1
|
Harford TJ, Rezaee F, Gupta MK, Bokun V, Naga Prasad SV, Piedimonte G. Respiratory syncytial virus induces β 2-adrenergic receptor dysfunction in human airway smooth muscle cells. Sci Signal 2021; 14:14/685/eabc1983. [PMID: 34074703 DOI: 10.1126/scisignal.abc1983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pharmacologic agonism of the β2-adrenergic receptor (β2AR) induces bronchodilation by activating the enzyme adenylyl cyclase to generate cyclic adenosine monophosphate (cAMP). β2AR agonists are generally the most effective strategy to relieve acute airway obstruction in asthmatic patients, but they are much less effective when airway obstruction in young patients is triggered by infection with respiratory syncytial virus (RSV). Here, we investigated the effects of RSV infection on the abundance and function of β2AR in primary human airway smooth muscle cells (HASMCs) derived from pediatric lung tissue. We showed that RSV infection of HASMCs resulted in proteolytic cleavage of β2AR mediated by the proteasome. RSV infection also resulted in β2AR ligand-independent activation of adenylyl cyclase, leading to reduced cAMP synthesis compared to that in uninfected control cells. Last, RSV infection caused stronger airway smooth muscle cell contraction in vitro due to increased cytosolic Ca2+ concentrations. Thus, our results suggest that RSV infection simultaneously induces loss of functional β2ARs and activation of multiple pathways favoring airway obstruction in young patients, with the net effect of counteracting β2AR agonist-induced bronchodilation. These findings not only provide a potential mechanism for the reported lack of clinical efficacy of β2AR agonists for treating virus-induced wheezing but also open the path to developing more precise therapeutic strategies.
Collapse
Affiliation(s)
- Terri J Harford
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Manveen K Gupta
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Vladimir Bokun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Sathyamangla V Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Giovanni Piedimonte
- Departments of Pediatrics, Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
2
|
Abstract
G-protein-coupled receptors (GPCRs) are the primary interaction partners for arrestins. The visual arrestins, arrestin1 and arrestin4, physiologically bind to only very few receptors, i.e., rhodopsin and the color opsins, respectively. In contrast, the ubiquitously expressed nonvisual variants β-arrestin1 and 2 bind to a large number of receptors in a fairly nonspecific manner. This binding requires two triggers, agonist activation and receptor phosphorylation by a G-protein-coupled receptor kinase (GRK). These two triggers are mediated by two different regions of the arrestins, the "phosphorylation sensor" in the core of the protein and a less well-defined "activation sensor." Binding appears to occur mostly in a 1:1 stoichiometry, involving the N-terminal domain of GPCRs, but in addition a second GPCR may loosely bind to the C-terminal domain when active receptors are abundant.Arrestin binding initially uncouples GPCRs from their G-proteins. It stabilizes receptors in an active conformation and also induces a conformational change in the arrestins that involves a rotation of the two domains relative to each other plus changes in the polar core. This conformational change appears to permit the interaction with further downstream proteins. The latter interaction, demonstrated mostly for β-arrestins, triggers receptor internalization as well as a number of nonclassical signaling pathways.Open questions concern the exact stoichiometry of the interaction, possible specificity with regard to the type of agonist and of GRK involved, selective regulation of downstream signaling (=biased signaling), and the options to use these mechanisms as therapeutic targets.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany,
| | | |
Collapse
|
3
|
A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat Med 2008; 15:75-83. [PMID: 19060905 DOI: 10.1038/nm.1893] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 10/27/2008] [Indexed: 01/07/2023]
Abstract
The extracellular-regulated kinases ERK1 and ERK2 (commonly referred to as ERK1/2) have a crucial role in cardiac hypertrophy. ERK1/2 is activated by mitogen-activated protein kinase kinase-1 (MEK1) and MEK2 (commonly referred to as MEK1/2)-dependent phosphorylation in the TEY motif of the activation loop, but how ERK1/2 is targeted toward specific substrates is not well understood. Here we show that autophosphorylation of ERK1/2 on Thr188 directs ERK1/2 to phosphorylate nuclear targets known to cause cardiac hypertrophy. Thr188 autophosphorylation requires the activation and assembly of the entire Raf-MEK-ERK kinase cascade, phosphorylation of the TEY motif, dimerization of ERK1/2 and binding to G protein betagamma subunits released from activated G(q). Thr188 phosphorylation of ERK1/2 was observed in isolated cardiomyocytes induced to undergo hypertrophic growth, in mice upon stimulation of G(q)-coupled receptors or after aortic banding and in failing human hearts. Experiments using transgenic mouse models carrying mutations at the Thr188 phosphorylation site of ERK2 suggested a causal relationship to cardiac hypertrophy. We propose that specific phosphorylation events on ERK1/2 integrate differing upstream signals (Raf1-MEK1/2 or G protein-coupled receptor-G(q)) to induce cardiac hypertrophy.
Collapse
|
4
|
Yu XY, Lin SG, Wang XM, Liu Y, Zhang B, Lin QX, Yang M, Zhou SF. Evidence for coexistence of three beta-adrenoceptor subtypes in human peripheral lymphocytes. Clin Pharmacol Ther 2007; 81:654-8. [PMID: 17361123 DOI: 10.1038/sj.clpt.6100154] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peripheral circulating lymphocytes are easily accessible cells for investigating changes in beta-adrenergic receptors (ADRBs) in humans, but previous reports indicate that these cells only express ADRB2. This study aimed to investigate whether ADRB1 and ADRB3 were expressed in peripheral lymphocytes and the changes of ADRBs in congestive heart failure. Our study demonstrates that ADRB1, ADRB2, and ADRB3 coexist in human peripheral lymphocytes, with differential binding property and expression level. Patients with congestive heart failure had significantly decreased total ADRB density and mRNA levels of ADRB1 and ADRB2 genes, but not ADRB3, compared with healthy subjects. The levels of mRNA of ADRB1 and ADRB2 in peripheral lymphocytes from patients with congestive heart disease were significantly increased after drug treatment. Our study, for the first time, indicates that human peripheral lymphocytes coexpress ADRB1, ADRB2, and ADRB3, which has important implications for precisely predicting clinical response to drug therapy in congestive heart failure.
Collapse
MESH Headings
- Adrenergic beta-Agonists/metabolism
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/metabolism
- Adrenergic beta-Antagonists/pharmacology
- Adult
- Binding, Competitive/drug effects
- Blotting, Western
- Female
- Humans
- In Vitro Techniques
- Lymphocytes/metabolism
- Male
- Propanolamines/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Radioligand Assay
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-3/drug effects
- Receptors, Adrenergic, beta-3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Xi-Yong Yu
- Department of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Provincial Cardiovascular Institute, Guangzhou, China, and School of Life Sciences, Queensland University of Technology, Brisbane, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Eichmann T, Lorenz K, Hoffmann M, Brockmann J, Krasel C, Lohse MJ, Quitterer U. The amino-terminal domain of G-protein-coupled receptor kinase 2 is a regulatory Gbeta gamma binding site. J Biol Chem 2003; 278:8052-7. [PMID: 12486133 DOI: 10.1074/jbc.m204795200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptor kinase 2 (GRK2) is activated by free Gbetagamma subunits. A Gbetagamma binding site of GRK2 is localized in the carboxyl-terminal pleckstrin homology domain. This Gbetagamma binding site of GRK2 also regulates Gbetagamma-stimulated signaling by sequestering free Gbetagamma subunits. We report here that truncation of the carboxyl-terminal Gbetagamma binding site of GRK2 did not abolish the Gbetagamma regulatory activity of GRK2 as determined by the inhibition of a Gbetagamma-stimulated increase in inositol phosphates in cells. This finding suggested the presence of a second Gbetagamma binding site in GRK2. And indeed, the amino terminus of GRK2 (GRK2(1-185)) inhibited a Gbetagamma-stimulated inositol phosphate signal in cells, purified GRK2(1-185) suppressed the Gbetagamma-stimulated phosphorylation of rhodopsin, and GRK2(1-185) bound directly to purified Gbetagamma subunits. The amino-terminal Gbetagamma regulatory site does not overlap with the RGS domain of GRK-2 because GRK2(1-53) with truncated RGS domain inhibited Gbetagamma-mediated signaling with similar potency and efficacy as did GRK2(1-185). In addition to the Gbetagamma regulatory activity, the amino-terminal Gbetagamma binding site of GRK2 affects the kinase activity of GRK2 because antibodies specifically cross-reacting with the amino terminus of GRK2 suppressed the GRK2-dependent phosphorylation of rhodopsin. The antibody-mediated inhibition was released by purified Gbetagamma subunits, strongly suggesting that Gbetagamma binding to the amino terminus of GRK2 enhances the kinase activity toward rhodopsin. Thus, the amino-terminal domain of GRK2 is a previously unrecognized Gbetagamma binding site that regulates GRK2-mediated receptor phosphorylation and inhibits Gbetagamma-stimulated signaling.
Collapse
Affiliation(s)
- Tanja Eichmann
- Institut für Pharmakologie und Toxikologie, Versbacher Strasse 9, D-97078 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Gehrmann J, Meister M, Maguire CT, Martins DC, Hammer PE, Neer EJ, Berul CI, Mende U. Impaired parasympathetic heart rate control in mice with a reduction of functional G protein betagamma-subunits. Am J Physiol Heart Circ Physiol 2002; 282:H445-56. [PMID: 11788391 DOI: 10.1152/ajpheart.00565.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acetylcholine released on parasympathetic stimulation slows heart rate through activation of muscarinic receptors on the sinus nodal cells and subsequent opening of the atrial muscarinic potassium channel (K(ACh)). K(ACh) is directly activated by G protein betagamma-subunits. To elucidate the physiological role of Gbetagamma for the regulation of heart rate and electrophysiological function in vivo, we created transgenic mice with a reduced amount of membrane-bound Gbeta protein by overexpressing nonprenylated Ggamma(2)-subunits in their hearts using the alpha-myosin heavy chain promoter. At baseline and after muscarinic stimulation with carbachol, heart rate and heart rate variability were determined with electrocardiogram telemetry in conscious mice and in vivo intracardiac electrophysiological studies in anesthetized mice. Reduction of the amount of functional Gbetagamma protein by >50% caused a pronounced blunting of the carbachol-induced bradycardia as well as the increases in time- and frequency-domain indexes of heart rate variability and baroreflex sensitivity that were observed in wild types. In addition, sinus node recovery time and inducibility of atrial arrhythmias were reduced in transgenic mice. Our data demonstrate in vivo that Gbetagamma plays a crucial role for parasympathetic heart rate control, sinus node automaticity, and atrial arrhythmia vulnerability.
Collapse
Affiliation(s)
- Josef Gehrmann
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
McIntire WE, MacCleery G, Garrison JC. The G protein beta subunit is a determinant in the coupling of Gs to the beta 1-adrenergic and A2a adenosine receptors. J Biol Chem 2001; 276:15801-9. [PMID: 11278863 DOI: 10.1074/jbc.m011233200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signaling specificity of five purified G protein betagamma dimers, beta(1)gamma(2), beta(2)gamma(2), beta(3)gamma(2), beta(4)gamma(2), and beta(5)gamma(2), was explored by reconstituting them with G(s) alpha and receptors or effectors in the adenylyl cyclase cascade. The ability of the five betagamma dimers to support receptor-alpha-betagamma interactions was examined using membranes expressing the beta(1)-adrenergic or A2a adenosine receptors. These receptors discriminated among the defined heterotrimers based solely on the beta isoform. The beta(4)gamma(2) dimer demonstrated the highest coupling efficiency to either receptor. The beta(5)gamma(2) dimer coupled poorly to each receptor, with EC(50) values 40-200-fold higher than those observed with beta(4)gamma(2). Strikingly, whereas the EC(50) of the beta(1)gamma(2) dimer at the beta(1)-adrenergic receptor was similar to beta(4)gamma(2), its EC(50) was 20-fold higher at the A2a adenosine receptor. Inhibition of adenylyl cyclase type I (AC1) and stimulation of type II (AC2) by the betagamma dimers were measured. betagamma dimers containing Gbeta(1-4) were able to stimulate AC2 similarly, and beta(5)gamma(2) was much less potent. beta(1)gamma(2), beta(2)gamma(2), and beta(4)gamma(2) inhibited AC1 equally; beta(3)gamma(2) was 10-fold less effective, and beta(5)gamma(2) had no effect. These data argue that the beta isoform in the betagamma dimer can determine the specificity of signaling at both receptors and effectors.
Collapse
Affiliation(s)
- W E McIntire
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
8
|
Cong M, Perry SJ, Lin FT, Fraser ID, Hu LA, Chen W, Pitcher JA, Scott JD, Lefkowitz RJ. Regulation of membrane targeting of the G protein-coupled receptor kinase 2 by protein kinase A and its anchoring protein AKAP79. J Biol Chem 2001; 276:15192-9. [PMID: 11278469 DOI: 10.1074/jbc.m009130200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta2 adrenergic receptor (beta2AR) undergoes desensitization by a process involving its phosphorylation by both protein kinase A (PKA) and G protein-coupled receptor kinases (GRKs). The protein kinase A-anchoring protein AKAP79 influences beta2AR phosphorylation by complexing PKA with the receptor at the membrane. Here we show that AKAP79 also regulates the ability of GRK2 to phosphorylate agonist-occupied receptors. In human embryonic kidney 293 cells, overexpression of AKAP79 enhances agonist-induced phosphorylation of both the beta2AR and a mutant of the receptor that cannot be phosphorylated by PKA (beta2AR/PKA-). Mutants of AKAP79 that do not bind PKA or target to the beta2AR markedly inhibit phosphorylation of beta2AR/PKA-. We show that PKA directly phosphorylates GRK2 on serine 685. This modification increases Gbetagamma subunit binding to GRK2 and thus enhances the ability of the kinase to translocate to the membrane and phosphorylate the receptor. Abrogation of the phosphorylation of serine 685 on GRK2 by mutagenesis (S685A) or by expression of a dominant negative AKAP79 mutant reduces GRK2-mediated translocation to beta2AR and phosphorylation of agonist-occupied beta2AR, thus reducing subsequent receptor internalization. Agonist-stimulated PKA-mediated phosphorylation of GRK2 may represent a mechanism for enhancing receptor phosphorylation and desensitization.
Collapse
Affiliation(s)
- M Cong
- Howard Hughes Medical Institute, Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Reiter E, Marion S, Robert F, Troispoux C, Boulay F, Guillou F, Crepieux P. Kinase-inactive G-protein-coupled receptor kinases are able to attenuate follicle-stimulating hormone-induced signaling. Biochem Biophys Res Commun 2001; 282:71-8. [PMID: 11263973 DOI: 10.1006/bbrc.2001.4534] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homologous desensitization of G-protein-coupled receptors (GPCR) is thought to occur in several steps: binding of G-protein-coupled receptor kinases (GRKs) to receptors, receptor phosphorylation, kinase dissociation, and finally binding of beta-arrestin to phosphorylated receptors and functional uncoupling of the associated Galpha protein. It has recently been reported that GRKs can inhibit Galphaq-mediated signaling in the absence of phosphorylation of some GPCRs. Whether or not comparable phosphorylation-independent effects are also possible with Galphas-coupled receptors remains unclear. In the present study, using the tightly Galphas-coupled FSR receptor (FSH-R) as a model, we observed inhibition of the cAMP-dependent signaling pathway using kinase-inactive mutants of GRK2, 5, and 6. These negative effects occur upstream of adenylyl cyclase activation and are likely independent of GRK interaction with G protein alpha or beta/gamma subunits. Moreover, we demonstrated that, when overexpressed in Cos 7 cells, mutated GRK2 associates with the FSH activated FSH-R. We hypothesize that phosphorylation-independent dampening of the FSH-R-associated signaling could be attributable to physical association between GRKs and the receptor, subsequently inhibiting G protein activation.
Collapse
Affiliation(s)
- E Reiter
- UMR Physiologie de la Reproduction et des Comportements 6073, INRA-CNRS-Université de Tours, Nouzilly, 37380, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Selective blockade of P/Q-type calcium channels by the metabotropic glutamate receptor type 7 involves a phospholipase C pathway in neurons. J Neurosci 2001. [PMID: 11050109 DOI: 10.1523/jneurosci.20-21-07896.2000] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although presynaptic localization of mGluR7 is well established, the mechanism by which the receptor may control Ca(2+) channels in neurons is still unknown. We show here that cultured cerebellar granule cells express native metabotropic glutamate receptor type 7 (mGluR7) in neuritic processes, whereas transfected mGluR7 was also expressed in cell bodies. This allowed us to study the effect of the transfected receptor on somatic Ca(2+) channels. In transfected neurons, mGuR7 selectively inhibited P/Q-type Ca(2+) channels. The effect was mimicked by GTPgammaS and blocked by pertussis toxin (PTX) or a selective antibody raised against the G-protein alphao subunit, indicating the involvement of a G(o)-like protein. The mGuR7 effect did not display the characteristics of a direct interaction between G-protein betagamma subunits and the alpha1A Ca(2+) channel subunit, but was abolished by quenching betagamma subunits with specific intracellular peptides. Intracellular dialysis of G-protein betagamma subunits did not mimic the action of mGluR7, suggesting that both G-protein betagamma and alphao subunits were required to mediate the effect. Inhibition of phospholipase C (PLC) blocked the inhibitory action of mGluR7, suggesting that a coincident activation of PLC by the G-protein betagamma with alphao subunits was required. The Ca(2+) chelator BAPTA, as well as inhibition of either the inositol trisphosphate (IP(3)) receptor or protein kinase C (PKC) abolished the mGluR7 effect. Moreover, activation of native mGluR7 induced a PTX-dependent IP(3) formation. These results indicated that IP(3)-mediated intracellular Ca(2+) release was required for PKC-dependent inhibition of the Ca(2+) channels. Possible control of synaptic transmission by the present mechanisms is discussed.
Collapse
|
11
|
Wang X, Dhalla NS. Modification of beta-adrenoceptor signal transduction pathway by genetic manipulation and heart failure. Mol Cell Biochem 2000; 214:131-55. [PMID: 11195784 DOI: 10.1023/a:1007131925048] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The beta-adrenoceptor (beta-AR) mediated signal transduction pathway in cardiomyocytes is known to involve beta1- and beta2-ARs, stimulatory (Gs) and inhibitory (Gi) guanine nucleotide binding proteins, adenylyl cyclase (AC) and cAMP-dependent protein kinase (PKA). The activation of beta1- and beta2-ARs has been shown to increase heart function by increasing Ca2+ -movements across the sarcolemmal membrane and sarcoplasmic reticulum through the stimulation of Gs-proteins, activation of AC and PKA enzymes and phosphorylation of the target sites. The activation of PKA has also been reported to increase phosphorylation of some myofibrillar proteins (for promoting cardiac relaxation) and nuclear proteins (for cardiac hypertrophy). The activation of beta2-AR has also been shown to affect Gi-proteins, stimulate mitogen activated protein kinase and increase protein synthesis by enhancing gene expression. Beta1- and beta2-ARs as well as AC are considered to be regulated by PKA- and protein kinase C (PKC)-mediated phosphorylations directly; both PKA and PKC also regulate beta-AR indirectly through the involvement of beta-AR kinase (betaARK), beta-arrestins and Gbeta gamma-protein subunits. Genetic manipulation of different components and regulators of beta-AR signal transduction pathway by employing transgenic and knockout mouse models has provided insight into their functional and regulatory characteristics in cardiomyocytes. The genetic studies have also helped in understanding the pathophysiological role of PARK in heart dysfunction and therapeutic role of betaARK inhibitors in the treatment of heart failure. Varying degrees of defects in the beta-AR signal transduction system have been identified in different types of heart failure to explain the attenuated response of the failing heart to sympathetic stimulation or catecholamine infusion. A decrease in beta1-AR density, an increase in the level of G1-proteins and overexpression of betaARK are usually associated with heart failure; however, these attenuations have been shown to be dependent upon the type and stage of heart failure as well as region of the heart. Both local and circulating renin-angiotensin systems, sympathetic nervous system and endothelial cell function appears to regulate the status of beta-AR signal transduction pathway in the failing heart. Thus different components and regulators of the beta-AR signal transduction pathway appears to represent important targets for the development of therapeutic interventions for the treatment of heart failure.
Collapse
Affiliation(s)
- X Wang
- Institute of Cardiovascular Sciences, Department of Physiology, Faculty of Medicine University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
12
|
Perroy J, Prezeau L, De Waard M, Shigemoto R, Bockaert J, Fagni L. Selective blockade of P/Q-type calcium channels by the metabotropic glutamate receptor type 7 involves a phospholipase C pathway in neurons. J Neurosci 2000; 20:7896-904. [PMID: 11050109 PMCID: PMC6772734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Although presynaptic localization of mGluR7 is well established, the mechanism by which the receptor may control Ca(2+) channels in neurons is still unknown. We show here that cultured cerebellar granule cells express native metabotropic glutamate receptor type 7 (mGluR7) in neuritic processes, whereas transfected mGluR7 was also expressed in cell bodies. This allowed us to study the effect of the transfected receptor on somatic Ca(2+) channels. In transfected neurons, mGuR7 selectively inhibited P/Q-type Ca(2+) channels. The effect was mimicked by GTPgammaS and blocked by pertussis toxin (PTX) or a selective antibody raised against the G-protein alphao subunit, indicating the involvement of a G(o)-like protein. The mGuR7 effect did not display the characteristics of a direct interaction between G-protein betagamma subunits and the alpha1A Ca(2+) channel subunit, but was abolished by quenching betagamma subunits with specific intracellular peptides. Intracellular dialysis of G-protein betagamma subunits did not mimic the action of mGluR7, suggesting that both G-protein betagamma and alphao subunits were required to mediate the effect. Inhibition of phospholipase C (PLC) blocked the inhibitory action of mGluR7, suggesting that a coincident activation of PLC by the G-protein betagamma with alphao subunits was required. The Ca(2+) chelator BAPTA, as well as inhibition of either the inositol trisphosphate (IP(3)) receptor or protein kinase C (PKC) abolished the mGluR7 effect. Moreover, activation of native mGluR7 induced a PTX-dependent IP(3) formation. These results indicated that IP(3)-mediated intracellular Ca(2+) release was required for PKC-dependent inhibition of the Ca(2+) channels. Possible control of synaptic transmission by the present mechanisms is discussed.
Collapse
Affiliation(s)
- J Perroy
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 9023, Centre CNRS-INSERM de Pharmacologie et d'Endocrinologie, 34000 Montpellier, France
| | | | | | | | | | | |
Collapse
|
13
|
Kasahara S, Wang P, Nuss DL. Identification of bdm-1, a gene involved in G protein beta-subunit function and alpha-subunit accumulation. Proc Natl Acad Sci U S A 2000; 97:412-7. [PMID: 10618432 PMCID: PMC26677 DOI: 10.1073/pnas.97.1.412] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeted disruption of Galpha and Gbeta genes has established the requirement of an intact G protein signaling pathway for optimal execution of several important physiological processes, including pathogenesis, in the chestnut blight fungus Cryphonectria parasitica. We now report the identification of a G protein signal transduction component, beta disruption mimic factor-1, BDM-1. Disruption of the corresponding gene, bdm-1, resulted in a phenotype indistinguishable from that previously observed after disruption of the Gbeta subunit gene, cpgb-1. The BDM-1 deduced amino acid sequence contained several significant clusters of identity with mammalian phosducin, including a domain corresponding to a highly conserved 11-amino acid stretch that has been implicated in binding to the Gbetagamma dimer and two regions of defined Gbeta/phosducin contact points. Unlike the negative regulatory function proposed for mammalian phosducin, the genetic data presented in this report suggest that BDM-1 is required for or facilitates Gbeta function. Moreover, disruption of either bdm-1 or cpgb-1 resulted in a significant, posttranscriptional reduction in the accumulation of CPG-1, a key Galpha subunit required for a range of vital physiological processes.
Collapse
Affiliation(s)
- S Kasahara
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, University of Maryland, College Park, MD 20742-4450, USA
| | | | | |
Collapse
|
14
|
Quitterer U, Lohse MJ. Crosstalk between Galpha(i)- and Galpha(q)-coupled receptors is mediated by Gbetagamma exchange. Proc Natl Acad Sci U S A 1999; 96:10626-31. [PMID: 10485876 PMCID: PMC17933 DOI: 10.1073/pnas.96.19.10626] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of Galpha(i)-coupled receptors often causes enhancement of the inositol phosphate signal triggered by Galpha(q)-coupled receptors. To investigate the mechanism of this synergistic receptor crosstalk, we studied the Galpha(i)-coupled adenosine A(1) and alpha(2C) adrenergic receptors and the Galpha(q)-coupled bradykinin B(2) and a UTP-preferring P2Y receptor. Stimulation of either Galpha(i)-coupled receptor expressed in COS cells increased the potency and the efficacy of inositol phosphate production by bradykinin or UTP. Likewise, overexpression of Gbeta(1)gamma(2) resulted in a similar increase in potency and efficacy of bradykinin or UTP. In contrast, these stimuli did not affect the potency of direct activators of Galpha(q); a truncated Gbeta(3) mutant had no effect on the receptor-generated signals whereas signals generated at the G-protein level were still enhanced. This suggests that the Gbetagamma-mediated signal enhancement occurs at the receptor level. Almost all possible combinations of Gbeta(1-3) with Ggamma(2-7) were equally effective in enhancing the signals of the B(2) and a UTP-preferring P2Y receptor, indicating a very broad specificity of this synergism. The enhancement of the bradykinin signal by (i) Galpha(i)-activating receptor ligands or (ii) cotransfection of Gbetagamma was suppressed when the B(2) receptor was replaced by a B(2)Gbeta(2) fusion protein. Gbetagamma enhanced the B(2) receptor-stimulated activation of G-proteins as determined by GTPgammaS-induced decrease in high affinity agonist binding and by B(2) receptor-enhanced [(35)S]GTPgammaS binding. These findings support the concept that Gbetagamma exchange between Galpha(i)- and Galpha(q)-coupled receptors mediates this type of receptor crosstalk.
Collapse
Affiliation(s)
- U Quitterer
- Institut für Pharmakologie und Toxikologie der Universität Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | | |
Collapse
|
15
|
Dicker F, Quitterer U, Winstel R, Honold K, Lohse MJ. Phosphorylation-independent inhibition of parathyroid hormone receptor signaling by G protein-coupled receptor kinases. Proc Natl Acad Sci U S A 1999; 96:5476-81. [PMID: 10318908 PMCID: PMC21884 DOI: 10.1073/pnas.96.10.5476] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologous desensitization of G protein-coupled receptors is thought to occur in several steps: binding of G protein-coupled receptor kinases (GRKs) to receptors, receptor phosphorylation, kinase dissociation, and finally binding of beta-arrestins to phosphorylated receptors. It generally is assumed that only the last step inhibits receptor signaling. Investigating the parathyroid hormone (PTH) receptor --> inositol phosphate pathway, we report here that GRKs can inhibit receptor signaling already under nonphosphorylating conditions. GRKs phosphorylated the PTH receptor in membranes and in intact cells; the order of efficacy was GRK2>GRK3>GRK5. Transient transfection of GRKs with the PTH receptor into COS-1 cells inhibited PTH-stimulated inositol phosphate generation. Such an inhibition also was seen with the kinase-negative mutant GRK2-K220R and also for a C-terminal truncation mutant of the PTH receptor that could not be phosphorylated. Several lines of evidence indicated that this phosphorylation-independent inhibition was exerted by an interaction between GRKs and receptors: (a) this inhibition was not mimicked by proteins binding to G proteins, phosducin, and GRK2 C terminus, (b) GRKs caused an agonist-dependent inhibition (= desensitization) of receptor-stimulated G protein GTPase-activity (this effect also was seen with the kinase-inactive GRK2-mutant and the phosphorylation-deficient receptor mutant), and (c) GRKs bound directly to the PTH receptor. These data suggest that signaling by the PTH receptor already is inhibited by the first step of homologous desensitization, the binding of GRKs to the receptors.
Collapse
Affiliation(s)
- F Dicker
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|
16
|
Pinxteren JA, O'Sullivan AJ, Tatham PE, Gomperts BD. Regulation of exocytosis from rat peritoneal mast cells by G protein beta gamma-subunits. EMBO J 1998; 17:6210-8. [PMID: 9799230 PMCID: PMC1170947 DOI: 10.1093/emboj/17.21.6210] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We applied G protein-derived beta gamma-subunits to permeabilized mast cells to test their ability to regulate exocytotic secretion. Mast cells permeabilized with streptolysin-O leak soluble (cytosol) proteins over a period of 5 min and become refractory to stimulation by Ca2+ and GTPgammaS over approximately 20-30 min. beta gamma-Subunits applied to the permeabilized cells retard this loss of sensitivity to stimulation (run-down) and it can be inferred that they interact with the regulatory mechanism for secretion. While alpha-subunits are without effect, beta gamma-subunits at concentrations >10(-8 )M enhance the secretion due to Ca2+ and GTPgammaS. Unlike the small GTPases Rac and Cdc42, beta gamma-subunits cannot induce secretion in the absence of an activating guanine nucleotide, and thus further GTP-binding proteins (likely to be Rho-related GTPases) must be involved. The enhancement due to beta gamma-subunits is mediated largely through interaction with pleckstrin homology (PH) domains. It remains manifest in the face of maximum activation by PMA and inhibition of PKC with the pseudosubstrate inhibitory peptide. Soluble peptides mimicking PH domains inhibit the secretion due to GTPgammaS and block the enhancement due to beta gamma-subunits. Our data suggest that beta gamma-subunits are components of the pathway of activation of secretion due to receptor-mimetic ligands such as mastoparan and compound 48/80.
Collapse
Affiliation(s)
- J A Pinxteren
- Secretory Mechanisms Group, Department of Physiology, University College London, University Street, London WC1E 6JJ, UK
| | | | | | | |
Collapse
|
17
|
Xu X, Croy JT, Zeng W, Zhao L, Davignon I, Popov S, Yu K, Jiang H, Offermanns S, Muallem S, Wilkie TM. Promiscuous coupling of receptors to Gq class alpha subunits and effector proteins in pancreatic and submandibular gland cells. J Biol Chem 1998; 273:27275-9. [PMID: 9765251 DOI: 10.1074/jbc.273.42.27275] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice with deficiencies in one or more Gq class alpha subunit genes were used to examine the role of the alpha subunit in regulating Ca2+ signaling in pancreatic and submandibular gland cells. Western blot analysis showed that these cells express three of the four Gq class subunits, Galphaq, Galpha11, and Galpha14 but not Galpha15. Surprisingly, all parameters of Ca2+ signaling were identical in cells from wild type and four lines of mutant mice: 1) Galpha11-/-, 2) Galpha11-/-/Galpha14-/-, 3) Galpha14-/-/Galpha15-/-, and 4) Galphaq-/-/Galpha15-/-. These parameters included the Kapp for several Gq class coupled receptors, induction of [Ca2+]i oscillations by weak stimulation, and a biphasic [Ca2+]i response by strong stimulation. Furthermore, Ca2+ release from internal stores and Ca2+ entry were not affected in cells from any of the mutant mice. We conclude that Galphaq, Galpha11, and Galpha14 promiscuously couple several receptors (m3 muscarinic, bombesin, cholecystokinin, and alpha1 adrenergic) to effector proteins that activate both Ca2+ release from internal stores and Ca2+ entry.
Collapse
Affiliation(s)
- X Xu
- Department, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
G protein-coupled receptor kinases (GRKs) constitute a family of six mammalian serine/threonine protein kinases that phosphorylate agonist-bound, or activated, G protein-coupled receptors (GPCRs) as their primary substrates. GRK-mediated receptor phosphorylation rapidly initiates profound impairment of receptor signaling, or desensitization. This review focuses on the regulation of GRK activity by a variety of allosteric and other factors: agonist-stimulated GPCRs, beta gamma subunits of heterotrimeric GTP-binding proteins, phospholipid cofactors, the calcium-binding proteins calmodulin and recoverin, posttranslational isoprenylation and palmitoylation, autophosphorylation, and protein kinase C-mediated GRK phosphorylation. Studies employing recombinant, purified proteins, cell culture, and transgenic animal models attest to the general importance of GRKs in regulating a vast array of GPCRs both in vitro and in vivo.
Collapse
Affiliation(s)
- J A Pitcher
- Howard Hughes Medical Institute, Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
19
|
Shibata K, Mori M, Tanaka S, Kitano S, Akiyoshi T. Identification and cloning of human G-protein gamma 7, down-regulated in pancreatic cancer. Biochem Biophys Res Commun 1998; 246:205-9. [PMID: 9600093 DOI: 10.1006/bbrc.1998.8581] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Differentially expressed genes between normal and cancer tissues of the pancreas were investigated using differential display. Consequently, we identified a fragment cDNA that was expressed in the normal tissue but was rarely expressed in the cancer tissue. This cDNA was screened in cDNA library prepared from the normal pancreatic tissue by rapid amplification of cDNA ends (5'RACE). 859 bp of cDNA was cloned and sequenced, and the inferred amino acid sequence was found to encode a G protein gamma subunit with 98% homology to cow G protein gamma 7 and complete homology to human G protein gamma 7. The decreased expression of the G protein gamma 7 was confirmed by Northern blot assay in twelve pancreatic malignancies which included nine duct cell carcinomas, two cystoadenocarcinomas and one blastoma. Reverse transcriptase (RT)-polymerase chain reaction (PCR) assay showed no expression of G protein gamma 7 in five of six pancreatic carcinoma cell lines and two pancreatic cancer tissues. Immunohistochemical analysis also displayed positive staining in the normal tissue but no staining in the cancer tissue. The findings demonstrated that the reduced or suppressed expression of human G-protein gamma 7 may play an important role in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- K Shibata
- Department of Surgery, Kyushu University, Beppu, Japan
| | | | | | | | | |
Collapse
|
20
|
Delmas P, Abogadie FC, Dayrell M, Haley JE, Milligan G, Caulfield MP, Brown DA, Buckley NJ. G-proteins and G-protein subunits mediating cholinergic inhibition of N-type calcium currents in sympathetic neurons. Eur J Neurosci 1998; 10:1654-66. [PMID: 9751138 DOI: 10.1046/j.1460-9568.1998.00170.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One postsynaptic action of the transmitter acetylcholine in sympathetic ganglia is to inhibit somatic N-type Ca2+ currents: this reduces Ca2+-activated K+ currents and facilitates high-frequency spiking. Previous experiments on rat superior cervical ganglion neurons have revealed two distinct pathways for this inhibitory action: a rapid, voltage-dependent inhibition through activation of M4 muscarinic acetylcholine receptors (mAChRs), and a slower, voltage-independent inhibition via M1 mAChRs [Hille (1994) Trends in Neurosci., 17, 531-536]. We have analysed the mechanistic basis for this divergence at the level of the individual G-proteins and their alpha and betagamma subunits, using a combination of site-directed antibody injection, plasmid-driven antisense RNA expression, overexpression of selected constitutively active subunits, and antagonism of endogenously liberated betagamma subunits by over-expression of Dy-binding P-adrenergic receptor kinase 1 (PARK1) peptide. The results indicate that: (i) M4 mAChR-induced inhibition is mediated by GoA; (ii) a and Py subunits released from the activated GoA heterotrimer produce separate voltage-insensitive and voltage-sensitive components of inhibition, respectively; and (iii) voltage-insensitive M1 mAChR-induced inhibition is likely to be mediated by the alpha subunit of Gq. Hence, Ca2+ current inhibition results from the concerted, but independent actions of three different G-protein subunits.
Collapse
Affiliation(s)
- P Delmas
- Wellcome Laboratory for Molecular Pharmacology, Department of Pharmacology, University College London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bauer PH, Blüml K, Schröder S, Hegler J, Dees C, Lohse MJ. Interactions of phosducin with the subunits of G-proteins. Binding to the alpha as well as the betagamma subunits. J Biol Chem 1998; 273:9465-71. [PMID: 9545273 DOI: 10.1074/jbc.273.16.9465] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high affinity interactions of phosducin with G-proteins involve binding of phosducin to the G-protein betagamma subunits. Here we have investigated whether phosducin interacts also with G-protein alpha subunits. Interactions of phosducin with the individual subunits of Go were measured by retaining phosducin-G-protein subunit complexes on columns containing immobilized anti-phosducin antibodies. Both the alpha and the beta subunits of trimeric Go were specifically retained by the antibodies in the presence of phosducin. This binding was almost completely abolished for both subunits following protein kinase A-mediated phosphorylation of phosducin and was reduced, more for alpha than for beta subunits, by the stable GTP analog guanosine 5'-(3-O-thio)triphosphate. Isolated alphao was also retained on the columns in the presence of phosducin but not in the presence of protein kinase A-phosphorylated phosducin. Likewise, purified G-protein betagamma subunit complexes as well as purified alpha subunits of Go and Gt were precipitated together with His6-tagged phosducin with nickel-agarose; this co-precipitation occurred concentration-dependently, with apparent affinities for phosducin of 55 nM (Gbetagamma), 110 nM (alphao), and 200 nM (alphat). In functional experiments, the steady state GTPase activity of isolated alphao was inhibited by phosducin by approximately 60% with an IC50 value of approximately 300 nM, whereas the GTPase activity of trimeric Go was inhibited by approximately 90% with an IC50 value of approximately 10 nM. Phosducin did not inhibit the GTP-hydrolytic activity of isolated alphao as measured by single-turnover assays, but it inhibited the release of GDP from alphao; the rate constant of GDP release was decreased approximately 40% by 500 nM phosducin, and the inhibition occurred with an IC50 value for phosducin of approximately 100 nM. These data suggest that phosducin binds with high affinity to G-protein betagamma subunits and with lower affinity to G-protein alpha subunits. We propose that the alpha subunit-mediated effects of phosducin might increase both the extent and the rapidity of its inhibitory effects compared with an action via the betagamma subunit complex alone.
Collapse
Affiliation(s)
- P H Bauer
- Institut für Pharmakologie und Toxikologie der Universität Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Delmas P, Brown DA, Dayrell M, Abogadie FC, Caulfield MP, Buckley NJ. On the role of endogenous G-protein beta gamma subunits in N-type Ca2+ current inhibition by neurotransmitters in rat sympathetic neurones. J Physiol 1998; 506 ( Pt 2):319-29. [PMID: 9490860 PMCID: PMC2230730 DOI: 10.1111/j.1469-7793.1998.319bw.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Using whole-cell and perforated-patch recordings, we have examined the part played by endogenous G-protein beta gamma subunits in neurotransmitter-mediated inhibition of N-type Ca2+ channel current (ICa) in dissociated rat superior cervical sympathetic neurones. 2. Expression of the C-terminus domain of beta-adrenergic receptor kinase 1 (beta ARK1), which contains the consensus motif (QXXER) for binding G beta gamma, reduced the fast (pertussis toxin (PTX)-sensitive) and voltage-dependent inhibition of ICa by noradrenaline and somatostatin, but not the slow (PTX-insensitive) and voltage-independent inhibition induced by angiotensin II. beta ARK1 peptide reduced GTP-gamma-S-induced voltage-dependent and PTX-sensitive inhibition of ICa but not GTP-gamma-S-mediated voltage-independent inhibition. 3. Overexpression of G beta 1 gamma 2, which mimicked the voltage-dependent inhibition by reducing ICa density and enhancing basal facilitation, occluded the voltage-dependent noradrenaline- and somatostatin-mediated inhibitions but not the inhibition mediated by angiotensin II. 4. Co-expression of the C-terminus of beta ARK1 with beta 1 and gamma 2 subunits prevented the effects of G beta gamma dimers on basal Ca2+ channel behaviour in a manner consistent with the sequestering of G beta gamma. 5. The expression of the C-terminus of beta ARK1 slowed down reinhibition kinetics of ICa following conditioning depolarizations and induced long-lasting facilitation by cumulatively sequestering beta gamma subunits. 6. Our findings identify endogenous G beta gamma as the mediator of the voltage-dependent, PTX-sensitive inhibition of ICa induced by both noradrenaline and somatostatin but not the voltage-independent. PTX-insensitive inhibition by angiotensin II. They also support the view that voltage-dependent inhibition results from a direct G beta gamma-Ca2+ channel interaction.
Collapse
Affiliation(s)
- P Delmas
- Wellcome Laboratory for Molecular Pharmacology, Department of Pharmacology, University College London, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Selbie LA, King NV, Dickenson JM, Hill SJ. Role of G-protein beta gamma subunits in the augmentation of P2Y2 (P2U)receptor-stimulated responses by neuropeptide Y Y1 Gi/o-coupled receptors. Biochem J 1997; 328 ( Pt 1):153-8. [PMID: 9359846 PMCID: PMC1218899 DOI: 10.1042/bj3280153] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuropeptide Y (NPY) significantly potentiates the constrictor actions of noradrenaline and ATP on blood vessels via a pertussis toxin (PTX)-sensitive mechanism involving Gi/o (alpha beta gamma) protein subunits (Gi/o, GTP-binding proteins sensitive to PTX). In Chinese hamster ovary K1 (CHO K1) cells expressing specific receptors for these neurotransmitters, stimulation of Gi/o protein-coupled receptors for NPY and other neurotransmitters can augment the Gq/11-coupled (Gq/11, GTP-binding proteins insensitive to PTX) alpha 1B adrenoceptor- or ATP receptor-induced arachidonic acid (AA) release and inositol phosphate (IP) production (early events which may precede vasoconstriction). In this study, we have assessed the role of G beta gamma subunits in the synergistic interaction between Gi/o- (NPY Y1, 5-hydroxytryptamine 5-HT1B, adenosine A1) and Gq/11- [ATP P2Y2 (P2U)]-coupled receptors on AA release by using the specific abilities of regions of the beta-adrenergic receptor kinase (beta ARK1 residues 495-689) and the transducin alpha subunit to associate with G-protein beta gamma subunit dimers and to act as G beta gamma subunit scavengers. Transient expression of beta ARK1(495-689) in CHO K1 cells heterologously expressing NPY Y1 receptors had no significant effect on the PTX-insensitive ability of ATP to stimulate AA release. Stimulation of NPY Y1 receptors (as well as the endogenous 5-hydroxytryptamine 5-HT1B receptor and the transiently expressed human adenosine A1 receptor) resulted in a PTX-sensitive augmentation of ATP-stimulated AA release, which was inhibited by expression of both G beta gamma subunit scavengers. Expression of beta ARK1(495-689) similarly inhibited NPY Y1 receptor augmentation of ATP-stimulated IP production (a measure of phospholipase C activity), a step thought to precede the NPY Y1 receptor-augmented protein kinase C-dependent AA release previously observed in these cells. These experiments demonstrate that G beta gamma subunits, as inhibited by two different G beta gamma scavengers, significantly contribute to the synergistic interaction between NPY Y1 Gi/o- and Gq/11-coupled receptor activity, and are required for the augmentation of IP production and AA release observed in this model cell system.
Collapse
Affiliation(s)
- L A Selbie
- Department of Physiology and Pharmacology, Queen's Medical Centre, University of Nottingham, U.K
| | | | | | | |
Collapse
|
24
|
Gudermann T, Kalkbrenner F, Dippel E, Laugwitz KL, Schultz G. Specificity and complexity of receptor-G-protein interaction. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1997; 31:253-62. [PMID: 9344256 DOI: 10.1016/s1040-7952(97)80023-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- T Gudermann
- Institute of Pharmacology, Free University of Berlin, Germany
| | | | | | | | | |
Collapse
|
25
|
Le Gouill C, Parent JL, Rola-Pleszczynski M, Stanková J. Structural and functional requirements for agonist-induced internalization of the human platelet-activating factor receptor. J Biol Chem 1997; 272:21289-95. [PMID: 9261140 DOI: 10.1074/jbc.272.34.21289] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The receptor for platelet-activating factor (PAF) is a member of the G-protein-coupled receptor family. To study the structural elements and mechanisms involved in the internalization of human PAF receptor (hPAFR), we used the following mutants: a truncated mutant in the C-terminal tail of the receptor (Cys317 --> Stop) and mutations in the (D/N)P(X)2,3Y motif (Asp289 --> Asn,Ala and Tyr293 --> Phe,Ala). Chinese hamster ovary cells expressing the Cys317 --> Stop mutant exhibited a marked reduction in their capacity to internalize PAF, suggesting the existence of determinants important for endocytosis in the last 26 amino acids of the cytoplasmic tail. Substitution of Asp289 to alanine abolished both internalization and G-protein coupling, whereas substitution of Tyr293 to alanine abolished coupling but not internalization. Inhibition or activation of protein kinase C did not significantly affect the internalization process. Receptor sequestration and ligand uptake was, at least in part, blocked by concanavalin A and blockers of endocytosis mediated by clathrin-coated pits. Our data suggest that the internalization of a G-protein-coupled receptor and coupling to a G-protein can be two independent events. Moreover, the C terminus tail of hPAFR, but not the putative internalization motifs, may be involved in the internalization of hPAFR.
Collapse
Affiliation(s)
- C Le Gouill
- Immunology Division, Department of Pediatrics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | |
Collapse
|
26
|
Blüml K, Schnepp W, Schröder S, Beyermann M, Macias M, Oschkinat H, Lohse MJ. A small region in phosducin inhibits G-protein betagamma-subunit function. EMBO J 1997; 16:4908-15. [PMID: 9305633 PMCID: PMC1170126 DOI: 10.1093/emboj/16.16.4908] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
G-protein betagamma-subunits (G(betagamma)) are active transmembrane signalling components. Their function recently has been observed to be regulated by the cytosolic protein phosducin. We show here that a small fragment (amino acids 215-232) contained in the C-terminus of phosducin is sufficient for high-affinity interactions with G(betagamma). Corresponding peptides not only disrupt G(betagamma)-G(alpha) interactions, as defined by G(betagamma)-stimulated GTPase activity of alpha(o), but also other G(betagamma)-mediated functions. The NMR structure of a peptide encompassing this region shows a loop exposing the side chains of Glu223 and Tyr224, and peptides with a substitution of either of these amino acids show a complete loss of activity towards G(o). Mutation of this Tyr224 to Ala in full-length phosducin reduced the functional activity of phosducin to that of phosducin's isolated N-terminus, indicating the importance of this residue within the short, structurally defined C-terminal segment. This small peptide derived from phosducin, may represent a model of a G(betagamma) inhibitor, and illustrates the potential of small compounds to affect G(betagamma) functions.
Collapse
Affiliation(s)
- K Blüml
- Institut für Pharmakologie und Toxikologie der Universität Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Recently, structures of heterotrimeric G-protein subunits have been determined in isolation, in conjunction with each other, and in complex with their regulators. Along with biochemical information, these structures suggest how G-protein subunits are oriented relative to the membrane surface and relative to seven-transmembrane helix receptors. They also suggest mechanisms for receptor-catalyzed nucleotide exchange.
Collapse
Affiliation(s)
- A Bohm
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
28
|
Chuang TT, Pompili E, Paolucci L, Sallese M, De Gioia L, Salmona M, De Blasi A. Identification of a short sequence highly divergent between beta-adrenergic-receptor kinases 1 and 2 that determines the affinity of binding to betagamma subunits of heterotrimeric guanine-nucleotide-binding regulatory proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:533-40. [PMID: 9182987 DOI: 10.1111/j.1432-1033.1997.00533.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A 28-residue peptide (peptide G), derived from the C-terminal (W643-S670) of the beta-adrenergic receptor kinase (betaARK), was previously identified as the critical domain for binding to the betagamma subunits of the heterotrimeric guanine-nucleotide-binding regulatory protein (G betagamma). We observed that the 18-amino-acid core of this domain is poorly conserved between betaARK1 and betaARK2 and so may provide the basis for differences in G betagamma-binding properties. Specific antibodies raised against 18-residue peptides derived from the divergent sequences (peptides P1 and P2 for betaARK1 and betaARK2, respectively) competitively inhibited G betagamma-activation of the related betaARK subtype, confirming the involvement of this region in binding to G betagamma. Peptides P1 and P2 inhibited G betagamma-stimulated activity of both betaARK1 and betaARK2, with P2 being significantly more potent than P1 (IC50 of 179+/-5 microM for P2 and >500 microM for P1). The 28-residue peptides G showed the same relative inhibitory activities (IC50 = 48+/-5 microM for G2 and 146+/-8 microM for G1). This relative order of potency G2 > G1 approximately P2 > P1 was confirmed in a direct G betagamma-binding assay. No binding selectivity for the beta1, beta2, beta3 and beta4 G beta subtypes was observed. The EC50 value for G betagamma-activation of betaARK1 was about double of that for betaARK2, indicating a higher affinity between G betagamma and betaARK2, which is the expected result based on the findings with the peptides. These findings show that the 18-residue peptides P represent the shortest sequence of betaARK that can bind to G betagamma and provide a demonstration of a functional difference between the G betagamma binding domains of betaARK1 and betaARK2.
Collapse
Affiliation(s)
- T T Chuang
- Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Daaka Y, Pitcher JA, Richardson M, Stoffel RH, Robishaw JD, Lefkowitz RJ. Receptor and G betagamma isoform-specific interactions with G protein-coupled receptor kinases. Proc Natl Acad Sci U S A 1997; 94:2180-5. [PMID: 9122168 PMCID: PMC20061 DOI: 10.1073/pnas.94.6.2180] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate and desensitize agonist-occupied GPCRs. GRK2-mediated receptor phosphorylation is preceded by the agonist-dependent membrane association of this enzyme. Previous in vitro studies with purified proteins have suggested that this translocation may be mediated by the recruitment of GRK2 to the plasma membrane by its interaction with the free betagamma subunits of heterotrimeric G proteins (G betagamma). Here we demonstrate that this mechanism operates in intact cells and that specificity is imparted by the selective interaction of discrete pools of G betagamma with receptors and GRKs. Treatment of Cos-7 cells transiently overexpressing GRK2 with a beta-receptor agonist promotes a 3-fold increase in plasma membrane-associated GRK2. This translocation of GRK2 is inhibited by the carboxyl terminus of GRK2, a known G betagamma sequestrant. Furthermore, in cells overexpressing both GRK2 and G beta1 gamma2, activation of lysophosphatidic acid receptors leads to the rapid and transient formation of a GRK/G betagamma complex. That G betagamma specificity exists at the level of the GPCR and the GRK is indicated by the observation that a GRK2/G betagamma complex is formed after agonist occupancy of the lysophosphatidic acid and beta-adrenergic but not thrombin receptors. In contrast to GRK2, GRK3 forms a G betagamma complex after stimulation of all three GPCRs. This G betagamma binding specificity of the GRKs is also reflected at the level of the purified proteins. Thus the GRK2 carboxyl terminus binds G beta1 and G beta2 but not G beta3, while the GRK3 fusion protein binds all three G beta isoforms. This study provides a direct demonstration of a role for G betagamma in mediating the agonist-stimulated translocation of GRK2 and GRK3 in an intact cellular system and demonstrates isoform specificity in the interaction of these components.
Collapse
Affiliation(s)
- Y Daaka
- Howard Hughes Medical Institute, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
30
|
Gudermann T, Schöneberg T, Schultz G. Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu Rev Neurosci 1997; 20:399-427. [PMID: 9056720 DOI: 10.1146/annurev.neuro.20.1.399] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A prerequisite for the maintenance of homeostasis in a living organism is fine-tuned communication between different cells. The majority of extracellular signaling molecules, such as hormones and neurotransmitters, interact with a three-protein transmembrane signaling system consisting of a receptor, a G protein, and an effector. These single components interact sequentially and reversibly. Considering that hundreds of G-protein-coupled receptors interact with a limited repertoire of G proteins, the question of coupling specificity is worth considering. G-protein-mediated signal transduction is a complex signaling network with diverging and converging transduction steps at each coupling interface. The recent realization that classical signaling pathways are intimately intertwined with growth-factor-signaling cascades adds another level of complexity. Elaborate studies have significantly enhanced our knowledge of the functional anatomy of G-protein-coupled receptors, and the concept has emerged that receptor function can be modulated with high specificity by coexpressed receptor fragments. These results may have significant clinical impact in the future.
Collapse
Affiliation(s)
- T Gudermann
- Institut für Pharmakologie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
31
|
Zhang S, Coso OA, Lee C, Gutkind JS, Simonds WF. Selective activation of effector pathways by brain-specific G protein beta5. J Biol Chem 1996; 271:33575-9. [PMID: 8969224 DOI: 10.1074/jbc.271.52.33575] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
While multiple G protein beta and gamma subunit isoforms have been identified, the implications of this potential diversity of betagamma heterodimers for signaling through betagamma-regulated effector pathways remains unclear. Furthermore the molecular mechanism(s) by which the betagamma complex modulates diverse mammalian effector molecules is unknown. Effector signaling by the structurally distinct brain-specific beta5 subunit was assessed by transient cotransfection with gamma2 in COS cells and compared with beta1. Transfection of either beta1 or beta5 with gamma2 stimulated the activity of cotransfected phospholipase C-beta2 (PLC-beta2), as previously reported. In contrast, cotransfection of beta1 but not beta5 with gamma2 stimulated the mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) pathways even though the expression of beta5 in COS cells was evident by immunoblotting. The G protein beta5 expressed in transfected COS cells was properly folded as its pattern of stable C-terminal proteolytic fragments was identical to that of native brain beta5. The inability of beta5 to activate the MAPK and JNK pathways was not overcome by cotransfection with three additional Ggamma isoforms. These results suggest it is the Gbeta subunit which determines the pattern of downstream signaling by the betagamma complex and imply that the structural features of the betagamma complex mediating effector regulation may differ among effectors.
Collapse
Affiliation(s)
- S Zhang
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
32
|
Harhammer R, Gohla A, Schultz G. Interaction of G protein Gbetagamma dimers with small GTP-binding proteins of the Rho family. FEBS Lett 1996; 399:211-4. [PMID: 8985147 DOI: 10.1016/s0014-5793(96)01327-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gbetagamma dimers of heterotrimeric G proteins have been shown to be important for the translocation of cytosolic proteins to membranes. The involvement of Gbetagamma in those signaling processes mediated by small GTP-binding proteins of the Rho family was studied using purified proteins. We showed specific binding of bovine brain Gbetagamma to immobilized GST-Rho fusion proteins. In addition, brain Gbetagamma, but not transducin Gbetagamma, was able to inhibit GTPgammaS binding to GST-Rho in a concentration-dependent manner. GTPgammaS binding to GST-Rac was also decreased by brain Gbetagamma whereas nucleotide binding to GST-Cdc42 was not changed. We conclude that Gbetagamma dimers may participate in the process of membrane attachment and/or other regulations of Rho and Rac.
Collapse
Affiliation(s)
- R Harhammer
- Institut für Pharmakologie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
33
|
Tirindelli R, Ryba NJ. The G-protein gamma-subunit G gamma 8 is expressed in the developing axons of olfactory and vomeronasal neurons. Eur J Neurosci 1996; 8:2388-98. [PMID: 8950102 DOI: 10.1111/j.1460-9568.1996.tb01202.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The tissue localization of the G-protein gamma-subunit, G gamma 8, that is specifically expressed in the olfactory and vomeronasal neurons, was studied in rats at different ages: embryonic day 16, postnatal days 1, 7, 14 and 35, and adult. G8 appears to be a specific marker of the immature olfactory and vomeronasal neurons. Its distribution differs from that of Golf alpha, a G-protein alpha-subunit which is predominantly expressed in mature olfactory neurons. G8 immunoreactivity indicates that an undifferentiated organization of the olfactory epithelium persists up to 3 weeks of age, though neonates possess a functional sense of smell. G gamma 8 accumulates at the highest levels in the axons of the developing olfactory neurons 2 weeks after birth (postnatal day 14). Moreover, up to postnatal day 14, G gamma 8-positive neurons are present in the region of the olfactory and vomeronasal epithelium, where they are not observed in later life. In the olfactory epithelium and in the bulb, G gamma 8 expression becomes weaker and patchy with increasing age, suggesting that the process of continuous regeneration of olfactory neurons occurs in discrete areas. G8-enhanced expression following axotomy indicates that this system is potentially active throughout life. Conversely, in the vomeronasal epithelium G gamma 8 expression persists virtually unmodified in the adult. This indicates that the degree of differentiation may differ between olfactory and vomeronasal neurons.
Collapse
Affiliation(s)
- R Tirindelli
- Istituto di Fisiologia Umana, Università di Parma, Italy
| | | |
Collapse
|
34
|
Yasuda H, Lindorfer MA, Woodfork KA, Fletcher JE, Garrison JC. Role of the prenyl group on the G protein gamma subunit in coupling trimeric G proteins to A1 adenosine receptors. J Biol Chem 1996; 271:18588-95. [PMID: 8702509 DOI: 10.1074/jbc.271.31.18588] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The coupling of receptors to heterotrimeric G proteins is determined by interactions between the receptor and the G protein alpha subunits and by the composition of the betagamma dimers. To determine the role of the gamma subunit prenyl modification in this interaction, the CaaX motifs in the gamma1 and gamma2 subunits were altered to direct modification with different prenyl groups, recombinant betagamma dimers expressed in the baculovirus/Sf9 insect cell system, and the dimers purified. The activity of the betagamma dimers was compared in two assays: formation of the high affinity agonist binding conformation of the A1 adenosine receptor and receptor-catalyzed exchange of GDP for GTP on the alpha subunit. The beta1gamma1 dimer (modified with farnesyl) was significantly less effective than beta1gamma2 (modified with geranylgeranyl) in either assay. The beta1gamma1-S74L dimer (modified with geranylgeranyl) was nearly as effective as beta1gamma2 in either assay. The beta1gamma2-L71S dimer (modified with farnesyl) was significantly less active than beta1gamma2. Using 125I-labeled betagamma subunits, it was determined that native and altered betagamma dimers reconstituted equally well into Sf9 membranes containing A1 adenosine receptors. These data suggest that the prenyl group on the gamma subunit is an important determinant of the interaction between receptors and G protein gamma subunits.
Collapse
Affiliation(s)
- H Yasuda
- Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
35
|
Bliziotes M, Murtagh J, Wiren K. Beta-adrenergic receptor kinase-like activity and beta-arrestin are expressed in osteoblastic cells. J Bone Miner Res 1996; 11:820-6. [PMID: 8725179 DOI: 10.1002/jbmr.5650110613] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Biologic responses to peptide calciotropic hormones, such as parathyroid hormone (PTH) and calcitonin, exhibit desensitization. As with most hormones, however, the mechanisms of desensitization are not completely understood. For the beta 2-adrenergic receptor (beta 2AR) system, which is coupled to adenylyl cyclase via the stimulatory guanine nucleotide-binding regulatory (G5) protein, homologous desensitization is mediated in part by a receptor-specific kinase (beta ARK) and a soluble cofactor (beta-arrestin). Recently, this system has been reported to be involved in rapid homologous desensitization of the PTH/parathyroid hormone receptor protein (PTHrP) receptor. We have identified the presence of this system in bone using reverse-transcriptase PCR. Nucleotide sequence of PCR fragments from ROS 17/2.8 cells revealed 100% identity with rat brain beta ARK1 and beta-arrestin 1 sequences. Northern analyses with RNA from ROS 17/2.8, UMR 106-H5 cells, and primary cultures of nontransformed neonatal rat calvariae demonstrated two mRNA species of 4 and 2.6 kilobases (kb) for beta ARK and 7.5 kb for beta-arrestin, comparable to those found in bovine brain. beta ARK-like activity was demonstrated in cytosolic extracts of the UMR 106-H5 cells by assessing phosphorylation of the retinal photoreceptor, rhodopsin, by the extracts. Phosphorylation was enhanced with light-activated rhodopsin and by bovine brain G beta gamma subunits; heparin inhibited phosphorylation. These findings are characteristic of beta ARK. Expression of beta-arrestin in the UMR 106-H5 cells was confirmed by immunoblot. Thus, osteoblastic cells express proteins, beta ARK, and beta-arrestin, which may regulate desensitization of calciotropic hormone receptors.
Collapse
Affiliation(s)
- M Bliziotes
- Bone and Mineral Research Unit, Portland VAMC, Oregon, USA
| | | | | |
Collapse
|
36
|
Müller S, Straub A, Schröder S, Bauer PH, Lohse MJ. Interactions of phosducin with defined G protein beta gamma-subunits. J Biol Chem 1996; 271:11781-6. [PMID: 8662655 DOI: 10.1074/jbc.271.20.11781] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phosducin has recently been identified as a cytosolic protein that interacts with the beta gamma-subunits of G proteins and thereby may regulate transmembrane signaling. It is expressed predominantly in the retina but also in many other tissues, which raises the question of its potential specificity for retinal versus nonretinal beta gamma-subunits. We have therefore expressed and purified different combinations of beta- and gamma-subunits from Sf9 cells and have also purified transducin-beta gamma from bovine retina and a mixture of beta gamma complexes from bovine brain. Their interactions with phosducin were determined in a variety of assays for beta gamma function: support of ADP-ribosylation of alpha 0 by pertussis toxin, enhancement of the GTPase activity of alpha 0, and enhancement of rhodopsin phosphorylation by the beta-adrenergic receptor kinase 1 (betaARK1). There were only moderate differences in the effects of the various beta gamma complexes alone on alpha 0, but there were marked differences in their ability to support betaARK1 catalyzed rhodopsin phosphorylation. Phosducin inhibited all beta gamma-mediated effects and showed little specificity toward specific defined beta gamma complexes with the exception of transducin-beta gamma (beta1 gamma1), which was inhibited more efficiently than the other beta gamma combinations. In a direct binding assay, there was no apparent selectivity of phosducin for any beta gamma combination tested. Thus, in contrast to betaARK1, phosducin does not appear to discriminate strongly between different G protein beta- and gamma-subunits.
Collapse
Affiliation(s)
- S Müller
- Laboratory of Molecular Biology, University of Munich, Germany
| | | | | | | | | |
Collapse
|
37
|
Abstract
beta-Adrenergic receptors are prototypes of the many G-protein-coupled receptors. Activation and inactivation of these receptors are regulated by multiple mechanisms which can affect either their function or their expression. The most obvious changes of such receptor systems are induced by activation of the receptors themselves by their respective agonists, and this process is called receptor desensitization. One of these mechanisms of desensitization is due to the actions of specific receptor kinases, termed the G-protein-coupled receptor kinases (GRKs). These kinases specifically phosphorylate only the agonist-occupied form of such receptors. This phosphorylation is then followed by binding of inhibitor proteins, called arrestins, to the receptors. Binding of arrestins results in displacement of the G-proteins from the receptors and hence causes uncoupling of receptors and G-proteins. Recent data indicate that the function and subcellular distribution of GRKs is itself subject to regulation. Various mechanisms have evolved to anchor the different GRKs to the plasma membrane. In addition, recent data indicate that GRKs can also associate with intracellular membranes where they may exert as yet unknown functions. A pathophysiological role for GRKs can be inferred from recent studies on heart failure as well as the observation that chronic treatment with various agonists or antagonists for G-protein-coupled receptors results in alterations of GRK expression.
Collapse
Affiliation(s)
- M J Lohse
- Department of Pharmacology, Universität Würzburg, Germany.
| | | | | | | |
Collapse
|
38
|
Schröder S, Lohse MJ. Inhibition of G-protein betagamma-subunit functions by phosducin-like protein. Proc Natl Acad Sci U S A 1996; 93:2100-4. [PMID: 8700891 PMCID: PMC39916 DOI: 10.1073/pnas.93.5.2100] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phosducin is a cytosolic protein predominantly expressed in the retina and the pineal gland that can interact with the betagamma subunits of guanine nucleotide binding proteins (G proteins) and thereby may regulate transmembrane signaling. A cDNA encoding a phosducin-like protein (PhLP) has recently been isolated from rat brain [Miles, M. F., Barhite, S., Sganga, M. & Elliott, M. (1993) Proc. Natl. Acad. Sci. USA 90, 10831-10835. Here we report the expression of PhLP in Escherichia coli and its purification. Recombinant purified PUP inhibited multiple effects of G-protein betagamma subunits. First, it inhibited the betagamma-subunit-dependent ADP-ribosylation of purified alpha(o) by pertussis toxin. Second, it inhibited the GTPase activity of purified G(o). The IC50 value of PhLP in the latter assay was 89 nM, whereas phosducin caused half-maximal inhibition at 17 nM. And finally, PhLP antagonized the enhancement of rhodopsin phosphorylation by purified betagamma subunits. The N terminus of PhLP shows no similarity to the much longer N terminus of phosducin, the region shown to be critical for phosducin-betagamma-subunit interactions. Therefore, PhLP appears to bind to G-protein betagamma subunits by an as yet unknown mode of interaction and may represent an endogenous regulator of G-protein function.
Collapse
Affiliation(s)
- S Schröder
- Laboratory of Molecular Biology, University of Munich, Germany
| | | |
Collapse
|
39
|
Winstel R, Freund S, Krasel C, Hoppe E, Lohse MJ. Protein kinase cross-talk: membrane targeting of the beta-adrenergic receptor kinase by protein kinase C. Proc Natl Acad Sci U S A 1996; 93:2105-9. [PMID: 8700892 PMCID: PMC39917 DOI: 10.1073/pnas.93.5.2105] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The beta-adrenergic receptor kinase (betaARK) is the prototypical member of the family of cytosolic kinases that phosphorylate guanine nucleotide binding-protein-coupled receptors and thereby trigger uncoupling between receptors and guanine nucleotide binding proteins. Herein we show that this kinase is subject to phosphorylation and regulation by protein kinase C (PKC). In cell lines stably expressing alpha1B- adrenergic receptors, activation of these receptors by epinephrine resulted in an activation of cytosolic betaARK. Similar data were obtained in 293 cells transiently coexpressing alpha1B- adrenergic receptors and betaARK-1. Direct activation of PKC with phorbol esters in these cells caused not only an activation of cytosolic betaARK-1 but also a translocation of betaARK immunoreactivity from the cytosol to the membrane fraction. A PKC preparation purified from rat brain phospborylated purified recombinant betaARK-1 to a stoichiometry of 0.86 phosphate per betaARK-1. This phosphorylation resulted in an increased activity of betaARK-1 when membrane-bound rhodopsin served as its substrate but in no increase of its activity toward a soluble peptide substrate. The site of phosphorylation was mapped to the C terminus of betaARK-1. We conclude that PKC activates betaARK by enhancing its translocation to the plasma membrane.
Collapse
Affiliation(s)
- R Winstel
- Laboratory of Molecular Biology, University of Munich, Germany
| | | | | | | | | |
Collapse
|
40
|
Diverse-Pierluissi M, Inglese J, Stoffel RH, Lefkowitz RJ, Dunlap K. G protein-coupled receptor kinase mediates desensitization of norepinephrine-induced Ca2+ channel inhibition. Neuron 1996; 16:579-85. [PMID: 8785055 DOI: 10.1016/s0896-6273(00)80077-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
G protein-coupled receptors are essential signaling molecules at sites of synaptic transmission. Here, we explore the mechanisms responsible for the use-dependent termination of metabotropic receptor signaling in embryonic sensory neurons. We report that the inhibition of voltage-dependent Ca2+ channels mediated by alpha2-adrenergic receptors desensitizes slowly with prolonged exposure to the transmitter and that the desensitization is mediated by a G protein-coupled receptor kinase (GRK). Intracellular introduction of recombinant, purified kinases or synthetic blocking peptides into individual neurons demonstrates the specific involvement of a GRK3-like protein. These results suggest that GRK-mediated termination of receptor-G protein coupling is likely to regulate synaptic strength and, as such, may provide one effective mechanism for depression of synaptic transmission.
Collapse
Affiliation(s)
- M Diverse-Pierluissi
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
41
|
Murga C, Ruiz-Gómez A, García-Higuera I, Kim CM, Benovic JL, Mayor F. High affinity binding of beta-adrenergic receptor kinase to microsomal membranes. Modulation of the activity of bound kinase by heterotrimeric G protein activation. J Biol Chem 1996; 271:985-94. [PMID: 8557715 DOI: 10.1074/jbc.271.2.985] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The beta-adrenergic receptor kinase (beta ARK) modulates beta-adrenergic and other G protein-coupled receptors by rapidly phosphorylating agonist-occupied receptors at the plasma membrane. We have recently shown that beta ARK also associates with intracellular microsomal membranes both "in vitro" and "in situ" (García-Higuera, I., Penela, P., Murga, C., Egea, G., Bonay, P., Benovic, J. L., and Mayor, F., Jr. (1994) J. Biol. Chem. 269, 1348-1355), thus suggesting a complex modulation of the subcellular distribution of beta ARK. In this report, we used recombinant [35S]methionine-labeled beta ARK to show that this kinase interacts rapidly with a high affinity binding site (Kd of 20 +/- 1 nM) present in salt-stripped rat liver microsomal membranes. Although beta ARK binding is not modulated by membrane preincubation with G protein activators, the activity of bound beta ARK toward rhodopsin or a synthetic peptide substrate was markedly enhanced upon stimulation of the endogenous heterotrimeric G proteins present in the microsomal membranes by AIF4- or mastoparan/guanosine 5'-(3-O-thio)triphosphate, thus strongly suggesting a functional link between these proteins and membrane-associated beta ARK. Interestingly, beta ARK association with microsomal membranes is not significantly affected by a fusion protein derived from the carboxyl terminus of beta ARK1 (the proposed location of the beta gamma subunit binding site), whereas it is markedly inhibited by fusion proteins corresponding to the amino-terminal region of the kinase. The main determinants of binding appear to be localized to an approximately 60-amino acid residue stretch (residues 88 to 145). Our results further indicate a functional relationship between beta ARK and heterotrimeric G proteins in different intracellular organelles, and suggest that additional proteins may be involved in modulating the cellular localization of the kinase through a new targeting domain of beta ARK.
Collapse
Affiliation(s)
- C Murga
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Lohse MJ, Engelhardt S, Danner S, Böhm M. Mechanisms of beta-adrenergic receptor desensitization: from molecular biology to heart failure. Basic Res Cardiol 1996; 91 Suppl 2:29-34. [PMID: 8957541 DOI: 10.1007/bf00795359] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
beta-Adrenergic receptors are often studied as prototypes of the large family of G-protein-coupled receptors, which includes many other well-known members such as the muscarinic acetylcholine receptors, but also the receptors for light, taste and olfaction. These receptors are regulated by multiple mechanisms which can affect either their function or their expression to a rapidly changing environment. The most obvious changes are effected by receptor agonists, and this process is called receptor desensitization. On the functional level, the most intriguing and important mechanism of desensitization involves the phosphorylation of beta-adrenergic and homologous receptors by specific receptor kinases, termed the G-protein-coupled receptor kinases (GRKs). This phosphorylation is followed by binding of arrestins to the receptors, which causes uncoupling of receptors and G-proteins and thus results in a loss of receptor function. On the expression level, there appear to be two major pathways leading to a reduction of the receptor number: degradation of the receptors themselves, or reduced receptor synthesis brought about by reduced receptor mRNA levels. Heart failure is accompanied by a markedly reduced responsiveness of the beta-adrenergic receptor system, which in many ways resembles the phenomena seen in agonist-induced receptor desensitization. The levels of beta 1-adrenergic receptors are reduced, and this reduction is paralleled by similar decreases in the levels of the corresponding mRNA. At the same time, the activity and the mRNA levels of one of the GRK-isoforms, GRK2 (which is identical to the beta-adrenergic receptor kinase 1) are increased. These alterations may contribute to the loss of beta-adrenergic receptor responsiveness in heart failure and result in further impairment of cardiac function.
Collapse
Affiliation(s)
- M J Lohse
- Institut für Pharmakologie und Toxikologie Universität Würzburg, Germany
| | | | | | | |
Collapse
|
43
|
Wang C, Martyn JA. Burn injury alters beta-adrenergic receptor and second messenger function in rat ventricular muscle. Crit Care Med 1996; 24:118-24. [PMID: 8565516 DOI: 10.1097/00003246-199601000-00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES The molecular pharmacologic bases for the attenuated cardiovascular and metabolic responses to catecholamines, after burn injury, have not been elucidated. In the present study, myocardial tissues were used as a model of beta-adrenergic receptors to study burn injury-induced alterations in receptors and in signal transduction. DESIGN Prospective study, randomized to treatment and control groups. SETTING University-hospital research laboratory. SUBJECTS Male Sprague-Dawley rats (180 to 210 g). INTERVENTIONS A 50% body surface area burn or sham-burn was administered to the rats. MEASUREMENTS AND MAIN RESULTS Myocardial membranes were isolated at 24 hrs, 7 days and 14 days after 50% body surface area scald or sham injury. (-)125I-iodocyanopindolol was used to assess maximal binding capacity and affinity of the beta-adrenergic receptor. Basal and stimulated concentrations of second messenger, cyclic adenosine monophosphate (cAMP), were also assessed. Production of cAMP during isoproterenol stimulation tested the integrity of the beta-adrenergic receptor-mediated signal transduction. Forskolin, which stimulates adenylate cyclase enzyme directly (bypassing the receptor and G protein) to produce cAMP, tested the efficacy of the enzyme itself. Maximal binding capacity was unaltered between the experimental and control groups, but the affinity (mean +/- SEM) was significantly decreased in burned animals at 7 days (125.4 +/- 15.5 picomoles [pmol]; p = .01) and at 14 days (216.7 +/- 50.7 pmol; p = .001) compared with controls (75.5 +/- 8.4 pmol). In different set experimental and control groups, basal concentrations of cAMP in myocardial membranes were significantly decreased in burned animals at 7 days (control 38.6 +/- 4.2 vs. 5.8 +/- 0.9 pmol/mg of protein/min; p = .003) and at 14 days (control 47.4 +/- 3.2 vs 28.3 +/- 6.6 pmol/mg of protein/min; p = .002). The forskolin (direct)-stimulated synthesis of cAMP was decreased in burned animals at 24 hrs (control 339.0 +/- 40.5 vs. 214.4 +/- 16.6 pmol/mg of protein/min; p = .01), at 7 days (control 289.0 +/- 34.4 vs. 32 +/- 13.0 pmol/mg of protein/min; p = .01), and at 14 days (control 322.9 +/- 28.6 vs. 137.0 +/- 46.1 pmol/mg of protein/min; p = .01). The isoproterenol or receptor-mediated stimulation of cAMP production was also significantly (p < .001) impaired in burned animals compared with controls at 24 hrs (control 134.7 +/- 11.9 vs. 83.1 +/- 13.3 pmol/mg of protein/min), and at 14 days (control 128.2 +/- 7.2 vs. 92.8 +/- 17.7 pmol/mg of protein/min). CONCLUSION The etiology of the decreased responses in the myocardium to exogenous and endogenous beta-adrenergic receptor agonists after burn injury may be attributed to decreased affinity for ligands, and also to impaired receptor-mediated signal transduction and to decreased adenylate cyclase enzyme activity, resulting in decreased basal and stimulated second messenger (cAMP) production.
Collapse
Affiliation(s)
- C Wang
- Department of Anesthesiology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
44
|
Sohlemann P, Hekman M, Puzicha M, Buchen C, Lohse MJ. Binding of Purified Recombinant beta-arrestin to Guanine-Nucleotide-Binding-Protein-Coupled Receptors. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20832.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Ryba NJ, Tirindelli R. A novel GTP-binding protein gamma-subunit, G gamma 8, is expressed during neurogenesis in the olfactory and vomeronasal neuroepithelia. J Biol Chem 1995; 270:6757-67. [PMID: 7896821 DOI: 10.1074/jbc.270.12.6757] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A novel heterotrimeric G-protein gamma-subunit has been cloned, and its function has been confirmed by expression and purification. This gamma-subunit is only detected in the olfactory epithelium, the vomeronasal epithelium and, to a lesser extent, the olfactory bulb. It is absent from all other tissues studied including the nasal respiratory epithelium. During development, expression of G gamma 8 in the olfactory epithelium parallels neurogenesis, peaking shortly after birth and declining in the adult. In situ hybridization studies localize expression of this novel gamma-subunit to the sensory neurons; hybridization is strongest in the region of the epithelium that contains immature neurons. Unlike proteins that are expressed only in mature olfactory neurons (e.g. olfactory marker protein or Golf alpha), expression of G gamma 8 in the olfactory epithelium is relatively unaffected by olfactory bulbectomy. In the vomeronasal epithelium expression of G gamma 8 is also highest in the developing neurons. Taken together, these findings are consistent with a very specific role for G gamma 8 in the development and turnover of olfactory and vomeronasal neurons.
Collapse
Affiliation(s)
- N J Ryba
- Laboratory of Immunology, NIDR, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
46
|
Gudermann T, Nürnberg B, Schultz G. Receptors and G proteins as primary components of transmembrane signal transduction. Part 1. G-protein-coupled receptors: structure and function. J Mol Med (Berl) 1995; 73:51-63. [PMID: 7627630 DOI: 10.1007/bf00270578] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- T Gudermann
- Institut für Pharmakologie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
47
|
Jockers R, Linder ME, Hohenegger M, Nanoff C, Bertin B, Strosberg AD, Marullo S, Freissmuth M. Species difference in the G protein selectivity of the human and bovine A1-adenosine receptor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31603-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Abstract
A diverse array of molecules involved in signal transduction have recently been recognised as containing a new homology domain, the pleckstrin homology (PH) domain. These include kinases (both serine/threonine and tyrosine specific), all currently known mammalian phospholipase Cs, GTPases, GTPase-activating proteins, GTPase-exchange factors, "adapter" proteins, cytoskeletal proteins, and kinase substrates. This has sparked a new surge of research into elucidating its structure and function. The NMR solution structure of the PH domains of beta-spectrin and pleckstrin (the N-terminal domain) both display a core consisting of seven anti-parallel beta-sheet strands. The carboxy terminus is folded into a long alpha-helix. The molecule is electrostatically polarised and contains a pocket which may be involved in the binding of a ligand. The PH domains overall topological relatedness to the retinoid binding protein family of molecules would suggest a lipid ligand could bind to this pocket. The prime function of the PH domain still remains to be elucidated. However, it has been shown to be important in signal transduction, most probably by mediating protein-protein interactions. An extended PH domain of the beta-adrenergic receptor kinase (beta ARK), as well as that of several other molecules, can bind to beta gamma subunits of the heterotrimeric G-proteins. The possibility that the PH domain, which is found in so many signalling molecules, being generally involved in beta gamma binding is provocative of implicating these proteins in G-protein signal transduction.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E Ingley
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
49
|
Tsukada S, Simon MI, Witte ON, Katz A. Binding of beta gamma subunits of heterotrimeric G proteins to the PH domain of Bruton tyrosine kinase. Proc Natl Acad Sci U S A 1994; 91:11256-60. [PMID: 7972043 PMCID: PMC45206 DOI: 10.1073/pnas.91.23.11256] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bruton tyrosine kinase (Btk) has been implicated as the defective gene in both human and murine B-cell deficiencies. The identification of molecules that interact with Btk may shed light on critical processes in lymphocyte development. The N-terminal unique region of Btk contains a pleckstrin homology domain. This domain is found in a broad array of signaling molecules and implicated to function in protein-protein interactions. By using an in vitro binding assay and an in vivo competition assay, the pleckstrin homology domain of Btk was shown to interact with the beta gamma dimer of heterotrimeric guanine nucleotide-binding proteins (G proteins). A highly conserved tryptophan residue in subdomain 6 of the pleckstrin homology domain was shown to play a critical role in the binding. The interaction of Btk with beta gamma suggests the existence of a unique connection between cytoplasmic tyrosine kinases and G proteins in cellular signal transduction.
Collapse
Affiliation(s)
- S Tsukada
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024-1662
| | | | | | | |
Collapse
|
50
|
Offermanns S, Schultz G. Complex information processing by the transmembrane signaling system involving G proteins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1994; 350:329-38. [PMID: 7845469 DOI: 10.1007/bf00178947] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Much of the information cells receive is transduced by a membranous signaling system that uses heterotrimeric guanine nucleotide binding proteins (G proteins) to functionally couple cell surface receptors to a variety of effectors. During recent years it has been shown that receptors, G protein alpha, beta and gamma subunits as well as effectors involved in this signaling system exhibit a remarkable structural diversity and that the interactions of these components display a bewildering complexity. Even though many questions remain to be answered, it is becoming obvious that G proteins form the basis of a complex membranous signaling network which allows the cell to coordinate and to process incoming signals already on the level of the plasma membrane.
Collapse
Affiliation(s)
- S Offermanns
- Institut für Pharmakologie, Freie Universität Berlin, Germany
| | | |
Collapse
|