1
|
Chen X, Liu J, Chen M, Zhou J, Zhang Y, Hu X, Geng W, Mao Q, Kitagishi H, Chen J, Qian X, Yang Y, Lei Y, Luo X. Green-Light-Triggered and Self-Calibrated Cascade Release of Nitric Oxide and Carbon Monoxide for Synergistic Glaucoma Therapy. J Am Chem Soc 2024; 146:30361-30371. [PMID: 39421962 DOI: 10.1021/jacs.4c10457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Glaucoma is an optic degenerative neuropathy that is driven by a vicious cycle of oxidative stress and mechanical stress. Current clinical treatments aim exclusively at alleviating mechanical stress by reducing the intraocular pressure (IOP). With the unattended oxidative stress, recurrence and deterioration of mechanical stress are inevitable. Nitric oxide (NO) and carbon monoxide (CO) are endogenous gaseous signaling molecules for vasodilation and anti-inflammation, respectively. Mounting evidence suggests an intricate interplay between NO and CO to mediate their biological roles, like how it takes two to dance a waltz. This leads to the concept of "gas waltz therapy" for glaucoma, in which NO is released to reduce IOP and stoichiometric CO is coreleased to suppress oxidative stress. CND570 is the first phototriggered cascade NO/CO donor, to the best of our knowledge. Notably, the release of NO/CO is accompanied by the concomitant release of a rhodamine dye whose bright fluorescence is harnessed as a convenient calibration mechanism of the gas release profile. CND570 exhibits excellent transcorneal permeability and reaches the target aqueous humor outflow pathway. Further, green-light irradiation triggers release of CO and NO in the eye tissue of glaucoma mice. NO and CO could promote the upregulation of soluble guanylate cyclase (sGC) in both in vitro and in vivo models. Notably, CND570 treatment significantly reduces the oxidative stress associated with glaucoma. NO/CO-based gas waltz therapy is a promising new avenue for glaucoma treatment.
Collapse
Affiliation(s)
- Xiaohua Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Jiamin Liu
- Shanghai Key Laboratory of Visual Impairment and Restoration, NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ming Chen
- Shanghai Key Laboratory of Visual Impairment and Restoration, NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jie Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai200241, China
| | - Yuyang Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Xinru Hu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Weixi Geng
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Qiyue Mao
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai200241, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Yuan Lei
- Shanghai Key Laboratory of Visual Impairment and Restoration, NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiao Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
2
|
Manzhula K, Rebl A, Budde-Sagert K, Rebl H. Interplay of Cellular Nrf2/NF-κB Signalling after Plasma Stimulation of Malignant vs. Non-Malignant Dermal Cells. Int J Mol Sci 2024; 25:10967. [PMID: 39456749 PMCID: PMC11507371 DOI: 10.3390/ijms252010967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Skin cancer is one of the most common malignancies worldwide. Cold atmospheric pressure Plasma (CAP) is increasingly successful in skin cancer therapy, but further research is needed to understand its selective effects on cancer cells at the molecular level. In this study, A431 (squamous cell carcinoma) and HaCaT (non-malignant) cells cultured under identical conditions revealed similar ROS levels but significantly higher antioxidant levels in unstimulated A431 cells, indicating a higher metabolic turnover typical of tumour cells. HaCaT cells, in contrast, showed increased antioxidant levels upon CAP stimulation, reflecting a robust redox adaptation. Specifically, proteins involved in antioxidant pathways, including NF-κB, IκBα, Nrf2, Keap1, IKK, and pIKK, were quantified, and their translocation level upon stimulation was evaluated. CAP treatment significantly elevated Nrf2 nuclear translocation in non-malignant HaCaT cells, indicating a strong protection against oxidative stress, while selectively inducing NF-κB activation in A431 cells, potentially leading to apoptosis. The expression of pro-inflammatory genes like IL-1B, IL-6, and CXCL8 was downregulated in A431 cells upon CAP treatment. Notably, CAP enhanced the expression of antioxidant response genes HMOX1 and GPX1 in non-malignant cells. The differential response between HaCaT and A431 cells underscores the varied antioxidative capacities, contributing to their distinct molecular responses to CAP-induced oxidative stress.
Collapse
Affiliation(s)
- Kristina Manzhula
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Alexander Rebl
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Kai Budde-Sagert
- Institute of Communications Engineering, University of Rostock, 18051 Rostock, Germany;
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
3
|
Belenichev I, Popazova O, Bukhtiyarova N, Savchenko D, Oksenych V, Kamyshnyi O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants (Basel) 2024; 13:504. [PMID: 38790609 PMCID: PMC11118938 DOI: 10.3390/antiox13050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the significant progress in the fields of biology, physiology, molecular medicine, and pharmacology; the designation of the properties of nitrogen monoxide in the regulation of life-supporting functions of the organism; and numerous works devoted to this molecule, there are still many open questions in this field. It is widely accepted that nitric oxide (•NO) is a unique molecule that, despite its extremely simple structure, has a wide range of functions in the body, including the cardiovascular system, the central nervous system (CNS), reproduction, the endocrine system, respiration, digestion, etc. Here, we systematize the properties of •NO, contributing in conditions of physiological norms, as well as in various pathological processes, to the mechanisms of cytoprotection and cytodestruction. Current experimental and clinical studies are contradictory in describing the role of •NO in the pathogenesis of many diseases of the cardiovascular system and CNS. We describe the mechanisms of cytoprotective action of •NO associated with the regulation of the expression of antiapoptotic and chaperone proteins and the regulation of mitochondrial function. The most prominent mechanisms of cytodestruction-the initiation of nitrosative and oxidative stresses, the production of reactive oxygen and nitrogen species, and participation in apoptosis and mitosis. The role of •NO in the formation of endothelial and mitochondrial dysfunction is also considered. Moreover, we focus on the various ways of pharmacological modulation in the nitroxidergic system that allow for a decrease in the cytodestructive mechanisms of •NO and increase cytoprotective ones.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Dmytro Savchenko
- Department of Pharmacy and Industrial Drug Technology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
4
|
Giles AV, Edwards L, Covian R, Lucotte BM, Balaban RS. Cardiac nitric oxide scavenging: role of myoglobin and mitochondria. J Physiol 2024; 602:73-91. [PMID: 38041645 PMCID: PMC10872739 DOI: 10.1113/jp284446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023] Open
Abstract
Vascular production of nitric oxide (NO) regulates vascular tone. However, highly permeable NO entering the cardiomyocyte would profoundly impact metabolism and signalling without scavenging mechanisms. The purpose of this study was to establish mechanisms of cardiac NO scavenging. Quantitative optical studies of normoxic working hearts demonstrated that micromolar NO concentrations did not alter mitochondria redox state or respiration despite detecting NO oxidation of oxymyoglobin to metmyoglobin. These data are consistent with proposals that the myoglobin/myoglobin reductase (Mb/MbR) system is the major NO scavenging site. However, kinetic studies in intact hearts reveal a minor role (∼9%) for the Mb/MbR system in NO scavenging. In vitro, oxygenated mitochondria studies confirm that micromolar concentrations of NO bind cytochrome oxidase (COX) and inhibit respiration. Mitochondria had a very high capacity for NO scavenging, importantly, independent of NO binding to COX. NO is also known to quickly react with reactive oxygen species (ROS) in vitro. Stimulation of NO scavenging with antimycin and its inhibition by substrate depletion are consistent with NO interacting with ROS generated in Complex I or III under aerobic conditions. Extrapolating these in vitro data to the intact heart supports the hypothesis that mitochondria are a major site of cardiac NO scavenging. KEY POINTS: Cardiomyocyte scavenging of vascular nitric oxide (NO) is critical in maintaining normal cardiac function. Myoglobin redox cycling via myoglobin reductase has been proposed as a major NO scavenging site in the heart. Non-invasive optical spectroscopy was used to monitor the effect of NO on mitochondria and myoglobin redox state in intact beating heart and isolated mitochondria. These non-invasive studies reveal myoglobin/myoglobin reductase plays a minor role in cardiac NO scavenging. A high capacity for NO scavenging by heart mitochondria was demonstrated, independent of cytochrome oxidase binding but dependent on oxygen and high redox potentials consistent with generation of reactive oxygen species.
Collapse
Affiliation(s)
- Abigail V Giles
- Laboratory of Cardiac Energetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Lanelle Edwards
- Laboratory of Cardiac Energetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Raul Covian
- Laboratory of Cardiac Energetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Bertrand M. Lucotte
- Laboratory of Cardiac Energetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Robert S Balaban
- Laboratory of Cardiac Energetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Smith CA, Carpenter KLH, Hutchinson PJ, Smielewski P, Helmy A. Candidate neuroinflammatory markers of cerebral autoregulation dysfunction in human acute brain injury. J Cereb Blood Flow Metab 2023; 43:1237-1253. [PMID: 37132274 PMCID: PMC10369156 DOI: 10.1177/0271678x231171991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
The loss of cerebral autoregulation (CA) is a common and detrimental secondary injury mechanism following acute brain injury and has been associated with worse morbidity and mortality. However patient outcomes have not as yet been conclusively proven to have improved as a result of CA-directed therapy. While CA monitoring has been used to modify CPP targets, this approach cannot work if the impairment of CA is not simply related to CPP but involves other underlying mechanisms and triggers, which at present are largely unknown. Neuroinflammation, particularly inflammation affecting the cerebral vasculature, is an important cascade that occurs following acute injury. We hypothesise that disturbances to the cerebral vasculature can affect the regulation of CBF, and hence the vascular inflammatory pathways could be a putative mechanism that causes CA dysfunction. This review provides a brief overview of CA, and its impairment following brain injury. We discuss candidate vascular and endothelial markers and what is known about their link to disturbance of the CBF and autoregulation. We focus on human traumatic brain injury (TBI) and subarachnoid haemorrhage (SAH), with supporting evidence from animal work and applicability to wider neurologic diseases.
Collapse
Affiliation(s)
- Claudia A Smith
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Samarin J, Fabrowski P, Kurilov R, Nuskova H, Hummel-Eisenbeiss J, Pink H, Li N, Weru V, Alborzinia H, Yildiz U, Grob L, Taubert M, Czech M, Morgen M, Brandstädter C, Becker K, Mao L, Jayavelu AK, Goncalves A, Uhrig U, Seiler J, Lyu Y, Diederichs S, Klingmüller U, Muckenthaler M, Kopp-Schneider A, Teleman A, Miller AK, Gunkel N. Low level of antioxidant capacity biomarkers but not target overexpression predicts vulnerability to ROS-inducing drugs. Redox Biol 2023; 62:102639. [PMID: 36958250 PMCID: PMC10053401 DOI: 10.1016/j.redox.2023.102639] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Despite a strong rationale for why cancer cells are susceptible to redox-targeting drugs, such drugs often face tumor resistance or dose-limiting toxicity in preclinical and clinical studies. An important reason is the lack of specific biomarkers to better select susceptible cancer entities and stratify patients. Using a large panel of lung cancer cell lines, we identified a set of "antioxidant-capacity" biomarkers (ACB), which were tightly repressed, partly by STAT3 and STAT5A/B in sensitive cells, rendering them susceptible to multiple redox-targeting and ferroptosis-inducing drugs. Contrary to expectation, constitutively low ACB expression was not associated with an increased steady state level of reactive oxygen species (ROS) but a high level of nitric oxide, which is required to sustain high replication rates. Using ACBs, we identified cancer entities with a high percentage of patients with favorable ACB expression pattern, making it likely that more responders to ROS-inducing drugs could be stratified for clinical trials.
Collapse
Affiliation(s)
- Jana Samarin
- Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Piotr Fabrowski
- Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roman Kurilov
- Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hana Nuskova
- Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Hannelore Pink
- Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nan Li
- Somatic Evolution and Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vivienn Weru
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Umut Yildiz
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Grob
- Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Minerva Taubert
- Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marie Czech
- Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Morgen
- Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christina Brandstädter
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Lianghao Mao
- Proteomics and Cancer Cell Signaling Group, CCU Pediatric Leukemia, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, CCU Pediatric Leukemia, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angela Goncalves
- Somatic Evolution and Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrike Uhrig
- Chemical Biology Core Facility, EMBL, Heidelberg, Germany
| | - Jeanette Seiler
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yanhong Lyu
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Freiburg, Germany
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Freiburg, Germany
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martina Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | - Aurelio Teleman
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aubry K Miller
- Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Nikolas Gunkel
- Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
7
|
Cheng RYS, Burkett S, Ambs S, Moody T, Wink DA, Ridnour LA. Chronic Exposure to Nitric Oxide Induces P53 Mutations and Malignant-like Features in Human Breast Epithelial Cells. Biomolecules 2023; 13:311. [PMID: 36830680 PMCID: PMC9953427 DOI: 10.3390/biom13020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
The small endogenous signaling molecule nitric oxide (NO) has been linked with chronic inflammation and cancer. The effects of NO are both concentration and temporally dependent; under some conditions, NO protects against damage caused by reactive oxygen species and activates P53 signaling. During chronic inflammation, NO causes DNA damage and inhibits repair proteins. To extend our understanding of the roles of NO during carcinogenesis, we investigated the possible effects of chronic NO exposure on MCF10A breast epithelial cells, as defined by changes in cellular morphology, chromosome/genomic stability, RNA, and protein expression, and altered cell phenotypes. Human MCF10A cells were maintained in varying doses of the NO donor DETANO for three weeks. Distinct patterns of genomic modifications in TP53 and KRAS target genes were detected in NO-treated cells when compared to background mutations. In addition, quantitative real-time PCR demonstrated an increase in the expression of cancer stem cell (CSC) marker CD44 after prolonged exposure to 300 μM DETANO. While similar changes in cell morphology were found in cells exposed to 300-500 μM DETANO, cells cultured in 100 μM DETANO exhibited enhanced motility. In addition, 100 μM NO-treated cells proliferated in serum-free media and selected clonal populations and pooled cells formed colonies in soft agar that were clustered and disorganized. These findings show that chronic exposure to NO generates altered breast epithelial cell phenotypes with malignant characteristics.
Collapse
Affiliation(s)
- Robert Y. S. Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sandra Burkett
- Molecular Cytogenetics Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Terry Moody
- Center for Cancer Training Office of Training and Education, National Cancer Institute, Bethesda, MD 20892, USA
| | - David A. Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Lisa A. Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
8
|
Russell TM, Richardson DR. The good Samaritan glutathione-S-transferase P1: An evolving relationship in nitric oxide metabolism mediated by the direct interactions between multiple effector molecules. Redox Biol 2023; 59:102568. [PMID: 36563536 PMCID: PMC9800640 DOI: 10.1016/j.redox.2022.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Glutathione-S-transferases (GSTs) are phase II detoxification isozymes that conjugate glutathione (GSH) to xenobiotics and also suppress redox stress. It was suggested that GSTs have evolved not to enhance their GSH affinity, but to better interact with and metabolize cytotoxic nitric oxide (NO). The interactions between NO and GSTs involve their ability to bind and store NO as dinitrosyl-dithiol iron complexes (DNICs) within cells. Additionally, the association of GSTP1 with inducible nitric oxide synthase (iNOS) results in its inhibition. The function of NO in vasodilation together with studies associating GSTM1 or GSTT1 null genotypes with preeclampsia, additionally suggests an intriguing connection between NO and GSTs. Furthermore, suppression of c-Jun N-terminal kinase (JNK) activity occurs upon increased levels of GSTP1 or NO that decreases transcription of JNK target genes such as c-Jun and c-Fos, which inhibit apoptosis. This latter effect is mediated by the direct association of GSTs with MAPK proteins. GSTP1 can also inhibit nuclear factor kappa B (NF-κB) signaling through its interactions with IKKβ and Iκα, resulting in decreased iNOS expression and the stimulation of apoptosis. It can be suggested that the inhibitory activity of GSTP1 within the JNK and NF-κB pathways may be involved in crosstalk between survival and apoptosis pathways and modulating NO-mediated ROS generation. These studies highlight an innovative role of GSTs in NO metabolism through their interaction with multiple effector proteins, with GSTP1 functioning as a "good Samaritan" within each pathway to promote favorable cellular conditions and NO levels.
Collapse
Affiliation(s)
- Tiffany M Russell
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia.
| |
Collapse
|
9
|
Emamverdian A, Ding Y, Barker J, Liu G, Li Y, Mokhberdoran F. Sodium Nitroprusside Improves Bamboo Resistance under Mn and Cr Toxicity with Stimulation of Antioxidants Activity, Relative Water Content, and Metal Translocation and Accumulation. Int J Mol Sci 2023; 24:1942. [PMID: 36768266 PMCID: PMC9916771 DOI: 10.3390/ijms24031942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Sodium nitroprusside (SNP), as a single minuscule signaling molecule, has been employed to alleviate plant stress in recent years. This approach has a beneficial effect on the biological and physiological processes of plants. As a result, an in vitro tissue culture experiment was carried out to investigate the effect of high and low levels of SNP on the amelioration of manganese (Mn) and chromium (Cr) toxicity in a one-year-old bamboo plant, namely Pleioblastus pygmaea L. Five different concentrations of SNP were utilized as a nitric oxide (NO) donor (0, 50, 80, 150, 250, and 400 µM) in four replications of 150 µM Mn and 150 µM Cr. The results revealed that while 150 µM Mn and 150 µM Cr induced an over-generation of reactive oxygen species (ROS) compounds, enhancing plant membrane injury, electrolyte leakage (EL), and oxidation in bamboo species, the varying levels of SNP significantly increased antioxidant and non-antioxidant activities, proline (Pro), glutathione (GSH), and glycine betaine (GB) content, photosynthesis, and plant growth parameters, while also reducing heavy metal accumulation and translocation in the shoot and stem. This resulted in an increase in the plant's tolerance to Mn and Cr toxicity. Hence, it is inferred that NO-induced mechanisms boosted plant resistance to toxicity by increasing antioxidant capacity, inhibiting heavy metal accumulation in the aerial part of the plant, restricting heavy metal translocation from root to leaves, and enhancing the relative water content of leaves.
Collapse
Affiliation(s)
- Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames KT1 2EE, UK
| | - Guohua Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Li
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Farzad Mokhberdoran
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Fujii J, Osaki T. Involvement of Nitric Oxide in Protecting against Radical Species and Autoregulation of M1-Polarized Macrophages through Metabolic Remodeling. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020814. [PMID: 36677873 PMCID: PMC9861185 DOI: 10.3390/molecules28020814] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
When the expression of NOS2 in M1-polarized macrophages is induced, huge amounts of nitric oxide (•NO) are produced from arginine and molecular oxygen as the substrates. While anti-microbial action is the primary function of M1 macrophages, excessive activation may result in inflammation being aggravated. The reaction of •NO with superoxide produces peroxynitrite, which is highly toxic to cells. Alternatively, however, this reaction eliminates radial electrons and may occasionally alleviate subsequent radical-mediated damage. Reactions of •NO with lipid radicals terminates the radical chain reaction in lipid peroxidation, which leads to the suppression of ferroptosis. •NO is involved in the metabolic remodeling of M1 macrophages. Enzymes in the tricarboxylic acid (TCA) cycle, notably aconitase 2, as well as respiratory chain enzymes, are preferential targets of •NO derivatives. Ornithine, an alternate compound produced from arginine instead of citrulline and •NO, is recruited to synthesize polyamines. Itaconate, which is produced from the remodeled TCA cycle, and polyamines function as defense systems against overresponses of M1 macrophages in a feedback manner. Herein, we overview the protective aspects of •NO against radical species and the autoregulatory systems that are enabled by metabolic remodeling in M9-polarized macrophages.
Collapse
|
11
|
Kosmachevskaya OV, Nasybullina EI, Pugachenko IS, Novikova NN, Topunov AF. Antiglycation and Antioxidant Effect of Nitroxyl towards Hemoglobin. Antioxidants (Basel) 2022; 11:antiox11102007. [PMID: 36290730 PMCID: PMC9599031 DOI: 10.3390/antiox11102007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/17/2023] Open
Abstract
Donors of nitroxyl and nitroxyl anion (HNO/NO−) are considered to be promising pharmacological treatments with a wide range of applications. Remarkable chemical properties allow nitroxyl to function as a classic antioxidant. We assume that HNO/NO− can level down the non-enzymatic glycation of biomolecules. Since erythrocyte hemoglobin (Hb) is highly susceptible to non-enzymatic glycation, we studied the effect of a nitroxyl donor, Angeli’s salt, on Hb modification with methylglyoxal (MG) and organic peroxide―tert-butyl hydroperoxide (t-BOOH). Nitroxyl dose-dependently decreased the amount of protein carbonyls and advanced glycation end products (AGEs) that were formed in the case of Hb incubation with MG. Likewise, nitroxyl effectively protected Hb against oxidative modification with t-BOOH. It slowed down the destruction of heme, formation of carbonyl derivatives and inter-subunit cross-linking. The protective effect of nitroxyl on Hb in this system is primarily associated with nitrosylation of oxidized Hb and reduction of its ferryl form, which lowers the yield of free radical products. We suppose that the dual (antioxidant and antiglycation) effect of nitroxyl makes its application possible as part of an additional treatment strategy for oxidative and carbonyl stress-associated diseases.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Elvira I. Nasybullina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Igor S. Pugachenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | | | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
- Correspondence: ; Tel.: +7-916-157-6367
| |
Collapse
|
12
|
Ayeni EA, Aldossary AM, Ayejoto DA, Gbadegesin LA, Alshehri AA, Alfassam HA, Afewerky HK, Almughem FA, Bello SM, Tawfik EA. Neurodegenerative Diseases: Implications of Environmental and Climatic Influences on Neurotransmitters and Neuronal Hormones Activities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912495. [PMID: 36231792 PMCID: PMC9564880 DOI: 10.3390/ijerph191912495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 05/23/2023]
Abstract
Neurodegenerative and neuronal-related diseases are major public health concerns. Human vulnerability to neurodegenerative diseases (NDDs) increases with age. Neuronal hormones and neurotransmitters are major determinant factors regulating brain structure and functions. The implications of environmental and climatic changes emerged recently as influence factors on numerous diseases. However, the complex interaction of neurotransmitters and neuronal hormones and their depletion under environmental and climatic influences on NDDs are not well established in the literature. In this review, we aim to explore the connection between the environmental and climatic factors to NDDs and to highlight the available and potential therapeutic interventions that could use to improve the quality of life and reduce susceptibility to NDDs.
Collapse
Affiliation(s)
- Emmanuel A. Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ahmad M. Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Daniel A. Ayejoto
- Department of Industrial Chemistry, University of Ilorin, Ilorin 240003, Nigeria
| | - Lanre A. Gbadegesin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Abdullah A. Alshehri
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Haya A. Alfassam
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Henok K. Afewerky
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Allied Health Professions, Asmara College of Health Sciences, Asmara P.O. Box 1220, Eritrea
| | - Fahad A. Almughem
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Saidu M. Bello
- Institute of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary
| | - Essam A. Tawfik
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| |
Collapse
|
13
|
Nuamnaichati N, Parichatikanond W, Mangmool S. Cardioprotective Effects of Glucagon-like Peptide-1 (9-36) Against Oxidative Injury in H9c2 Cardiomyoblasts: Potential Role of the PI3K/Akt/NOS Pathway. J Cardiovasc Pharmacol 2022; 79:e50-e63. [PMID: 34694244 DOI: 10.1097/fjc.0000000000001159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Glucagon-like peptide (GLP)-1(7-36), a major active form of GLP-1 hormone, is rapidly cleaved by dipeptidyl peptidase-4 to generate a truncated metabolite, GLP-1(9-36) which has a low affinity for GLP-1 receptor (GLP-1R). GLP-1(7-36) has been shown to have protective effects on cardiovascular system through GLP-1R-dependent pathway. Nevertheless, the cardioprotective effects of GLP-1(9-36) have not fully understood. The present study investigated the effects of GLP-1(9-36), including its underlying mechanisms against oxidative stress and apoptosis in H9c2 cells. Here, we reported that GLP-1(9-36) protects H9c2 cardiomyoblasts from hydrogen peroxide (H2O2)-induced oxidative stress by promoting the synthesis of antioxidant enzymes, glutathione peroxidase-1, catalase, and heme oxygenase-1. In addition, treatment with GLP-1(9-36) suppressed H2O2-induced apoptosis by attenuating caspase-3 activity and upregulating antiapoptotic proteins, Bcl-2 and Bcl-xL. These protective effects of GLP-1(9-36) are attenuated by blockade of PI3K-mediated Akt phosphorylation and prevention of nitric oxide synthase-induced nitric oxide production. Thus, GLP-1(9-36) represents the potential therapeutic target for prevention of oxidative stress and apoptosis in the heart via PI3K/Akt/nitric oxide synthase signaling pathway.
Collapse
Affiliation(s)
- Narawat Nuamnaichati
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Biopharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Center of Biopharmaceutical Science of Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand ; and
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Brix N, Samaga D, Belka C, Zitzelsberger H, Lauber K. Analysis of clonogenic growth in vitro. Nat Protoc 2021; 16:4963-4991. [PMID: 34697469 DOI: 10.1038/s41596-021-00615-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The clonogenic assay measures the capacity of single cells to form colonies in vitro. It is widely used to identify and quantify self-renewing mammalian cells derived from in vitro cultures as well as from ex vivo tissue preparations of different origins. Varying research questions and the heterogeneous growth requirements of individual cell model systems led to the development of several assay principles and formats that differ with regard to their conceptual setup, 2D or 3D culture conditions, optional cytotoxic treatments and subsequent mathematical analysis. The protocol presented here is based on the initial clonogenic assay protocol as developed by Puck and Marcus more than 60 years ago. It updates and extends the 2006 Nature Protocols article by Franken et al. It discusses different strategies and principles to analyze clonogenic growth in vitro and presents the clonogenic assay in a modular protocol framework enabling a diversity of formats and measures to optimize determination of clonogenic growth parameters. We put particular focus on the phenomenon of cellular cooperation and consideration of how this can affect the mathematical analysis of survival data. This protocol is applicable to any mammalian cell model system from which single-cell suspensions can be prepared and which contains at least a small fraction of cells with self-renewing capacity in vitro. Depending on the cell system used, the entire procedure takes ~2-10 weeks, with a total hands-on time of <20 h per biological replicate.
Collapse
Affiliation(s)
- Nikko Brix
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
| | - Daniel Samaga
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
- Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- German Cancer Consortium (DKTK) partner site, Munich, Germany
| | - Horst Zitzelsberger
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany.
- Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
- German Cancer Consortium (DKTK) partner site, Munich, Germany.
| |
Collapse
|
15
|
Shin SS, Hwang M, Diaz-Arrastia R, Kilbaugh TJ. Inhalational Gases for Neuroprotection in Traumatic Brain Injury. J Neurotrauma 2021; 38:2634-2651. [PMID: 33940933 PMCID: PMC8820834 DOI: 10.1089/neu.2021.0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite multiple prior pharmacological trials in traumatic brain injury (TBI), the search for an effective, safe, and practical treatment of these patients remains ongoing. Given the ease of delivery and rapid absorption into the systemic circulation, inhalational gases that have neuroprotective properties will be an invaluable resource in the clinical management of TBI patients. In this review, we perform a systematic review of both pre-clinical and clinical reports describing inhalational gas therapy in the setting of TBI. Hyperbaric oxygen, which has been investigated for many years, and some of the newest developments are reviewed. Also, promising new therapies such as hydrogen gas, hydrogen sulfide gas, and nitric oxide are discussed. Moreover, novel therapies such as xenon and argon gases and delivery methods using microbubbles are explored.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Misun Hwang
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Wang L, Hou Z, Pranantyo D, Kang ET, Chan-Park M. High-Density Three-Dimensional Network of Covalently Linked Nitric Oxide Donors to Achieve Antibacterial and Antibiofilm Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33745-33755. [PMID: 34278776 DOI: 10.1021/acsami.1c00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial colonization on biomedical devices often leads to biofilms that are recalcitrant to antibiotic treatment and the leading cause of hospital-acquired infections. We have invented a novel pretreatment chemistry for device surfaces to produce a high-density three-dimensional (3-D) network of covalently linked S-nitrosothiol (RSNO), which is a nitric oxide (NO) donor. Poly(polyethylene glycol-hydroxyl-terminated) (i.e., PPEG-OH) brushes were grafted from an ozone-pretreated polyurethane (PU) surface. The high-density hydroxyl groups on the dangling PPEG-OH brushes then underwent condensation with a mercapto-silane (i.e., MPS, mercaptopropyl trimethoxysilane) followed by S-nitrosylation to produce a 3-D network of NO-releasing RSNO to form the PU/PPEG-OH-MPS-NO coating. This 3-D coating produces NO flux of up to 7 nmol/(cm2 min), which is nearly 3 orders of magnitude higher than the picomole/(cm2 min) levels of other NO-releasing biomedical implants previously reported. The covalent immobilization of RSNO avoids donor leaching and reduces the risks of cytotoxicity arising from leachable RSNO. Our coated PU surfaces display good biocompatibility and exhibit excellent antibiofilm formation activity in vitro (up to 99.99%) against a broad spectrum of Gram-positive and Gram-negative bacteria. Further, the high-density RSNO achieves nearly 99% and 99.9% in vivo reduction of Pseudomonas aeruginosa (P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) in a murine subcutaneous implantation infection model. Our surface chemistry to create high NO payload without NO-donor leaching can be applied to many biomedical devices.
Collapse
Affiliation(s)
- Liping Wang
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Zheng Hou
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Dicky Pranantyo
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Mary Chan-Park
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
17
|
Homma T, Kobayashi S, Conrad M, Konno H, Yokoyama C, Fujii J. Nitric oxide protects against ferroptosis by aborting the lipid peroxidation chain reaction. Nitric Oxide 2021; 115:34-43. [PMID: 34329739 DOI: 10.1016/j.niox.2021.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022]
Abstract
Ferroptosis is a type of iron-dependent necrotic cell death, which is typically triggered by the depletion of intracellular glutathione (GSH), which is associated with increased lipid peroxidation. Nitric oxide (NO) is a highly reactive gaseous radical mediator with anti-oxidation properties that terminates lipid peroxidation reactions. In the current study, we report the anti-ferroptotic action of NOC18, an NO donor that spontaneously releases NO, in cells under various ferroptotic conditions in vitro. Our results indicate that, when mouse hepatoma Hepa 1-6 cells are incubated with NOC18, cell death induced by various ferroptotic stimuli such as cysteine (Cys) starvation, the inhibition of glutathione peroxidase 4 (GPX4) and treatment with tertiary-butyl hydroperoxide (TBHP) is significantly reduced. Treatment with NOC18 failed to improve the decrease in the levels of Cys or GSH and the accumulation of ferrous iron upon ferroptotic stimuli. The fluorescent intensity of C11-BODIPY581/591, a probe that is used to detect lipid peroxidation products, was increased somewhat by treatment with NOC18 under conditions of Cys starvation, and the accumulation of lipid peroxidation end-products, as evidenced by the levels of 4-hydroxynonenal, were effectively suppressed. The pre-incubation of TBHP with NOC7, a short-lived NO donor completely eliminated its ability to trigger ferroptosis. These collective results indicate that NO exerts a cytoprotective action against various ferroptotic stimuli by aborting the lipid peroxidation chain reaction.
Collapse
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Ulitsa Ostrovityanova 1, Moscow 117997, Russia
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Chikako Yokoyama
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan
| |
Collapse
|
18
|
Wu J, Yin W, Huang Z, Zhang Y, Jia J, Cheng H, Kang F, Huang K, Sun T, Tian J, Xu X, Zhang Y. Design, Synthesis, and Biological Evaluation of Organic Nitrite (NO 2-) Donors as Potential Anticerebral Ischemia Agents. J Med Chem 2021; 64:10919-10933. [PMID: 34292749 DOI: 10.1021/acs.jmedchem.1c00282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The treatment of ischemic stroke (IS) remains a big challenge in clinics, and it is urgently needed to develop novel, safe, and effective medicines against IS. Here, we report the design, synthesis, and biological evaluation of organic NO2- donors as potential agents for the treatment of IS. The representative compound 4a was able to slowly generate low concentrations of NO2- by reaction with a thiol-containing nucleophile, and the NO2- was selectively converted into NO under ischemic/hypoxia conditions to protect primary rat neurons from oxygen-glucose deprivation and recovery (OGD/R)-induced cytotoxicity by enhancing the Nrf2 signaling and activating the NO/cGMP/PKG pathway. Treatment with 4a at 2 h before or after ischemia mitigated the ischemia/reperfusion-induced brain injury in middle cerebral artery occlusion (MCAO) rats by producing NO and enhancing Nrf2 signaling. Furthermore, 4a significantly promoted endothelial cell proliferation and angiogenesis within the ischemic penumbra. Our findings suggest that this type of NO2- donors, like 4a, may be valuable to fight IS and other ischemic diseases.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Wei Yin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yinqiu Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Huimin Cheng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Fenghua Kang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Kai Huang
- The Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Tao Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, United States
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
19
|
Yan L, Wang Y, Zhang S, Li X, Wei J, Wang Z, Liu Y. Inactivation Mechanism of Neuronal Nitric Oxide Synthase by ( S)-2-Amino-5-(2-(methylthio)acetimidamido)pentanoic Acid: Chemical Conversion of the Inactivator in the Active Site. Inorg Chem 2021; 60:9345-9358. [PMID: 34137256 DOI: 10.1021/acs.inorgchem.1c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) is one of the three isoforms of nitric oxide synthase (NOS). The other two isoforms include inducible NOS (iNOS) and endothelial NOS (eNOS). These three isoforms of NOS are widely present in both human and other mammals and are responsible for the biosynthesis of NO. As an essential biological molecule, NO plays an essential role in neurotransmission, immune response, and vasodilation; however, the overproduction of NO can cause a series of diseases. Thus, the selective inhibition of three isoforms of NOS has been considered to be important in treating related diseases. The active sites of the three enzymes are highly conserved, causing the selective inhibition of the three enzymes to be a great challenge. (S)-2-Amino-5-(2-(methylthio)acetimidamido)pentanoic acid (1) has been experimentally proved to be a selective and time-dependent irreversible inhibitor of nNOS, and three pathways, including sulfide oxidation, oxidative dethiolation, and oxidative demethylation, have been suggested. In this work, we performed quantum mechanics/molecular mechanics calculations to verify the chemical conversion of inactivator 1. Although we agree with the previously suggested chemical transformation process, our calculations demonstrated that there are lower energy pathways to accomplish both oxidative dethiolation and oxidative demethylation. These three branching reactions are competitive, but only dethiolation and demethylation reactions can generate inhibitory intermediates. As a powerful time-dependent irreversible inhibitor of nNOS, the key sulfur atom and middle imine are all necessary. Our calculation results not only verified the chemical reaction of inhibitor 1 occurring in the enzymatic active site but also explained the inactivation mechanism of inhibitor 1. This is also the first verified example of the heme-enzyme-catalyzed S-demethylation mechanism.
Collapse
Affiliation(s)
- Lijuan Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Shiqing Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
20
|
Agashe P, Kuzminov A. Catalase inhibition by nitric oxide potentiates hydrogen peroxide to trigger catastrophic chromosome fragmentation in Escherichia coli. Genetics 2021; 218:6214516. [PMID: 34027548 DOI: 10.1093/genetics/iyab057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/02/2021] [Indexed: 01/01/2023] Open
Abstract
Hydrogen peroxide (H2O2, HP) is a universal toxin that organisms deploy to kill competing or invading cells. Bactericidal action of H2O2 presents several questions. First, the lethal H2O2 concentrations in bacterial cultures are 1000x higher than, for example, those calculated for the phagosome. Second, H2O2-alone kills bacteria in cultures either by mode-one, via iron-mediated chromosomal damage, or by mode-two, via unknown targets, but the killing mode in phagosomes is unclear. Third, phagosomal H2O2 toxicity is enhanced by production of nitric oxide (NO), but in vitro studies disagree: some show NO synergy with H2O2 antimicrobial action, others instead report alleviation. To investigate this "NO paradox," we treated Escherichia coli with various concentrations of H2O2-alone or H2O2+NO, measuring survival and chromosome stability. We found that all NO concentrations make sublethal H2O2 treatments highly lethal, via triggering catastrophic chromosome fragmentation (mode-one killing). Yet, NO-alone is not lethal, potentiating H2O2 toxicity by blocking H2O2 scavenging in cultures. Catalases represent obvious targets of NO inhibition, and catalase-deficient mutants are indeed killed equally by H2O2-alone or H2O2+NO treatments, also showing similar levels of chromosome fragmentation. Interestingly, iron chelation blocks chromosome fragmentation in catalase-deficient mutants without blocking H2O2-alone lethality, indicating mode-two killing. In fact, mode-two killing of WT cells by much higher H2O2 concentrations is transiently alleviated by NO, reproducing the "NO paradox." We conclude that NO potentiates H2O2 toxicity by promoting mode-one killing (via catastrophic chromosome fragmentation) by otherwise static low H2O2 concentrations, while transiently suppressing mode-two killing by immediately lethal high H2O2 concentrations.
Collapse
Affiliation(s)
- Pooja Agashe
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
21
|
Mechanism of N-acetylcysteine in alleviating diabetic myocardial ischemia reperfusion injury by regulating PTEN/Akt pathway through promoting DJ-1. Biosci Rep 2021; 40:223090. [PMID: 32347295 PMCID: PMC7273917 DOI: 10.1042/bsr20192118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic heart disease is the main cardiovascular complication of diabetes patients which is mainly caused by oxidative stress. DJ-1 is the key regulator for myocardial protection through inhibiting phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and activating Akt (also known as PKB or protein kinase B). This research is to investigate whether the antioxidant N-acetylcysteine (NAC) could alleviate diabetic myocardial ischemia/reperfusion (I/R) injury by the protective molecule DJ-1. DJ-1 in rat myocardial H9c2 cells and cardiac tissue was respectively knocked down by siRNA and adeno-associated virus (AAV). From the present study, it could be found that compared with high glucose (HG)-normal (N)/DM group, hypoxia/reoxygenation (H/R) or I/R injury can aggravate oxidative stress injury and apoptosis rate of myocardial cells, inhibit the expression of Bcl-2, activate the BAX and cleaved caspase-3 (c-caspase-3) protein and PTEN/Akt pathway. However, in the groups of HG-N, DM, HG-N+I/R and DM+I/R, NAC can significantly reduce oxidative stress injury and apoptosis rate of myocytes, promote the Bcl-2 and DJ-1 molecules, inhibit BAX and c-caspase-3 protein and PTEN/Akt pathway. Compared with HG-N+I/R+NAC and DM+I/R+NAC groups, the oxidative stress injury, apoptosis rate of myocardial cells and heart tissues increased after the knockdown of DJ-1, the expression of Bcl-2 and DJ-1 were inhibited, the BAX and c-caspase-3 expression was increased, and PTEN/Akt pathway was activated. Taken together, the findings suggest that NAC can reduce I/R injury in diabetic myocardium by up-regulating the PTEN/Akt pathway through the level of DJ-1.
Collapse
|
22
|
Reddy S, Krogvold L, Martin C, Sun KX, Martin O, Al-Ani A, Dahl-Jørgensen K. Expression of immunoreactive inducible nitric oxide synthase in pancreatic islet cells from newly diagnosed and long-term type 1 diabetic donors is heterogeneous and not disease-associated. Cell Tissue Res 2021; 384:655-674. [PMID: 33427953 DOI: 10.1007/s00441-020-03340-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/05/2020] [Indexed: 11/26/2022]
Abstract
Exposure of isolated human islets to proinflammatory cytokines leads to up-regulation of inducible nitric oxide synthase (iNOS), raised NO, and beta cell toxicity. These findings have led to increasing interest in the clinical utility of iNOS blockade to mitigate beta cell destruction in human type 1 diabetes (T1D). However, recent studies show that iNOS-derived NO may also confer beta cell protection. To investigate this dichotomy, we compared islet cell distributions and intensity of iNOS immunostaining in pancreatic sections, co-stained for insulin and glucagon, from new-onset T1D donors (group 1), with non-diabetic autoantibody-negative (group 2), non-diabetic autoantibody-positive (group 3) and long-term diabetic donors (group 4). The cellular origins of iNOS, its frequency and graded intensities in islets and number in peri-islet, intra-islet and exocrine regions were determined. All donors showed iNOS positivity, irrespective of disease and presence of beta cells, had variable labelling intensities, without significant differences in the frequency of iNOS-positive islets among study groups. iNOS was co-localised in selective beta, alpha and other endocrine cells, and in beta cell-negative islets of diabetic donors. The number of peri- and intra-islet iNOS cells was low, being significantly higher in the peri-islet area. Exocrine iNOS cells also remained low, but were much lower in group 1. We demonstrate that iNOS expression in islet cells is variable, heterogeneous and independent of co-existing beta cells. Its distribution and staining intensities in islets and extra-islet areas do not correlate with T1D or its duration. Interventions to inactivate the enzyme to alleviate disease are currently not justified.
Collapse
Affiliation(s)
- Shiva Reddy
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand.
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Charlton Martin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Kevin Xueying Sun
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Owen Martin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Aamenah Al-Ani
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Knut Dahl-Jørgensen
- Faculty of Dentistry, University of Oslo, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Vieira F, Makoni M, Szyld E, Sekar K. The Controversy Persists: Is There a Qualification Criterion to Utilize Inhaled Nitric Oxide in Pre-term Newborns? Front Pediatr 2021; 9:631765. [PMID: 33869113 PMCID: PMC8044816 DOI: 10.3389/fped.2021.631765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Inhaled nitric oxide (iNO) use in premature newborns remains controversial among clinicians. In 2014, the American Academy of Pediatrics, Committee on Fetus and Newborn released a statement that the available data do not support routine iNO use in pre-term newborns. Despite the absence of significant benefits, 2016 California data showed that clinicians continue to utilize iNO in pre-term infants. With studies as recent as January 2017, the Cochrane review confirmed no major advantages of iNO in pre-term newborns. Still, it recognized that a subset of pre-term infants with pulmonary hypertension (PHTN) had not been separately investigated. Furthermore, recent non-randomized controlled trials have suggested that iNO may benefit specific subgroups of pre-term newborns, especially those with PHTN, prolonged rupture of membranes, and antenatal steroid exposure. Those pre-term infants who showed a clinical response to iNO had increased survival without disability. These findings underscore the need for future studies in pre-term newborns with hypoxemic respiratory failure and PHTN. This review will discuss the rationale for using iNO, controversies regarding the diagnosis of PHTN, and additional novel approaches of iNO treatment in perinatal asphyxia and neonatal resuscitation in the pre-term population < 34 weeks gestation.
Collapse
Affiliation(s)
- Frederico Vieira
- Neonatal Perinatal Section, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marjorie Makoni
- Neonatal Perinatal Section, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Edgardo Szyld
- Neonatal Perinatal Section, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Krishnamurthy Sekar
- Neonatal Perinatal Section, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
24
|
A comparison of the chemical biology of hydropersulfides (RSSH) with other protective biological antioxidants and nucleophiles. Nitric Oxide 2020; 107:46-57. [PMID: 33253886 DOI: 10.1016/j.niox.2020.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
The hydropersulfide (RSSH) functional group has received significant recent interest due to its unique chemical properties that set it apart from other biological species. The chemistry of RSSH predicts that one possible biological role may be as a protectant against cellular oxidative and electrophilic stress. That is, RSSH has reducing and nucleophilic properties that may combat the potentially destructive biochemistry of toxicologically relevant oxidants and electrophiles. However, there are currently numerous other molecules that have established roles in this regard. For example, ascorbate and tocopherols are potent antioxidants that quench deleterious oxidative reactions and glutathione (GSH) is a well-established and highly prevalent biological protectant against electrophile toxicity. Thus, in order to begin to understand the possible role of RSSH species as protectants against oxidative/electrophilic stress, the inherent chemical properties of RSSH versus these other protectants will be discussed and contrasted.
Collapse
|
25
|
Park JM, Lee YJ. Serum oestradiol levels are inversely associated with C-reactive protein levels in premenopausal women, but not postmenopausal women. J Int Med Res 2020; 48:300060520961228. [PMID: 33044103 PMCID: PMC7556179 DOI: 10.1177/0300060520961228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Epidemiological studies on the association of serum oestradiol levels and inflammatory markers have reported inconsistent and conflicting results. Therefore, we investigated the association between serum oestradiol and high-sensitivity C-reactive protein (CRP) levels in women on the basis of their menopausal status. METHODS This cross-sectional study examined the association between serum oestradiol and CRP levels on the basis of menopausal status in 151 premenopausal women aged 42.7 ± 6.7 years and 394 postmenopausal women aged 58.1 ± 6.7 years who participated in a health examination program. Multiple linear regression analysis was conducted using CRP levels as the dependent variable. RESULTS Multiple linear regression analysis showed that serum oestradiol levels were inversely associated with CRP levels in premenopausal women (β coefficient = -0.298) after adjusting for age, body mass index, smoking, mean arterial pressure, and levels of fasting plasma glucose, triglycerides, high-density lipoprotein cholesterol, aspartate aminotransferase, and alanine aminotransferase. However, this association was not found in postmenopausal women after adjusting for the same confounding factors. CONCLUSIONS Serum oestradiol levels are inversely associated with CRP levels in premenopausal women, but not in postmenopausal women. Lower oestrogenic activity may at least partly contribute to the pathogenesis of chronic inflammation, particularly in premenopausal women.
Collapse
Affiliation(s)
- Jae-Min Park
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Korea.,Department of Medicine, Graduate School of Medicine, Yonsei University, Seoul, Korea
| | - Yong-Jae Lee
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Korea
| |
Collapse
|
26
|
Taman A, Alhusseiny SM, El-Zayady WM, Elblihy AA, Mansour B, Massoud M, Youssef MY, Saleh NE. In vivo studies of the effect of PPQ-6, a quinoline-based agent against Schistosoma mansoni in mice. Exp Parasitol 2020; 215:107933. [PMID: 32525006 DOI: 10.1016/j.exppara.2020.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/27/2020] [Accepted: 05/29/2020] [Indexed: 11/25/2022]
Abstract
Schistosomiasis is still a public health problem. Praziquantel is the only drug available for treatment of all forms of human schistosomiasis. Although praziquantel is an effective drug against all species of human schistosomes, concerns about resistance have been raised, especially in endemic areas. A hybrid compound containing several pharmacophore within a single molecule is a promising strategy. Here, we described the anti-schistosomal effect of 4-(2-Chloroquinolin-3-yl)-2-oxo-6-(p-tolyl)-1,2-dihydropyridine-3-carbonitrile (PPQ-6), a hybrid drug based on quinoline and pyridine. PPQ-6 was given as two regimens (20 or 40 mg/kg). In both regimens, PPQ-6 significantly reduced liver and spleen indices, nitric oxide production, tissue egg load, hepatic granuloma size and count, immature eggs and total worm burden especially females. Our findings suggested that PPQ-6 is a promising anti-schistosomal agent; however more research is needed to elucidate its mechanism of action and report its activity on juvenile schistosomes and other species of human schistosomes.
Collapse
Affiliation(s)
- Amira Taman
- Department of Medical Parasitology, Mansoura, 35516, Egypt.
| | | | | | - Ayat A Elblihy
- Department of Medical Parasitology, Mansoura, 35516, Egypt
| | - Basem Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Mansoura, Egypt
| | - Mohammed Massoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Mona Younis Youssef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nora E Saleh
- Department of Medical Parasitology, Mansoura, 35516, Egypt
| |
Collapse
|
27
|
Supplementation of L-Arginine, L-Glutamine, Vitamin C, Vitamin E, Folic Acid, and Green Tea Extract Enhances Serum Nitric Oxide Content and Antifatigue Activity in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8312647. [PMID: 32351605 PMCID: PMC7171648 DOI: 10.1155/2020/8312647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023]
Abstract
It has been reported that abundant nitric oxide content in endothelial cells can increase exercise performance. The purpose of this study was to evaluate the potential beneficial effects of a combined extract comprising L-arginine, L-glutamine, vitamin C, vitamin E, folic acid, and green tea extract (LVFG) on nitric oxide content to decrease exercise fatigue. Male ICR (Institute of Cancer Research) mice were randomly divided into 4 groups and orally administered LVFG for 4 weeks. The 4-week LVFG supplementation significantly increased serum nitric oxide content in the LVFG-1X and LVFG-2X groups. Antifatigue activity and exercise performance were evaluated using forelimb grip strength, exhaustive swimming test, and levels of serum lactate, ammonia, glucose, and creatine kinase (CK) after an acute swimming exercise. LVFG supplementation dose-dependently improved exercise performance and nitric oxide content, and it dose-dependently decreased serum ammonia and CK activity after exhaustive swimming test. LVFG's antifatigue properties appear to manifest by preserving energy storage (as blood glucose) and increasing nitric oxide content. Taken together, our results show that LVFG could have the potential for alleviating physical fatigue due to its pharmacological effect of increasing serum nitric oxide content.
Collapse
|
28
|
Zhang Y, Calabrese EJ, Zhang J, Gao D, Qin M, Lin Z. A trigger mechanism of herbicides to phytoplankton blooms: From the standpoint of hormesis involving cytochrome b 559, reactive oxygen species and nitric oxide. WATER RESEARCH 2020; 173:115584. [PMID: 32062224 DOI: 10.1016/j.watres.2020.115584] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The cause of phytoplankton blooms has been extensively discussed and largely attributed to favorable external conditions such as nitrogen/phosphorus resources, pH and temperature. Here from the standpoint of hormesis response, we propose that phytoplankton blooms are initiated by stimulatory effects of low concentrations of herbicides as environmental contaminants spread over estuaries and lakes. The experimental results revealed general stimulations by herbicides on Microcystis aeruginosa and Selenastrum capricornutum, with the maximum stimulation in the 30-60% range, depending on the agent and experiment. In parallel with enhancing stimulation, the ratio of HP (high-potential) form to LP (low-potential) form of cytochrome b559 (RHL) was observed decreasing, while intracellular reactive oxygen species (ROS) were observed increasing. We propose that the ROS originated from the thermodynamic transformation of cytochrome b559, enhancing the stimulatory response. Furthermore, the results also proved that thermodynamic states of cytochrome b559 could be modulated by nitric oxide, thus affecting cellular equilibrium of oxidative stress (OS) and correspondingly causing the inhibitory effect of higher concentrations of herbicides on phytoplankton. This suggests that hormesis substantially derives from equilibrium shifting of OS. Moreover, it is reasonable to infer that phytoplankton blooms would be motivated by herbicides or other environmental pollutants. This study provides a new thought into global phytoplankton blooms from a contaminant perspective.
Collapse
Affiliation(s)
- Yueheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Junyi Zhang
- Wuxi Environmental Monitoring Centre, Jiangsu, China
| | - Dan Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Mengnan Qin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|
29
|
Reis AKCA, Stern A, Monteiro HP. S-nitrosothiols and H 2S donors: Potential chemo-therapeutic agents in cancer. Redox Biol 2019; 27:101190. [PMID: 30981679 PMCID: PMC6859576 DOI: 10.1016/j.redox.2019.101190] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Nitric Oxide (NO) and Hydrogen Sulfide (H2S) are components of an "interactome", which is defined as a redox system involving the interactions of RSS, RNS and ROS. Chemical interaction by these species is common and is characterized by one and two electron oxidation, nitrosylation, nitration and sulfuration/polysulfidation reactions. NO and H2S are gases that penetrate cell membranes, are synthesized by specific enzymes, are ubiquitous, regulate protein activities through post-translational modifications and participate in cell signaling. The two molecules at high concentrations compared to physiological concentrations may result in cellular damage particularly through their interaction with other reactive species. NO and H2S can interact with each other and form a variety of molecular species which may have constructive or destructive behavior depending on the cell type, the cellular environment (ex. oxygen tension, pH, redox state), where the products are produced and in what concentrations. Cross talk exists between NO and H2S, whereby they can influence the generation and signaling behavior of each other. Given the above mentioned properties of NO and H2S and studies in cancer cells and animal models employing NO and H2S donors that generate higher than physiological concentrations of NO and H2S and are effective in killing cancer cells but not normal cells, lend credence to the possibility of the utility of these donors in an approach to the treatment of cancer.
Collapse
Affiliation(s)
- Adriana Karla Cardoso Amorim Reis
- Department of Chemistry, Institute of Environmental, Chemical and Pharmaceutical Sciences - Universidade Federal de São Paulo - Campus Diadema, São Paulo, Brazil
| | - Arnold Stern
- New York University, School of Medicine, New York, NY, USA.
| | - Hugo Pequeno Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy - Universidade Federal de São Paulo - Campus São Paulo, São Paulo, Brazil.
| |
Collapse
|
30
|
Navati MS, Lucas A, Liong C, Barros M, Jayadeva JT, Friedman JM, Cabrales P. Reducing Ischemia/Reperfusion Injury by the Targeted Delivery of Nitric Oxide from Magnetic-Field-Induced Localization of S-Nitrosothiol-Coated Paramagnetic Nanoparticles. ACS APPLIED BIO MATERIALS 2019; 2:2907-2919. [DOI: 10.1021/acsabm.9b00282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mahantesh S. Navati
- Department of Albert Einstein College of Medicine Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Alfredo Lucas
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Celine Liong
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Marcelo Barros
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Jyothishree Tholalu Jayadeva
- Department of Albert Einstein College of Medicine Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Joel M. Friedman
- Department of Albert Einstein College of Medicine Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
31
|
Shakib N, Khadem Ansari MH, Karimi P, Rasmi Y. Neuroprotective mechanism of low-dose sodium nitrite in oxygen-glucose deprivation model of cerebral ischemic stroke in PC12 cells. EXCLI JOURNAL 2019; 18:229-242. [PMID: 31217786 PMCID: PMC6558507 DOI: 10.17179/excli2018-1947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/26/2019] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to clarify the mechanisms of the protective effects of low-dose sodium nitrite (SN) on oxygen and glucose deprivation (OGD)-induced endoplasmic reticulum (ER) stress in PC12 cells. The PC12 cells were exposed to 4 h of OGD and treated with 100 μmol SN. The expression and activity of ER stress markers, including PKR-like endoplasmic reticulum kinase (PERK), transcription factor 6 (ATF6), CCAAT/enhancer binding protein homologous protein (CHOP), as well as caspase-12 and -3, were detected by immunoblotting assay. Fluorescence staining was used to detect the levels of reactive oxygen species (ROS) and Ca2+ release from the ER. Cell viability was also evaluated by MTT assay. It was found that SN significantly inhibited ROS production and Ca2+ release from the ER in OGD-injured PC12 cells. Moreover, ER stress marker expression and cleaved fragments of caspase-3 and -12 in OGD-injured PC12 cells were decreased after SN treatment. These findings were accompanied by a significant increase in cell viability. It seems that SN exerts a neuroprotective effect at least partially through reduction of ROS-mediated ER stress caused by OGD insult.
Collapse
Affiliation(s)
- Nader Shakib
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
32
|
He HY, Henderson AC, Du YL, Ryan KS. Two-Enzyme Pathway Links l-Arginine to Nitric Oxide in N-Nitroso Biosynthesis. J Am Chem Soc 2019; 141:4026-4033. [DOI: 10.1021/jacs.8b13049] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | | | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S. Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
33
|
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
34
|
Abstract
A hypoxic environment can be defined as a region of the body or the whole body that is deprived of oxygen. Hypoxia is a feature of many diseases, such as cardiovascular disease, tissue trauma, stroke, and solid cancers. A loss of oxygen supply usually results in cell death; however, when cells gradually become hypoxic, they may survive and continue to thrive as described for conditions that promote metastatic growth. The role of hypoxia in these pathogenic pathways is therefore of great interest, and understanding the effect of hypoxia in regulating these mechanisms is fundamentally important. This chapter gives an extensive overview of these mechanisms. Moreover, given the challenges posed by tumor hypoxia we describe the current methods to simulate and detect hypoxic conditions followed by a discussion on current and experimental therapies that target hypoxic cells.
Collapse
Affiliation(s)
- Elizabeth Bowler
- College of Medicine and Health, University of Exeter Medical School, Exeter, UK.
| | - Michael R Ladomery
- Faculty Health and Applied Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
35
|
Fukuto JM. A recent history of nitroxyl chemistry, pharmacology and therapeutic potential. Br J Pharmacol 2019; 176:135-146. [PMID: 29859009 PMCID: PMC6295406 DOI: 10.1111/bph.14384] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Due to the excitement surrounding the discovery of NO as an endogenously generated signalling molecule, a number of other nitrogen oxides were also investigated as possible physiological mediators. Among these was nitroxyl (HNO). Over the past 25 years or so, a significant amount of work by this laboratory and many others has disclosed that HNO possesses unique chemical properties and important pharmacological utility. Indeed, the pharmacological potential for HNO as a treatment for heart failure, among other uses, has garnered this curious molecule a considerable amount of recent attention. This review summarizes the events that led to this recent attention as well as poses important questions that are still to be answered with regards to understanding the chemistry and biology of HNO. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of ChemistrySonoma State UniversityRohnert ParkCAUSA
| |
Collapse
|
36
|
Huang M, Ai H, Xu X, Chen K, Niu H, Zhu H, Sun J, Du D, Chen L. Nitric oxide alleviates toxicity of hexavalent chromium on tall fescue and improves performance of photosystem II. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:32-40. [PMID: 30096601 DOI: 10.1016/j.ecoenv.2018.07.118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/23/2018] [Accepted: 07/28/2018] [Indexed: 05/21/2023]
Abstract
Tall fescue (Festuca arundinacea Schreb) was widely studied for phytoremediation of organic or heavy metal contaminated soils. However, there is still little information concerning toxicity of chromium (Cr) to tall fescue and roles of nitric oxide (NO) in plants against Cr(VI) stress. In this study, different Cr(VI) treatments (0, 1, 5 and 10 mg/L Cr(VI)) and NO treatments were applied with different combinations in hydroponics culture and their interactions to tall fescue were studied. Specifically, 100 µM sodium nitroprusside (SNP) and 100 µM NG-nitro-L-arginine-methyl ester (L-NAME) treatments were used to apply exogenous NO or inhibit synthesis of NO respectively. Our results showed that tall fescue exhibits comparable Cr(VI) tolerance as wheat (Triticum aestivum L.). Additionally, Cr(VI) accumulation in tall fescue leaves were carefully studied and discussed. Moreover, we observed the significantly increased reactive oxygen species (ROS) contents of tall fescue when subjected to Cr(VI) stress, as well as decreased photosynthetic activities induced by Cr(VI) stress by methods of chlorophyll a fluorescence transient, slow chlorophyll fluorescence kinetics and rapid light response curves. Decreased behaviors of photosynthetic activities may due to destruction of antennae pigments by Cr(VI), ROS burst induced by Cr(VI), and down regulation of photosystem II (PSII) by non-photochemical quenching to avoid over reduction of quinone A, which could be considered as an important strategy to cope with Cr(VI) stress. Meanwhile, exogenous NO treatment improves overall physiological and photosynthetic behaviors of tall fescue against Cr(VI) stress. Moreover, increased translocation factors and improved Cr(VI) tolerance of plants under exogenous NO treatment suggest that SNP treatment could be a useful application for Cr phytoremediation.
Collapse
Affiliation(s)
- Meiyu Huang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China
| | - Honglian Ai
- College of Pharmacy, South-Central University for Nationalities, Wuhan, PR China
| | - Xiaoxiang Xu
- Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Ke Chen
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China.
| | - Hong Niu
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China
| | - Huihui Zhu
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China
| | - Jie Sun
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China
| | - Dongyun Du
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, PR China
| |
Collapse
|
37
|
Zhao Y, Wang X, Wang R, Chen D, Noviana M, Zhu H. Nitric oxide inhibits hypoxia-induced impairment of human RBC deformability through reducing the cross-linking of membrane protein band 3. J Cell Biochem 2018; 120:305-320. [PMID: 30218451 DOI: 10.1002/jcb.27359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/26/2018] [Indexed: 12/26/2022]
Abstract
AIM Nitric oxide (NO) prevents the decline of RBC deformability under high altitude and other ischemic and hypoxic conditions, but the clear mechanisms remain unknown. Here, we have carried out a systematic study to find the mechanisms of NO-induced regulation of RBC deformability under hypoxia. METHODS NO levels, RBCs membrane elongation index (EI), membrane protein band 3 methemoglobin (MetHb) were determined during hypoxia (0 to 120 minutes). To validate the role of NO in regulating RBC deformability, tests were also performed with a NO donor (sodium nitroprusside) or a NO synthase inhibitor (l-nitro-arginine methylester) under 60 minutes hypoxia. RESULTS Hypoxia for 45 minutes increased NO levels from 25.65 ± 1.95 to 35.26 ± 2.01 μmol/L, and there was a plateau after 60 minutes hypoxia. The EI did not change before 45 minutes hypoxia, but decreased from 0.567 ± 0.019 to 0.409 ± 0.042 (30 Pa) after 60 minutes hypoxia. The cross-linking of band 3 and phosphotyrosine increased after 45 minutes hypoxia. All can be alleviated by supplement NO and aggregated by inhibiting NOS. However, the MetHb was not present this trend. CONCLUSION NO may prevent decreased of RBCs deformability through reducing the cross-linking of membrane band 3 under hypoxia; this helps microvascular perfusion of RBCs during ischemic and hypoxic disease states.
Collapse
Affiliation(s)
- Yajin Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Ruofeng Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Dong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Milody Noviana
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hongliang Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
38
|
Ekanger LA, Oyala PH, Moradian A, Sweredoski MJ, Barton JK. Nitric Oxide Modulates Endonuclease III Redox Activity by a 800 mV Negative Shift upon [Fe 4S 4] Cluster Nitrosylation. J Am Chem Soc 2018; 140:11800-11810. [PMID: 30145881 DOI: 10.1021/jacs.8b07362] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Here we characterize the [Fe4S4] cluster nitrosylation of a DNA repair enzyme, endonuclease III (EndoIII), using DNA-modified gold electrochemistry and protein film voltammetry, electrophoretic mobility shift assays, mass spectrometry of whole and trypsin-digested protein, and a variety of spectroscopies. Exposure of EndoIII to nitric oxide under anaerobic conditions transforms the [Fe4S4] cluster into a dinitrosyl iron complex, [(Cys)2Fe(NO)2]-, and Roussin's red ester, [(μ-Cys)2Fe2(NO)4], in a 1:1 ratio with an average retention of 3.05 ± 0.01 Fe per nitrosylated cluster. The formation of the dinitrosyl iron complex is consistent with previous reports, but the Roussin's red ester is an unreported product of EndoIII nitrosylation. Hyperfine sublevel correlation (HYSCORE) pulse EPR spectroscopy detects two distinct classes of NO with 14N hyperfine couplings consistent with the dinitrosyl iron complex and reduced Roussin's red ester. Whole-protein mass spectrometry of EndoIII nitrosylated with 14NO and 15NO support the assignment of a protein-bound [(μ-Cys)2Fe2(NO)4] Roussin's red ester. The [Fe4S4]2+/3+ redox couple of DNA-bound EndoIII is observable using DNA-modified gold electrochemistry, but nitrosylated EndoIII does not display observable redox activity using DNA electrochemistry on gold despite having a similar DNA-binding affinity as the native protein. However, direct electrochemistry of protein films on graphite reveals the reduction potential of native and nitrosylated EndoIII to be 127 ± 6 and -674 ± 8 mV vs NHE, respectively, corresponding to a shift of approximately -800 mV with cluster nitrosylation. Collectively, these data demonstrate that DNA-bound redox activity, and by extension DNA-mediated charge transport, is modulated by [Fe4S4] cluster nitrosylation.
Collapse
|
39
|
Confined photo-release of nitric oxide with simultaneous two-photon fluorescence tracking in a cellular system. Sci Rep 2018; 8:9753. [PMID: 29950654 PMCID: PMC6021447 DOI: 10.1038/s41598-018-27939-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/08/2018] [Indexed: 02/03/2023] Open
Abstract
Nitric oxide (NO) is a key signaling molecule in biological systems. New tools are required to therapeutically modulate NO levels with confined precision. This study explores the photoactivatable properties of an NO releasing compound (CPA), based on cupferron O-alkylated with an anthracene derivative. Upon light stimulation, CPA uncages two species: cupferron, which liberates NO, and an anthrylmethyl carbocation, which evolves into a fluorescent reporter. Proof-of-principle is demonstrated using one- and two-photon excitation (1PE and 2PE) in a cellular system (A431 cells). It was found that 1PE induces cell toxicity, while 2PE does not. Since 1PE using UV light is more likely to generate cellular photodamage, the cell toxicity observed using 1PE is most likely a combinatory effect of NO release and other UV-induced damage, which should be subject to further investigation. On the other hand, absence of phototoxicity using 2PE suggests that NO alone is not cytotoxic. This leads to the conclusion that the concept of 2PE photorelease of NO from CPA enable opportunities for biological studies of NO signaling with confined precision of NO release with minimal cytotoxicity.
Collapse
|
40
|
Fonar G, Polis B, Meirson T, Maltsev A, Elliott E, Samson AO. Intracerebroventricular Administration of L-arginine Improves Spatial Memory Acquisition in Triple Transgenic Mice Via Reduction of Oxidative Stress and Apoptosis. Transl Neurosci 2018; 9:43-53. [PMID: 29876138 PMCID: PMC5984558 DOI: 10.1515/tnsci-2018-0009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/01/2018] [Indexed: 12/15/2022] Open
Abstract
Arginine is one of the most versatile semi-essential amino acids. Further to the primary role in protein biosynthesis, arginine is involved in the urea cycle, and it is a precursor of nitric oxide. Arginine deficiency is associated with neurodegenerative diseases such as Parkinson's, Huntington's and Alzheimer's diseases (AD). In this study, we administer arginine intracerebroventricularly in a murine model of AD and evaluate cognitive functions in a set of behavioral tests. In addition, the effect of arginine on synaptic plasticity was tested electrophysiologically by assessment of the hippocampal long-term potentiation (LTP). The effect of arginine on β amyloidosis was tested immunohistochemically. A role of arginine in the prevention of cytotoxicity and apoptosis was evaluated in vitro on PC-12 cells. The results indicate that intracerebroventricular administration of arginine improves spatial memory acquisition in 3xTg-AD mice, however, without significantly reducing intraneuronal β amyloidosis. Arginine shows little or no impact on LTP and does not rescue LTP deterioration induced by Aβ. Nevertheless, arginine possesses neuroprotective and antiapoptotic properties.
Collapse
Affiliation(s)
- Gennadiy Fonar
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Baruh Polis
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Tomer Meirson
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Alexander Maltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Evan Elliott
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Abraham O Samson
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| |
Collapse
|
41
|
Effect of Allicin against Ischemia/Hypoxia-Induced H9c2 Myoblast Apoptosis via eNOS/NO Pathway-Mediated Antioxidant Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3207973. [PMID: 29849702 PMCID: PMC5926492 DOI: 10.1155/2018/3207973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/28/2018] [Accepted: 03/11/2018] [Indexed: 12/15/2022]
Abstract
Allicin (2-propene-1-sulfinothioic acid S-2-propenyl ester, diallyl thiosulfinate) is the main biologically active ingredient in garlic. The present study investigated the protective effect of allicin against cardiomyocyte apoptosis that was induced by ischemia in vitro and the potential molecular mechanisms that were involved in this antiapoptotic effect. The results indicated that allicin increased H9c2 cell activity and attenuated the rate of apoptosis that was induced by ischemia/hypoxia. Intracellular calcium concentrations significantly decreased in the allicin-treated groups. Bax expression significantly decreased, and Bcl-2 expression increased in allicin-treated rats. Nitric oxide blockade significantly inhibited these effects. Allicin also increased the activity of SOD and NO release and decreased MDA levels. Allicin significantly increased the expression of eNOS, Nrf2, and HO-1 proteins. Collectively, these findings demonstrate that allicin protects H9c2 cells against apoptosis, and this protective effect appears to occur via eNOS/NO pathway-mediated antioxidant activity.
Collapse
|
42
|
Oh HS, Constancias F, Ramasamy C, Tang PYP, Yee MO, Fane AG, McDougald D, Rice SA. Biofouling control in reverse osmosis by nitric oxide treatment and its impact on the bacterial community. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Hoang Thi TT, Lee Y, Le Thi P, Park KD. Nitric oxide-releasing injectable hydrogels with high antibacterial activity through in situ formation of peroxynitrite. Acta Biomater 2018; 67:66-78. [PMID: 29269330 DOI: 10.1016/j.actbio.2017.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) is an endogenous molecule with many critical biological functions that depend on its concentration. At high levels, NO provides broad-spectrum antibacterial effects through both its pathogen inhibition and killing abilities. However, its short half-life has been a great challenge to its clinical application in pharmaceutical forms. In this study, we incorporated the NO donor S-nitrosothiolated gelatin (GelSNO) into injectable gelatin-based hydrogels (GHs) to controllably release NO. Under catalysis by horseradish peroxidase, H2O2 oxidizes phenol moieties functionalized on gelatin to quickly form phenol-phenol crosslinks that encapsulate GelSNO. Through thermal, visible light, and oxidizing agent-driven mechanisms, NO is released from the GH/GelSNO hydrogels. By varying the GelSNO concentration, the release of NO was controllable in a wide range, 0.054-2.050 μmol/mL, for up to 14 days. In addition, NO release was fine-tunable as a function of H2O2 concentration. Notably, the in situ formation of peroxynitrite (ONOO-) that produces potent antibacterial effects originated from H2O2 residues and nitrous acid formed by NO and oxygen in aqueous solution. The Kirby-Bauer method indicated that there was an inhibition zone against both Escherichia coli and Staphylococcus aureus incubated with GH/GelSNO hydrogels. The AlarmaBlue assay showed that E. coli and S. aureus were completely killed at NO concentrations of 0.39 and 0.58 μmol/mL. Cytotoxicity tests of GH/GelSNO hydrogels on human dermal fibroblasts at the indicated bactericidal NO concentrations induced no cell toxicity. In summary, GH/GelSNO hydrogels may provide a new platform for topical delivery of NO in treating wound infections and for various biomedical applications. STATEMENT OF SIGNIFICANCE NO is an effective antibacterial agent even in cases of antibiotic-resistant bacteria. Moreover, its intermediate, peroxynitrite, has been reported to have a much higher ability to kill bacteria. In this study, we utilized injectable GH/GelSNO hydrogels formed by HRP/H2O2 reaction not only to control NO release but also to generate peroxynitrite in situ from released NO and H2O2 residues. The GH/GelSNO hydrogels showed significant antibacterial ability on both gram-positive and negative bacteria, while no cytotoxicity was induced on human dermal fibroblasts. In addition, their tunable chemico-physical properties and controllable NO release within a wide range but narrow scale will make the hydrogels useful in various biomedical applications.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
44
|
Xu L, Ma Z, Wang W, Xie L, Liu L, Liu J, Zhao X, Wang H. Photo-induced cytotoxicity, photo-controlled nitric oxide release and DNA/human serum albumin binding of three water-soluble nitrosylruthenium complexes. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Roberts DD, Kaur S, Isenberg JS. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer. Antioxid Redox Signal 2017; 27:874-911. [PMID: 28712304 PMCID: PMC5653149 DOI: 10.1089/ars.2017.7140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H2S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H2S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. CRITICAL ISSUES Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. FUTURE DIRECTIONS Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.
Collapse
Affiliation(s)
- David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical Care, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
46
|
Rizza S, Filomeni G. Chronicles of a reductase: Biochemistry, genetics and physio-pathological role of GSNOR. Free Radic Biol Med 2017; 110:19-30. [PMID: 28533171 DOI: 10.1016/j.freeradbiomed.2017.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023]
Abstract
S-nitrosylation is a major redox posttranslational modification involved in cell signaling. The steady state concentration of S-nitrosylated proteins depends on the balance between the relative ability to generate nitric oxide (NO) via NO synthase and to reduce nitrosothiols by denitrosylases. Numerous works have been published in last decades regarding the role of NO and S-nitrosylation in the regulation of protein structure and function, and in driving cellular activities in vertebrates. Notwithstanding an increasing number of observations indicates that impairment of denitrosylation equally affects cellular homeostasis, there is still no report providing comprehensive knowledge on the impact that denitrosylation has on maintaining correct physiological processes and organ activities. Among denitrosylases, S-nitrosoglutathione reductase (GSNOR) represents the prototype enzyme to disclose how denitrosylation plays a crucial role in tuning NO-bioactivity and how much it deeply impacts on cell homeostasis and human patho-physiology. In this review we attempt to illustrate the history of GSNOR discovery and provide the evidence so far reported in support of GSNOR implications in development and human disease.
Collapse
Affiliation(s)
- Salvatore Rizza
- Redox Signaling and Oxidative Stress Research Group, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Research Group, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
47
|
Tomizawa R, Sugiyama H, Sato R, Ohnishi M, Koizumi N. Male-specific pulmonary hemorrhage and cytokine gene expression in golden hamster in early-phase Leptospira interrogans serovar Hebdomadis infection. Microb Pathog 2017; 111:33-40. [PMID: 28811249 DOI: 10.1016/j.micpath.2017.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 01/19/2023]
Abstract
Leptospirosis causes severe clinical signs more frequently in men than in women, but the mechanism underlying the gender differences in leptospirosis remains unclear. In this study, petechial hemorrhage was observed in male but not in female hamster lung tissues infected with Leptospira interrogans serovar Hebdomadis at 120 h pi, demonstrating that male hamsters were more susceptible to the development of a severe disease upon Leptospira infection. No leptospiral DNA was detected in the lung tissues at 120 h pi when pulmonary hemorrhage was observed, indicating that pulmonary hemorrhage is attributable to the immune reactions of the host rather than from the direct effect of leptospires. The upregulation of nitric oxide synthase genes in the hamsters without pulmonary hemorrhage, inos and enos in female hamsters at 96 h pi and enos in male animals without hemorrhage at 120 h pi, may suggest that nitric oxide has a suppressive effect on leptospirosis-associated pulmonary hemorrhage.
Collapse
Affiliation(s)
- Rina Tomizawa
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan; Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan.
| | - Hiromu Sugiyama
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan.
| | - Ryoichi Sato
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan.
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan.
| |
Collapse
|
48
|
Wang C, Yang Y, Li M, Liu X, Wang Q, Xin W, Sun H, Zheng Q. Safflor yellow B reduces hypoxia-mediated vasoconstriction by regulating endothelial micro ribonucleic acid/nitric oxide synthase signaling. Oncotarget 2017; 8:93551-93566. [PMID: 29212172 PMCID: PMC5706818 DOI: 10.18632/oncotarget.20133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/12/2017] [Indexed: 02/01/2023] Open
Abstract
Hypoxia-induced generation of vasoconstrictors reduces cerebral blood flow (CBF) while nitric oxide (NO) synthase (NOS) and microRNAs (miRNA) in endothelial cells (ECs) suppress vasoconstriction. Safflor yellow B (SYB), a natural plant compound, previously attenuated angiotensin II-mediated injury of ECs and maintained endothelial function. This study investigated the putative involvement of NOS and miRNAs in SYB-mediated resistance to hypoxia-induced vasoconstriction. In vivo, chronic hypoxia was induced in rats, and SYB was administered intravenously. In vitro, rat primary aortic ECs were cultured under oxygen and glucose deprivation. After treatment with anti-microR-199a, as well as the NOS inhibitor, N(G)-nitro-L-arginine methyl ester, SYB, or both, cell viability, NO and peroxynitrite (ONOO-) levels, NOS expression, and miRNA levels were evaluated. SYB significantly alleviated hypoxia-mediated vasoconstriction and increased CBF endothelium-dependently. SYB upregulated miR-199a, increased EC viability, decreased endothelin-1 (ET-1) levels, inhibited protein kinase C (PKC) activity, and suppressed hypoxia inducible factor-1α (HIF-1α) expression. Furthermore, the SYB-mediated reduction of inducible NOS reduced ONOO- levels. In addition, SYB downregulated miR-138 and, thereby, enhanced S100A1 and endothelial NOS activity. Hypoxia-mediated regulation of miR-138 and miR-199a inhibited endothelial NOS expression and activation, which triggered ET-1 release and vasoconstriction. Therefore, SYB treatment reduced hypoxia-induced vasoconstriction through miR-199a/endothelial NOS signaling.
Collapse
Affiliation(s)
- Chaoyun Wang
- School of Enology, Binzhou Medical University, Yantai 264003, P.R. China
| | - Ying Yang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, P.R. China
| | - Miao Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, P.R. China
| | - Xin Liu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, P.R. China
| | - Qiaoyun Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, P.R. China
| | - Wenyu Xin
- School of Pharmacy, Binzhou Medical University, Yantai 264003, P.R. China
| | - Hongliu Sun
- School of Pharmacy, Binzhou Medical University, Yantai 264003, P.R. China
| | - Qingyin Zheng
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
49
|
Xie M, Chen H, Nie S, Tong W, Yin J, Xie M. Gastroprotective effect of gamma-aminobutyric acid against ethanol-induced gastric mucosal injury. Chem Biol Interact 2017; 272:125-134. [DOI: 10.1016/j.cbi.2017.04.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022]
|
50
|
Cerkezkayabekir A, Sanal F, Bakar E, Ulucam E, Inan M. Naringin protects viscera from ischemia/reperfusion injury by regulating the nitric oxide level in a rat model. Biotech Histochem 2017; 92:252-263. [PMID: 28426254 DOI: 10.1080/10520295.2017.1305499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the effects of naringin on small intestine, liver, kidney and lung recovery after ischemia/reperfusion (I/R) injury of the gut. Rats were divided randomly into four groups of eight. Group A was the sham control; group B was ischemic for 2 h; group C was ischemic for 2 h and re-perfused for 2 h (I/R); group D was treated with 50 mg/kg naringin after ischemia, then re-perfused for 2 h. Endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expressions were detected by immunolabeling. We also measured arginase activity, amounts of nitric oxide (NO) and total protein. iNOS was increased significantly in the small intestine, liver and kidney in group C. iNOS was decreased significantly only in small intestine and lung in group D. eNOS was increased significantly in the small intestine, liver and lung in group C. eNOS was decreased in small intestine, liver and lung in group D; however, eNOS was decreased in the kidney in group C and increased in the kidney in group D. The amount of NO was decreased significantly in all tissues in group D, but arginase activity was decreased in the small intestine and lung, increased in the kidney and remained unchanged in the liver in group D. The total protein increased in the small intestine and liver in group D, but decreased significantly in the kidney and lung in group D. Naringin had significant, salutary effects on the biochemical parameters of I/R by decreasing the NO level, equilibrating iNOS and eNOS expressions, and decreasing arginase activity.
Collapse
Affiliation(s)
| | - F Sanal
- a Faculty of Science, Department of Biology
| | - E Bakar
- b Faculty of Pharmaceutical, Department of Pharmaceutical Technology
| | - E Ulucam
- c School of Medicine, Department of Anatomy
| | - M Inan
- d School of Medicine, Department of Pediatric Surgery , Trakya University , Edirne , Turkey
| |
Collapse
|