1
|
Expression and Function of Zinc-α2-Glycoprotein. Neurosci Bull 2019; 35:540-550. [PMID: 30610461 DOI: 10.1007/s12264-018-00332-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
Zinc-α2-glycoprotein (ZAG), encoded by the AZGP1 gene, is a major histocompatibility complex I molecule and a lipid-mobilizing factor. ZAG has been demonstrated to promote lipid metabolism and glucose utilization, and to regulate insulin sensitivity. Apart from adipose tissue, skeletal muscle, liver, and kidney, ZAG also occurs in brain tissue, but its distribution in brain is debatable. Only a few studies have investigated ZAG in the brain. It has been found in the brains of patients with Krabbe disease and epilepsy, and in the cerebrospinal fluid of patients with Alzheimer disease, frontotemporal lobe dementia, and amyotrophic lateral sclerosis. Both ZAG protein and AZGP1 mRNA are decreased in epilepsy patients and animal models, while overexpression of ZAG suppresses seizure and epileptic discharges in animal models of epilepsy, but knowledge of the specific mechanism of ZAG in epilepsy is limited. In this review, we summarize the known roles and molecular mechanisms of ZAG in lipid metabolism and glucose metabolism, and in the regulation of insulin sensitivity, and discuss the possible mechanisms by which it suppresses epilepsy.
Collapse
|
2
|
Liu Y, Wang T, Liu X, Wen Y, Xu T, Yu X, Wei X, Ding X, Mo L, Yin M, Tan X, Chen L. Overexpression of zinc-α2-glycoprotein suppressed seizures and seizure-related neuroflammation in pentylenetetrazol-kindled rats. J Neuroinflammation 2018; 15:92. [PMID: 29566716 PMCID: PMC5863804 DOI: 10.1186/s12974-018-1132-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/15/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Zinc-α2-glycoprotein (ZAG) is a 42-kDa protein reported as an anti-inflammatory adipocytokine. Evidences from clinical and experimental studies revealed that brain inflammation plays important roles in epileptogenesis and seizure. Interestingly, closely relationship between ZAG and many important inflammatory mediators has been proven. Our previous study identified ZAG in neurons and found that ZAG is decreased in epilepsy and interacts with TGFβ and ERK. This study aimed to investigate the role of ZAG in seizure and explore its effect on seizure-related neuroinflammation. METHODS We overexpressed AZGP1 in the hippocampus of rats via adeno-associated virus vector injection and observed their seizure behavior and EEG after pentylenetetrazol (PTZ) kindling. The level of typical inflammation mediators including TNFα, IL-6, TGFβ, ERK, and ERK phosphorylation were determined. RESULTS The overexpression of AZGP1 reduced the seizure severity, prolonged the latency of kindling, and alleviated epileptiform discharges in EEG changes induced by PTZ. Overexpression of AZGP1 also suppressed the expression of TNFα, IL-6, TGFβ, and ERK phosphorylaton in PTZ-kindled rats. CONCLUSIONS ZAG may inhibit TGFβ-mediated ERK phosphorylation and inhibit neuroinflammation mediated by TNFα and IL-6, suggesting ZAG may suppress seizure via inhibiting neuroinflammation. ZAG may be a potential and novel therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Teng Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Yuetao Wen
- Department of Neurosurgery, The University-Town Hospital of Chongqing Medical University, Chongqing, 401331 China
| | - Tao Xu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xinyuan Yu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xin Wei
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xueying Ding
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Maojia Yin
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xinjie Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| |
Collapse
|
3
|
Huang TL, Pian JP, Pan BT. Oncogenic Ras suppresses Cdk1 in a complex manner during the incubation of activated Xenopus egg extracts. Arch Biochem Biophys 2013; 532:61-72. [PMID: 23376039 DOI: 10.1016/j.abb.2013.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/12/2013] [Accepted: 01/18/2013] [Indexed: 12/30/2022]
Abstract
The activity of Cdk1 is the driving force for entry into M-phase during the cell cycle. Activation of Cdk1 requires synthesis and accumulation of cyclin B, binding of cyclin B to Cdk1, and removal of the inhibitory tyr-15-Cdk1 phosphorylation. It was previously shown that oncogenic Ras suppresses Cdk1 activation during the incubation of activated Xenopus egg extracts. However, how oncogenic Ras suppresses Cdk1 remained unclear. Using the histone H1 kinase assay to follow Cdk1 activity and Western blot analysis to assess levels of both cyclin B2 and phosphorylated-tyr-15-Cdk1, how oncogenic Ras suppresses Cdk1 is studied. The results indicate that oncogenic Ras suppresses Cdk1 via induction of persistent phosphorylation of tyr-15-Cdk1. Interestingly, the results reveal that, compared with cyclin B2 in control activated egg extracts, which increased, peaked and then declined during the incubation, oncogenic Ras induced continuous accumulation of cyclin B2. The results also indicate that oncogenic Ras induces continuous accumulation of cyclin B2 primarily through stabilization of cyclin B2, which is mediated by constitutive activation of the Raf-Mek-Erk-p90(rsk) pathway. Taken together, these results indicate that oncogenic Ras suppresses Cdk1 in a complex manner: It induces continuous accumulation of cyclin B2, but also causes persistent inhibitory phosphorylation of tyr-15-Cdk1.
Collapse
Affiliation(s)
- Tun-Lan Huang
- Graduate Center for Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | |
Collapse
|
4
|
GONG Y, ZHANG Z. CellFrame: A Data Structure for Abstraction of Cell Biology Experiments and Construction of Perturbation Networks. Ann N Y Acad Sci 2007; 1115:249-66. [DOI: 10.1196/annals.1407.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
Takai Y, Kaibuchi K, Kikuchi A, Sasaki T, Shirataki H. Regulators of small GTPases. CIBA FOUNDATION SYMPOSIUM 2007; 176:128-38; discussion 138-46. [PMID: 8299416 DOI: 10.1002/9780470514450.ch9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Small GTPases are converted from the GDP-bound inactive form to the GTP-bound active form by a GDP/GTP exchange reaction which is regulated by GDP/GTP exchange proteins (GEPs). We have found both stimulatory and inhibitory GEPs, which we have named GDP dissociation stimulators (GDSs) and GDP dissociation inhibitors (GDIs) respectively. We have isolated Smg GDS, Rho GDI and Rab GDI, cloned them, and determined their primary structures. These GEPs are active on a group of small GTPases: Smg GDS on at least K-Ras, Rap1/Smg21, Rho and Rac; Rho GDI on at least Rho, Rac and Cdc42; Rab GDI on most of the Rab family members. These GEPs have an additional function, regulating the translocation of their substrate small GTPases between the membrane and the cytosol. The GEPs interact only with the post-translationally modified form of their substrate small GTPases.
Collapse
Affiliation(s)
- Y Takai
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
6
|
Yue J, Xiong W, Ferrell JE. B-Raf and C-Raf are required for Ras-stimulated p42 MAP kinase activation in Xenopus egg extracts. Oncogene 2006; 25:3307-15. [PMID: 16434971 DOI: 10.1038/sj.onc.1209354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During mitosis, a select pool of MEK1 and p42/p44 MAPK becomes activated at the kinetochores and spindle poles, without substantial activation of the bulk of the cytoplasmic p42/p44 MAPK. Recently, we set out to identify the MAP kinase kinase kinase (MAPKKK) responsible for this mitotic activation, using cyclin-treated Xenopus egg extracts as a model system, and presented evidence that Mos was the relevant MAPKKK . However, a second MAPKKK distinct from Mos was readily detectable as well. Here, we partially purify this second MAPKKK and identify it as B-Raf. No changes in the activity of B-Raf were detectable during progesterone-induced oocyte maturation, after egg fertilization, or during the early embryonic cell cycle, arguing against a role for B-Raf in the mitotic activation of MEK1 and p42 MAPK. Ras proteins can bring about activation of MEK1 and p42 MAPK in extracts, and Ras may contribute to signaling from the classical progesterone receptor during oocyte maturation and from receptor tyrosine kinases during early embryogenesis. We found that both B-Raf and C-Raf, but not Mos, are required for Ras-induced MEK1 and p42 MAPK activation. These data indicate that two upstream stimuli, active Ras and active Cdc2, utilize different MAPKKKs to activate MEK1 and p42 MAPK.
Collapse
Affiliation(s)
- J Yue
- Department of Molecular Pharmacology, Stanford University, CA 94305-5174, USA.
| | | | | |
Collapse
|
7
|
Affiliation(s)
- Sharat J Vayttaden
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | | | | |
Collapse
|
8
|
Zhou L, Tan A, Iasvovskaia S, Li J, Lin A, Hershenson MB. Ras and mitogen-activated protein kinase kinase kinase-1 coregulate activator protein-1- and nuclear factor-kappaB-mediated gene expression in airway epithelial cells. Am J Respir Cell Mol Biol 2003; 28:762-9. [PMID: 12600818 DOI: 10.1165/rcmb.2002-0261oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In 16HBE14o- human bronchial epithelial cells, maximal tumor necrosis factor (TNF)-alpha-induced interleukin (IL)-8 expression depends on the activation of two distinct signaling pathways, one constituted in part by activator protein (AP)-1 and the other by nuclear factor (NF)-kappaB. We examined the upstream signaling intermediates responsible for IL-8 and granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in this system, hypothesizing that p21 Ras and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase (MEKK)-1 function as common upstream activators of both the AP-1 and NF-kappaB pathways. TNF-alpha treatment induced both Ras and MEKK1 activation. Dominant-negative forms of Ras (N17Ras) and MEKK1 (MEKK1-KM) each inhibited TNF-alpha-induced transcription from IL-8 and GM-CSF promoters. Ras was required for maximal activation of extracellular signal-regulated kinase (ERK) and Jun amino terminal kinase (JNK) as well as AP-1 and NF-kappaB transcriptional activities, but not for activation of IkappaB kinase (IKK)-beta, an upstream activator of NF-kappaB. MEKK1 was required for maximal activation of ERK, JNK, and IKK, as well as for maximal AP-1 and NF-kappaB transcriptional activities. We conclude that Ras regulates TNF-alpha-induced chemokine expression by activating the AP-1 pathway and enhancing transcriptional function of NF-kappaB, whereas MEKK1 activates both the AP-1 and NF-kappaB pathways.
Collapse
Affiliation(s)
- Limei Zhou
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109-0212, USA
| | | | | | | | | | | |
Collapse
|
9
|
Zhang D, Simmen RCM, Michel FJ, Zhao G, Vale-Cruz D, Simmen FA. Secretory leukocyte protease inhibitor mediates proliferation of human endometrial epithelial cells by positive and negative regulation of growth-associated genes. J Biol Chem 2002; 277:29999-30009. [PMID: 12023969 DOI: 10.1074/jbc.m203503200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretory leukocyte protease inhibitor (SLPI) inhibits chymotrypsin, trypsin, elastase, and cathepsin G. This protein also exhibits proliferative effects, although little is known about the molecular mechanisms underlying this activity. We have generated SLPI-ablated epithelial sublines by stably transfecting the Ishikawa human endometrial cell line with an antisense human SLPI RNA expression vector. We demonstrate a positive correlation between cellular SLPI production and proliferation. We further show that Ishikawa sublines expressing low to undetectable SLPI have correspondingly increased and decreased expression, respectively, of transforming growth factor-beta 1 and cyclin D1 genes, relative to parental cells. SLPI selectively increased cyclin D1 gene expression, with the effect occurring in part at the level of promoter activity. Cellular SLPI levels negatively influenced the anti-proliferative and pro-apoptotic insulin-like growth factor-binding protein-3 expression. We also identified lysyl oxidase, a phenotypic inhibitor of the ras oncogenic pathway and a tumor suppressor, as SLPI-repressed gene, whose expression is up-regulated by transforming growth factor-beta1. Our results suggest that SLPI acts at the node(s) of at least three major interacting growth inhibitory pathways. Because expression of SLPI is generally high in epithelial cells exhibiting abnormal proliferation such as in carcinomas, SLPI may define a novel pathway by which cellular growth is modulated.
Collapse
Affiliation(s)
- Daying Zhang
- Interdisciplinary Concentration in Animal Molecular & Cell Biology and the Department of Animal Sciences, University of Florida, Gainesville, Florida 32611-0910, USA
| | | | | | | | | | | |
Collapse
|
10
|
Su YQ, Rubinstein S, Luria A, Lax Y, Breitbart H. Involvement of MEK-mitogen-activated protein kinase pathway in follicle-stimulating hormone-induced but not spontaneous meiotic resumption of mouse oocytes. Biol Reprod 2001; 65:358-65. [PMID: 11466201 DOI: 10.1095/biolreprod65.2.358] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase has been reported to be activated during oocyte meiotic maturation in a variety of mammalian species. However, the mechanism(s) responsible for MAP kinase activation and the consequence of its premature activation during gonadotropin-induced oocyte meiotic resumption have not been examined. The present experiments were conducted to investigate the possible role of MAP kinase in FSH-induced and spontaneous oocyte meiotic resumption in the mouse. MAP kinase kinase (MAPKK, MEK) inhibitor, PD98059 or U0126, produced a dose-dependent inhibitory effect on both FSH-induced oocyte meiotic resumption and MAP kinase activation in the oocytes. However, the same inhibitor did not block spontaneous meiotic resumption of either denuded or cumulus cell-enclosed mouse oocytes, despite the activity of MAP kinase being totally inhibited. Immunoblotting the oocytes and the cumulus cells with the anti-active MAP kinase antibody showed that MAP kinase activity in the oocytes was detected at 8 h of FSH treatment, prior to germinal vesicle breakdown and increased as maturation progressed in the following culture period. In the cumulus cells, MAP kinase was activated even faster, its activity was detected at 1 h of FSH stimulation and increased gradually until 8 h of FSH treatment, then decreased and diminished after 12 h of FSH action. These data demonstrated that the MEK-MAP kinase pathway is implicated in FSH-induced but not spontaneous oocyte meiotic resumption.
Collapse
Affiliation(s)
- Y Q Su
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
11
|
Williams JG, Drugan JK, Yi GS, Clark GJ, Der CJ, Campbell SL. Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions. J Biol Chem 2000; 275:22172-9. [PMID: 10777480 DOI: 10.1074/jbc.m000397200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Raf-1 is a critical downstream target of Ras and contains two distinct domains that bind Ras. The first Ras-binding site (RBS1) in Raf-1 has been shown to be essential for Ras-mediated translocation of Raf-1 to the plasma membrane, whereas the second site, in the Raf-1 cysteine-rich domain (Raf-CRD), has been implicated in regulating Raf kinase activity. While recognition elements that promote Ras.RBS1 complex formation have been characterized, relatively little is known about Ras/Raf-CRD interactions. In this study, we have characterized interactions important for Ras binding to the Raf-CRD. Reconciling conflicting reports, we found that these interactions are essentially independent of the guanine nucleotide bound state, but instead, are enhanced by post-translational modification of Ras. Specifically, our findings indicate that Ras farnesylation is sufficient for stable association of Ras with the Raf-CRD. Furthermore, we have also identified a Raf-CRD variant that is impaired specifically in its interactions with Ras. NMR data also suggests that residues proximal to this mutation site on the Raf-CRD form contacts with Ras. This Raf-CRD mutant impairs the ability of Ras to activate Raf kinase, thereby providing additional support that Ras interactions with the Raf-CRD are important for Ras-mediated activation of Raf-1.
Collapse
Affiliation(s)
- J G Williams
- Department of Biochemistry and Biophysics, Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
12
|
Romerio F, Riva A, Zella D. Interferon-alpha2b reduces phosphorylation and activity of MEK and ERK through a Ras/Raf-independent mechanism. Br J Cancer 2000; 83:532-8. [PMID: 10945503 PMCID: PMC2374650 DOI: 10.1054/bjoc.2000.1263] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interferon (IFN)-alpha affects the growth, differentiation and function of various cell types by transducing regulatory signals through the Janus tyrosine kinase/signal transducers of activation and transcription (Jak/STAT) pathway. The signalling pathways employing the mitogen-activated ERK-activating kinase (MEK) and the extracellular-regulated kinase (ERK) are critical in growth factors signalling. Engagement of the receptors, and subsequent stimulation of Ras and Raf, initiates a phosphorylative cascade leading to activation of several proteins among which MEK and ERK play a central role in routing signals critical in controlling cell development, activation and proliferation. We demonstrate here that 24-48 h following treatment of transformed T- and monocytoid cell lines with recombinant human IFN-alpha2b both the phosphorylation and activity of MEK1 and its substrates ERK1/2 were reduced. In contrast, the activities of the upstream molecules Ras and Raf-1 were not affected. No effect on MEK/ERK activity was observed upon short-term exposure (1-30 min) to IFN. The anti-proliferative effect of IFN-alpha was increased by the addition in the culture medium of a specific inhibitor of MEK, namely PD98059. In conclusion, our results indicate that IFN-alpha regulates the activity of the MEK/ERK pathway and consequently modulates cellular proliferation through a Ras/Raf-independent mechanism. Targeting the MEK/ERK pathway may strengthen the IFN-mediated anti-cancer effect.
Collapse
Affiliation(s)
- F Romerio
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
13
|
Zella D, Romerio F, Curreli S, Secchiero P, Cicala C, Zagury D, Gallo RC. IFN-alpha 2b reduces IL-2 production and IL-2 receptor function in primary CD4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2296-302. [PMID: 10679063 DOI: 10.4049/jimmunol.164.5.2296] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Initially described as an antiviral cytokine, IFN-alpha has been subsequently shown to affect several cellular functions, including cellular differentiation and proliferation. For these reasons, IFN-alpha is currently used in clinical practice for the treatment of viral infections and malignancies. In this manuscript, we show two novel mechanisms concomitantly responsible for the antiproliferative effect of IFN-alpha. First, long-term treatment with IFN-alpha of primary CD4+ T cells reduced surface expression of CD3 and CD28. These events resulted in decreased phosphorylation of the mitogen-activated extracellular signal-regulated activating kinase and its substrate extracellular signal-regulated kinase, leading to diminished production of IL-2. Second, IFN-alpha treatment of primary CD4+ T cells reduced proliferative response to stimulation in the presence of exogenous IL-2 by markedly decreasing mRNA synthesis and surface expression of CD25 (alpha-chain), a critical component of the IL-2R complex. These results may be relevant for the antitumor effects of IFN-alpha and may help us to better understand its detrimental role in the inhibition of proliferation of the bulk of CD4+ T cells (uninfected cells) in HIV-infected persons, who are known to overproduce IFN-alpha.
Collapse
Affiliation(s)
- D Zella
- Institute of Human Virology, University of Maryland Biotechnology Institute and University of Maryland Medical Center, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kuno Y, Kondo K, Iwata H, Senga T, Akiyama S, Ito K, Takagi H, Hamaguchi M. Tumor-specific activation of mitogen-activated protein kinase in human colorectal and gastric carcinoma tissues. Jpn J Cancer Res 1998; 89:903-9. [PMID: 9818025 PMCID: PMC5921942 DOI: 10.1111/j.1349-7006.1998.tb00647.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To search for the signaling events in colorectal carcinoma relevant to its tumorigenesis, we investigated the activity of mitogen-activated protein kinase (MAPK) in human colorectal carcinoma tissues and paired normal tissues. Of 64 cases examined, approximately 75% (48 cases) showed tumor-specific activation of MAPK by in situ kinase renaturation assay, as well as in vitro kinase assay with immunoprecipitated MAPK. In addition, tumor-specific activation of MAPK was associated with the activation of MAPK kinase in the cases we examined. However, no clear correlation of MAPK activation with lymph node involvement, metastatic rate, stage, histological classification, age or sex was observed. These results suggest that the MAPK pathway is involved in colorectal tumor development, but its activation alone is not sufficient for malignant conversion. In contrast to colorectal carcinoma, gastric carcinoma tissues showed a lower rate of MAPK activation, suggesting that the signaling pathway activated in colorectal carcinoma tissues may differ in part from that of gastric carcinoma.
Collapse
Affiliation(s)
- Y Kuno
- Department of Surgery II, Nagoya University School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sawada T, Ohmichi M, Koike K, Kanda Y, Kimura A, Masuhara K, Ikegami H, Inoue M, Miyake A, Murata Y. Norepinephrine stimulates mitogen-activated protein kinase activity in GT1-1 gonadotropin-releasing hormone neuronal cell lines. Endocrinology 1997; 138:5275-81. [PMID: 9389511 DOI: 10.1210/endo.138.12.5610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The GT1-1 GnRH neuronal cell lines exhibit highly differentiated properties of GnRH neurons. We have used GT1-1 cells to study the roles of norepinephrine (NE), membrane depolarization, calcium influx, and phorbol esters in the regulation of mitogen-activated protein (MAP) kinase. NE, which is known to stimulate the release of GnRH, induced MAP kinase activity, the tyrosine phosphorylation of MAP kinase, and MAP kinase kinase activity. Forskolin led to activation of MAP kinase comparable with that induced by NE, and a selective inhibitor of cAMP-dependent protein kinase, H8, attenuated the NE-induced activation of MAP kinase. On the other hand, elimination of extracellular calcium by EGTA completely blocked NE-induced tyrosine phosphorylation of MAP kinase, and a selective inhibitor of calcium/calmodulin-dependent protein kinase, KN-62, attenuated the NE-induced activation of MAP kinase. Furthermore, depolarization of GT1-1 cells with 75 mM KCl, 10 microM BayK 8644, or 1 microM calcium ionophore (A23187) induced rapid tyrosine phosphorylation of MAP kinase. The omission of calcium from the extracellular medium completely abolished these effects of tyrosine phosphorylation of MAP kinase. Phorbol 12-myristate 13-acetate (PMA) also induced MAP kinase activity, but pretreatment of the cultured cells with PMA to down-regulate protein kinase C did not abolish the activation of MAP kinase by NE. In addition, although phosphorylation of Raf-1 kinase was stimulated by PMA, this phosphorylation was not induced by either NE or A23187. These results demonstrate that NE activates MAP kinase directly in GT1-1 cells, and that the effect of NE is mediated by increase in the cAMP level and by calcium influx, but not by PMA-sensitive protein kinase C or Raf-1 kinase.
Collapse
Affiliation(s)
- T Sawada
- Department of Obstetrics and Gynecology, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dudler T, Gelb MH. Replacement of the H-Ras farnesyl group by lipid analogues: implications for downstream processing and effector activation in Xenopus oocytes. Biochemistry 1997; 36:12434-41. [PMID: 9376347 DOI: 10.1021/bi971054x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ras proteins must undergo a series of posttranslational lipidation steps before they become biologically functional. While the fact that farnesylation is required for subsequent processing steps and indispensable for Ras function has been established, the significance of the isoprenoid structure per se in the context of fully processed Ras is unknown. Here, we describe a novel approach for studying the isoprenoid structure-function relationship in vivo by replacing the H-Ras farnesyl group with synthetic analogues and analyzing their biological functions following microinjection into Xenopus oocytes. We show that the H-Ras farnesyl group can be stripped of most of its isoprenoid features that distinguish it from a fatty acid without any apparent effect on its ability to induce oocyte maturation and activation of mitogen-activated protein kinase. In contrast, replacement by the less hydrophobic isoprenoid geranyl causes severely delayed oocyte activation. Analysis of posttranslational processing reveals a striking correlation between the kinetics of processing, membrane binding, and the onset of biological activity regardless of lipid structure and suggests that slow C-terminal proteolysis and/or methylation can become rate-limiting for H-Ras function. Thus, while our results suggest no stringent requirement for the H-Ras farnesyl structure for effector activation in Xenopus oocytes, they reveal an important role for the lipid present at the farnesylation site in promoting efficient proteolysis and/or methylation which allows rapid palmitoylation, membrane localization, and biological activity. Xenopus oocytes provide a useful in vivo system for the kinetic analysis of the function of the protein of interest present at the physiological dose, which is required for accurate determination of structure-function relationships.
Collapse
Affiliation(s)
- T Dudler
- Departments of Chemistry and Biochemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | | |
Collapse
|
17
|
Perego L, Berruti G. Molecular cloning and tissue-specific expression of the mouse homologue of the rat brain 14-3-3 theta protein: characterization of its cellular and developmental pattern of expression in the male germ line. Mol Reprod Dev 1997; 47:370-9. [PMID: 9211421 DOI: 10.1002/(sici)1098-2795(199708)47:4<370::aid-mrd3>3.0.co;2-h] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The highly conserved 14-3-3 family of proteins, originally reported as brain-specific and then found in various somatic cells and oocytes, interacts with several important signal transduction kinases so that actually the 14-3-3 protein are considered as modulators of multiple signal transduction pathways. Here we show that a 14-3-3 protein is also expressed in the male germ cells, thus extending the protein cellular distribution to a cell line never reported to express 14-3-3 proteins. Screening of a mouse spermatogenic cells lambda gt11 cDNA library with affinity-purified polyclonal antibodies to the tyrosine kinase SP42 allowed the isolation of several positive clones. Sequencing of a positive cDNA clone revealed a 735-nucleotide open reading frame encoding a protein of 245 amino acids (27,778 Da). The predicted protein was found to be identical to the most recently discovered 14-3-3 isoform, the theta subtype from a rat brain. Here we demonstrate that 14-3-3 theta mRNA is highly expressed in testis and brain only. Western immunoblot analyses confirm the Northern blot data. Developmental Northern and Western blot analyses are consistent with an expression and translation of the 14-3-3 theta gene throughout spermatogenesis. However, analysis of RNA from purified populations of spermatogenic cells at different developmental stages and immunohistochemistry on adult testis sections reveal that within the testis the 14-3-3 theta gene products are most abundant in meiotic prophase spermatocytes, and, above all, in differentiating spermatids. Both testicular and epididymal spermatozoa are negative. The present study is the first report on the presence and molecular characterization of the 14-3-3 theta gene product in the male germ line. Our observations suggest that this specific member of the 14-3-3 protein family could play distinct modulatory roles in the complex development of the mammalian male germ cell lineage.
Collapse
Affiliation(s)
- L Perego
- Department of Biology, University of Milan, Italy
| | | |
Collapse
|
18
|
Stokoe D, McCormick F. Activation of c-Raf-1 by Ras and Src through different mechanisms: activation in vivo and in vitro. EMBO J 1997; 16:2384-96. [PMID: 9171352 PMCID: PMC1169839 DOI: 10.1093/emboj/16.9.2384] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The c-Raf-1 protein kinase plays a critical role in intracellular signaling downstream from many tyrosine kinase and G-protein-linked receptors. c-Raf-1 binds to the proto-oncogene Ras in a GTP-dependent manner, but the exact mechanism of activation of c-Raf-1 by Ras is still unclear. We have established a system to study the activation of c-Raf-1 in vitro. This involves mixing membranes from cells expressing oncogenic H-RasG12V, with cytosol from cells expressing epitope-tagged full-length wild-type c-Raf-1. This results in a fraction of the c-Raf-1 binding to the membranes and a concomitant 10- to 20-fold increase in specific activity. Ras was the only component in these membranes required for activation, as purified recombinant farnesylated K-Ras.GTP, but not non-farnesylated K-Ras.GTP or farnesylated K-Ras.GDP, was able to activate c-Raf-1 to the same degree as intact H-RasG12V membranes. The most potent activation occurred under conditions in which phosphorylation was prohibited. Under phosphorylation-permissive conditions, activation of c-Raf-1 by Ras was substantially inhibited. Consistent with the results from other groups, we find that the activation of c-Raf-1 by Src in vivo occurs concomitant with tyrosine phosphorylation on c-Raf-1, and in vitro, activation of c-Raf-1 by Src requires the presence of ATP. Therefore we propose that activation of c-Raf-1 by Ras or by Src occurs through different mechanisms.
Collapse
Affiliation(s)
- D Stokoe
- Onyx Pharmaceuticals, Richmond, CA 94806, USA.
| | | |
Collapse
|
19
|
Berger DH, Jardines LA, Chang H, Ruggeri B. Activation of Raf-1 in human pancreatic adenocarcinoma. J Surg Res 1997; 69:199-204. [PMID: 9202670 DOI: 10.1006/jsre.1997.5022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Point mutations in the Ras oncogene cause Ras to remain in its active GTP-bound state sending signals downstream continuously. Since 75 to 90% of all human pancreatic ductal adenocarcinomas harbor activating mutations at codon 12 of the K-ras oncogene it was our belief that Raf-1-MEK-MAPK will be activated in the majority of human pancreatic cancers. The aim of this study was to confirm activation of Raf-1 in K-ras mutant human pancreatic cancer. Additionally, we sought to determine if Raf-1 activation differed in K-ras mutant and nonmutant pancreatic cancer. Furthermore, we were interested in determining if Raf-1 activation in pancreatic cancer led to subsequent activation of downstream effectors such as MAP kinase. The presence of mutations in codon 12 of the K-ras oncogene in 14 human pancreatic adenocarcinoma cell lines was determined by use of mutant allele-specific PCR restriction fragment length polymorphism analysis. Raf-1 expression of quiescent cells was determined by immunoblotting using a rabbit anti-human polyclonal antibody and enhanced chemiluminescence. MAP kinase activity was determined by measuring the incorporation of phosphate into Myelin Basic Protein. Seven cell lines were noted to have mutations in codon 12 of K-ras while seven cell lines did not. There was no difference in expression of the 74 kDa-activated form of Raf-1 in K-ras mutant vs K-ras nonmutant cell lines. However, there was a significant increase in MAP kinase activity in the nonmutant cell lines compared to the cell lines with Ras mutations (P = 0.026). We conclude that Raf-1 is expressed in its active form in human pancreatic cancer regardless of K-ras status. However, signalling downstream of Raf-1 differs in cell lines with K-ras mutations compared to those cell lines without K-ras mutations.
Collapse
Affiliation(s)
- D H Berger
- Department of Surgery, Allegheny University of the Health Sciences, MCP/Hahnemann School of Medicine, Philadelphia, Pennsylvania 19129, USA.
| | | | | | | |
Collapse
|
20
|
Abstract
This review summarizes some important data, principles, opinions, commentaries, and modern methodology concerning the receptor structure, interactions, signaling and receptor-mediated cell functions. Three sections give a brief overview of the signaling synergy, multivariant signaling, and some reactions in phosphorylation networks. A concise report about the cytotoxic reaction of NK cells represents an example of multistage recognition reaction, involving differently acting receptors, changes in affinities of cell-cell interactions, and secretion of regulatory and cytotoxic molecules. Some interesting trends in receptor engineering, including antibody molecules as a special receptor phenomenon are mentioned in the final section.
Collapse
Affiliation(s)
- J Kubrycht
- Department of Immunology, Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
21
|
Kuroda S, Ohtsuka T, Yamamori B, Fukui K, Shimizu K, Takai Y. Different effects of various phospholipids on Ki-Ras-, Ha-Ras-, and Rap1B-induced B-Raf activation. J Biol Chem 1996; 271:14680-3. [PMID: 8663012 DOI: 10.1074/jbc.271.25.14680] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have recently purified a Ki-Ras- and Ha-Ras-dependent extracellular signal-regulated kinase kinase from bovine brain and identified it as B-Raf protein kinase complexed with 14-3-3 proteins (Yamamori, B., Kuroda, S., Shimizu, K., Fukui, K., Ohtsuka, T., and Takai, Y. (1995) J. Biol. Chem. 270, 11723-11726). Moreover, we found that Rap1B as well as Ki-Ras and Ha-Ras stimulate the B-Raf activity. Since B-Raf contains a cysteine-rich domain originally found in protein kinase C as a domain responsible for interaction with phosphatidylserine (PS) and diacylglycerol or 12-O-tetradecanoylphorbol-13-acetate, we have examined here the effect of these compounds on the Ki-Ras-, Ha-Ras-, and Rap1B-induced activation of bovine brain B-Raf. Bovine brain PS enhanced Ki-Ras-stimulated B-Raf activity. Phosphatidic acid was slightly active, but other phospholipids, such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol (PI), PI-4-monophosphate, PI-4,5-bisphosphate, and PI-3,4,5-trisphosphate, were inactive. However, none of the above phospholipids affected the Ha-Ras-stimulated B-Raf activity, whereas PI, PS, phosphatidylethanolamine, and phosphatidic acid inhibited the Rap1B-stimulated B-Raf activity. Phosphatidylcholine or PI-4-monophosphate did not show any effect on the Rap1B-stimulated B-Raf activity. Synthetic PS with two unsaturated fatty acids, such as 1,2-dioleoyl-PS or 1,2-dilinoleoyl-PS, showed the same effect toward the Ki-Ras- and Rap1B-stimulated B-Raf activities, but synthetic PS with two saturated fatty acids, such as 1, 2-distearoyl-PS, was inactive. 12-O-Tetradecanoylphorbol-13-acetate did not affect the stimulatory or inhibitory effect of PS on the Ki-Ras- and Rap1B-stimulated B-Raf activities, respectively. PS did not affect the Ki-Ras-, Ha-Ras-, or Rap1B-independent basal B-Raf activity or the mitogen-activated protein kinase kinase or extracellular signal-regulated kinase activity. These results indicate that various phospholipids differently affect Ki-Ras-, Ha-Ras, and Rap1B-induced B-Raf activation.
Collapse
Affiliation(s)
- S Kuroda
- Department of Molecular Biology and Biochemistry, Osaka University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
22
|
McKenzie FR, Pouysségur J. cAMP-mediated growth inhibition in fibroblasts is not mediated via mitogen-activated protein (MAP) kinase (ERK) inhibition. cAMP-dependent protein kinase induces a temporal shift in growth factor-stimulated MAP kinases. J Biol Chem 1996; 271:13476-83. [PMID: 8662790 DOI: 10.1074/jbc.271.23.13476] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Growth factors stimulate fibroblast cell division by activating the recently identified mitogen-activated protein kinase (MAP kinase) signaling cascade. In contrast to our previous work (Kahan, K., Seuwen, K., Meloche, S. and Pouysségur, J. (1992) J. Biol. Chem. 267, 13369-13375), several reports have suggested that an elevation in intracellular cAMP blocks cell proliferation by attenuating MAP kinase activation. Hence we re-examined the effect of a long term increase in intracellular cAMP and therefore cAMP-dependent protein kinase (PKA) activation on the MAP kinase cascade in CCL39 fibroblasts. The concomitant addition of cAMP-elevating agents prostaglandin E, (PGE1) and IBMX did not inhibit the mitogen-mediated activation of p44 MAP kinase. However, a 5-min PGE1/IBMX pretreatment abolished the MAP kinase response, in a manner correlating with the extent of PKA activity. This inhibition was temporal in nature, and while modifying the time course of growth factor-mediated p44 MAP kinase, activation did not diminish the magnitude of the response. Thus the major peak of MAP kinase activity normally present 5 min after alpha-thrombin addition was now evident at 10 min in the presence of PGE1/IBMX. CCL39 cell proliferation is inhibited by elevated cAMP levels. Such an inhibition could reflect either a reduction in the number of cells entering the cell cycle or a delay in the time required to go through the cycle. Bromodeoxyuridine labeling experiments revealed that the cAMP-mediated inhibition of DNA synthesis in CCL39 cells was not due to a delay in S phase entry, but was due to a reduction in the number of cells entering S phase. Thus we conclude that although PKA activation may slightly modify the time course of MAP kinase activation in response to mitogens in CCL39 cells, the PKA-mediated inhibition of cell division occurs through modulation of an intracellular target, distinct from the p42/p44 MAP kinase cascade.
Collapse
Affiliation(s)
- F R McKenzie
- Centre de Biochimie, CNRS, Parc Valrose, 06108 Nice, France
| | | |
Collapse
|
23
|
Pomerance M, Thang MN, Tocque B, Pierre M. The Ras-GTPase-activating protein SH3 domain is required for Cdc2 activation and mos induction by oncogenic Ras in Xenopus oocytes independently of mitogen-activated protein kinase activation. Mol Cell Biol 1996; 16:3179-86. [PMID: 8649428 PMCID: PMC231311 DOI: 10.1128/mcb.16.6.3179] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Ras-GTPase-activating protein (RasGAP) is an important modulator of p21ras - dependent signal transduction in Xenopus oocytes and in mammalian cells. We investigated the role of the RasGAP SH3 domain in signal transduction with a monoclonal antibody against the SH3 domain of RasGaP. This antibody prevented the activation of the maturation-promoting factor complex (cyclin B-p34cdc2) by oncogenic Ras. The antibody appears to be specific because as little as 5 ng injected per oocyte reduced the level of Cdc2 activation by 50% whereas 100 ng of nonspecific immunoglobulin G did not affect Cdc2 activation. The antibody blocked the Cdc2 activation induced by oncogenic Ras but not that induced by progesterone, which acts independently of Ras. A peptide corresponding to positions 317 to 326 of a sequence in the SH3 domain of human RasGAP blocked Cdc2 activation, whereas a peptide corresponding to positions 273 to 305 of a sequence in the N-terminal moiety of the SH3 domain of RasGAP had no effect. The antibody did not block the mitogen-activated protein (MAP) kinase cascade (activation of MAPK/ERK kinase [MEK], MAP kinase, and S6 kinase p90rsk). Surprisingly, injection of the negative MAP kinase mutant protein ERK2 K52R (containing a K-to-R mutation at position 52) blocked the Cdc2 activation induced by oncogenic Ras as well as blocking the activation of MAP kinase. Thus, MAP kinase is also implicated in the regulation of Cdc2 activity. In this study, we further investigated the regulation of the synthesis of the c-mos oncogene product, which is necessary for the activation of Cdc2. We report that the synthesis of the c-mos oncogene product, which is necessary for the activation antibody to the SH3 domain of RasGAP and by injecting the negative MAP kinase mutant protein ERK2 K52R. These results suggest that oncogenic Ras activates two signaling mechanisms: the MAP kinase cascade and a signaling pathway implicating the SH3 domain of RasGAP. These mechanisms might control Mos protein expression implicated in Cdc2 activation.
Collapse
Affiliation(s)
- M Pomerance
- Unité de Recherche sur la Glande Thyroïde et la Régulation Hormonale, U96 Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France
| | | | | | | |
Collapse
|
24
|
Verlhac MH, Kubiak JZ, Weber M, Géraud G, Colledge WH, Evans MJ, Maro B. Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development 1996; 122:815-22. [PMID: 8631259 DOI: 10.1242/dev.122.3.815] [Citation(s) in RCA: 229] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mos is normally expressed during oocyte meiotic maturation in vertebrates. However, apart from its cytostatic factor (CSF) activity, its precise role during mouse meiosis is still unknown. First, we analyzed its role as a MAP kinase kinase kinase. Mos is synthesized concomitantly with the activation of MAP kinase in mouse oocytes. Moreover, MAP kinase is not activated during meiosis in oocytes from mos −/− mice. This result implies that Mos is necessary for MAP kinase activation in mouse oocytes. Raf-1, another MAP kinase kinase kinase, is already present in immature oocytes, but does not seem to be active when MAP kinase is activated. Moreover, the absence of MAP kinase activation in mos −/− oocytes demonstrates that Raf-1 cannot compensate for the lack of Mos. These results suggest that Raf-1 is not involved in MAP kinase activation. Second, we analyzed the organization of the microtubules and chromosomes in oocytes from mos −/− mice. We observed that during the transition between two meiotic M-phases, the microtubules and chromosomes evolve towards an interphase-like state in mos −/− oocytes, while in the control mos +/− oocytes they remain in an M-phase configuration, as in the wild type. Moreover, after spontaneous activation, the majority of mos −/− oocytes are arrested for at least 10 hours in a third meiotic M-phase where they exhibit monopolar half-spindles. These observations present the first evidence, in intact oocytes, of a role for the Mos/…/MAP kinase cascade in the control of microtubule and chromatin organization during meiosis.
Collapse
Affiliation(s)
- M H Verlhac
- Département de Biologie du Developpement, Institut Jacques Monod, CNRS--Université Paris, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Ohtsuka T, Shimizu K, Yamamori B, Kuroda S, Takai Y. Activation of brain B-Raf protein kinase by Rap1B small GTP-binding protein. J Biol Chem 1996; 271:1258-61. [PMID: 8576107 DOI: 10.1074/jbc.271.3.1258] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Rap1 small GTP-binding protein has the same amino acid sequence at its effector domain as that of Ras. Rap1 has been shown to antagonize the Ras functions, such as the Ras-induced transformation of NIH 3T3 cells and the Ras-induced activation of the c-Raf-1 protein kinase-dependent mitogen-activated protein (MAP) kinase cascade in Rat-1 cells, whereas we have shown that Rap1 as well as Ras stimulates DNA synthesis in Swiss 3T3 cells. We have established a cell-free assay system in which Ras activates bovine brain B-Raf protein kinase. Here we have used this assay system and examined the effect of Rap1 on the B-Raf activity to phosphorylate recombinant MAP kinase kinase (MEK). Recombinant Rap1B stimulated the activity of B-Raf, which was partially purified from bovine brain and immunoprecipitated by an anti-B-Raf antibody. The GTP-bound form was active, but the GDP-bound form was inactive. The fully post-translationally lipid-modified form was active, but the unmodified form was nearly inactive. The maximum B-Raf activity stimulated by Rap1B was nearly the same as that stimulated by Ki-Ras. Rap1B enhanced the Ki-Ras-stimulated B-Raf activity in an additive manner. These results indicate that not only Ras but also Rap1 is involved in the activation of the B-Raf-dependent MAP kinase cascade.
Collapse
Affiliation(s)
- T Ohtsuka
- Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita, Japan
| | | | | | | | | |
Collapse
|
26
|
Moriguchi T, Gotoh Y, Nishida E. Activation of two isoforms of mitogen-activated protein kinase kinase in response to epidermal growth factor and nerve growth factor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:32-8. [PMID: 8529659 DOI: 10.1111/j.1432-1033.1995.032_c.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitogen-activated protein kinase kinase (MAPKK) is a dual-specificity protein kinase which phosphorylates and activates mitogen-activated protein kinase (MAPK). cDNAs encoding two isoforms of MAPKK, MAPKK1 and MAPKK2 (also known as MEK1 and MEK2), have been cloned in mammalian cells. To analyze the characteristics of MAPKK1 and MAPKK2 individually, we have produced specific anti-MAPKK serum against each isoform. MAPKK1 and MAPKK2 have apparent molecular masses of 45 kDa and 47 kDa, respectively, on SDS/polyacrylamide gel electrophoresis. In mouse tissues, MAPKK1 was highly enriched in brain, while MAPKK2 was present relatively evenly. In rat fibroblastic 3Y1 cells, epidermal growth factor (EGF) treatment induced activation of both MAPKK1 and MAPKK2. Immunoprecipitation experiments have shown that the time courses of activation and deactivation of both isoforms of MAPKK were superimposed. In PC12 cells, both MAPKK1 and MAPKK2 were activated in response to nerve growth factor (NGF) as well as EGF, and the time courses of activation and deactivation of both isoforms were indistinguishable from each other in the NGF-stimulated cells and also in the EGF-stimulated cells. Furthermore, localization of both MAPKK1 and MAPKK2 in the cytoplasm was unchanged in response to EGF and NGF. Thus, the same or quite similar mechanisms may operate in the regulation of the activation and deactivation of two isoforms of MAPKK, and both kinases might have redundant functions when expressed in the same cell.
Collapse
Affiliation(s)
- T Moriguchi
- Department of Genetics and Molecular Biology, Kyoto University, Japan
| | | | | |
Collapse
|
27
|
McGeady P, Kuroda S, Shimizu K, Takai Y, Gelb MH. The farnesyl group of H-Ras facilitates the activation of a soluble upstream activator of mitogen-activated protein kinase. J Biol Chem 1995; 270:26347-51. [PMID: 7592846 DOI: 10.1074/jbc.270.44.26347] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To study the function of the farnesyl modification of Ras, the farnesyl group and a variety of its structural analogs, which lack one or more double bonds and/or the methyl groups, were enzymatically incorporated into recombinant H-Ras in vitro. These proteins were used in a cell- and membrane-free, Ras-dependent mitogen-activated protein kinase (MAP kinase) activation system derived from Xenopus laevis eggs to examine the contribution of the farnesyl group toward the activation of the kinase. Whereas non-farnesylated H-Ras is unable to activate MAP kinase, farnesylation of H-Ras alone, in the absence of further processing, is sufficient to cause the activation of MAP kinase in this system. All of the analogs of the farnesyl group, when incorporated into H-Ras, support the activation of the kinase to variable extents. These results suggest a direct but fairly nonspecific interaction of the farnesyl moiety of H-Ras with a soluble upstream activator of MAP kinase.
Collapse
Affiliation(s)
- P McGeady
- Department of Chemistry, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- J D Graves
- Department of Pharmacology, University of Washington, Seattle 98195-7280, USA
| | | | | |
Collapse
|
29
|
Yamamori B, Kuroda S, Shimizu K, Fukui K, Ohtsuka T, Takai Y. Purification of a Ras-dependent mitogen-activated protein kinase kinase kinase from bovine brain cytosol and its identification as a complex of B-Raf and 14-3-3 proteins. J Biol Chem 1995; 270:11723-6. [PMID: 7744815 DOI: 10.1074/jbc.270.20.11723] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously purified a protein factor, named REKS (Ras-dependent Extracellular Signal-regulated Kinase (ERK)/mitogen-activated protein kinase Kinase (MEK) Stimulator), from Xenopus eggs by use of a cell-free assay system in which recombinant GTP gamma S (guanosine 5'-(3-O-thio)triphosphate)-Ki-Ras activates recombinant MEK. By use of this assay system, we purified here bovine REKS to near homogeneity from the cytosol fraction of bovine brain by successive chromatographies of Mono S, Mono Q, GTP gamma S-glutathione S-transferase-Ha-Ras-coupled glutathione-agarose, and Mono Q columns. It was composed of three proteins with masses of about 95, 32, and 30 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 95-, 32-, and 30-kDa proteins were identified by immunoblot analysis to be B-Raf protein kinase, 14-3-3 protein, and 14-3-3 protein, respectively. Moreover, the REKS activity was specifically immunoprecipitated by an anti-B-Raf antibody. Bovine REKS was activated by lipid-modified GTP gamma S-Ki-Ras far more effectively than by a lipid-unmodified one. Lipid-modified GDP-Ki-Ras was inactive. Exogenous addition of 14-3-3 proteins stimulated further the REKS activity both in the presence and absence of GTP gamma S-Ki-Ras. These results indicate that at least one of the direct targets of Ras is B-Raf complexed with 14-3-3 proteins in bovine brain.
Collapse
Affiliation(s)
- B Yamamori
- Department of Molecular Biology, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Fujita-Yoshigaki J, Shirouzu M, Ito Y, Hattori S, Furuyama S, Nishimura S, Yokoyama S. A constitutive effector region on the C-terminal side of switch I of the Ras protein. J Biol Chem 1995; 270:4661-7. [PMID: 7876237 DOI: 10.1074/jbc.270.9.4661] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The "switch I" region (Asp30-Asp38) of the Ras protein takes remarkably different conformations between the GDP- and GTP-bound forms and coincides with the so-called "effector region." As for a region on the C-terminal side of switch I, the V45E and G48C mutants of Ras failed to promote neurite outgrowth of PC12 cells (Fujita-Yoshigaki, J., Shirouzu, M., Koide, H., Nishimura, S., and Yokoyama, S. (1991) FEBS Lett. 294, 187-190). In the present study, we performed alanine-scanning mutagenesis within the region Lys42-Ile55 of Ras and found that the K42A, I46A, G48A, E49A, and L53A mutations significantly reduced the neurite-inducing activity. This is an effector region by definition, but its conformation is known to be unaffected by GDP-->GTP exchange. So, this region is referred to as a "constitutive" effector (Ec) region, distinguished from switch I, a "switch" effector (Es) region. The Ec region mutants exhibiting no neurite-inducing activity were found to be correlatably unable to activate mitogen-activated protein (MAP) kinase in PC12 cells. Therefore, the Ec region is essential for the MAP kinase activation in PC12 cells, whereas mutations in this region only negligibly affect the binding of Ras to Raf-1 (Shirouzu, M., Koide, H., Fujita-Yoshigaki, J., Oshio, H., Toyama, Y., Yamasaki, K., Fuhrman, S. A., Villafranca, E., Kaziro, Y., and Yokoyama, S. (1994) Oncogene 9, 2153-2157).
Collapse
Affiliation(s)
- J Fujita-Yoshigaki
- Department of Biophysics and Biochemistry, School of Science, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Kuroda S, Shimizu K, Yamamori B, Matsuda S, Imazumi K, Kaibuchi K, Takai Y. Purification and characterization of REKS from Xenopus eggs. Identification of REKS as a Ras-dependent mitogen-activated protein kinase kinase kinase. J Biol Chem 1995; 270:2460-5. [PMID: 7852306 DOI: 10.1074/jbc.270.6.2460] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously identified a protein factor, named REKS (Ras-dependent Extracellular signal-regulated kinase/Mitogen-activated protein kinase kinase (MEK) Stimulator), which is necessary for Ras-dependent MEK activation. In this study, we attempted to highly purify and characterize REKS. We have highly purified REKS by successive column chromatographies using a cell-free assay system in which REKS activates recombinant extracellular signal-regulated kinase 2 through recombinant MEK in a guanosine 5'-O-(thiotriphosphate) (GTP gamma S)-Ki-Ras-dependent manner. REKS formed a stable complex with GTP gamma S-Ras; REKS was coimmunoprecipitated with GTP gamma S-Ki-Ras or GTP gamma S-Ha-Ras, but not with GDP-Ki-Ras or GDP-Ha-Ras by an anti-Ras antibody. REKS was absorbed to a GTP gamma S-glutathione S-transferase (GST)-Ha-Ras-coupled glutathione-agarose column but not to a GDP-GST-Ha-Ras-coupled glutathione-agarose column and was coeluted with GTP gamma S-GST-Ha-Ras by reduced glutathione. The minimum molecular mass of REKS was estimated to be about 98 kDa on SDS-polyacrylamide gel electrophoresis. REKS phosphorylated this 98-kDa protein as well as recombinant MEK. REKS was not recognized by any of the anti-c-Raf-1, anti-Mos, and anti-mSte11 antibodies. These results indicate that REKS is a Ras-dependent MEK kinase.
Collapse
Affiliation(s)
- S Kuroda
- Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Yamauchi K, Milarski KL, Saltiel AR, Pessin JE. Protein-tyrosine-phosphatase SHPTP2 is a required positive effector for insulin downstream signaling. Proc Natl Acad Sci U S A 1995; 92:664-8. [PMID: 7531337 PMCID: PMC42680 DOI: 10.1073/pnas.92.3.664] [Citation(s) in RCA: 228] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
SHPTP2 is a ubiquitously expressed tyrosine-specific protein phosphatase that contains two amino-terminal Src homology 2 (SH2) domains responsible for its association with tyrosine-phosphorylated proteins. In this study, expression of dominant interfering mutants of SHPTP2 was found to inhibit insulin stimulation of c-fos reporter gene expression and activation of the 42-kDa (Erk2) and 44-kDa (Erk1) mitogen-activated protein kinases. Cotransfection of dominant interfering SHPTP2 mutants with v-Ras or Grb2 indicated that SHPTP2 regulated insulin signaling either upstream of or in parallel to Ras function. Furthermore, phosphotyrosine blotting and immunoprecipitation identified the 125-kDa focal adhesion kinase (pp125FAK) as a substrate for insulin-dependent tyrosine dephosphorylation. These data demonstrate that SHPTP2 functions as a positive regulator of insulin action and that insulin signaling results in the dephosphorylation of tyrosine-phosphorylated pp125FAK.
Collapse
Affiliation(s)
- K Yamauchi
- Department of Physiology and Biophysics, University of Iowa, Iowa City 52242
| | | | | | | |
Collapse
|
33
|
Campbell JS, Seger R, Graves JD, Graves LM, Jensen AM, Krebs EG. The MAP kinase cascade. RECENT PROGRESS IN HORMONE RESEARCH 1995; 50:131-59. [PMID: 7740155 DOI: 10.1016/b978-0-12-571150-0.50011-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J S Campbell
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
34
|
Fukuda M, Gotoh Y, Kosako H, Hattori S, Nishida E. Analysis of the Ras p21/mitogen-activated protein kinase signaling in vitro and in Xenopus oocytes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30101-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
35
|
Catling AD, Reuter CW, Cox ME, Parsons SJ, Weber MJ. Partial purification of a mitogen-activated protein kinase kinase activator from bovine brain. Identification as B-Raf or a B-Raf-associated activity. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43982-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Kosako H, Gotoh Y, Nishida E. Mitogen-activated protein kinase kinase is required for the mos-induced metaphase arrest. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46935-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
37
|
The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras. Mol Cell Biol 1994. [PMID: 7935411 DOI: 10.1128/mcb.14.10.6944] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway.
Collapse
|
38
|
Jaiswal RK, Moodie SA, Wolfman A, Landreth GE. The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras. Mol Cell Biol 1994; 14:6944-53. [PMID: 7935411 PMCID: PMC359225 DOI: 10.1128/mcb.14.10.6944-6953.1994] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway.
Collapse
Affiliation(s)
- R K Jaiswal
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
39
|
Synergistic activation by Ras and 14-3-3 protein of a mitogen-activated protein kinase kinase kinase named Ras-dependent extracellular signal-regulated kinase kinase stimulator. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31594-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Carnero A, Jiménez B, Lacal JC. Progesterone but not ras requires MPF for in vivo activation of MAPK and S6 KII: MAPK is an essential conexion point of both signaling pathways. J Cell Biochem 1994; 55:465-76. [PMID: 7962177 DOI: 10.1002/jcb.240550406] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Induction of mitosis in Xenopus laevis oocytes by hormones and the oncogenic ras-p21 protein has been shown to correlate with a cascade of phosphorylations of the Ser/Thr family of kinases. However, the exact hierarchy of enzymes and their mutual interdependency has not been fully elucidated yet. We have used the Xenopus laevis system to investigate the mechanism of activation of the Ser/Thr kinases cascade and their relationship. Comparison between progesterone-induced germinal vesicle breakdown (GVBD), a hallmark of mitosis in oocytes, to that triggered by ras-p21, revealed the existence of at least two independent mechanisms to activate the MAP kinase enzyme in vivo. While progesterone function is dependent of cdc2 protein kinase activity, ras-p21 is independent of this enzyme. However, both progesterone and ras-p21 converge at the MAP kinase level, and depletion of MAP kinase activity inhibits the GVBD and S6 kinase II activation induced by both progesterone and ras-p21. These results provides further evidence that MAP kinase is a critical step for regulation of the cell cycle in oocytes and a critical point where ras and progesterone signaling converge.
Collapse
Affiliation(s)
- A Carnero
- Instituto de Investigaciones Biomédicas, CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
41
|
Abstract
The mitogenic action of cytokines such as epidermal growth factor (EGF) or platelet derived growth factor (PDGF) involves the stimulation of a signal cascade controlled by a small G protein called Ras. Mutations of Ras can cause its constitutive activation and, as a consequence, bypass the regulation of cell growth by cytokines. Both growth factor-induced and oncogenic activation of Ras involve the conversion of Ras from the GDP-bound (D-Ras) to the GTP-bound (T-Ras) forms. T-Ras activates a network of protein kinases including c-Mos, c-Raf-1 and MAP kinase. Eventually the activation of MAP kinase leads to the activation of the elongation factor 4E and several transcription factors such as c-Jun, c-Myc and c-Fos. There are several modulators of Ras activity, such as the GTPase activating proteins (GAP1 and NF1), which stimulate the conversion of T-Ras to D-Ras. A series of small NF1 fragments, which bind T-Ras, as well as truncated forms of derivatives of c-Raf-1, c-Jun and c-Myc, are capable of blocking the T-Ras-activated mitogenesis in a competitive manner. These agents offer a unique opportunity to control the proliferation of T-Ras-associated tumors, which represent more than 30% of total human carcinomas.
Collapse
Affiliation(s)
- H Maruta
- Ludwig Institute for Cancer Research, Melbourne, Australia
| | | |
Collapse
|
42
|
Itoh T, Yamauchi A, Miyai A, Yokoyama K, Kamada T, Ueda N, Fujiwara Y. Mitogen-activated protein kinase and its activator are regulated by hypertonic stress in Madin-Darby canine kidney cells. J Clin Invest 1994; 93:2387-92. [PMID: 8200972 PMCID: PMC294445 DOI: 10.1172/jci117245] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Madin-Darby canine kidney cells behave like the renal medulla and accumulate small organic solutes (osmolytes) in a hypertonic environment. The accumulation of osmolytes is primarily dependent on changes in gene expression of enzymes that synthesize osmolytes (sorbitol) or transporters that uptake them (myo-inositol, betaine, and taurine). The mechanism by which hypertonicity increases the transcription of these genes, however, remains unclear. Recently, it has been reported that yeast mitogen-activated protein (MAP) kinase and its activator, MAP kinase-kinase, are involved in osmosensing signal transduction and that mutants in these kinases fail to accumulate glycerol, a yeast osmolyte. No information is available in mammals regarding the role of MAP kinase in the cellular response to hypertonicity. We have examined whether MAP kinase and MAP kinase-kinase are regulated by extracellular osmolarity in Madin-Darby canine kidney cells. Both kinases were activated by hypertonic stress in a time- and osmolarity-dependent manner and reached their maximal activity within 10 min. Additionally, it was suggested that MAP kinase was activated in a protein kinase C-dependent manner. These results indicate that MAP kinase and MAP kinase-kinase(s) are regulated by extracellular osmolarity.
Collapse
Affiliation(s)
- T Itoh
- First Department of Medicine, Osaka University School of Medicine, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Different functions of Smg GDP dissociation stimulator and mammalian counterpart of yeast Cdc25. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36577-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
44
|
Two different signal transduction pathways can be activated by transforming growth factor beta 1 in epithelial cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36823-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Characterization of two different forms of mitogen-activated protein kinase kinase induced in polymorphonuclear leukocytes following stimulation by N-formylmethionyl-leucyl-phenylalanine or granulocyte-macrophage colony-stimulating factor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36907-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
46
|
Panaretto BA. Aspects of growth factor signal transduction in the cell cytoplasm. J Cell Sci 1994; 107 ( Pt 4):747-52. [PMID: 8056834 DOI: 10.1242/jcs.107.4.747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- B A Panaretto
- CSIRO, Division of Animal Production, Blacktown, NSW, Australia
| |
Collapse
|
47
|
The native structure of the activated Raf protein kinase is a membrane-bound multi-subunit complex. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37431-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Graves LM, Northrop JL, Potts BC, Krebs EG, Kimelman D. Fibroblast growth factor, but not activin, is a potent activator of mitogen-activated protein kinase in Xenopus explants. Proc Natl Acad Sci U S A 1994; 91:1662-6. [PMID: 7510404 PMCID: PMC43223 DOI: 10.1073/pnas.91.5.1662] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Isolated explants from the animal hemisphere of Xenopus embryos were incubated with Xenopus basic fibroblast growth factor (XbFGF) or human activin A. XbFGF incubation resulted in the rapid activation of mitogen-activated protein kinase (MAPK) and ribosomal S6 protein kinase (pp90rsk) in a dose-dependent manner with the highest levels of activation occurring at 50 ng/ml. Maximal activation occurred within 6-10 min after the addition of growth factor, and the activity of both kinases declined to unstimulated levels after 30 min. Activin was unable to activate either MAPK or pp90rsk in the Xenopus explants to a substantial level, although it induced dorsal mesoderm better than XbFGF under the same experimental conditions. The regulatory protein Xwnt-8 did not activate MAPK, nor did it enhance the activation of MAPK by XbFGF. XbFGF was able to activate MAPK through at least the midgastrula stage, suggesting that this family of growth factors may have a role in gastrula-stage events.
Collapse
Affiliation(s)
- L M Graves
- Department of Pharmacology SJ-30, University of Washington, School of Medicine, Seattle 98195
| | | | | | | | | |
Collapse
|
49
|
Abstract
The raf genes encode for a family of cytoplasmic proteins (A-raf, B-raf and c-raf-1) with associated serine/threonine kinase activities. Raf-1 is an important mediator of signals involving cell growth, transformation and differentiation. It is activated in response to a wide variety of extracellular stimuli such as insulin, nerve growth factor (NGF), platelet derived-growth factor (PDGF), and in response to expression of oncogenes, v-src and v-ras, in a cell-specific manner. Recently, the first physiological substrate for Raf-1 protein kinase was identified. Raf-1 was found to phosphorylate and activate Mitogen-Activated Protein Kinase Kinase (MEK), an activator of MAP kinase, thus linking the Raf-1 signaling pathway with that of MAP kinase. Cell specific differences in signalling pathways involving Raf-1 and MAP kinase have also been discovered. Accumulating evidence indicates that membrane tyrosine kinases, ras, Raf-1, MEK and MAP kinase are interconnected via a complex network rather than via a linear pathway involving multiple substrates and feedback loops.
Collapse
Affiliation(s)
- N G Williams
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
50
|
Clevenger C, Torigoe T, Reed J. Prolactin induces rapid phosphorylation and activation of prolactin receptor-associated RAF-1 kinase in a T-cell line. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37498-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|