribed in the lymph nodes during bubonic infection and in the lungs during pneumonic infection, suggesting a role for the Yaps during mammalian infection. In vitro transcription studies did not identify a particular environmental stimulus responsible for transcriptional induction. The primary sequences of the Yaps reveal little similarity to any characterized autotransporters; however, two of the genes are present in operons, suggesting that the proteins encoded in these operons may function together. Further work aims to elucidate the specific functions of the Yaps and clarify the contributions of these proteins to Y. pestis pathogenesis.
Collapse
|
48
|
Raczkowska A, Brzóstkowska M, Kwiatek A, Bielecki J, Brzostek K. Modulation of inv gene expression by the OmpR two-component response regulator protein of Yersinia enterocolitica. Folia Microbiol (Praha) 2011; 56:313-9. [PMID: 21818612 DOI: 10.1007/s12223-011-0054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/12/2011] [Indexed: 12/22/2022]
Abstract
To elucidate the physiological meaning of OmpR-dependent expression of invasin gene (inv) inhibition in Yersinia enterocolitica, the function of the EnvZ/OmpR regulatory pathway in osmoregulation of inv expression was analyzed in detail. The osmoregulation of inv expression was found to be a multifaceted process involving both OmpR-dependent and -independent mechanisms. Analysis of inv transcription in strains lacking OmpR or EnvZ proteins indicated that kinase EnvZ is not the only regulator of OmpR phosphorylation. Using the transcriptional inv::lacZ fusion in a heterologous system (Escherichia coli) we tried to clarify the role of OmpR in the inv regulatory circuit composed of negative (H-NS) and positive (RovA) regulators of inv gene transcription. We were able to show a significant increase in inv expression in E. coli ompR background under H-NS( Ecoli )-repressed condition. Moreover, H-NS-mediated inv repression was relieved when RovA of Y. enterocolitica was expressed from a plasmid. Furthermore, we showed that RovA may activate inv expression irrespective on the presence of H-NS protein. Using this strategy we showed that OmpR of Y. enterocolitica decrease RovA-mediated inv activation.
Collapse
Affiliation(s)
- A Raczkowska
- Department of Applied Microbiology, University of Warsaw, Faculty of Biology, Institute of Microbiology, Miecznikowa 1, Warsaw, Poland
| | | | | | | | | |
Collapse
|
49
|
Uliczka F, Pisano F, Schaake J, Stolz T, Rohde M, Fruth A, Strauch E, Skurnik M, Batzilla J, Rakin A, Heesemann J, Dersch P. Unique cell adhesion and invasion properties of Yersinia enterocolitica O:3, the most frequent cause of human Yersiniosis. PLoS Pathog 2011; 7:e1002117. [PMID: 21750675 PMCID: PMC3131269 DOI: 10.1371/journal.ppat.1002117] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/27/2011] [Indexed: 11/19/2022] Open
Abstract
Many enteric pathogens are equipped with multiple cell adhesion factors which are important for host tissue colonization and virulence. Y. enterocolitica, a common food-borne pathogen with invasive properties, uses the surface proteins invasin and YadA for host cell binding and entry. In this study, we demonstrate unique cell adhesion and invasion properties of Y. enterocolitica serotype O:3 strains, the most frequent cause of human yersiniosis, and show that these differences are mainly attributable to variations affecting the function and expression of invasin in response to temperature. In contrast to other enteric Yersinia strains, invasin production in O:3 strains is constitutive and largely enhanced compared to other Y. enterocolitica serotypes, in which invA expression is temperature-regulated and significantly reduced at 37°C. Increase of invasin levels is caused by (i) an IS1667 insertion into the invA promoter region, which includes an additional promoter and RovA and H-NS binding sites, and (ii) a P98S substitution in the invA activator protein RovA rendering the regulator less susceptible to proteolysis. Both variations were shown to influence bacterial colonization in a murine infection model. Furthermore, we found that co-expression of YadA and down-regulation of the O-antigen at 37°C is required to allow efficient internalization by the InvA protein. We conclude that even small variations in the expression of virulence factors can provoke a major difference in the virulence properties of closely related pathogens which may confer better survival or a higher pathogenic potential in a certain host or host environment.
Collapse
Affiliation(s)
- Frank Uliczka
- Department of Molecular Infection Biology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Fabio Pisano
- Department of Molecular Infection Biology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Julia Schaake
- Department of Molecular Infection Biology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Tatjana Stolz
- Department of Molecular Infection Biology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Manfred Rohde
- Department of Medical Microbiology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | | | | | - Mikael Skurnik
- Department of Bacteriology and Immunology, The Haartman Institute, University of Helsinki and Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland
| | - Julia Batzilla
- Max von Pettenkofer Institut, Ludwigs-Maximilians-Universität, München, Germany
| | - Alexander Rakin
- Max von Pettenkofer Institut, Ludwigs-Maximilians-Universität, München, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer Institut, Ludwigs-Maximilians-Universität, München, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
50
|
Figueira CP, Croda J, Choy HA, Haake DA, Reis MG, Ko AI, Picardeau M. Heterologous expression of pathogen-specific genes ligA and ligB in the saprophyte Leptospira biflexa confers enhanced adhesion to cultured cells and fibronectin. BMC Microbiol 2011; 11:129. [PMID: 21658265 PMCID: PMC3133549 DOI: 10.1186/1471-2180-11-129] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/09/2011] [Indexed: 12/15/2022] Open
Abstract
Background In comparison to other bacterial pathogens, our knowledge of the molecular basis of the pathogenesis of leptospirosis is extremely limited. An improved understanding of leptospiral pathogenetic mechanisms requires reliable tools for functional genetic analysis. Leptospiral immunoglobulin-like (Lig) proteins are surface proteins found in pathogenic Leptospira, but not in saprophytes. Here, we describe a system for heterologous expression of the Leptospira interrogans genes ligA and ligB in the saprophyte Leptospira biflexa serovar Patoc. Results The genes encoding LigA and LigB under the control of a constitutive spirochaetal promoter were inserted into the L. biflexa replicative plasmid. We were able to demonstrate expression and surface localization of LigA and LigB in L. biflexa. We found that the expression of the lig genes significantly enhanced the ability of transformed L. biflexa to adhere in vitro to extracellular matrix components and cultured cells, suggesting the involvement of Lig proteins in cell adhesion. Conclusions This work reports a complete description of the system we have developed for heterologous expression of pathogen-specific proteins in the saprophytic L. biflexa. We show that expression of LigA and LigB proteins from the pathogen confers a virulence-associated phenotype on L. biflexa, namely adhesion to eukaryotic cells and fibronectin in vitro. This study indicates that L. biflexa can serve as a surrogate host to characterize the role of key virulence factors of the causative agent of leptospirosis.
Collapse
|