1
|
Mittelstaedt RA, Dad A, Pearce MG, Heflich RH, Cao X. Effect of life stage and target tissue on dose-response assessment of ethyl methane sulfonate-induced genotoxicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:482-489. [PMID: 34647641 DOI: 10.1002/em.22465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
In order to investigate the possibility that treatment age affects the genotoxic response to ethyl methane sulfonate (EMS) exposure, we dosed gpt-delta neonatal mice on postnatal days 1-28 with 5-100 mg/kg/day of EMS and measured micronucleus (MN) induction in peripheral blood and gpt gene mutation in liver, lung, bone marrow, small intestine, spleen, and kidney. The data were compared to measurements from similarly exposed adult gpt-delta mice. Our results indicate that the peripheral blood MN frequencies in mice treated as neonates are not substantially different from those measured in mice treated as adults. There were, however, differences in tissue-specific gpt mutation responses in mice treated with EMS as neonates and adults. Greater mutant frequencies were seen in DNA isolated from kidney of mice treated as neonates, whereas the mutant frequencies in bone marrow, liver, and spleen were greater in the animals treated as adults. Benchmark dose potency ranking indicated that the differences for kidney were significant. Our data indicate that there are differences in EMS-induced genotoxicity between mice treated as adults and neonates; the differences, however, are relatively small.
Collapse
Affiliation(s)
- Roberta A Mittelstaedt
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Azra Dad
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Mason G Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
2
|
Marchetti F, Zhou G, LeBlanc D, White PA, Williams A, Yauk CL, Douglas GR. The 28 + 28 day design is an effective sampling time for analyzing mutant frequencies in rapidly proliferating tissues of MutaMouse animals. Arch Toxicol 2021; 95:1103-1116. [PMID: 33506374 PMCID: PMC7904718 DOI: 10.1007/s00204-021-02977-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
The Organisation for Economic Co-Operation and Development Test Guideline 488 (TG 488) uses transgenic rodent models to generate in vivo mutagenesis data for regulatory submission. The recommended design in TG 488, 28 consecutive daily exposures with tissue sampling three days later (28 + 3d), is optimized for rapidly proliferating tissues such as bone marrow (BM). A sampling time of 28 days (28 + 28d) is considered more appropriate for slowly proliferating tissues (e.g., liver) and male germ cells. We evaluated the impact of the sampling time on mutant frequencies (MF) in the BM of MutaMouse males exposed for 28 days to benzo[a]pyrene (BaP), procarbazine (PRC), isopropyl methanesulfonate (iPMS), or triethylenemelamine (TEM) in dose-response studies. BM samples were collected + 3d, + 28d, + 42d or + 70d post exposure and MF quantified using the lacZ assay. All chemicals significantly increased MF with maximum fold increases at 28 + 3d of 162.9, 6.6, 4.7 and 2.8 for BaP, PRC, iPMS and TEM, respectively. MF were relatively stable over the time period investigated, although they were significantly increased only at 28 + 3d and 28 + 28d for TEM. Benchmark dose (BMD) modelling generated overlapping BMD confidence intervals among the four sampling times for each chemical. These results demonstrate that the sampling time does not affect the detection of mutations for strong mutagens. However, for mutagens that produce small increases in MF, sampling times greater than 28 days may produce false-negative results. Thus, the 28 + 28d protocol represents a unifying protocol for simultaneously assessing mutations in rapidly and slowly proliferating somatic tissues and male germ cells.
Collapse
Affiliation(s)
- Francesco Marchetti
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Gu Zhou
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Danielle LeBlanc
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - George R Douglas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
3
|
Besaratinia A, Zheng A, Bates SE, Tommasi S. Mutation Analysis in Cultured Cells of Transgenic Rodents. Int J Mol Sci 2018; 19:E262. [PMID: 29337872 PMCID: PMC5796208 DOI: 10.3390/ijms19010262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
To comply with guiding principles for the ethical use of animals for experimental research, the field of mutation research has witnessed a shift of interest from large-scale in vivo animal experiments to small-sized in vitro studies. Mutation assays in cultured cells of transgenic rodents constitute, in many ways, viable alternatives to in vivo mutagenicity experiments in the corresponding animals. A variety of transgenic rodent cell culture models and mutation detection systems have been developed for mutagenicity testing of carcinogens. Of these, transgenic Big Blue® (Stratagene Corp., La Jolla, CA, USA, acquired by Agilent Technologies Inc., Santa Clara, CA, USA, BioReliance/Sigma-Aldrich Corp., Darmstadt, Germany) mouse embryonic fibroblasts and the λ Select cII Mutation Detection System have been used by many research groups to investigate the mutagenic effects of a wide range of chemical and/or physical carcinogens. Here, we review techniques and principles involved in preparation and culturing of Big Blue® mouse embryonic fibroblasts, treatment in vitro with chemical/physical agent(s) of interest, determination of the cII mutant frequency by the λ Select cII assay and establishment of the mutation spectrum by DNA sequencing. We describe various approaches for data analysis and interpretation of the results. Furthermore, we highlight representative studies in which the Big Blue® mouse cell culture model and the λ Select cII assay have been used for mutagenicity testing of diverse carcinogens. We delineate the advantages of this approach and discuss its limitations, while underscoring auxiliary methods, where applicable.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| | - Albert Zheng
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| | - Steven E Bates
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | - Stella Tommasi
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| |
Collapse
|
4
|
Nohmi T. Past, Present and Future Directions of gpt delta Rodent Gene Mutation Assays. Food Saf (Tokyo) 2016; 4:1-13. [PMID: 32231899 PMCID: PMC6989157 DOI: 10.14252/foodsafetyfscj.2015024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 01/28/2023] Open
Abstract
Genotoxicity is a critical endpoint of toxicity to regulate environmental chemicals. Genotoxic chemicals are believed to have no thresholds for the action and impose genotoxic risk to humans even at very low doses. Therefore, genotoxic carcinogens, which induce tumors via genotoxic mechanisms, are regulated more strictly than non-genotoxic carcinogens, which induce tumors through non-genotoxic mechanisms such as hormonal effects, cell proliferation and cell toxicity. Although Ames bacterial mutagenicity assay is the gold standard to identify genotoxicity of chemicals, the genotoxicity should be further examined in rodents because Ames positive chemicals are not necessarily genotoxic in vivo. To better evaluate the genotoxicity of chemicals in a whole body system, gene mutation assays with gpt delta transgenic mice and rats have been developed. A feature of the assays is to detect point mutations and deletions by two distinct selection methods, ie, gpt and Spi- assays, respectively. The Spi- assay is unique in that it allows analyses of deletions and complex DNA rearrangements induced by double-strand breaks in DNA. Here, I describe the concept of gpt delta gene mutation assays and the application in food safety research, and discuss future perspectives of genotoxicity assays in vivo.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
5
|
Abstract
Aging is characterized by a decrease in genome integrity, impaired organ maintenance, and an increased risk of cancer, which coincide with clonal dominance of expanded mutant stem and progenitor cell populations in aging tissues, such as the intestinal epithelium, the hematopoietic system, and the male germline. Here we discuss possible explanations for age-associated increases in the initiation and/or progression of mutant stem/progenitor clones and highlight the roles of stem cell quiescence, replication-associated DNA damage, telomere shortening, epigenetic alterations, and metabolic challenges as determinants of stem cell mutations and clonal dominance in aging.
Collapse
Affiliation(s)
- Peter D Adams
- University of Glasgow and Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - K Lenhard Rudolph
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Beutenbergstr. 11, 07745 Jena, Germany.
| |
Collapse
|
6
|
Abstract
This chapter describes the use of the bacteriophage cII positive selection somatic mutational assay with the Muta™Mouse transgenic model system. The assay is similar to others involving a transgenic target, including the cII and lacI assays in the Big Blue(®) Mouse, lacZ in the MutaMouse, and the gpt delta assay. Briefly, high-molecular-weight DNA is purified from the tissue of interest and used as substrate during in vitro packaging reactions, where the λ transgenes are excised from the genome and assembled into viable phage. Phage containing the mutational targets is then adsorbed into an appropriate bacterial host, and mutations sustained in vivo are detected and quantified by either standard recombinant screening or selection assays. Mutant frequencies are reported as the ratio of mutant phage to total phage units analyzed. The λ-based transgenic mouse assays are used to study and characterize in vivo mutagenesis as well as for mutagenicity assessment of chemicals and other agents. These models permit the enumeration of mutations sustained in virtually any tissue of the mouse and are both sensitive and robust. Application of the assays is simple, not requiring resources beyond those commonly found in most academic laboratories.
Collapse
|
7
|
Cao X, Mittelstaedt RA, Pearce MG, Allen BC, Soeteman-Hernández LG, Johnson GE, Bigger CAH, Heflich RH. Quantitative dose-response analysis of ethyl methanesulfonate genotoxicity in adult gpt-delta transgenic mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:385-99. [PMID: 24535894 DOI: 10.1002/em.21854] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 05/25/2023]
Abstract
The assumption that mutagens have linear dose-responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA-reactive mutagen and carcinogen, exhibited sublinear or thresholded dose-responses for LacZ mutation in transgenic Muta™Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Müller L [2009]: Mutat Res 678:101-107). In order to explore variables in establishing genotoxicity dose-responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta™Mouse. Male gpt-delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i) gpt MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii) Pig-a MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no-observed-genotoxic-effect-levels (NOGELs), lower confidence limits of threshold effect levels (Td-LCIs), and lower confidence limits of 10% benchmark response rates (BMDL10 s). Similar PoDs were calculated from the published EMS dose-responses for LacZ mutation and CD1 MN induction. Vehicle control gpt and Pig-a MFs were 13-40-fold lower than published vehicle control LacZ MFs. In general, the EMS genotoxicity dose-responses in gpt-delta mice had lower PoDs than those calculated from the Muta™Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds.
Collapse
Affiliation(s)
- Xuefei Cao
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lemieux CL, Douglas GR, Gingerich J, Phonethepswath S, Torous DK, Dertinger SD, Phillips DH, Arlt VM, White PA. Simultaneous measurement of benzo[a]pyrene-induced Pig-a and lacZ mutations, micronuclei and DNA adducts in Muta™ Mouse. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:756-65. [PMID: 21976233 PMCID: PMC3258540 DOI: 10.1002/em.20688] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 05/25/2023]
Abstract
In this study we compared the response of the Pig-a gene mutation assay to that of the lacZ transgenic rodent mutation assay, and demonstrated that multiple endpoints can be measured in a 28-day repeat dose study. Muta™Mouse were dosed daily for 28 days with benzo[a]pyrene (BaP; 0, 25, 50 and 75 mg/kg body weight/day) by oral gavage. Micronucleus (MN) frequency was determined in reticulocytes (RETs) 48 hr following the last dose. 72 h following the last dose, mice were euthanized, and tissues (glandular stomach, small intestine, bone marrow and liver) were collected for lacZ mutation and DNA adduct analysis, and blood was evaluated for Pig-a mutants. BaP-derived DNA adducts were detected in all tissues examined and significant dose-dependent increases in mutant Pig-a phenotypes (i.e., RET(CD24-) and RBC (CD24-)) and lacZ mutants were observed. We estimate that mutagenic efficiency (i.e., rate of conversion of adducts into mutations) was much lower for Pig-a compared to lacZ, and speculate that this difference is likely explained by differences in repair capacity between the gene targets, and differences in the cell populations sampled for Pig-a versus lacZ. The BaP doubling doses for both gene targets, however, were comparable, suggesting that similar mechanisms are involved in the accumulation of gene mutations. Significant dose-related increases in % MN were also observed; however, the doubling dose was considerably higher for this endpoint. The similarity in dose response kinetics of Pig-a and lacZ provides further evidence for the mutational origin of glycosylphosphatidylinositol (GPI)-anchor deficiencies detected in the Pig-a assay.
Collapse
Affiliation(s)
- Christine L Lemieux
- Mechanistic Studies Division, Environmental and Radiation Health Sciences Directorate, HECSB, Health Canada, Ottawa, ON, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Vinyl carbamate (VC) and ethyl carbamate (EC) induce the formation of lung tumors. The mechanism involves a two-step oxidation of EC to VC and VC to an epoxide, both of which are mediated mainly by CYP2E1. Interaction of the epoxide with DNA leads to the formation of DNA adducts, including 1,N(6)ethenodeoxyadenosine and 1,N(4)-ethenodeoxycytidine. The production of DNA adducts correlated with capacities for the bioactivation of VC, which are higher in the lungs of A/J than in C57BL/6 mice. Importantly, CYP2E1 is higher in the lungs of A/J than in C57BL/6 mice. Studies using F(1) (Big Blue x A/J) transgenic mice revealed the formation of mutations in the lambda cII gene after treatment with VC. Mutations induced by VC were mainly A:T-->G:C transitions and A:T-->T:A transversions, while mutations induced by EC were mainly G:C-->A:T transitions. An EC dose that was 17-fold higher than that for VC was required to produce a similar level of mutant frequency in the lung. Pretreatment of mice with the CYP2E1 inhibitor, diallyl sulfone, significantly inhibited the mutant frequencies induced by VC. Mutations in the endogeneous Kras2 gene were found in codon 61 of exon 2 and were identified as A:T transversions and A-->G transitions in the second base and A-->T transversions in the third base. These mutations were reduced by treatment of mice with diallyl sulfone before VC and coincided with a reduction in the number of lung tumors with Kras2 mutations. These findings affirmed that the metabolism of EC and VC is a prerequisite for, or at least substantially contributes to, initiation of the cascade of events leading to lung tumor formation.
Collapse
Affiliation(s)
- Poh-Gek Forkert
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
10
|
Abstract
Aberrant DNA methylation is known as an important cause of human cancers, along with mutations. Although aberrant methylation was initially speculated to be similar to mutations, it is now recognized that methylation is quite unlike mutations. Whereas the number of mutations in individual cancer cells is estimated to be approximately 80, that of aberrant methylation of promoter CpG islands reaches several hundred to 1000. Although mutations of a specific gene are very few in non-cancerous (thus polyclonal) tissues (usually at 1 x 10(-5)/cell), aberrant methylation of a specific gene can be present up to several 10% of cells. Mutagenic chemicals and radiation are well-known inducers of mutations, whereas chronic inflammation is deeply involved in methylation induction. Although mutations are induced in mostly random genes, methylation is induced in specific genes depending on tissues and inducers. Methylation is potentially reversible, unlike mutations. These characteristics of methylation are opening up new fields of application and research.
Collapse
Affiliation(s)
- Toshikazu Ushijima
- Carcinogenesis Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.
| | | |
Collapse
|
11
|
Epigenetic regulation of genetic integrity is reprogrammed during cloning. Proc Natl Acad Sci U S A 2009; 106:4731-5. [PMID: 19255429 DOI: 10.1073/pnas.0900687106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ cells typically carry fewer spontaneously acquired mutations than somatic cells in the same individual. Thus, embryos produced from somatic cells by SCNT could directly inherit more mutations than naturally conceived embryos. Alternatively, they could inherit epigenetic programming that predisposes more rapid accumulation of de novo mutations during development. We used a transgenic mouse system to test these possibilities by producing cloned midgestation mouse fetuses from three different donor somatic cell types carrying significantly different initial frequencies of spontaneous mutations. We found that on an individual locus basis, mutations acquired spontaneously in a population of donor somatic cells are not likely to be propagated to cloned embryos by SCNT. In addition, we found that the rate of accumulation of spontaneous mutations was similar in fetuses produced by either natural conception or cloning, indicating that cloned fetuses do not acquire mutations more rapidly than naturally conceived fetuses. These results represent the first direct demonstration that the process of cloning by SCNT does not lead to an increase in the frequency of point mutations. These results also demonstrate that epigenetic mechanisms normally contribute to the regulation of genetic integrity in a tissue-specific manner, and that these mechanisms are subject to reprogramming during cloning.
Collapse
|
12
|
Masumura K, Nohmi T. Spontaneous Mutagenesis in Rodents: Spontaneous Gene Mutations Identified by Neutral Reporter Genes in gpt Delta Transgenic Mice and Rats. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.40] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences
| |
Collapse
|
13
|
Hernandez LG, Forkert PG. Inhibition of vinyl carbamate-induced mutagenicity and clastogenicity by the garlic constituent diallyl sulfone in F1 (Big Blue® × A/J) transgenic mice. Carcinogenesis 2007; 28:1824-30. [PMID: 17341656 DOI: 10.1093/carcin/bgm051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vinyl carbamate (VC) is a metabolite of ethyl carbamate (EC), a naturally occurring compound found in fermented foods and alcoholic beverages. CYP2E1 mediates the sequential oxidation of EC to VC and subsequently to the vinyl carbamate epoxide, which is believed to be the ultimate carcinogenic species. Here, we have tested the hypothesis that bioactivation of VC by CYP2E1 plays a central role in the development of its mutagenicity and clastogenicity, and further that inhibition of CYP2E1 by diallyl sulfone (DASO(2)) leads to diminution in their incidences. DASO(2) is a garlic constituent that is oxidized by CYP2E1, leading to inactivation of this P450. F(1) (Big Blue x A/J) transgenic mice harboring the lambda cII gene were used for in vivo identification and quantitation of mutations in the lung and small intestine. Mice were pre-treated with DASO(2) (12.5-200 mg/kg, p.o.), treated 2 h later with VC (60 mg/kg, i.p.) and were killed 4 weeks later. Our results showed that pre-treatment of mice with DASO(2) at doses of 50-200 mg/kg significantly decreased the VC-induced mutant frequencies (MFs) by 50-70%. In the small intestine, pre-treatment with 200 mg/kg of DASO(2) decreased the MF by approximately 40%. Clastogenicity, as assessed by the frequency of micronucleated reticulocytes, was significantly decreased (33-44%) by pre-treatment with DASO(2) (50-200 mg/kg). These results demonstrated that bioactivation of VC by CYP2E1 plays a valid role in the development of mutagenicity and clastogenicity, and further that inhibition of this pathway by DASO(2) produces a protective effect.
Collapse
Affiliation(s)
- Lya G Hernandez
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
14
|
Hernandez LG, Forkert PG. In vivomutagenicity of vinyl carbamate and ethyl carbamate in lung and small intestine of F1(Big Blue® × A/J) transgenic mice. Int J Cancer 2007; 120:1426-33. [PMID: 17205523 DOI: 10.1002/ijc.22502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vinyl carbamate (VC) is a metabolite of ethyl carbamate (EC), a chemical found in alcoholic beverages and fermented foods. We undertook this study to: (i) evaluate the ability of both EC and VC to induce gene mutations in lung and various extrapulmonary tissues, and (ii) identify the type of mutations induced by the two compounds in various tissues. F1 (Big Blue x A/J) transgenic mice harboring the lambda cII transgene were used for identification and quantitation of mutations in vivo. Time-course studies in lung showed a plateau in mutant frequency (MF) 4 weeks after VC treatment, at which time mutations were fixed and were about 4-fold higher than in controls. Dose-dependent increases in MF were detected in the lung and small intestine (SI) after treatment with 15-75 mg/kg, i.p., of VC. VC was mutagenic in the lung and SI at doses of 45, 60 and 75 mg/kg. Sequencing of the cII gene in lung and SI showed that VC induced mainly A:T-->G:C transitions and A:T-->T:A transversions. EC was also mutagenic in the lung at 500 and 1,000 mg/kg and elicited mainly G:C-->A:T transitions. A VC dose of 60 mg/kg elicited a similar level of MF as an EC dose of 1,000 mg/kg. At 4 weeks after treatment, neither VC nor EC elicited mutations in the colon, bone marrow or kidney. These results demonstrated that VC and EC are mutagenic in vivo and affirm that VC is a more potent mutagen than EC.
Collapse
Affiliation(s)
- Lya G Hernandez
- Department of Anatomy and Cell Biology, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
15
|
Takeiri A, Mishima M, Tanaka K, Shioda A, Harada A, Watanabe K, Masumura KI, Nohmi T. A newly established GDL1 cell line from gpt delta mice well reflects the in vivo mutation spectra induced by mitomycin C. Mutat Res 2006; 609:102-15. [PMID: 16916616 DOI: 10.1016/j.mrgentox.2006.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/19/2006] [Accepted: 06/30/2006] [Indexed: 11/21/2022]
Abstract
In order to create a novel in vitro test system for detection of large deletions and point mutations, we developed an immortalized cell line. A SV40 large T antigen expression unit was introduced into fibroblasts derived from gpt delta mouse lung tissue and a selected clone was established as the gpt delta L1 (GDL1) cell line. The novel GDL1 cells were examined for mutant frequencies (MFs) and for molecular characterization of mutations induced by mitomycin C (MMC). The GDL1 cells were treated with MMC at doses of 0.025, 0.05, and 0.1 microg/mL for 24h and mutations were detected by Spi- and 6-thioguanine (6-TG) selections. The MFs of the MMC-treated cells increased up to 3.4-fold with Spi- selection and 3.5-fold with 6-TG selection compared to MFs of untreated cells. In the Spi- mutants, the number of large (up to 76 kilo base pair (kbp)) deletion mutations increased. A majority of the large deletion mutations had 1-4 base pairs (bp) of microhomology in the deletion junctions. A number of the rearranged deletion mutations were accompanied with deletions and insertions of up to 1.1 kbp. In the gpt mutants obtained from 6-TG selection, single base substitutions of G:C to T:A, tandem base substitutions occurring at the 5'-GG-3' or 5'-CG-3' sequence, and deletion mutations larger than 2 bp were increased. We compared the spectrum of MMC-induced mutations observed in vitro to that of in vivo using gpt delta mice, which we reported previously. Although a slight difference was observed in MMC-induced mutation spectra between in vitro and in vivo, the mutations detected in vitro included all of the types of mutations observed in vivo. The present study demonstrates that the newly established GDL1 cell line is a useful tool to detect and analyze various mutations including large deletions in mammalian cells.
Collapse
Affiliation(s)
- Akira Takeiri
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lambert IB, Singer TM, Boucher SE, Douglas GR. Detailed review of transgenic rodent mutation assays. Mutat Res 2005; 590:1-280. [PMID: 16081315 DOI: 10.1016/j.mrrev.2005.04.002] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/04/2005] [Accepted: 04/12/2005] [Indexed: 11/17/2022]
Abstract
Induced chromosomal and gene mutations play a role in carcinogenesis and may be involved in the production of birth defects and other disease conditions. While it is widely accepted that in vivo mutation assays are more relevant to the human condition than are in vitro assays, our ability to evaluate mutagenesis in vivo in a broad range of tissues has historically been quite limited. The development of transgenic rodent (TGR) mutation models has given us the ability to detect, quantify, and sequence mutations in a range of somatic and germ cells. This document provides a comprehensive review of the TGR mutation assay literature and assesses the potential use of these assays in a regulatory context. The information is arranged as follows. (1) TGR mutagenicity models and their use for the analysis of gene and chromosomal mutation are fully described. (2) The principles underlying current OECD tests for the assessment of genotoxicity in vitro and in vivo, and also nontransgenic assays available for assessment of gene mutation, are described. (3) All available information pertaining to the conduct of TGR assays and important parameters of assay performance have been tabulated and analyzed. (4) The performance of TGR assays, both in isolation and as part of a battery of in vitro and in vivo short-term genotoxicity tests, in predicting carcinogenicity is described. (5) Recommendations are made regarding the experimental parameters for TGR assays, and the use of TGR assays in a regulatory context.
Collapse
Affiliation(s)
- Iain B Lambert
- Mutagenesis Section, Environmental Health Sciences Bureau, Healthy Environments and Consumer Safety Branch, 0803A, Health Canada, Ottawa, Ont., Canada K1A 0L2.
| | | | | | | |
Collapse
|
17
|
Newell LE, Heddle JA. The potent colon carcinogen, 1,2-dimethylhydrazine induces mutations primarily in the colon. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2004; 564:1-7. [PMID: 15474405 DOI: 10.1016/j.mrgentox.2004.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 06/11/2004] [Accepted: 06/15/2004] [Indexed: 11/17/2022]
Abstract
1,2-Dimethylhydrazine (DMH) is a potent colon carcinogen that is commonly used as an initiator in studies of the effects of diet on colon cancer. Previous studies have shown that although this compound produces multiple tumors in the colons in most individuals of every species tested, it is, at best, marginally mutagenic in the bone marrow (micronuclei) and small intestine (Dlb-1 mutations). Here we report its mutagenicity in the primary target tissue, the colonic epithelium, by means of the Mutatrade markMouse cII assay, an assay for intragenic mutations in a lambda shuttle vector that is integrated into the genome of these mice. Animals were treated with 0, 10, 20, or 30 mg/ml of DMH, either as a single injection or as multiple weekly injections, and mutations were measured in both the small intestine and colon. In the small intestine, there was an increase in mutant frequency following a single injection of DMH, but this was significant only at 30 mg/kg [induced mutant frequency (MF) = 18 x 10(-5) mutants/plaque]. In the colon, following a single treatment of DMH, there was a significant increase in mutant frequency at doses of 20 and 30 mg/kg (induced MF = 17 x 10(-5) and 23 x 10(-5) mutants/plaque, respectively). Following ten injections of 20 mg/kg of DMH, there was a greater than ten-fold increase in mutations in the colon (MF = 275 x 10(-5) mutants/plaque) than the small intestine (MF = 25 x 10(-5) mutants/plaque). These results show that DMH, under the conditions typically used for dietary studies, induces large numbers of mutations in the tissue in which it induces most cancers.
Collapse
Affiliation(s)
- Lórien E Newell
- Department of Biology, York University, Toronto, Ont., Canada M3J 1P3
| | | |
Collapse
|
18
|
Hashimoto K, Ohsawa KI, Kimura M. Mutations induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in the lacZ and cII genes of Muta™ Mouse. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2004; 560:119-31. [PMID: 15157650 DOI: 10.1016/j.mrgentox.2004.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 02/10/2004] [Accepted: 02/10/2004] [Indexed: 11/18/2022]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) found in chewing tobacco, snuff, cigarettes, and cigars is a tobacco-specific nitrosamine and classified as a possible human carcinogen (Class 2B) by the International Agency for Research on Cancer (IARC). NNK given intraperitoneally was seen to induce lung and liver adenomas. To evaluate the genotoxicity of NNK in vivo, NNK was intraperitoneally administered to Muta Mouse at two concentrations (125 and 250 mg/kg, once a week for 4 weeks) followed by the measurement of mutant frequencies in the lacZ and cII genes from lung and liver in the same mice. Characterization of the types of the mutation was determined by sequencing the cII genes from mutant plaques. The mutant frequencies in both target genes from both organs dose-dependently increased up to 10 times compared to those of the control group. For the types of mutations, the ratio of the G:C to A:T mutation in the total number of mutants was less than the ratio of A:T to T:A and A:T to C:G transversion, contrary to a previous report. The A:T to T:A transversion was the most highly induced mutation both in the lung and liver cII genes. The increasing rate of mutant frequencies in lung and liver over the vehicle control was 55 and 56 times, respectively, while the increasing rate of G:C to A:T transition was only 1.9 and 2.8 times, respectively. These observations show that NNK predominantly induces DNA adducts leading to A:T to T:A and/or A:T to C:G mutations in the transgene.
Collapse
Affiliation(s)
- Kiyohiro Hashimoto
- Toxicology Laboratory, Medicinal Research Laboratories, Taisho Pharmaceutical Co. Ltd. 1-403, Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan.
| | | | | |
Collapse
|
19
|
Felix K, Polack A, Pretsch W, Jackson SH, Feigenbaum L, Bornkamm GW, Janz S. Moderate Hypermutability of a TransgeniclacZReporter Gene inMyc-Dependent Inflammation-Induced Plasma Cell Tumors in Mice. Cancer Res 2004; 64:530-7. [PMID: 14744766 DOI: 10.1158/0008-5472.can-03-2602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutator phenotypes, a common and largely unexplained attribute of human cancer, might be better understood in mouse tumors containing reporter genes for accurate mutation enumeration and analysis. Previous work on peritoneal plasmacytomas (PCTs) in mice suggested that PCTs have a mutator phenotype caused by Myc-deregulating chromosomal translocations and/or phagocyte-induced mutagenesis due to chronic inflammation. To investigate this hypothesis, we generated PCTs that harbored the transgenic shuttle vector, pUR288, with a lacZ reporter gene for the assessment of mutations in vivo. PCTs exhibited a 5.5 times higher mutant frequency in lacZ (40.3 +/- 5.1 x 10(-5)) than in normal B cells (7.36 +/- 0.77 x 10(-5)), demonstrating that the tumors exhibit the phenotype of increased mutability. Studies on lacZ mutant frequency in serially transplanted PCTs and phagocyte-induced lacZ mutations in B cells in vitro indicated that mutant levels in tumors are not determined by exogenous damage inflicted by inflammatory cells. In vitro studies with a newly developed transgenic model of inducible Myc expression (Tet-off/MYC) showed that deregulated Myc sensitizes B cells to chemically induced mutations, but does not cause, on its own, mutations in lacZ. These findings suggested that the hypermutability of PCT is governed mainly by intrinsic features of tumor cells, not by deregulated Myc or chronic inflammation.
Collapse
Affiliation(s)
- Klaus Felix
- Laboratory of Genetics, Center for Cancer Research, National Cancer Institute, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Hill KA, Buettner VL, Halangoda A, Kunishige M, Moore SR, Longmate J, Scaringe WA, Sommer SS. Spontaneous mutation in Big Blue mice from fetus to old age: tissue-specific time courses of mutation frequency but similar mutation types. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 43:110-120. [PMID: 14991751 DOI: 10.1002/em.20004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Transgenic mouse mutation detection systems permit rapid determination of the frequency and type of mutations allowing direct examination of mutational markers for aging, neurodegeneration, and cancer. The Big Blue transgenic mouse mutation detection system was used to determine the frequency and nature of spontaneous mutations versus age in multiple tissue types. Nuclear DNA was extracted from whole fetus at 13.5 days postcoitus (dpc) and from six tissues postbirth (cerebellum, forebrain, thymus, liver, adipose tissue, and male germline) of Big Blue transgenic mice at four ages: 10 days and at 3, 10, and 25 months postbirth. Forty million total plaque-forming units (pfu) were screened. The time course of mutation frequency with age had a significantly different shape in different tissues (P < 10(-6)). By 13.5 dpc, the whole fetus mutation frequency had already started increasing from the theoretical zero at conception to a value that was about one-half the mid-adulthood (3-10 months) average. From 10 days to 3 months, mutation frequency increased significantly in liver (P = 0.007) and showed an increasing trend in cerebellum, forebrain, and thymus. From 3 to 10 months, there was no significant change in mutation frequency in any tissue examined. From 10 to 25 months, the mutation frequency increased significantly in liver (P < 10(-6)) and adipose tissue (P = 0.002), but not in the other tissues examined (cerebellum, forebrain, and male germline). It is of interest that the mutation frequency in the male germline is consistently the lowest, remaining essentially unchanged in old age. The spectrum of mutation types was unaltered with age, tissue type and gender, although, as previously reported, tandem GG-->TT mutations are tissue specific and show significant increases with age and certain hotspots (Buettner VL et al. [1999]: Environ Mol Mutagen 33:320-324; Hill KA et al. [2003]: Mutat Res 534:173-186). The spectrum of mutation types was generally the same for all tissue types, despite the tissue-specific increases in mutation frequency with age. These data provide a useful reference for future studies of endogenous and exogenous mutagenesis.
Collapse
Affiliation(s)
- Kathleen A Hill
- Department of Molecular Genetics, Beckman Research Institute/City of Hope, Duarte, California 91010-0269, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Exposure to environmental factors and genetic predisposition of an individual may lead individually or in combination to various genetic diseases including cancer. These diseases may be a consequence of genetic instability resulting in large-scale genomic rearrangements, such as DNA deletions, duplications, and translocations. This review focuses on mouse assays detecting genetic instability at endogenous loci. The frequency of DNA deletions by homologous recombination at the pink-eyed unstable (p(un)) locus is elevated in mice with mutations in ATM, Trp53, Gadd45, and WRN genes and after exposure to carcinogens. Other quantitative in vivo assays detecting loss of heterozygosity events, such as the mammalian spot assay, Dlb-1 mouse and Aprt mouse assays, are also reviewed. These in vivo test systems may predict hazardous effects of an environmental agent and/or genetic predisposition to cancer.
Collapse
Affiliation(s)
- Ramune Reliene
- Department of Pathology, David Geffen School of Medicine and School of Public Health, UCLA, 650 Charles E Young Drive South, Los Angeles, CA 90024, USA
| | | |
Collapse
|
22
|
Furuno-Fukushi I, Masumura KI, Furuse T, Noda Y, Takahagi M, Saito T, Hoki Y, Suzuki H, Wynshaw-Boris A, Nohmi T, Tatsumi K. Effect ofAtmDisruption on Spontaneously Arising and Radiation-Induced Deletion Mutations in Mouse Liver. Radiat Res 2003; 160:549-58. [PMID: 14565827 DOI: 10.1667/rr3073] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Deletion mutations were efficiently recovered in mouse liver after total-body irradiation with X rays by using a transgenic mouse "gpt-delta" system that harbored a lambda EG10 shuttle vector with the red and gam genes for Spi- (sensitive to P2 lysogen interference) selection. We incorporated this system into homozygous Atm-knockout mice as a model of the radiosensitive hereditary disease ataxia telangiectasia (AT). Lambda phages recovered from the livers of X-irradiated mice with the Atm+/+ genotype showed a dose-dependent increase in the Spi- mutant frequency up to sixfold at 50 Gy over the unirradiated control of 2.8x10(-6). The livers from Atm-/- mice yielded a virtually identical dose-response curve for X rays with a background fraction of 2.4x10(-6). Structural analyses revealed no significant difference in the proportion of -1 frameshifts and larger deletions between Atm+/+ and Atm-/- mice, although larger deletions prevailed in X-ray-induced Spi- mutants irrespective of Atm status. While a possible defect in DNA repair after irradiation has been strongly indicated in the literature for nondividing cultured cells in vitro from AT patients, the Atm disruption does not significantly affect radiation mutagenesis in the stationary mouse liver in vivo.
Collapse
Affiliation(s)
- Ikuko Furuno-Fukushi
- Research Center for Radiation Safety, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Thybaud V, Dean S, Nohmi T, de Boer J, Douglas GR, Glickman BW, Gorelick NJ, Heddle JA, Heflich RH, Lambert I, Martus HJ, Mirsalis JC, Suzuki T, Yajima N. In vivo transgenic mutation assays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2003; 540:141-51. [PMID: 14550498 DOI: 10.1016/j.mrgentox.2003.07.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transgenic rodent gene-mutation models provide relatively quick and statistically reliable assays for gene mutations in the DNA from any tissue. This report summarizes those issues that have been agreed upon at a previous IWGT meeting [Environ. Mol. Mutagen. 35 (2000) 253], and discusses in depth those issues for which no consensus was reached before. It was previously agreed that for regulatory applications, assays should be based upon neutral genes, be generally available in several laboratories, and be readily transferable. For phage-based assays, five to ten animals per group should be analyzed, assuming a spontaneous mutant frequency (MF) of approximately 3x10(-5) mutants/locus and 125,000-300,000 plaque or colony forming units (pfu or cfu) per tissue per animal. A full set of data should be generated for a vehicle control and two dose groups. Concurrent positive control animals are only necessary during validation, but positive control DNA must be included in each plating. Tissues should be processed and analyzed in a blocked design, where samples from negative control, positive control and each treatment group are processed together. The total number of pfus or cfus and the MF for each tissue and animal are reported. Statistical tests should consider the animal as the experimental unit. Nonparametric statistical tests are recommended. A positive result is a statistically significant dose-response and/or statistically significant increase in any dose group compared to concurrent negative controls using an appropriate statistical model. A negative result is a statistically non-significant change, with all mean MFs within two standard deviations of the control. During the current workshop, a general protocol was agreed in which animals are treated daily for 28 consecutive days and tissues sampled 3 days after the final treatment. This recommendation could be modified by reducing or increasing the number of treatments or the length of the treatment period, when scientifically justified. Normally male animals alone are sufficient and normally at least one rapidly proliferating and one slowly proliferating tissue should be sampled. Although, as agreed previously, sequencing data are not normally required, they might provide useful additional information in specific circumstances, mainly to identify and correct for clonal expansion and in some cases to determine a mechanism associated with a positive response.
Collapse
|
24
|
Heddle JA, Martus HJ, Douglas GR. Treatment and sampling protocols for transgenic mutation assays. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 41:1-6. [PMID: 12552586 DOI: 10.1002/em.10131] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The standard protocol for testing chemicals with the transgenic mutation assays in vivo includes a period of time between treatment and sampling to permit the mutation frequency to reach a maximum. Recent evidence has shown, however, that for some chemicals the mutant frequency can decline substantially during this period, which would reduce the sensitivity of the assay. Here we discuss alternate protocols to maintain the sensitivity of the assay for both types of mutagens and, in particular, propose that treatments should continue until the time of sampling.
Collapse
Affiliation(s)
- John A Heddle
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| | | | | |
Collapse
|
25
|
Culp SJ, Beland FA, Heflich RH, Benson RW, Blankenship LR, Webb PJ, Mellick PW, Trotter RW, Shelton SD, Greenlees KJ, Manjanatha MG. Mutagenicity and carcinogenicity in relation to DNA adduct formation in rats fed leucomalachite green. Mutat Res 2002; 506-507:55-63. [PMID: 12351145 DOI: 10.1016/s0027-5107(02)00152-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Leucomalachite green is a persistent and prevalent metabolite of malachite green, a triphenylmethane dye that has been used widely as an antifungal agent in the fish industry. Concern over the use of malachite green is due to the potential for consumer exposure, evidence suggestive of tumor promotion in rodent liver, and suspicion of carcinogenicity based on structure-activity relationships. Our previous study indicated that feeding rodents malachite or leucomalachite green resulted in a dose-related increase in liver DNA adducts, and that, in general, exposure to leucomalachite green caused an increase in the number and severity of changes greater than was observed following exposure to malachite green. To characterize better the genotoxicity of leucomalachite green, female Big Blue rats were fed leucomalachite green at doses of 0, 9, 27, 91, 272, or 543 ppm for up to 32 weeks. The livers were analyzed for lacI mutations at 4, 16, and 32 weeks and DNA adducts at 4 weeks. Using a 32P-postlabeling assay, we observed a dose-related DNA adduct in the livers of rats fed 91, 272, and 543 ppm leucomalachite green. A approximately 3-fold increase in lacI mutant frequency was found in the livers of rats fed 543 ppm leucomalachite green for 16 weeks, but significant increases in mutant frequencies were not found for any of the other doses or time points assayed. We also conducted 2-year tumorigenesis bioassays in female and male F344 rats using 0, 91, 272, and 543 ppm leucomalachite green. Preliminary results indicate an increasing dose trend in lung adenomas in male rats treated with leucomalachite green, but no increase in the incidence of liver tumors in either sex of rat. These results suggest that the DNA adduct formed in the livers of rats fed leucomalachite green has little mutagenic or carcinogenic consequence.
Collapse
Affiliation(s)
- S J Culp
- Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cosentino L, Malling HV, Heddle JA. Response of the phiX174 am3, cs70 transgene to acute and chronic ENU exposure: implications for protocol design. Mutat Res 2002; 518:113-21. [PMID: 12113762 DOI: 10.1016/s1383-5718(02)00078-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Studies of other transgenic assays have shown that time after treatment is a very important variable in the analysis of mutation frequencies but that eventually a plateau frequency is reached, indicating that the mutations are neutral. This neutrality is very important for the design of both experiments and testing protocols. Here we show that the phiX174 am3, cs70 transgene gives qualitatively similar results to the other transgenes studied after exposure of the mice to N-ethyl-N-nitrosourea. In the small intestine, the mutant frequency induced by an acute dose did not change significantly from 10 to 70 days post-treatment, indicating that the mutations induced are, indeed, neutral. Likewise, the mutant frequency increased linearly with duration of exposure to ENU at a constant rate. Mutant frequencies obtained were 10 times higher from the chronic exposure than produced by a nearly lethal acute dose. As in previous comparisons of a transgene and the endogenous Dlb-1 locus in the small intestine, the chronic exposure was much more effective at increasing the sensitivity of the transgene than of the endogenous gene. The Dlb-1 locus shows more complex kinetics in this strain, as in others, with mutations initially accumulating at a slower rate, indicating a differential repair of genetic damage.
Collapse
Affiliation(s)
- Lidia Cosentino
- Lawrence Livermore National Laboratory, Biology and Biotechnology Research Program, 94550 Livermore, CA, USA.
| | | | | |
Collapse
|
27
|
Abstract
Historically, fish have played significant roles in assessing potential risks associated with exposure to chemical contamination in aquatic environments. Considering the contributions of transgenic rodent models to biomedicine, it is reasoned that the development of transgenic fish could enhance the role of fish in environmental toxicology. Application of transgenic fish in environmental studies remains at an early stage, but recent introduction of new models and methods demonstrates progress. Rapid advances are most evident in the area of in vivo mutagenesis using fish carrying transgenes that serve as recoverable mutational targets. These models highlight many advantages afforded by fish as models and illustrate important issues that apply broadly to transgenic fish in environmental toxicology. Development of fish models carrying identical transgenes to those found in rodents is beneficial and has revealed that numerous aspects of in vivo mutagenesis are similar between the two classes of vertebrates. Researchers have revealed that fish exhibit frequencies of spontaneous mutations similar to rodents and respond to mutagen exposure consistent with known mutagenic mechanisms. Results have demonstrated the feasibility of in vivo mutation analyses using transgenic fish and have illustrated their potential value as a comparative animal model. Challenges to development and application of transgenic fish relate to the needs for improved efficiencies in transgenic technology and in aspects of fish husbandry and use. By taking advantage of the valuable and unique attributes of fish as test organisms, it is anticipated that transgenic fish will make significant contributions to studies of environmentally induced diseases.
Collapse
Affiliation(s)
- R N Winn
- Aquatic Biotechnology and Environmental Laboratory, Warnell School of Forest Resources, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
28
|
Gonda SR, Wu H, Pingerelli PL, Glickman BW. Three-dimensional transgenic cell model to quantify genotoxic effects of space environment. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2001; 27:421-430. [PMID: 11642304 DOI: 10.1016/s0273-1177(01)00010-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this paper we describe a three-dimensional, multicellular tissue-equivalent model, produced in NASA-designed, rotating wall bioreactors using mammalian cells engineered for genomic containment of multiple copies of defined target genes for genotoxic assessment. Rat 2 lambda fibroblasts, genetically engineered to contain high-density target genes for mutagenesis (Stratagene, Inc., Austin, TX), were cocultured with human epithelial cells on Cytodex beads in the High Aspect Ratio Bioreactor (Synthecon, Inc, Houston, TX). Multi-bead aggregates were formed by day 5 following the complete covering of the beads by fibroblasts. Cellular retraction occurred 8-14 days after coculture initiation culminating in spheroids retaining few or no beads. Analysis of the resulting tissue assemblies revealed: multicellular spheroids, fibroblasts synthesized collagen, and cell viability was retained for the 30-day test period after removal from the bioreactor. Quantification of mutation at the LacI gene in Rat 2 lambda fibroblasts in spheroids exposed to 0-2 Gy neon using the Big Blue color assay (Stratagene, Inc.), revealed a linear dose-response for mutation induction. Limited sequencing analysis of mutant clones from 0.25 or 1 Gy exposures revealed a higher frequency of deletions and multiple base sequencing changes with increasing dose. These results suggest that the three-dimensional, multicellular tissue assembly model produced in NASA bioreactors are applicable to a wide variety of studies involving the quantification and identification of genotoxicity including measurement of the inherent damage incurred in Space.
Collapse
Affiliation(s)
- S R Gonda
- Biotechnology Program, NASA Johnson Space Center, 2101 NASA Rd. 1, Houston, TX 77058, USA
| | | | | | | |
Collapse
|
29
|
Swiger RR, Cosentino L, Masumura KI, Nohmi T, Heddle JA. Further characterization and validation of gpt delta transgenic mice for quantifying somatic mutations in vivo. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 37:297-303. [PMID: 11424179 DOI: 10.1002/em.1036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The utility of any mutation assay depends on its characteristics, which are best discovered using model mutagens. To this end, we report further on the characteristics of the lambda-based gpt delta transgenic assay first described by Nohmi et al. ([1996]: Environ Mol Mutagen 28:465-470). Our studies show that the gpt transgene responds similarly to other transgenic loci, specifically lacZ and cII, after treatment with acute doses of N-ethyl-N-nitrosourea (ENU). Because genetic neutrality is an important factor in the design of treatment protocols for mutagenicity testing, as well as for valid comparisons between different tissues and treatments, a time-course study was conducted. The results indicate that the gpt transgene, like cII and lacZ, is genetically neutral in vivo. The sensitivities of the loci are also equivalent, as evidenced by spontaneous mutant frequency data and dose- response curves after acute treatment with 50, 150, or 250 mg/kg ENU. The results are interesting in light of transgenic target size and location and of host genetic background differences. Based on these studies, protocols developed for other transgenic assays should be suitable for the gpt delta. Additionally, a comparison of the gpt and an endogenous locus, Dlb-1, within the small intestine of chronically treated animals (94 microg/mL ENU in drinking water daily) shows differential accumulation of mutations at the loci during chronic exposure. The results further support the existence of preferential repair at endogenous, expressed genes relative to transgenes.
Collapse
Affiliation(s)
- R R Swiger
- Department of Biology, York University, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
30
|
Abstract
The evolution of testing strategies and methods for identification of mutagenic agents is discussed, beginning with the concern over potential health and population effects of chemical mutagens in the late 1940s that led to the development of regulatory guidelines for mutagenicity testing in the 1970s and 1980s. Efforts to achieve international harmonization of mutagenicity testing guidelines are summarized, and current issues and needs in the field are discussed, including the need for quantitative methods of mutagenic risk assessment, dose-response thresholds, indirect mechanisms of mutagenicity, and the predictivity of mutagenicity assays for carcinogenicity in vivo. Speculation is offered about the future of mutagenicity testing, including possible near-term changes in standard test batteries and the longer-term roles of expression profiling of damage-response genes, in vivo mutagenicity testing methods, and models that better account for differences in metabolism between humans and laboratory model systems.
Collapse
Affiliation(s)
- J T MacGregor
- FDA Center for Drug Evaluation and Research, 5600 Fishers Lane, Rockville, MD 20857, USA.
| | | | | |
Collapse
|
31
|
Abstract
Transgenic mutation assays were developed to detect gene mutations in multiple organs of mice or rats. The assays permit (1) quantitative measurements of mutation frequencies in all tissues/organs including germ cells and (2) molecular analysis of induced and spontaneous mutations by DNA sequencing analysis. The protocols of recently developed selections in the lambda phage-based transgenic mutation assays, i.e. cII, Spi(-) and 6-thioguanine selections, are described, and a data set of transgenic mutation assays, including those using Big Blue and Muta Mouse, is presented.
Collapse
Affiliation(s)
- T Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, 158-8501, Tokyo, Japan.
| | | | | |
Collapse
|
32
|
Winn RN, Norris MB, Brayer KJ, Torres C, Muller SL. Detection of mutations in transgenic fish carrying a bacteriophage lambda cII transgene target. Proc Natl Acad Sci U S A 2000; 97:12655-60. [PMID: 11035814 PMCID: PMC18819 DOI: 10.1073/pnas.220428097] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To address the dual needs for improved methods to assess potential health risks associated with chemical exposure in aquatic environments and for new models for in vivo mutagenesis studies, we developed transgenic fish that carry multiple copies of a bacteriophage lambda vector that harbors the cII gene as a mutational target. We adapted a forward mutation assay, originally developed for lambda transgenic rodents, to recover cII mutants efficiently from fish genomic DNA by lambda in vitro packaging. After infecting and plating phage on a hfl- bacterial host, cII mutants were detected under selective conditions. We demonstrated that many fundamental features of mutation analyses based on lambda transgenic rodents are shared by transgenic fish. Spontaneous mutant frequencies, ranging from 4.3 x 10(-5) in liver, 2.9 x 10(-5) in whole fish, to 1.8 x 10(-5) in testes, were comparable to ranges in lambda transgenic rodents. Treatment with ethylnitrosourea resulted in concentration-dependent, tissue-specific, and time-dependent mutation inductions consistent with known mechanisms of action. Frequencies of mutants in liver increased insignificantly 5 days after ethylnitrosourea exposure, but increased 3.5-, 5.7- and 6. 7-fold above background at 15, 20, and 30 days, respectively. Mutants were induced 5-fold in testes at 5 days, attaining a peak 10-fold induction 15 days after treatment. Spontaneous and induced mutational spectra in the fish were also consistent with those of lambda transgenic rodent models. Our results demonstrate the feasibility of in vivo mutation analyses using transgenic fish and illustrate the potential value of fish as important comparative animal models.
Collapse
Affiliation(s)
- R N Winn
- Warnell School of Forest Resources, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Although chemicals usually induce very similar frequencies of mutations in transgenes and endogenous genes in vivo when given acutely, chronic exposure to N-ethyl-N-nitrosourea (ENU) produced a more complex pattern in which the endogenous locus was spared many mutations. Here, we demonstrate that the effect is neither ENU-specific nor locus-specific, and thus, may be important in the extrapolations of risk assessment and in understanding mutational mechanisms. During chronic mutagen exposure, mutations at the transgene accumulate linearly with time, i.e. in direct proportion to the dose received. In contrast, mutations at the endogenous gene are much less frequent than those of the transgene early in the exposure period and the accumulation is not linear with time, but rather accelerates as the exposure continues. Previous comparisons involved the endogenous Dlb-1 locus and the lacI transgene from the Big BlueMouse in the small intestine. These experiments involved the Dlb-1 locus and the lacZ transgene from the MutaMouse in the small intestine and the hprt locus and the lacZ transgene in splenocytes. Comparisons were made in both tissues after acute and chronic exposures to ENU, the original mutagen, and in the small intestine after exposures to benzo(a)pyrene. All comparisons showed that during chronic exposures mutations at the transgene accumulate linearly with the increasing duration of exposure, whereas induced mutations of the endogenous gene initially accumulate at a slower rate. Thus, the difference in mutational response observed during low chronic treatment is not unique to a particular transgene, endogenous gene, tissue, or mutagen used, but may be a general phenomenon of such genes.
Collapse
Affiliation(s)
- L Cosentino
- Department of Biology, York University, 4700 Keele Street, Ont., M3J 1P3, Toronto, Canada.
| | | |
Collapse
|
34
|
Shima N, Swiger RR, Heddle JA. Dietary restriction during murine development provides protection against MNU-induced mutations. Mutat Res 2000; 470:189-200. [PMID: 11027974 DOI: 10.1016/s1383-5718(00)00104-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The developmental stage is the most rapid period for the accumulation of somatic mutations. Epidemiological studies have also suggested a significant role of early life for cancer susceptibility, showing a protective effect of modest dietary restriction early in life. To determine if mutation rate, diet, and cancer risk are related, we have investigated the effect of dietary restriction on somatic mutations early in life. The diet of mouse dams was restricted during pregnancy and lactation by 10% from ad libitum control. F(1) pups (SWRxMutaMouse) were weaned at 3 weeks of age. Pups from dams that were on a restricted diet were kept under dietary restriction (40% until 5 weeks of age and then 20% until sacrifice). Only females from litters of seven or eight were used in this study. A portion of pups from both groups were treated with N-methyl-N-nitrosourea (MNU, 50mg/kg, i.p.) at 5 weeks of age and all mice were sacrificed at 10 weeks of age. The frequency of induced mutations was reduced by about 30% at the three loci studied, lacZ (P=0.028) and cII (P=0.042) and Dlb-1 (P=0.032) in the small intestine in the restricted group. A similar decrease in the lacZ mutant frequency was observed in the bone marrow, but the results did not reach statistical significance (P=0.074). Few differences in the lacZ mutant frequency were observed in the colon and the mammary epithelium, but variability of the mutant frequencies was such that an effect of similar magnitude could not be excluded statistically. Analysis of 47 cII mutants revealed that the majority of MNU-induced mutations were G:C to A:T transition at non-CpG sites, with no difference in the mutation spectrum between the two dietary groups.
Collapse
Affiliation(s)
- N Shima
- Department of Biology, York University, 4700 Keele Street, Ont., M3J 1P3, Toronto, Canada
| | | | | |
Collapse
|
35
|
Dollé ME, Giese H, van Steeg H, Vijg J. Mutation accumulation in vivo and the importance of genome stability in aging and cancer. Results Probl Cell Differ 2000; 29:165-80. [PMID: 10838700 DOI: 10.1007/978-3-540-48003-7_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- M E Dollé
- University of Texas Health Science Center, San Antonio, USA
| | | | | | | |
Collapse
|
36
|
Stuart GR, Glickman BW. Through a glass, darkly: reflections of mutation from lacI transgenic mice. Genetics 2000; 155:1359-67. [PMID: 10880494 PMCID: PMC1461138 DOI: 10.1093/genetics/155.3.1359] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The study of mutational frequency (Mf) and specificity in aging Big Blue lacI transgenic mice provides a unique opportunity to determine mutation rates (MR) in vivo in different tissues. We found that MR are not static, but rather, vary with the age or developmental stage of the tissue. Although Mf increase more rapidly early in life, MR are actually lower in younger animals than in older animals. For example, we estimate that the changes in Mf are 4.9x10(-8) and 1.1 x 10(-8) mutations/base pair/month in the livers of younger mice (<1. 5 months old) and older mice (> or =1.5 months old), respectively (a 4-fold decrease), and that the MR are 3.9 x 10(-9) and 1.3 x 10(-7) mutations/base pair/cell division, respectively ( approximately 30-fold increase). These data also permit an estimate of the MR of GC --> AT transitions occurring at 5'-CpG-3' (CpG) dinucleotide sequences. Subsequently, the contribution of these transitions to age-related demethylation of genomic DNA can be evaluated. Finally, to better understand the origin of observed Mf, we consider the contribution of various factors, including DNA damage and repair, by constructing a descriptive mutational model. We then apply this model to estimate the efficiency of repair of deaminated 5-methylcytosine nucleosides occurring at CpG dinucleotide sequences, as well as the influence of the Msh2(-/-) DNA repair defect on overall DNA repair efficiency in Big Blue mice. We conclude that even slight changes in DNA repair efficiency could lead to significant increases in mutation frequencies, potentially contributing significantly to human pathogenesis, including cancer.
Collapse
Affiliation(s)
- G R Stuart
- Centre for Environmental Health and the Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada.
| | | |
Collapse
|
37
|
Stuart GR, Oda Y, de Boer JG, Glickman BW. Mutation frequency and specificity with age in liver, bladder and brain of lacI transgenic mice. Genetics 2000; 154:1291-300. [PMID: 10757770 PMCID: PMC1460990 DOI: 10.1093/genetics/154.3.1291] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutation frequency and specificity were determined as a function of age in nuclear DNA from liver, bladder, and brain of Big Blue lacI transgenic mice aged 1.5-25 months. Mutations accumulated with age in liver and accumulated more rapidly in bladder. In the brain a small initial increase in mutation frequency was observed in young animals; however, no further increase was observed in adult mice. To investigate the origin of mutations, the mutational spectra for each tissue and age were determined. DNA sequence analysis of mutant lacI transgenes revealed no significant changes in mutational specificity in any tissue at any age. The spectra of mutations found in aging animals were identical to those in younger animals, suggesting that they originated from a common set of DNA lesions manifested during DNA replication. The data also indicated that there were no significant age-related mutational changes due to oxidative damage, or errors resulting from either changes in the fidelity of DNA polymerase or the efficiency of DNA repair. Hence, no evidence was found to support hypotheses that predict that oxidative damage or accumulation of errors in nuclear DNA contributes significantly to the aging process, at least in these three somatic tissues.
Collapse
Affiliation(s)
- G R Stuart
- Centre for Environmental Health, University of Victoria, Victoria, British Columbia V8W 3N5, Canada.
| | | | | | | |
Collapse
|
38
|
Ono T, Ikehata H, Nakamura S, Saito Y, Hosoi Y, Takai Y, Yamada S, Onodera J, Yamamoto K. Age-associated increase of spontaneous mutant frequency and molecular nature of mutation in newborn and old lacZ-transgenic mouse. Mutat Res 2000; 447:165-77. [PMID: 10751600 DOI: 10.1016/s0027-5107(99)00200-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulation of mutation has long been hypothesized to be a cause of aging and contribute to many of the degenerative diseases, which appear in the senescent phase of life. To test this hypothesis, age-associated changes in spontaneous mutation in different tissues of the body as well as the molecular nature of such changes should be examined. This kind of approach has become feasible only lately with a development of new transgenic mice suitable for mutation assay. Here, using one of these transgenic mice harboring lacZ gene, we have shown that the age-associated increase in spontaneous mutant frequency is common to all tissues examined; spleen, liver, heart, brain, skin and testis, while the rates of increase in mutant frequency differed among the tissues. DNA sequencing of the 496 lacZ mutants recovered from the tissues of newborn and old mice has revealed that spectra of mutations are similar at the two age points with G:C to A:T transition at CpG site being a predominant type of mutation. Furthermore, some mutations in old tissues are complex type and not found in tissues of newborn mice. These results suggest that similar mechanisms may be operating for mutation induction in fetal and postnatal aging process. In addition, the appearance of complex types of mutations in the old tissues suggests a unique cause for these mutations in aging tissues.
Collapse
Affiliation(s)
- T Ono
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Aoba-ku, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Heddle JA, Dean S, Nohmi T, Boerrigter M, Casciano D, Douglas GR, Glickman BW, Gorelick NJ, Mirsalis JC, Martus HJ, Skopek TR, Thybaud V, Tindall KR, Yajima N. In vivo transgenic mutation assays. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2000; 35:253-259. [PMID: 10737959 DOI: 10.1002/(sici)1098-2280(2000)35:3<253::aid-em11>3.0.co;2-j] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transgenic rodent gene mutation models provide quick and statistically reliable assays for mutations in the DNA from any tissue. For regulatory applications, assays should be based on neutral genes, be generally available in several laboratories, and be readily transferable. Five or fewer repeated treatments are inadequate to conclude that a compound is negative but more than 90 daily treatments may risk complications. A sampling time of 35 days is suitable for most tissues and chemicals, while shorter sampling times might be appropriate for highly proliferative tissues. For phage-based assays, 5 to 10 animals per group should be analyzed, assuming a spontaneous mutant frequency (MF) of approximately 3 x 10(-5) mutants/locus and 125,000-300,000 plaque or colony forming units (PFU or CFU) per tissue. Data should be generated for two dose groups but three should be treated, at the maximum tolerated dose (MTD), two-thirds the MTD, and one-third the MTD. Concurrent positive control animals are only necessary during validation, but positive control DNA must be included in each plating. Tissues should be processed and analyzed in a block design and the total number of PFUs or CFUs and the MF for each tissue and animal reported. Sequencing data would not normally be required but might provide useful additional information in specific circumstances. Statistical tests used should consider the animal as the experimental unit. Nonparametric statistical tests are recommended. A positive result is a statistically significant dose-response and/or statistically significant increase in any dose group compared to concurrent negative controls using an appropriate statistical model. A negative result is statistically nonsignificant with all mean MF within two standard deviations of the control.
Collapse
Affiliation(s)
- J A Heddle
- Department of Biology, York University, Toronto, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ryu J, Youn J, Kim Y, Kwon O, Song Y, Kim H, Cho K, Chang I. Mutation spectrum of 4-nitroquinoline N-oxide in the lacI transgenic Big Blue Rat2 cell line. Mutat Res 1999; 445:127-35. [PMID: 10521698 DOI: 10.1016/s1383-5718(99)00136-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper describes the spectrum of mutations induced by 4-nitroquinoline N-oxide (4-NQO) in the lacI target gene of the transgenic Big Blue Rat2 cell line. There are only a few report for the mutational spectrum of 4-NQO in a mammalian system although its biological and genetic effects have been well studied. Big Blue Rat2 cells were treated with 0.03125, 0.0625 or 0.125 microg/ml of 4-NQO, the highest concentration giving 85% survival. Our results indicated that the mutant frequency (MF) induced by 4-NQO was dose-dependent with increases from three- to seven-fold. The DNA sequence analysis of lacI mutants from the control and 4-NQO treatment groups revealed an obvious difference in the spectra of mutations. In spontaneous mutants, transition (60%) mutations, especially G:C-->A:T transition (45%), were most frequent. However, the major type of base substitution after treatment of 4-NQO was transversions (68.8%), especially G:C-->T:A (43.8%), while only 25% of mutants were transitions. These results are consistent with those produced by 4-NQO in other systems and the transgenic assay system will be a powerful tool to postulate more accurately the mechanism of chemical carcinogenesis involved.
Collapse
Affiliation(s)
- J Ryu
- Toxicology Laboratory, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hara T, Hirano K, Hirano N, Tamura H, Sui H, Shibuya T, Hyogo A, Hirashio T, Tokai H, Yamashita Y, Kura K. Mutation induction by N-propyl-N-nitrosourea in eight MutaMouse organs. Mutat Res 1999; 444:297-307. [PMID: 10521670 DOI: 10.1016/s1383-5718(99)00061-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As a part of the 2nd Collaborative Study for the Transgenic Mouse Mutation Assay, we studied the organ specificity and the temporal changes in mutant frequency (MF) of the lacZ gene following intraperitoneal injection of 250 mg/kg N-propyl-N-nitrosourea into male MutaMouse. We used a positive selection system and examined eight organs, i.e., bone marrow, liver, kidney, lung, spleen, brain, heart, and testis. The chemical caused a significant increase in MF in all organs except for brain, and the bone marrow was the most sensitive organ, exhibiting a MF on day 7 that was 10 times that of the control. The MF increased from day 7 to day 28 in liver, kidney, and testis, while it decreased in bone marrow. The relationship between the results of this study and the target organs of carcinogenesis, and the cause of the temporal changes in MF, are discussed.
Collapse
Affiliation(s)
- T Hara
- Hatano Research Institute, Food and Drug Safety Center, 729-5, Ochiai, Hadano-shi, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen JB, Dobrovolsky VN, Heflich RH. Development of a mouse cell line containing the PhiX174 am3 allele as a target for detecting mutation. Mutat Res 1999; 444:347-53. [PMID: 10521674 DOI: 10.1016/s1383-5718(99)00099-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transgenic mice containing multiple copies of the PhiX174 am3 allele are being developed as a model for detecting tissue-specific in vivo mutation. In order to derive an analogous system for measuring am3 mutation in vitro, cells were cultured from 15-day-old C57Bl/6J mouse embryos that were homozygous for the transgene and these cells were transfected with a plasmid expressing the SV40 large T-antigen. Two G418-resistant colonies were isolated from this culture and expanded to continuously proliferating cell lines (PX-1 and PX-2). Line PX-2 was treated with up to 1.0 mg/ml of N-ethyl-N-nitrosourea (ENU), assayed for survival by cloning efficiency after overnight culture, and assayed for am3 mutations after 5 days of culture. Survival decreased to 31% at the highest dose of ENU, while mutant frequency increased with dose from approximately 2 x 10(-7) in the untreated cells to 13 x 10(-7) in cultures treated with 0.6 mg/ml of ENU. PX-2 cells also were treated with 0 and 0.6 mg/ml of ENU and mutant frequency assays were performed after 5, 24, 48 and 72 h of growth. The mutant frequency in the treated culture increased to 20 x 10(-7) at 48 h and remained approximately the same at 72 h. These results indicate that PX-2 cells should be a useful resource for developing the in vivo am3 mutant assay and for evaluating the sensitivity of the am3 allele to various classes of mutagens.
Collapse
Affiliation(s)
- J B Chen
- Division of Genetic and Reproductive Toxicology, HFT-120, National Center for Toxicological Research, Jefferson, AR, USA
| | | | | |
Collapse
|
43
|
Suzuki T, Itoh S, Nakajima M, Hachiya N, Hara T. Target organ and time-course in the mutagenicity of five carcinogens in MutaMouse: a summary report of the second collaborative study of the transgenic mouse mutation assay by JEMS/MMS. Mutat Res 1999; 444:259-68. [PMID: 10521667 DOI: 10.1016/s1383-5718(99)00104-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We studied five carcinogens for (a) organ-specific mutagenicity and expression time in the transgenic (TG) mouse mutation assay and (b) clastogenicity in the peripheral blood micronucleus assay in the same mice. Groups of mice were injected intraperitoneally (ip) with N-nitroso-di-n-propylamine (NDPA), propylnitrosourea (PNU), 7, 12-dimethylbenz[a]anthracene (DMBA), 4-nitroquinoline-1-oxide (4NQO), or procarbazine (PCZ); 4NQO was also administered orally. LacZ mutant frequencies (MF) of various organs, sampled 7, 14 and 28 days after treatment, were analyzed by galE positive selection. At least 5 organs were analyzed in each experiment. Bone marrow, liver, and testis were always analyzed, as were each chemical's target organs. All chemicals, except NDPA, induced micronuclei. All chemicals increased lacZ MF in all of their target organs for carcinogenesis and, to a lesser extent, in some non-target organs. That suggests that an organ that has a positive response to a chemical in the TG mouse mutation assay is likely to develop tumors on exposure to that chemical, but it does not always happen. The time-course of MF increases (7-28 days) differed among tissues. In general, time-dependent increase in MF occurred in organs with a low cell proliferation rate whereas no increase, or even a decrease, occurred in organs with a high proliferation rate. Our results demonstrated that the TG mouse mutation assay is effective for the detection of chemical mutagenesis in the target organs for carcinogenesis, and organ and time-course variations in chemical mutagenesis are important issues for the establishment of an optimal protocol for the assay.
Collapse
Affiliation(s)
- T Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
44
|
Felix K, Kelliher K, Bornkamm GW, Janz S. Transgenic shuttle vector assays for assessing oxidative B-cell mutagenesis in vivo. Curr Top Microbiol Immunol 1999; 246:369-75; discussion 376-7. [PMID: 10396077 DOI: 10.1007/978-3-642-60162-0_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The recent development of transgenic mutagenicity assays provides new opportunities for evaluating mutagenic processes in vivo. To asses mutant frequencies in tissue B cells, we decided to take advantage of two such assays that utilize the transgenic shuttle vectors, lambda LIZ and pUR288. Our main interest in this research is to test two basic premises of inflammation-induced plasmacytoma development in genetically susceptible BALB/c mice; i.e., the possibility that plasmacytoma precursor cells may become targets of phagocyte-mediated oxidative mutagenesis in situ and the prospect that plasmacytoma susceptibility/resistance genes may contribute to these phenotypes by enhancing/reducing oxidative mutagenesis in B cells. Based on our preliminary experience with the lambda LIZ and pUR288 transgenic in vivo mutagenicity tests, we propose to employ these assays as broadly applicable tools for assessing overall mutagenesis during normal and aberrant (malignant) B-cell development. Furthermore, transgenic shuttle vector assays appear to lend themselves as ideal methods to associate general B-cell mutagenesis with the peculiar, B cell-typical somatic hypermutation processes that target the V(D)J gene segment, the proto-oncogene bcl-6 and perhaps other, still unknown loci.
Collapse
Affiliation(s)
- K Felix
- Laboratory of Genetics, NCI, NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|
45
|
Abstract
A critical factor in the quantitation of mutation induction in vivo is the time interval between treatment and sampling. In order to study mutagenesis in the mammary epithelium, the cell type in which breast cancer arises, we have measured the manifestation time, the minimum time required for the maximum mutant frequency to be achieved, in this tissue. The F1 LacZ transgenic mice (Muta MousexSWR) were treated with N-ethyl-N-nitrosourea (ENU) at 50 mg/kg for five consecutive days and then sampled at 1, 2, 4, 6, 9, or 12 weeks after the last treatment. The LacZ- mutant frequency reached a maximum at 4 weeks post-treatment and did not vary significantly thereafter. Dlb-1- mutations in the small intestine reached a maximum at 2 weeks after treatment and did not vary significantly thereafter. Since the stage of estrus cycle during carcinogen exposure influences the mammary tumor incidence and latency, it was expected that it would also affect mutation induction. To test this, F1 LacZ mice in the estrus or di-estrus stage were treated with an acute dose of 250 mg/kg ENU and sampled 10-13 weeks post-treatment. No statistical difference between the two groups was found, indicating that the effect of estrus on carcinogenesis is not due to variation in the sensitivity of the stage of the mammary gland to mutation.
Collapse
Affiliation(s)
- B Sun
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | | | | |
Collapse
|
46
|
Dobrovolsky VN, Casciano DA, Heflich RH. Tk+/- mouse model for detecting in vivo mutation in an endogenous, autosomal gene. Mutat Res 1999; 423:125-36. [PMID: 10029690 DOI: 10.1016/s0027-5107(98)00234-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tk+/- transgenic mice were created using an embryonic stem cell line in which one allele of the endogenous thymidine kinase (Tk) gene was inactivated by targeted homologous recombination. Breeding Tk+/- parents produced viable Tk-/- knockout (KO) mice. Splenic lymphocytes from KO mice were used in reconstruction experiments for determining the conditions necessary for recovering Tk somatic cell mutants from Tk+/- mice. The cloning efficiency of KO lymphocytes was not affected by the toxic thymidine analogues 5-bromo-2'-deoxyuridine (BrdUrd) or trifluorothymidine (TFT), or by BrdUrd in the presence of lymphocytes from Tk+/- animals; however, it was easier to identify clones resistant to BrdUrd than to TFT when Tk+/- cells were present. Tk+/- mice were treated with vehicle or 100 mg/kg of N-ethyl-N-nitrosourea (ENU), and after 4 months, the frequency of Tk mutant lymphocytes was measured by resistance to BrdUrd. The frequency of Tk mutants was 22+/-5.9x10-6 in control animals and 80+/-31x10-6 in treated mice. In comparison, the frequency of Hprt mutant lymphocytes, as measured by resistance to 6-thioguanine, was 2.0+/-1.2x10-6 in control animals and 84+/-28x10-6 in the ENU-treated mice. Analysis of BrdUrd-resistant lymphocyte clones derived from the ENU-treated animals revealed point mutations in the non-targeted Tk allele. These results indicate that the selection of BrdUrd-resistant lymphocytes from Tk+/- mice may be used for assessing in vivo mutation in an endogenous, autosomal gene.
Collapse
Affiliation(s)
- V N Dobrovolsky
- Division of Genetic and Reproductive Toxicology, HFT-120, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | | | | |
Collapse
|
47
|
Hill KA, Buettner VL, Glickman BW, Sommer SS. Spontaneous mutations in the Big Blue transgenic system are primarily mouse derived. Mutat Res 1999; 436:11-9. [PMID: 9878678 DOI: 10.1016/s1383-5742(98)00024-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Big Blue transgenic mouse mutation detection system provides a powerful approach for measuring spontaneous and induced mutations in vivo. The observed mutations may contain a fraction of ex vivo or prokaryotic mutational events. Indeed, a modified, selectable form of the Big Blue assay seem to generate artifactual mutants under certain circumstances. Herein we review the evidence that circular mutants (i.e., the plaque circumference is at least 50% blue) collected in the standard Big Blue assay are derived primarily from the mouse. The most direct evidence is the similarity in the types of mutations found in jackpot and nonjackpot mutations. In addition, about half of the spontaneous mutations in the lacI transgene are transitions and transversions at CpG dinucleotides, a mammalian-specific feature. The mutation pattern observed at lacI is consistent with AT mutation pressure operating in a GC rich DNA and approaches that reported for observed germline human factor IX mutations. Furthermore, the spontaneous mutation pattern of circular Big Blue mutants differs significantly from that of an endogenous lacI gene in E. coli. Pinpoint mutants (a dot of blue color peripherally located in a wild type plaque), which a priori were not expected to be mouse-derived, have a mutation pattern consistent with the mutation pattern of an endogenous E. coli lacI gene. Analysis of induced mutagenesis studies reveals mutation frequencies and patterns for the Big Blue circular mutants which are comparable to endogenous genes. In reconstruction experiments, blue plaques derived from a superinfection with wild type and mutant phage produced approximately 50% blue and 50% clear plaques on replating. This phenomenon has not been seen when plaques derived from mouse were replated in the Big Blue assay. Collectively, the evidence strongly supports a murine origin for circular mutants recovered in the standard Big Blue assay. Validation of current assays is an essential step in determining the frequency and pattern of spontaneous murine-specific mutations. Defining this benchmark will be helpful in evaluating the next generation of transgenic mutation detection systems.
Collapse
Affiliation(s)
- K A Hill
- Department of Molecular Genetics, Beckman Research Institute/City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | | | | | | |
Collapse
|
48
|
Brooks RA, Gooderham NJ, Edwards RJ, Boobis AR, Winton DJ. The mutagenicity of benzo[a]pyrene in mouse small intestine. Carcinogenesis 1999; 20:109-14. [PMID: 9934857 DOI: 10.1093/carcin/20.1.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have investigated the mutagenicity of benzo[a]pyrene (B[a]P) in small intestine using the Dlb-1 locus assay in the mouse. Administration of B[a]P by the oral and i.p. routes had markedly different effects on the number of Dlb-I mutations and the pattern of induction of cytochrome P-4501A1 (CYP1A1). In Ahr-responsive animals i.p. injection resulted in marked induction in crypt cells along the length of the small intestine, with some induction in the villus cells. In contrast, after oral administration, CYP1A1 induction was evident only in the villus cells, and this declined distally. The intensity and speed of induction in Ahr-responsive animals was such that the genotoxic effect of a single injection of B[a]P could not be augmented by prior treatment with non-genotoxic inducers such as beta-napthoflavone and TCDD. Oral B[a]P treatment resulted in a decrease in the number of mutations when compared with the i.p. route. Studies in congenic Ahr-non-responsive versus Ahr-responsive mice indicated that induction of CYP1A1 was associated with increased numbers of Dlb-1 mutations. Mutation induction in Ahr-non-responsive mice in the absence of detectable CYP1A1 in either liver or small intestine indicates that an appreciable portion of B[a]P activation to a genotoxin must be by other than a CYP1A1 mediated route. These data show that B[a]P is a potent small intestinal mutagen at the Dlb-1 locus.
Collapse
Affiliation(s)
- R A Brooks
- Cancer Research Campaign Human Cancer Genetics Research Group, Cambridge Institute for Medical Research, Addenbrooke's Hospital, UK
| | | | | | | | | |
Collapse
|
49
|
Buettner VL, Hill KA, Halangoda A, Sommer SS. Tandem-base mutations occur in mouse liver and adipose tissue preferentially as G:C to T:A transversions and accumulate with age. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1999; 33:320-324. [PMID: 10398380 DOI: 10.1002/(sici)1098-2280(1999)33:4<320::aid-em9>3.0.co;2-s] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tandem-base mutations (TBM) are associated with ultraviolet light and other mutagens. Herein, we report an age- and tissue-specific difference in the frequency of spontaneous TBM in Big Blue transgenic mice. A total of 390 mutants from liver and adipose tissue contained 17 and 4 TBM, respectively, while no TBM were detected in 683 mutants from six other tissues. There was a proportional increase in the frequency of TBM in liver with age (29 days postconception to 25 months of age). Nine TBM (43%) were GG to TT transversions that preferentially occurred at specific sites. The remaining 12 mutants contained at least one transversion mutation each. We speculate that the increase of TBM in liver and adipose tissue with age is due to chronic mutagen exposure, perhaps derived from fat in the diet.
Collapse
Affiliation(s)
- V L Buettner
- Department of Molecular Genetics, City of Hope / Beckman Research Institute, Duarte, California, USA
| | | | | | | |
Collapse
|
50
|
Nohmi T, Suzuki M, Masumura K, Yamada M, Matsui K, Ueda O, Suzuki H, Katoh M, Ikeda H, Sofuni T. Spi(-) selection: An efficient method to detect gamma-ray-induced deletions in transgenic mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1999; 34:9-15. [PMID: 10462718 DOI: 10.1002/(sici)1098-2280(1999)34:1<9::aid-em2>3.0.co;2-e] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite the importance of genome rearrangement in the etiology of cancer and human genetic disease, deletion mutations are poorly detectable by transgenic rodent mutagenicity tests. To facilitate the detection and molecular analysis of deletion mutations in vivo, we established a transgenic mouse model harboring a lambdaEG10 shuttle vector that includes the red and gam genes for Spi(-) (sensitive to P2 interference) selection [Nohmi et al. (1996] Environ. Mol. Mutagen. 28:465-470]. This selection has a great advantage over other genetic systems, because phage deletion mutants can be preferentially selected as Spi(-) plaques, which can then be subjected to molecular analysis. Here, we show nucleotide sequences of 41 junctions of deletion mutations induced by gamma-irradiation. Unlike spontaneous deletion mutants, more than half of the large deletions occurred between short homologous sequences from one to eight bp. The remaining junctions had no such homologous sequences. Intriguingly, two Spi(-) mutants had P (palindrome)-like nucleotide additions at the breakpoints, which are frequently observed in the coding junctions of V(D)J recombination, suggesting that broken DNA molecules with hairpin structures can be intermediates in the repair of radiation-induced double-strand breaks. We conclude that Spi(-) selection is useful for the efficient detection of deletion mutations in vivo and that most rearrangements induced by gamma-rays in mice are mediated by illegitimate recombination through DNA end-joining.
Collapse
Affiliation(s)
- T Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|