1
|
Kieliszek M, Sapazhenkava K. The Promising Role of Selenium and Yeast in the Fight Against Protein Amyloidosis. Biol Trace Elem Res 2025; 203:1251-1268. [PMID: 38829477 PMCID: PMC11872778 DOI: 10.1007/s12011-024-04245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
In recent years, increasing attention has been paid to research on diseases related to the deposition of misfolded proteins (amyloids) in various organs. Moreover, modern scientists emphasise the importance of selenium as a bioelement necessary for the proper functioning of living organisms. The inorganic form of selenium-sodium selenite (redox-active)-can prevent the formation of an insoluble polymer in proteins. It is very important to undertake tasks aimed at understanding the mechanisms of action of this element in inhibiting the formation of various types of amyloid. Furthermore, yeast cells play an important role in this matter as a eukaryotic model organism, which is intensively used in molecular research on protein amyloidosis. Due to the lack of appropriate treatment in the general population, the problem of amyloidosis remains unsolved. This extracellular accumulation of amyloid is one of the main factors responsible for the occurrence of Alzheimer's disease. The review presented here contains scientific information discussing a brief description of the possibility of amyloid formation in cells and the use of selenium as a factor preventing the formation of these protein aggregates. Recent studies have shown that the yeast model can be successfully used as a eukaryotic organism in biotechnological research aimed at understanding the essence of the entire amyloidosis process. Understanding the mechanisms that regulate the reaction of yeast to selenium and the phenomenon of amyloidosis is important in the aetiology and pathogenesis of various disease states. Therefore, it is imperative to conduct further research and analysis aimed at explaining and confirming the role of selenium in the processes of protein misfolding disorders. The rest of the article discusses the characteristics of food protein amyloidosis and their use in the food industry. During such tests, their toxicity is checked because not all food proteins can produce amyloid that is toxic to cells. It should also be noted that a moderate diet is beneficial for the corresponding disease relief caused by amyloidosis.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland.
| | - Katsiaryna Sapazhenkava
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland
| |
Collapse
|
2
|
Liu H, Pillai M, Leung AKL. PARPs and ADP-ribosylation-mediated biomolecular condensates: determinants, dynamics, and disease implications. Trends Biochem Sci 2025; 50:224-241. [PMID: 39922741 DOI: 10.1016/j.tibs.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 02/10/2025]
Abstract
Biomolecular condensates are cellular compartments that selectively enrich proteins and other macromolecules despite lacking enveloping membranes. These compartments often form through phase separation triggered by multivalent nucleic acids. Emerging data have revealed that poly(ADP-ribose) (PAR), a nucleic acid-based protein modification catalyzed by ADP-ribosyltransferases (commonly known as PARPs), plays a crucial role in this process. This review focuses on the role of PARPs and ADP-ribosylation, and explores the principles and mechanisms by which PAR regulates condensate formation, dissolution, and dynamics. Future studies with advanced tools to examine PAR binding sites, substrate interactions, PAR length and structure, and transitions from condensates to aggregates will be key to unraveling the complexity of ADP-ribosylation in health and disease, including cancer, viral infection, and neurodegeneration.
Collapse
Affiliation(s)
- Hongrui Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Cross-Disciplinary Graduate Program in Biomedical Sciences (XDBio), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Meenakshi Pillai
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Ezawa T, Otomo R, Kariya Y, Nozawa K, Kyoya S, Furutani C, Noguchi K, Yohda M, Odaka M, Matsumura H, Saito A, Saito M, Abe F, Fujioka Y, Kitadate A, Wakui H, Takahashi N. Multiple myeloma-associated non-crystalline proximal tubulopathy and crystalline cast nephropathy: Biochemical and structural features of disease-causing monoclonal kappa light chains. FASEB J 2025; 39:e70296. [PMID: 39781602 DOI: 10.1096/fj.202402104r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/31/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Various tubular diseases in patients with multiple myeloma (MM) are caused by monoclonal immunoglobulin light chains (LCs). However, the physicochemical characteristics of the disease-causing LCs contributing to the onset of MM-associated tubular diseases remain unclear. We herein report a rare case of MM-associated combined tubulopathies: non-crystalline light chain proximal tubulopathy (LCPT) and crystalline light chain cast nephropathy (LCCN). The patient's urinary κ-LC (Bence-Jones proteins, BJP-κ PT-CN) was detected through immunofixation. Renal biopsy revealed cytoplasmic vacuoles in swollen proximal tubular cells and distal tubular casts. Immunohistochemistry showed proximal tubular reabsorption granules and distal tubular casts positively stained with an anti-κ-LC antibody. Electron microscopy identified vacuolation and an increased number of lysosomes in proximal tubular epithelial cells without crystalline structures. Distal tubular casts comprised numerous crystals with both rod-shaped and needle-like configurations and tube-shaped materials. To elucidate the molecular mechanisms underlying tubular toxicity, we performed the following physicochemical analyses of BJP-κ PT-CN: N-terminal amino acid sequencing, cDNA cloning, size-exclusion chromatography, thermal shift assays, and X-ray crystallography. The variable segment of BJP-κ PT-CN was derived from the IGKV1-39 gene. The characteristic features of BJP-κ PT-CN were a positively charged surface patch, concentration-dependent monomer-dimer equilibrium, and the R61G mutation. This is the first biochemical and structural characterization of disease-causing BJPs in MM-associated LCPT and crystalline LCCN. The results obtained suggest that these characteristic features enhance protein binding to negatively charged sites on brush-border membranes in proximal tubules and promote the formation of organized casts in distal tubular lumens.
Collapse
Affiliation(s)
- Toshinori Ezawa
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Riku Otomo
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Yumi Kariya
- Cooperative Research Center, Akita University, Akita, Japan
| | - Kyoko Nozawa
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Sonosuke Kyoya
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Chikako Furutani
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masafumi Odaka
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Hirotoshi Matsumura
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Ayano Saito
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Masaya Saito
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Fumito Abe
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yuki Fujioka
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Akihiro Kitadate
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Hideki Wakui
- Emeritus Professor, Akita University, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
4
|
Morgan GJ, Nau AN, Wong S, Spencer BH, Shen Y, Hua A, Bullard MJ, Sanchorawala V, Prokaeva T. An updated AL-base reveals ranked enrichment of immunoglobulin light chain variable genes in AL amyloidosis. Amyloid 2024:1-10. [PMID: 39641756 DOI: 10.1080/13506129.2024.2434899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Each monoclonal antibody light chain associated with AL amyloidosis has a unique sequence. Defining how these sequences drive amyloid deposition could facilitate faster diagnosis and lead to new treatments. METHODS Light chain sequences are collected in the AL-Base repository. Monoclonal sequences from AL amyloidosis, multiple myeloma and the healthy polyclonal immune repertoire were compared to identify differences in precursor gene use, mutation frequency and physicochemical properties. RESULTS AL-Base now contains 2,200 monoclonal light chain sequences from AL amyloidosis and other plasma cell dyscrasias. Sixteen germline precursor genes were enriched in AL amyloidosis, relative to multiple myeloma and the polyclonal repertoire. Two genes, IGKV1-16 and IGLV1-36, were infrequently observed but highly enriched in AL amyloidosis. The number of mutations varied widely between light chains. AL-associated κ light chains harboured significantly more mutations compared to multiple myeloma and polyclonal sequences, whereas AL-associated λ light chains had fewer mutations. Machine learning tools designed to predict amyloid propensity were less accurate for new sequences than their original training data. CONCLUSIONS Rarely-observed light chain variable genes may carry a high risk of AL amyloidosis. New approaches are needed to define sequence-associated risk factors for AL amyloidosis. AL-Base is a foundational resource for such studies.
Collapse
Affiliation(s)
- Gareth J Morgan
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Allison N Nau
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sherry Wong
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Brian H Spencer
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yun Shen
- Boston University Research Computing Services, Boston, MA, USA
| | - Axin Hua
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Matthew J Bullard
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Vaishali Sanchorawala
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Tatiana Prokaeva
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Morgan GJ, Yung Z, Spencer BH, Sanchorawala V, Prokaeva T. Predicting Structural Consequences of Antibody Light Chain N-Glycosylation in AL Amyloidosis. Pharmaceuticals (Basel) 2024; 17:1542. [PMID: 39598451 PMCID: PMC11597191 DOI: 10.3390/ph17111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Antibody light chains form amyloid fibrils that lead to progressive tissue damage in amyloid light chain (AL) amyloidosis. The properties of each patient's unique light chain appear to determine its propensity to form amyloid. One factor is N-glycosylation, which is more frequent in amyloid-associated light chains than in light chains from the normal immune repertoire. However, the mechanisms underlying this association are unknown. Here, we investigate the frequency and position within the light chain sequence of the N-glycosylation sequence motif, or sequon. Methods: Monoclonal light chains from AL amyloidosis and multiple myeloma were identified from the AL-Base repository. Polyclonal light chains were obtained from the Observed Antibody Space resource. We compared the fraction of light chains from each group harboring an N-glycosylation sequon, and the positions of these sequons within the sequences. Results: Sequons are enriched among AL-associated light chains derived from a subset of precursor germline genes. Sequons are observed at multiple positions, which differ between the two types of light chains, κ and λ, but are similar between light chains from AL amyloidosis and multiple myeloma. Positions of sequons map to residues with surface-exposed sidechains that are compatible with the folded structures of light chains. Within the known structures of λ AL amyloid fibrils, many residues where sequons are observed are buried, inconsistent with N-glycosylation. Conclusions: There is no clear structural rationale for why N-glycosylation of κ light chains is associated with AL amyloidosis. A better understanding of the roles of N-glycosylation in AL amyloidosis is required before it can be used as a marker for disease risk.
Collapse
Affiliation(s)
- Gareth J. Morgan
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Zach Yung
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Brian H. Spencer
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vaishali Sanchorawala
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Tatiana Prokaeva
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
6
|
Morgan G, Nau AN, Wong S, Spencer BH, Shen Y, Hua A, Bullard MJ, Sanchorawala V, Prokaeva T. An updated AL-Base reveals ranked enrichment of immunoglobulin light chain variable genes in AL amyloidosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612490. [PMID: 39314448 PMCID: PMC11419035 DOI: 10.1101/2024.09.11.612490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Each monoclonal antibody light chain associated with AL amyloidosis has a unique sequence. Defining how these sequences lead to amyloid deposition could facilitate faster diagnosis and lead to new treatments. Methods Light chain sequences are collected in the Boston University AL-Base repository. Monoclonal sequences from AL amyloidosis, multiple myeloma and the healthy polyclonal immune repertoire were compared to identify differences in precursor gene use, mutation frequency and physicochemical properties. Results AL-Base now contains 2,193 monoclonal light chain sequences from plasma cell dyscrasias. Sixteen germline precursor genes were enriched in AL amyloidosis, relative to multiple myeloma and the polyclonal repertoire. Two genes, IGKV1-16 and IGLV1-36, were infrequently observed but highly enriched in AL amyloidosis. The number of mutations varied widely between light chains. AL-associated κ light chains harbored significantly more mutations compared to multiple myeloma and polyclonal sequences, whereas AL-associated λ light chains had fewer mutations. Machine learning tools designed to predict amyloid propensity were less accurate for new sequences than their original training data. Conclusions Rarely-observed light chain variable genes may carry a high risk of AL amyloidosis. New approaches are needed to define sequence-associated risk factors for AL amyloidosis. AL-Base is a foundational resource for such studies.
Collapse
Affiliation(s)
- Gareth Morgan
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Allison N. Nau
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Sherry Wong
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Brian H. Spencer
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Yun Shen
- Boston University Research Computing Services, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Axin Hua
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Matthew J. Bullard
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Vaishali Sanchorawala
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Tatiana Prokaeva
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| |
Collapse
|
7
|
Palladini G, Liedtke M, Zago W, Dolan P, Kinney GG, Gertz MA. The mechanism of action, pharmacological characteristics, and clinical utility of the amyloid depleter birtamimab for the potential treatment of AL amyloidosis. Leuk Lymphoma 2024; 65:1068-1078. [PMID: 38600883 DOI: 10.1080/10428194.2024.2337803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Amyloid light chain (AL) amyloidosis is a progressive plasma cell disorder caused by amyloid deposition resulting in organ damage and failure. Current standard-of-care treatments target clonal plasma cells, the source of misfolded light chains (amyloid precursors), yet only half of patients with advanced disease survive ≥6 months. The amyloid depleter birtamimab is an investigational humanized monoclonal antibody that binds misfolded κ and λ light chains with high specificity and was designed to neutralize soluble toxic light chain aggregates and promote phagocytic clearance of deposited amyloid. Post hoc analyses from the Phase 3 VITAL trial suggested birtamimab plus standard of care confers a survival benefit in patients with advanced (Mayo Stage IV) AL amyloidosis. AFFIRM-AL (NCT04973137), a Phase 3 confirmatory trial of birtamimab plus standard of care in patients with Mayo Stage IV AL amyloidosis, is ongoing. This review summarizes birtamimab's mechanism of action, attributes, and potential clinical utility.
Collapse
Affiliation(s)
- Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS, Policlinico San Matteo, Pavia, Italy
| | | | | | - Phil Dolan
- Prothena Biosciences Inc, Brisbane, CA, USA
| | | | - Morie A Gertz
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Morfino P, Aimo A, Franzini M, Vergaro G, Castiglione V, Panichella G, Limongelli G, Emdin M. Pathophysiology of Cardiac Amyloidosis. Heart Fail Clin 2024; 20:261-270. [PMID: 38844297 DOI: 10.1016/j.hfc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Amyloidosis refers to a heterogeneous group of disorders sharing common pathophysiological mechanisms characterized by the extracellular accumulation of fibrillar deposits consisting of the aggregation of misfolded proteins. Cardiac amyloidosis (CA), usually caused by deposition of misfolded transthyretin or immunoglobulin light chains, is an increasingly recognized cause of heart failure burdened by a poor prognosis. CA manifests with a restrictive cardiomyopathy which progressively leads to biventricular thickening, diastolic and then systolic dysfunction, arrhythmias, and valvular disease. The pathophysiology of CA is multifactorial and includes increased oxidative stress, mitochondrial damage, apoptosis, impaired metabolism, and modifications of intracellular calcium balance.
Collapse
Affiliation(s)
| | - Alberto Aimo
- Fondazione Toscana Gabriele Monasterio, via G. Moruzzi 1, 56124, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Maria Franzini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Giuseppe Vergaro
- Fondazione Toscana Gabriele Monasterio, via G. Moruzzi 1, 56124, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Castiglione
- Fondazione Toscana Gabriele Monasterio, via G. Moruzzi 1, 56124, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giorgia Panichella
- Department of Clinical and Experimental Medicine, Careggi University Hospital, Florence, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Michele Emdin
- Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, via G. Moruzzi 1, 56124, Pisa, Italy.
| |
Collapse
|
9
|
Arriaza RH, Kapingidza AB, Dolamore C, Khatri K, O’Malley A, Glesner J, Wuenschmann S, Hyduke NP, Easley W, Chhiv C, Pomés A, Chruszcz M. Structural, Biophysical, and Computational Studies of a Murine Light Chain Dimer. Molecules 2024; 29:2885. [PMID: 38930950 PMCID: PMC11206851 DOI: 10.3390/molecules29122885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Antibodies are widely used in medicinal and scientific research due to their ability to bind to a specific antigen. Most often, antibodies are composed of heavy and light chain domains. Under physiological conditions, light chains are produced in excess, as compared to the heavy chain. It is now known that light chains are not silent partners of the heavy chain and can modulate the immune response independently. In this work, the first crystal structure of a light chain dimer originating from mice is described. It represents the light chain dimer of 6A8, a monoclonal antibody specific to the allergen Der f 1. Building on the unexpected occurrence of this kind of dimer, we have demonstrated that this light chain is stable in solution alone. Moreover, enzyme-linked immunosorbent assays (ELISA) have revealed that, when the light chain is not partnered to its corresponding heavy chain, it interacts non-specifically with a wide range of proteins. Computational studies were used to provide insight on the role of the 6A8 heavy chain domain in the specific binding to Der f 1. Overall, this work demonstrates and supports the ongoing notion that light chains can function by themselves and are not silent partners of heavy chains.
Collapse
Affiliation(s)
- Ricardo H. Arriaza
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48864, USA; (R.H.A.); (K.K.); (A.O.)
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - A. Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - Coleman Dolamore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - Kriti Khatri
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48864, USA; (R.H.A.); (K.K.); (A.O.)
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - Andrea O’Malley
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48864, USA; (R.H.A.); (K.K.); (A.O.)
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - Jill Glesner
- InBio, Charlottesville, VA 22903, USA; (J.G.); (S.W.); (A.P.)
| | | | - Noah P. Hyduke
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - William Easley
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - Charline Chhiv
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - Anna Pomés
- InBio, Charlottesville, VA 22903, USA; (J.G.); (S.W.); (A.P.)
| | - Maksymilian Chruszcz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48864, USA; (R.H.A.); (K.K.); (A.O.)
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| |
Collapse
|
10
|
Karimi-Farsijani S, Pfeiffer PB, Banerjee S, Baur J, Kuhn L, Kupfer N, Hegenbart U, Schönland SO, Wiese S, Haupt C, Schmidt M, Fändrich M. Light chain mutations contribute to defining the fibril morphology in systemic AL amyloidosis. Nat Commun 2024; 15:5121. [PMID: 38879609 PMCID: PMC11180120 DOI: 10.1038/s41467-024-49520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Systemic AL amyloidosis is one of the most frequently diagnosed forms of systemic amyloidosis. It arises from mutational changes in immunoglobulin light chains. To explore whether these mutations may affect the structure of the formed fibrils, we determine and compare the fibril structures from several patients with cardiac AL amyloidosis. All patients are affected by light chains that contain an IGLV3-19 gene segment, and the deposited fibrils differ by the mutations within this common germ line background. Using cryo-electron microscopy, we here find different fibril structures in each patient. These data establish that the mutations of amyloidogenic light chains contribute to defining the fibril architecture and hence the structure of the pathogenic agent.
Collapse
Affiliation(s)
| | | | | | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Lukas Kuhn
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Niklas Kupfer
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Ute Hegenbart
- Medicinal Department V, Amyloidosis Centre, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan O Schönland
- Medicinal Department V, Amyloidosis Centre, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | | | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
11
|
Pelaez-Aguilar AE, Mata-Salgado F, Morales-Ortiz A, Millán-Pacheco C, Olvera-Carranza C, Salgado-Delgado J, Pastor N, Rivillas-Acevedo L. Cu(II) binding to the λ6aJL2-R24G antibody light chain protein associated with light chain amyloidosis disease: The role of histidines. Int J Biol Macromol 2024; 270:132393. [PMID: 38761898 DOI: 10.1016/j.ijbiomac.2024.132393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Light chain amyloidosis is a conformational disease caused by the abnormal proliferation and deposition of antibody light chains as amyloid fibers in organs and tissues. The effect of Cu(II) binding to the model recombinant protein 6aJL2-R24G was previously characterized in our group, and we found an acceleration of the aggregation kinetics of the protein. In this study, in order to confirm the Cu(II) binding sites, histidine variants of 6aJL2-R24G were prepared and the effects of their interaction with Cu(II) were analyzed by circular dichroism, fluorescence spectroscopy, isothermal calorimetry titrations, and molecular dynamics simulations. Confirming our earlier work, we found that His8 and His99 are the highest affinity Cu(II) binding sites, and that Cu(II) binding to both sites is a cooperative event.
Collapse
Affiliation(s)
- Angel E Pelaez-Aguilar
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Fernanda Mata-Salgado
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Alan Morales-Ortiz
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - César Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Clarita Olvera-Carranza
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Jesus Salgado-Delgado
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Lina Rivillas-Acevedo
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
12
|
Lavatelli F, Natalello A, Marchese L, Ami D, Corazza A, Raimondi S, Mimmi MC, Malinverni S, Mangione PP, Palmer MT, Lampis A, Concardi M, Verona G, Canetti D, Arbustini E, Bellotti V, Giorgetti S. Truncation of the constant domain drives amyloid formation by immunoglobulin light chains. J Biol Chem 2024; 300:107174. [PMID: 38499153 PMCID: PMC11016911 DOI: 10.1016/j.jbc.2024.107174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
AL amyloidosis is a life-threatening disease caused by deposition of immunoglobulin light chains. While the mechanisms underlying light chains amyloidogenesis in vivo remain unclear, several studies have highlighted the role that tissue environment and structural amyloidogenicity of individual light chains have in the disease pathogenesis. AL natural deposits contain both full-length light chains and fragments encompassing the variable domain (VL) as well as different length segments of the constant region (CL), thus highlighting the relevance that proteolysis may have in the fibrillogenesis pathway. Here, we investigate the role of major truncated species of the disease-associated AL55 light chain that were previously identified in natural deposits. Specifically, we study structure, molecular dynamics, thermal stability, and capacity to form fibrils of a fragment containing both the VL and part of the CL (133-AL55), in comparison with the full-length protein and its variable domain alone, under shear stress and physiological conditions. Whereas the full-length light chain forms exclusively amorphous aggregates, both fragments generate fibrils, although, with different kinetics, aggregate structure, and interplay with the unfragmented protein. More specifically, the VL-CL 133-AL55 fragment entirely converts into amyloid fibrils microscopically and spectroscopically similar to their ex vivo counterpart and increases the amorphous aggregation of full-length AL55. Overall, our data support the idea that light chain structure and proteolysis are both relevant for amyloidogenesis in vivo and provide a novel biocompatible model of light chain fibrillogenesis suitable for future mechanistic studies.
Collapse
Affiliation(s)
- Francesca Lavatelli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | - Loredana Marchese
- Pathology Unit, Fondazione IRCSS Policlinico San Matteo, Pavia, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Corazza
- Department of Medicine (DAME), University of Udine, Udine, Italy; Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Maria Chiara Mimmi
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Malinverni
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - P Patrizia Mangione
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Manel Terrones Palmer
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessio Lampis
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Monica Concardi
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guglielmo Verona
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Diana Canetti
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Eloisa Arbustini
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vittorio Bellotti
- Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
13
|
Wong S, West ME, Morgan GJ. Kinetic evidence for multiple aggregation pathways in antibody light chain variable domains. Protein Sci 2024; 33:e4871. [PMID: 38100259 PMCID: PMC10868443 DOI: 10.1002/pro.4871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Aggregation of antibody light chain proteins is associated with the progressive disease light chain amyloidosis. Patient-derived amyloid fibrils are formed from light chain variable domain residues in non-native conformations, highlighting a requirement that light chains unfold from their native structures in order to aggregate. However, mechanistic studies of amyloid formation have primarily focused on the self-assembly of natively unstructured peptides, and the role of native state unfolding is less well understood. Using a well-studied light chain variable domain protein known as WIL, which readily aggregates in vitro under conditions where the native state predominates, we asked how the protein concentration and addition of pre-formed fibril "seeds" alter the kinetics of aggregation. Monitoring aggregation with thioflavin T fluorescence revealed a distinctly non-linear dependence on concentration, with a maximum aggregation rate observed at 8 μM protein. This behavior is consistent with formation of alternate aggregate structures in the early phases of amyloid formation. Addition of N- or C-terminal peptide tags, which did not greatly affect the folding or stability of the protein, altered the concentration dependence of aggregation. Aggregation rates increased in the presence of pre-formed seeds, but this effect did not eliminate the delay before aggregation and became saturated when the proportion of seeds added was greater than 1 in 1600. The complexity of aggregation observed in vitro highlights how multiple species may contribute to amyloid pathology in patients.
Collapse
Affiliation(s)
- Sherry Wong
- Boston University Amyloidosis Center, Boston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Madeline E. West
- Boston University Amyloidosis Center, Boston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Gareth J. Morgan
- Boston University Amyloidosis Center, Boston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| |
Collapse
|
14
|
Wong S, West ME, Morgan GJ. Kinetic evidence for multiple aggregation pathways in antibody light chain variable domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555139. [PMID: 37693524 PMCID: PMC10491100 DOI: 10.1101/2023.08.28.555139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Aggregation of antibody light chain proteins is associated with the progressive disease light chain amyloidosis. Patient-derived amyloid fibrils are formed from light chain variable domain residues in non-native conformations, highlighting a requirement that light chains unfold from their native structures in order to aggregate. However, mechanistic studies of amyloid formation have primarily focused on the self-assembly of natively unstructured peptides, and the role of native state unfolding is less well understood. Using a well-studied light chain variable domain protein known as WIL, which readily aggregates in vitro under conditions where the native state predominates, we asked how the protein concentration and addition of pre-formed fibril "seeds" alter the kinetics of aggregation. Monitoring aggregation with thioflavin T fluorescence revealed a distinctly non-linear dependence on concentration, with a maximum aggregation rate observed at 8 μM protein. This behavior is consistent with formation of alternate aggregate structures in the early phases of amyloid formation. Addition of N- or C-terminal peptide tags, which did not greatly affect the folding or stability of the protein, altered the concentration dependence of aggregation. Aggregation rates increased in the presence of pre-formed seeds, but this effect did not eliminate the delay before aggregation and became saturated when the proportion of seeds added was greater than 1 in 1600. The complexity of aggregation observed in vitro highlights how multiple species may contribute to amyloid pathology in patients.
Collapse
Affiliation(s)
- Sherry Wong
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Madeline E West
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Gareth J Morgan
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
15
|
Yan NL, Morgan GJ, Petrassi HM, Wilson IA, Kelly JW. Pharmacological stabilization of the native state of full-length immunoglobulin light chains to treat light chain amyloidosis. Curr Opin Chem Biol 2023; 75:102319. [PMID: 37279624 PMCID: PMC10523890 DOI: 10.1016/j.cbpa.2023.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 06/08/2023]
Abstract
Immunoglobulin light chain amyloidosis (AL) is a cancer of plasma cells that secrete unstable full-length immunoglobulin light chains. These light chains misfold and aggregate, often with aberrant endoproteolysis, leading to organ toxicity. AL is currently treated by pharmacological elimination of the clonal plasma cells. Since it remains difficult to completely kill these cells in the majority of patients, we seek a complementary drug that inhibits light chain aggregation, which should diminish organ toxicity. We discovered a small-molecule binding site on full-length immunoglobulin light chains by structurally characterizing hit stabilizers emerging from a high-throughput screen seeking small molecules that protect full-length light chains from conformational excursion-linked endoproteolysis. The x-ray crystallographic characterization of 7 structurally distinct hit native-state stabilizers provided a structure-based blueprint, reviewed herein, to design more potent stabilizers. This approach enabled us to transform hits with micromolar affinity into stabilizers with nanomolar dissociation constants that potently prevent light chain aggregation.
Collapse
Affiliation(s)
- Nicholas L Yan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gareth J Morgan
- Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - H Michael Petrassi
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, CA 92130, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Del Pozo-Yauner L, Herrera GA, Perez Carreon JI, Turbat-Herrera EA, Rodriguez-Alvarez FJ, Ruiz Zamora RA. Role of the mechanisms for antibody repertoire diversification in monoclonal light chain deposition disorders: when a friend becomes foe. Front Immunol 2023; 14:1203425. [PMID: 37520549 PMCID: PMC10374031 DOI: 10.3389/fimmu.2023.1203425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
The adaptive immune system of jawed vertebrates generates a highly diverse repertoire of antibodies to meet the antigenic challenges of a constantly evolving biological ecosystem. Most of the diversity is generated by two mechanisms: V(D)J gene recombination and somatic hypermutation (SHM). SHM introduces changes in the variable domain of antibodies, mostly in the regions that form the paratope, yielding antibodies with higher antigen binding affinity. However, antigen recognition is only possible if the antibody folds into a stable functional conformation. Therefore, a key force determining the survival of B cell clones undergoing somatic hypermutation is the ability of the mutated heavy and light chains to efficiently fold and assemble into a functional antibody. The antibody is the structural context where the selection of the somatic mutations occurs, and where both the heavy and light chains benefit from protective mechanisms that counteract the potentially deleterious impact of the changes. However, in patients with monoclonal gammopathies, the proliferating plasma cell clone may overproduce the light chain, which is then secreted into the bloodstream. This places the light chain out of the protective context provided by the quaternary structure of the antibody, increasing the risk of misfolding and aggregation due to destabilizing somatic mutations. Light chain-derived (AL) amyloidosis, light chain deposition disease (LCDD), Fanconi syndrome, and myeloma (cast) nephropathy are a diverse group of diseases derived from the pathologic aggregation of light chains, in which somatic mutations are recognized to play a role. In this review, we address the mechanisms by which somatic mutations promote the misfolding and pathological aggregation of the light chains, with an emphasis on AL amyloidosis. We also analyze the contribution of the variable domain (VL) gene segments and somatic mutations on light chain cytotoxicity, organ tropism, and structure of the AL fibrils. Finally, we analyze the most recent advances in the development of computational algorithms to predict the role of somatic mutations in the cardiotoxicity of amyloidogenic light chains and discuss the challenges and perspectives that this approach faces.
Collapse
Affiliation(s)
- Luis Del Pozo-Yauner
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | - Guillermo A. Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | - Elba A. Turbat-Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
- Mitchell Cancer Institute, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | | |
Collapse
|
17
|
Dey P, Biswas P. Exploring the aggregation of amyloid-β 42 through Monte Carlo simulations. Biophys Chem 2023; 297:107011. [PMID: 37037120 DOI: 10.1016/j.bpc.2023.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023]
Abstract
Coarse-grained Monte Carlo simulations are performed for a disordered protein, amyloid-β 42 to identify the interactions and understand the mechanism of its aggregation. A statistical potential is developed from a selected dataset of intrinsically disordered proteins, which accounts for the respective contributions of the bonded and non-bonded potentials. While, the bonded potential comprises the bond, bend, and dihedral constraints, the nonbonded interactions include van der Waals interactions, hydrogen bonds, and the two-body potential. The two-body potential captures the features of both hydrophobic and electrostatic interactions that brings the chains at a contact distance, while the repulsive van der Waals interactions prevent them from a collapse. Increased two-body hydrophobic interactions facilitate the formation of amorphous aggregates rather than the fibrillar ones. The formation of aggregates is validated from the interchain distances, and the total energy of the system. The aggregate is structurally characterized by the root-mean-square deviation, root-mean-square fluctuation and the radius of gyration. The aggregates are characterized by a decrease in SASA, an increase in the non-local interactions and a distinct free energy minimum relative to that of the monomeric state of amyloid-β 42. The hydrophobic residues help in nucleation, while the charged residues help in oligomerization and aggregation.
Collapse
|
18
|
Baur J, Berghaus N, Schreiner S, Hegenbart U, Schönland SO, Wiese S, Huhn S, Haupt C. Identification of AL proteins from 10 λ-AL amyloidosis patients by mass spectrometry extracted from abdominal fat and heart tissue. Amyloid 2023; 30:27-37. [PMID: 35792725 DOI: 10.1080/13506129.2022.2095618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Systemic AL amyloidosis arises from the misfolding of patient-specific immunoglobulin light chains (LCs). Potential drivers of LC amyloid formation are mutational changes and post-translational modifications (PTMs). However, little information is available on the exact primary structure of the AL proteins and their precursor LCs. OBJECTIVE We analyse the exact primary structure of AL proteins extracted from 10 λ AL amyloidosis patients and their corresponding precursor LCs. MATERIALS AND METHODS By cDNA sequencing of the precursor LC genes in combination with mass spectrometry of the AL proteins, the exact primary structure and PTMs were determined. This information was used to analyse their biochemical properties. RESULTS All AL proteins comprise the VL and a small part of the CL with a common C-terminal truncation region. While all AL proteins retain the conserved native disulphide bond of the VL, we found no evidence for presence of other common PTMs. The analysis of the biochemical properties revealed that the isoelectric point of the VL is significantly increased due to introduced mutations. CONCLUSION Our data imply that mutational changes influence the surface charge properties of the VL and that common proteolytic processes are involved in the generation of the cleavage sites of AL proteins.
Collapse
Affiliation(s)
- Julian Baur
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Natalie Berghaus
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Schreiner
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Stefanie Huhn
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
19
|
Absmeier RM, Rottenaicher GJ, Svilenov HL, Kazman P, Buchner J. Antibodies gone bad - the molecular mechanism of light chain amyloidosis. FEBS J 2023; 290:1398-1419. [PMID: 35122394 DOI: 10.1111/febs.16390] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 12/19/2022]
Abstract
Light chain amyloidosis (AL) is a systemic disease in which abnormally proliferating plasma cells secrete large amounts of mutated antibody light chains (LCs) that eventually form fibrils. The fibrils are deposited in various organs, most often in the heart and kidney, and impair their function. The prognosis for patients diagnosed with AL is generally poor. The disease is set apart from other amyloidoses by the huge number of patient-specific mutations in the disease-causing and fibril-forming protein. The molecular mechanisms that drive the aggregation of mutated LCs into fibrils have been enigmatic, which hindered the development of efficient diagnostics and therapies. In this review, we summarize our current knowledge on AL amyloidosis and discuss open issues.
Collapse
Affiliation(s)
- Ramona M Absmeier
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Georg J Rottenaicher
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Hristo L Svilenov
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Pamina Kazman
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
20
|
Martínez JC, Lichtman EI. Localized light chain amyloidosis: A self-limited plasmacytic B-cell lymphoproliferative disorder. Front Oncol 2022; 12:1002253. [PMID: 36457485 PMCID: PMC9705961 DOI: 10.3389/fonc.2022.1002253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/24/2022] [Indexed: 08/31/2023] Open
Abstract
Immunoglobulin light chain amyloidosis can be either systemic or localized. Although these conditions share a similar name, they are strikingly different. Localized light chain amyloidosis has been challenging to characterize due to its lower incidence and highly heterogeneous clinical presentation. Here, we review the emerging literature, emphasizing recent reports on large cohorts of patients with localized amyloidosis, and provide insights into this condition's pathology and natural history. We find that patients with localized amyloidosis have an excellent prognosis with overall survival similar to that of the general population. Furthermore, the risk of progression to systemic disease is low and likely represents initial mischaracterization as localized disease. Therefore, we argue for the incorporation of more sensitive techniques to rule out systemic disease at diagnosis. Despite increasing mechanistic understanding of this condition, much remains to be discovered regarding the cellular clonal evolution and the molecular processes that give rise to localized amyloid formation. While localized surgical resection of symptomatic disease is typically the treatment of choice, the presentation of this disease across the spectrum of plasmacytic B-cell lymphoproliferative disorders, and the frequent lack of an identifiable neoplastic clone, can make therapy selection a challenge in the uncommon situation that systemic chemotherapy is required.
Collapse
Affiliation(s)
- José C. Martínez
- Division of Hematology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eben I. Lichtman
- Division of Hematology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
21
|
Faravelli G, Mondani V, Mangione PP, Raimondi S, Marchese L, Lavatelli F, Stoppini M, Corazza A, Canetti D, Verona G, Obici L, Taylor GW, Gillmore JD, Giorgetti S, Bellotti V. Amyloid Formation by Globular Proteins: The Need to Narrow the Gap Between in Vitro and in Vivo Mechanisms. Front Mol Biosci 2022; 9:830006. [PMID: 35237660 PMCID: PMC8883118 DOI: 10.3389/fmolb.2022.830006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/20/2022] [Indexed: 11/15/2022] Open
Abstract
The globular to fibrillar transition of proteins represents a key pathogenic event in the development of amyloid diseases. Although systemic amyloidoses share the common characteristic of amyloid deposition in the extracellular matrix, they are clinically heterogeneous as the affected organs may vary. The observation that precursors of amyloid fibrils derived from circulating globular plasma proteins led to huge efforts in trying to elucidate the structural events determining the protein metamorphosis from their globular to fibrillar state. Whereas the process of metamorphosis has inspired poets and writers from Ovid to Kafka, protein metamorphism is a more recent concept. It is an ideal metaphor in biochemistry for studying the protein folding paradigm and investigating determinants of folding dynamics. Although we have learned how to transform both normal and pathogenic globular proteins into fibrillar polymers in vitro, the events occurring in vivo, are far more complex and yet to be explained. A major gap still exists between in vivo and in vitro models of fibrillogenesis as the biological complexity of the disease in living organisms cannot be reproduced at the same extent in the test tube. Reviewing the major scientific attempts to monitor the amyloidogenic metamorphosis of globular proteins in systems of increasing complexity, from cell culture to human tissues, may help to bridge the gap between the experimental models and the actual pathological events in patients.
Collapse
Affiliation(s)
- Giulia Faravelli
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Valentina Mondani
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - P. Patrizia Mangione
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
| | - Sara Raimondi
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Loredana Marchese
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesca Lavatelli
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Stoppini
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandra Corazza
- Department of Medicine (DAME), University of Udine, Udine, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Diana Canetti
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
| | - Guglielmo Verona
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
| | - Laura Obici
- Amyloidosis Research and Treatment Centre, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Graham W. Taylor
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
| | - Julian D. Gillmore
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, United Kingdom
| | - Sofia Giorgetti
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Vittorio Bellotti
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
- Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- *Correspondence: Vittorio Bellotti, ,
| |
Collapse
|
22
|
A Conservative Point Mutation in a Dynamic Antigen-binding Loop of Human Immunoglobulin λ6 Light Chain Promotes Pathologic Amyloid Formation. J Mol Biol 2021; 433:167310. [PMID: 34678302 DOI: 10.1016/j.jmb.2021.167310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023]
Abstract
Immunoglobulin light chain (LC) amyloidosis (AL) is a life-threatening human disease wherein free mono-clonal LCs deposit in vital organs. To determine what makes some LCs amyloidogenic, we explored patient-based amyloidogenic and non-amyloidogenic recombinant LCs from the λ6 subtype prevalent in AL. Hydrogen-deuterium exchange mass spectrometry, structural stability, proteolysis, and amyloid growth studies revealed that the antigen-binding CDR1 loop is the least protected part in the variable domain of λ6 LC, particularly in the AL variant. N32T substitution in CRD1 is identified as a driver of amyloid formation. Substitution N32T increased the amyloidogenic propensity of CDR1 loop, decreased its protection in the native structure, and accelerated amyloid growth in the context of other AL substitutions. The destabilizing effects of N32T propagated across the molecule increasing its dynamics in regions ∼30 Å away from the substitution site. Such striking long-range effects of a conservative point substitution in a dynamic surface loop may be relevant to Ig function. Comparison of patient-derived and engineered proteins showed that N32T interactions with other substitution sites must contribute to amyloidosis. The results suggest that CDR1 is critical in amyloid formation by other λ6 LCs.
Collapse
|
23
|
Dissection of the amyloid formation pathway in AL amyloidosis. Nat Commun 2021; 12:6516. [PMID: 34764275 PMCID: PMC8585945 DOI: 10.1038/s41467-021-26845-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
In antibody light chain (AL) amyloidosis, overproduced light chain (LC) fragments accumulate as fibrils in organs and tissues of patients. In vitro, AL fibril formation is a slow process, characterized by a pronounced lag phase. The events occurring during this lag phase are largely unknown. We have dissected the lag phase of a patient-derived LC truncation and identified structural transitions that precede fibril formation. The process starts with partial unfolding of the VL domain and the formation of small amounts of dimers. This is a prerequisite for the formation of an ensemble of oligomers, which are the precursors of fibrils. During oligomerization, the hydrophobic core of the LC domain rearranges which leads to changes in solvent accessibility and rigidity. Structural transitions from an anti-parallel to a parallel β-sheet secondary structure occur in the oligomers prior to amyloid formation. Together, our results reveal a rate-limiting multi-step mechanism of structural transitions prior to fibril formation in AL amyloidosis, which offers, in the long run, opportunities for therapeutic intervention. AL amyloidosis is caused by the accumulation of overproduced light chain (LC) fragments as fibrils in patient organs and it is the most prevalent systemic amyloidosis. Here, the authors combine biochemical and biophysical experiments to characterise the lag phase of a patient-derived truncated LC and they identify structural transitions that precede fibril formation.
Collapse
|
24
|
Radamaker L, Karimi-Farsijani S, Andreotti G, Baur J, Neumann M, Schreiner S, Berghaus N, Motika R, Haupt C, Walther P, Schmidt V, Huhn S, Hegenbart U, Schönland SO, Wiese S, Read C, Schmidt M, Fändrich M. Role of mutations and post-translational modifications in systemic AL amyloidosis studied by cryo-EM. Nat Commun 2021; 12:6434. [PMID: 34741031 PMCID: PMC8571268 DOI: 10.1038/s41467-021-26553-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
Systemic AL amyloidosis is a rare disease that is caused by the misfolding of immunoglobulin light chains (LCs). Potential drivers of amyloid formation in this disease are post-translational modifications (PTMs) and the mutational changes that are inserted into the LCs by somatic hypermutation. Here we present the cryo electron microscopy (cryo-EM) structure of an ex vivo λ1-AL amyloid fibril whose deposits disrupt the ordered cardiomyocyte structure in the heart. The fibril protein contains six mutational changes compared to the germ line and three PTMs (disulfide bond, N-glycosylation and pyroglutamylation). Our data imply that the disulfide bond, glycosylation and mutational changes contribute to determining the fibril protein fold and help to generate a fibril morphology that is able to withstand proteolytic degradation inside the body.
Collapse
Affiliation(s)
- Lynn Radamaker
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | | | - Giada Andreotti
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | | | - Sarah Schreiner
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Natalie Berghaus
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Raoul Motika
- Department of Asia-Africa-Studies, Middle Eastern History and Culture, University of Hamburg, 20148, Hamburg, Germany
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Volker Schmidt
- Institute of Stochastics, Ulm University, 89081, Ulm, Germany
| | - Stefanie Huhn
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
25
|
Morgan GJ. Transient disorder along pathways to amyloid. Biophys Chem 2021; 281:106711. [PMID: 34839162 DOI: 10.1016/j.bpc.2021.106711] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023]
Abstract
High-resolution structures of amyloid fibrils formed from normally-folded proteins have revealed non-native conformations of the polypeptide chains. Attaining these conformations apparently requires transition from the native state via a highly disordered conformation, in contrast to earlier models that posited a role for assembly of partially folded proteins. Modifications or interactions that extend the lifetime or constrain the conformations of these disordered states could act to enhance or suppress amyloid formation. Understanding how the properties of both the folded and transiently disordered structural ensembles influence the process of amyloid formation is a substantial challenge, but research into the properties of intrinsically disordered proteins will deliver important insights.
Collapse
Affiliation(s)
- Gareth J Morgan
- The Amyloidosis Center and Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
26
|
Identification of clonal immunoglobulin λ light-chain gene rearrangements in AL amyloidosis using next-generation sequencing. Exp Hematol 2021; 101-102:34-41.e4. [PMID: 34411686 DOI: 10.1016/j.exphem.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/25/2021] [Accepted: 08/08/2021] [Indexed: 11/21/2022]
Abstract
Amyloid light-chain (AL) amyloidosis is caused by deposition of abnormally folded clonal immunoglobulin (Ig) light chains made by malignant plasma cells in the bone marrow (BM), leading to multiorgan dysfunction. However, little is known of the factors that regulate the organ tropism of amyloid deposition in this disease. We aimed to identify the clonal composition of Igλ light-chain variable region (IGLV) genes in BM cells in patients with AL amyloidosis using next-generation sequencing. Based on our definition of the clonal IGLV rearrangement (dominant clone >2.5%, dominant cluster >5%), we identified clonal IGLV in 33 of 38 patients with AL amyloidosis (86.8%), 6 of 9 with monoclonal gammopathy of undetermined significance (67%), and 7 of 7 with multiple myeloma (100%). The clones in AL amyloidosis were significantly smaller than those in multiple myeloma (p < 0.01) but comparable to those in monoclonal gammopathy of undetermined significance. Importantly, in patients with AL amyloidosis, the difference in involved and uninvolved free light chains was not correlated with the clonal size of BM plasma cells in our repertoire analysis using NGS. In summary, the clonal composition of IGLV genes in the BM was successfully identified in most patients with AL amyloidosis using NGS. The clonal size of plasma cells in the BM is small, and small malignant clones of plasma cells may secrete free light chi and cause light chain depositions in AL amyloidosis.
Collapse
|
27
|
Abstract
Amyloidosis constitutes a large spectrum of diseases characterized by an extracellular deposition of a fibrillar aggregate, generating insoluble and toxic amasses that may be deposited in tissues in bundles with an abnormal cross-β-sheet conformation, known as amyloid. Amyloid may lead to a cell damage and an impairment of organ function. Several different proteins are recognized as able to produce amyloid fibrils with a different tissue tropism related to the molecular structure. The deposition of amyloid may occur as a consequence of the presence of an abnormal protein, caused by high plasma levels of a normal protein, or as a result of the aging process along with some environmental factors. Although amyloidosis is rare, amyloid deposits play a role in several conditions as degenerative diseases. Thus, the development of antiamyloid curative treatments may be a rational approach to treat neurodegenerative conditions like Alzheimer's disease in the future. Nowadays, novel treatment options are currently refined through controlled trials, as new drug targets and different therapeutic approaches have been identified and validated through modern advances in basic research. Fibril formation stabilizers, proteasome inhibitors, and immunotherapy revealed promising results in improving the outcomes of patients with systemic amyloidosis, and these novel algorithms will be effectively combined with current treatments based on chemotherapeutic regimens. The aim of this review is to provide an update on diagnosis and treatment for systemic amyloidosis.
Collapse
|
28
|
Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity. Nat Commun 2021; 12:3532. [PMID: 34112780 PMCID: PMC8192768 DOI: 10.1038/s41467-021-23880-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/23/2021] [Indexed: 02/05/2023] Open
Abstract
In systemic light chain amyloidosis (AL), pathogenic monoclonal immunoglobulin light chains (LC) form toxic aggregates and amyloid fibrils in target organs. Prompt diagnosis is crucial to avoid permanent organ damage, but delayed diagnosis is common because symptoms usually appear only after strong organ involvement. Here we present LICTOR, a machine learning approach predicting LC toxicity in AL, based on the distribution of somatic mutations acquired during clonal selection. LICTOR achieves a specificity and a sensitivity of 0.82 and 0.76, respectively, with an area under the receiver operating characteristic curve (AUC) of 0.87. Tested on an independent set of 12 LCs sequences with known clinical phenotypes, LICTOR achieves a prediction accuracy of 83%. Furthermore, we are able to abolish the toxic phenotype of an LC by in silico reverting two germline-specific somatic mutations identified by LICTOR, and by experimentally assessing the loss of in vivo toxicity in a Caenorhabditis elegans model. Therefore, LICTOR represents a promising strategy for AL diagnosis and reducing high mortality rates in AL.
Collapse
|
29
|
Methods to study the structure of misfolded protein states in systemic amyloidosis. Biochem Soc Trans 2021; 49:977-985. [PMID: 33929491 DOI: 10.1042/bst20201022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022]
Abstract
Systemic amyloidosis is defined as a protein misfolding disease in which the amyloid is not necessarily deposited within the same organ that produces the fibril precursor protein. There are different types of systemic amyloidosis, depending on the protein constructing the fibrils. This review will focus on recent advances made in the understanding of the structural basis of three major forms of systemic amyloidosis: systemic AA, AL and ATTR amyloidosis. The three diseases arise from the misfolding of serum amyloid A protein, immunoglobulin light chains or transthyretin. The presented advances in understanding were enabled by recent progress in the methodology available to study amyloid structures and protein misfolding, in particular concerning cryo-electron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy. An important observation made with these techniques is that the structures of previously described in vitro formed amyloid fibrils did not correlate with the structures of amyloid fibrils extracted from diseased tissue, and that in vitro fibrils were typically more protease sensitive. It is thus possible that ex vivo fibrils were selected in vivo by their proteolytic stability.
Collapse
|
30
|
Bollen C, Dewachter L, Michiels J. Protein Aggregation as a Bacterial Strategy to Survive Antibiotic Treatment. Front Mol Biosci 2021; 8:669664. [PMID: 33937340 PMCID: PMC8085434 DOI: 10.3389/fmolb.2021.669664] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
While protein aggregation is predominantly associated with loss of function and toxicity, it is also known to increase survival of bacteria under stressful conditions. Indeed, protein aggregation not only helps bacteria to cope with proteotoxic stresses like heat shocks or oxidative stress, but a growing number of studies suggest that it also improves survival during antibiotic treatment by inducing dormancy. A well-known example of dormant cells are persisters, which are transiently refractory to the action of antibiotics. These persister cells can switch back to the susceptible state and resume growth in the absence of antibiotics, and are therefore considered an important cause of recurrence of infections. Mounting evidence now suggests that this antibiotic-tolerant persister state is tightly linked to-or perhaps even driven by-protein aggregation. Moreover, another dormant bacterial phenotype, the viable but non-culturable (VBNC) state, was also shown to be associated with aggregation. These results indicate that persisters and VBNC cells may constitute different stages of the same dormancy program induced by progressive protein aggregation. In this mini review, we discuss the relation between aggregation and bacterial dormancy, focusing on both persisters and VBNC cells. Understanding the link between protein aggregation and dormancy will not only provide insight into the fundamentals of bacterial survival, but could prove highly valuable in our future battle to fight them.
Collapse
Affiliation(s)
- Celien Bollen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
López Sánchez HA, Kathuria SV, Fernández Velasco DA. The Folding Pathway of 6aJL2. J Phys Chem B 2021; 125:1997-2008. [PMID: 33620231 DOI: 10.1021/acs.jpcb.0c08534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One-third of the reported cases of light chain amyloidosis are related to the germ line λ6 family; remarkably, healthy individuals express this type of protein in just 2% of the peripheral blood and bone marrow B-cells. The appearance of the disease has been related to the inherent properties of this protein family. A recombinant representative model for λ6 proteins called 6aJL2 containing the amino acid sequence encoded by the 6a and JL2 germ line genes was previously designed and synthesized to study the properties of this family. Previous work on 6aJL2 suggested a simple two-state folding model at 25 °C; no intermediate could be identified either by kinetics or by fluorescence and circular dichroism equilibrium studies, although the presence of an intermediate that is populated at ∼2.4 M urea was suggested by size exclusion chromatography. In this study we employed classic equilibrium and kinetic experiments and analysis to elucidate the detailed folding mechanism of this protein. We identify species that are kinetically accessible and/or are populated at equilibrium. We describe the presence of intermediate and native-like species and propose a five-species folding mechanism at 25 °C at short incubation times, similar to and consistent with those observed in other proteins of this fold. The formation of intermediates in the mechanism of 6aJL2 is faster than that proposed for a Vκ light chain, which could be an important distinction in the amyloidogenic potential of both germ lines.
Collapse
Affiliation(s)
- Haven A López Sánchez
- Laboratorio de FísicoQuímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Sagar V Kathuria
- Biochemistry and Molecular Pharmacology Department, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - D Alejandro Fernández Velasco
- Laboratorio de FísicoQuímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
32
|
Molecular mechanism of amyloidogenic mutations in hypervariable regions of antibody light chains. J Biol Chem 2021; 296:100334. [PMID: 33508322 PMCID: PMC7949129 DOI: 10.1016/j.jbc.2021.100334] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic light chain (AL) amyloidosis is a fatal protein misfolding disease in which excessive secretion, misfolding, and subsequent aggregation of free antibody light chains eventually lead to deposition of amyloid plaques in various organs. Patient-specific mutations in the antibody VL domain are closely linked to the disease, but the molecular mechanisms by which certain mutations induce misfolding and amyloid aggregation of antibody domains are still poorly understood. Here, we compare a patient VL domain with its nonamyloidogenic germline counterpart and show that, out of the five mutations present, two of them strongly destabilize the protein and induce amyloid fibril formation. Surprisingly, the decisive, disease-causing mutations are located in the highly variable complementarity determining regions (CDRs) but exhibit a strong impact on the dynamics of conserved core regions of the patient VL domain. This effect seems to be based on a deviation from the canonical CDR structures of CDR2 and CDR3 induced by the substitutions. The amyloid-driving mutations are not necessarily involved in propagating fibril formation by providing specific side chain interactions within the fibril structure. Rather, they destabilize the VL domain in a specific way, increasing the dynamics of framework regions, which can then change their conformation to form the fibril core. These findings reveal unexpected influences of CDR-framework interactions on antibody architecture, stability, and amyloid propensity.
Collapse
|
33
|
Weber B, Hora M, Kazman P, Pradhan T, Rührnößl F, Reif B, Buchner J. Domain Interactions Determine the Amyloidogenicity of Antibody Light Chain Mutants. J Mol Biol 2020; 432:6187-6199. [PMID: 33058870 DOI: 10.1016/j.jmb.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
In antibody light chain amyloidosis (AL), mutant light chains (LCs) or their variable domains (VLs) form fibrils, which accumulate in organs and lead to their failure. The molecular mechanism of this disease is still poorly understood. One of the key open issues is whether the mutant VLs and LCs differ in fibril formation. We addressed this question studying the effects of the VL mutations S20N and R61A within the isolated VL domain and in the full-length LC scaffold. Both VL variants readily form fibrils. Here, we find that in the LC context, the S20N variant is protected from fibril formation while for LC R61A fibril formation is even accelerated compared to VL R61A. Our analyses revealed that the partially unfolded state of the VL R61A domain destabilizes the CL domain by non-native interactions, in turn leading to a further unfolding of the VL domain. In contrast, the folded mutant VL S20N and VL wt form native interactions with CL. These are beneficial for LC stability and promote amyloid resistance. Thus the effects of specific mutations on the VL fold can have opposing effects on LC domain interactions, stability and amyloidogenicity.
Collapse
Affiliation(s)
- Benedikt Weber
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Manuel Hora
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Pamina Kazman
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Tejaswini Pradhan
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Florian Rührnößl
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernd Reif
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany.
| |
Collapse
|
34
|
Morgan GJ, Wall JS. The Process of Amyloid Formation due to Monoclonal Immunoglobulins. Hematol Oncol Clin North Am 2020; 34:1041-1054. [PMID: 33099422 DOI: 10.1016/j.hoc.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Monoclonal antibodies secreted by clonally expanded plasma cells can form a range of pathologic aggregates including amyloid fibrils. The enormous diversity in the sequences of the involved light chains may be responsible for complexity of the disease. Nevertheless, important common features have been recognized. Two recent high-resolution structures of light chain fibrils show related but distinct conformations. The native structure of the light chains is lost when they are incorporated into the amyloid fibrils. The authors discuss the processes that lead to aggregation and describe how existing and emerging therapies aim to prevent aggregation or remove amyloid fibrils from tissues.
Collapse
Affiliation(s)
- Gareth J Morgan
- Amyloidosis Center and Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| | - Jonathan S Wall
- Amyloidosis and Cancer Theranostics Program, Preclinical and Diagnostic Molecular Imaging Laboratory, The University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37920, USA
| |
Collapse
|
35
|
Understanding Mesangial Pathobiology in AL-Amyloidosis and Monoclonal Ig Light Chain Deposition Disease. Kidney Int Rep 2020; 5:1870-1893. [PMID: 33163710 PMCID: PMC7609979 DOI: 10.1016/j.ekir.2020.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with plasma cell dyscrasias produce free abnormal monoclonal Ig light chains that circulate in the blood stream. Some of them, termed glomerulopathic light chains, interact with the mesangial cells and trigger, in a manner dependent of their structural and physicochemical properties, a sequence of pathological events that results in either light chain–derived (AL) amyloidosis (AL-Am) or light chain deposition disease (LCDD). The mesangial cells play a key role in the pathogenesis of both diseases. The interaction with the pathogenic light chain elicits specific cellular processes, which include apoptosis, phenotype transformation, and secretion of extracellular matrix components and metalloproteinases. Monoclonal light chains associated with AL-Am but not those producing LCDD are avidly endocytosed by mesangial cells and delivered to the mature lysosomal compartment where amyloid fibrils are formed. Light chains from patients with LCDD exert their pathogenic signaling effect at the cell surface of mesangial cells. These events are generic mesangial responses to a variety of adverse stimuli, and they are similar to those characterizing other more frequent glomerulopathies responsible for many cases of end-stage renal disease. The pathophysiologic events that have been elucidated allow to propose future therapeutic approaches aimed at preventing, stopping, ameliorating, or reversing the adverse effects resulting from the interactions between glomerulopathic light chains and mesangium.
Collapse
|
36
|
Yan NL, Santos-Martins D, Rennella E, Sanchez BB, Chen JS, Kay LE, Wilson IA, Morgan GJ, Forli S, Kelly JW. Structural basis for the stabilization of amyloidogenic immunoglobulin light chains by hydantoins. Bioorg Med Chem Lett 2020; 30:127356. [PMID: 32631553 DOI: 10.1016/j.bmcl.2020.127356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 01/15/2023]
Abstract
Misfolding and aggregation of immunoglobulin light chains (LCs) leads to the degeneration of post-mitotic tissue in the disease immunoglobulin LC amyloidosis (AL). We previously reported the discovery of small molecule kinetic stabilizers of the native dimeric structure of full-length LCs, which slow or stop the LC aggregation cascade at the outset. A predominant structural category of kinetic stabilizers emerging from the high-throughput screen are coumarins substituted at the 7-position, which bind at the interface between the two variable domains of the light chain dimer. Here, we report the binding mode of another, more polar, LC kinetic stabilizer chemotype, 3,5-substituted hydantoins. Computational docking, solution nuclear magnetic resonance experiments, and x-ray crystallography show that the aromatic substructure emerging from the hydantoin 3-position occupies the same LC binding site as the coumarin ring. Notably, the hydantoin ring extends beyond the binding site mapped out by the coumarin hits. The hydantoin ring makes hydrogen bonds with both LC monomers simultaneously. The alkyl substructure at the hydantoin 5-position partially occupies a novel binding pocket proximal to the pocket occupied by the coumarin substructure. Overall, the hydantoin structural data suggest that a larger area of the LC variable-domain-variable-domain dimer interface is amenable to small molecule binding than previously demonstrated, which should facilitate development of more potent full-length LC kinetic stabilizers.
Collapse
Affiliation(s)
- Nicholas L Yan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Diogo Santos-Martins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Enrico Rennella
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, ON M5S1A8, Canada
| | - Brittany B Sanchez
- Automated Synthesis Facility, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jason S Chen
- Automated Synthesis Facility, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, ON M5S1A8, Canada; The Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, ON M5G1X8, Canada
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gareth J Morgan
- Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; The Amyloidosis Center, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
37
|
Sternke-Hoffmann R, Boquoi A, Lopez Y Niedenhoff D, Platten F, Fenk R, Haas R, Buell AK. Biochemical and biophysical characterisation of immunoglobulin free light chains derived from an initially unbiased population of patients with light chain disease. PeerJ 2020; 8:e8771. [PMID: 32211238 PMCID: PMC7083161 DOI: 10.7717/peerj.8771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/19/2020] [Indexed: 11/20/2022] Open
Abstract
In light chain (LC) diseases, monoclonal immunoglobulin LCs are abundantly produced with the consequence in some cases to form deposits of a fibrillar or amorphous nature affecting various organs, such as heart and kidney. The factors that determine the solubility of any given LC in vivo are still not well understood. We hypothesize that some of the biochemical properties of the LCs that have been shown to correlate with amyloid fibril formation in patients also can be used as predictors for the degree of kidney damage in a patient group that is only biased by protein availability. We performed detailed biochemical and biophysical investigations of light chains extracted and purified from the urine of a group of 20 patients with light chain disease. For all samples that contained a sufficiently high concentration of LC, we quantified the unfolding temperature of the LCs, the monomer-dimer distribution, the digestibility by trypsin and the formation of amyloid fibrils under various conditions of pH and reducing agent. We correlated the results of our biophysical and biochemical experiments with the degree of kidney damage in the patient group and found that most of these parameters do not correlate with kidney damage as defined by clinical parameters. However, the patients with the greatest impairment of kidney function have light chains which display very poor digestibility by trypsin. Most of the LC properties reported before to be predictors of amyloid formation cannot be used to assess the degree of kidney damage. Our finding that poor trypsin digestibility correlates with kidney damage warrants further investigation in order to probe a putative mechanistic link between these factors.
Collapse
Affiliation(s)
| | - Amelie Boquoi
- Department of Hematology, Oncology and Clinical Oncology, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - David Lopez Y Niedenhoff
- Department of Hematology, Oncology and Clinical Oncology, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Florian Platten
- Condensed Matter Physics Laboratory, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Oncology, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Oncology, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Alexander K Buell
- Institute of Physical Biology, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
38
|
Kazman P, Vielberg MT, Pulido Cendales MD, Hunziger L, Weber B, Hegenbart U, Zacharias M, Köhler R, Schönland S, Groll M, Buchner J. Fatal amyloid formation in a patient's antibody light chain is caused by a single point mutation. eLife 2020; 9:52300. [PMID: 32151314 PMCID: PMC7064341 DOI: 10.7554/elife.52300] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/06/2020] [Indexed: 11/29/2022] Open
Abstract
In systemic light chain amyloidosis, an overexpressed antibody light chain (LC) forms fibrils which deposit in organs and cause their failure. While it is well-established that mutations in the LC’s VL domain are important prerequisites, the mechanisms which render a patient LC amyloidogenic are ill-defined. In this study, we performed an in-depth analysis of the factors and mutations responsible for the pathogenic transformation of a patient-derived λ LC, by recombinantly expressing variants in E. coli. We show that proteolytic cleavage of the patient LC resulting in an isolated VL domain is essential for fibril formation. Out of 11 mutations in the patient VL, only one, a leucine to valine mutation, is responsible for fibril formation. It disrupts a hydrophobic network rendering the C-terminal segment of VL more dynamic and decreasing domain stability. Thus, the combination of proteolytic cleavage and the destabilizing mutation trigger conformational changes that turn the LC pathogenic. Amyloid light chain amyloidosis, shortened to AL amyloidosis, is a rare and often fatal disease. It is caused by a disorder of the bone marrow. Usually, cells in the bone marrow produce Y-shaped proteins called antibodies to fight infections. In AL amyloidosis, these cells release too much of the short arm of the antibody, known as its light chain, and the light chains also carry mutations. The antibodies are no longer able to assemble properly, and instead misfold and form structures, known as amyloid fibrils. The fibrils build up outside the cells, gradually causing damage to tissues and organs that can lead to life-threatening organ failure. Due to the rareness of the disease, diagnosis is often overlooked and delayed. People experience widely varying symptoms, depending on the organs affected. Also, given the diversity of antibodies people make, every person with AL amyloidosis has a variety of mutations implicated in their disease. It is thought that mutations in the antibody light chain make it unstable and prone to misfolding, but it remains unclear which specific mutations trigger a cascade of amyloid fibril formation. Now, Kazman et al. have pinpointed the exact mechanism in one case of the disease. First, tissue biopsies from a woman with advanced AL amyloidosis were analyzed, and the defunct antibody light chain was isolated. Eleven mutations were identified in the antibody light chain, only one of which was found to be responsible for the formation of the harmful fibrils. The next step was to determine how this one small change was so damaging. The experiments showed that after the antibody light chain was cut in two, a process that happens naturally in the body, this single mutation transforms it into a protein capable of causing disease. In this ‘bedside to lab bench’ study, Kazman et al. have succeeded in determining the molecular origin of one case of AL amyloidosis. The results have also shown that the instability of antibodies due to mutation does not alone explain the formation of amyloid fibrils in this disease and that the cutting of this protein in two is also important. It is hoped that, in the long run, this work will lead to new diagnostics and treatment options for people with AL amyloidosis.
Collapse
Affiliation(s)
- Pamina Kazman
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Marie-Theres Vielberg
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - María Daniela Pulido Cendales
- Center for Integrated Protein Science Munich at the Department Physik, Technische Universität München, Garching, Germany
| | - Lioba Hunziger
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Benedikt Weber
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, University of Heidelberg, Heidelberg, Germany
| | - Martin Zacharias
- Center for Integrated Protein Science Munich at the Department Physik, Technische Universität München, Garching, Germany
| | - Rolf Köhler
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Stefan Schönland
- Medical Department V, Amyloidosis Center, University of Heidelberg, Heidelberg, Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
39
|
Khan JM, Malik A, Rehman T, AlAjmi MF, Alamery SF, Alghamdi OHA, Khan RH, Odeibat HAM, Fatima S. Alpha-cyclodextrin turns SDS-induced amyloid fibril into native-like structure. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Rennella E, Morgan GJ, Yan N, Kelly JW, Kay LE. The Role of Protein Thermodynamics and Primary Structure in Fibrillogenesis of Variable Domains from Immunoglobulin Light Chains. J Am Chem Soc 2019; 141:13562-13571. [PMID: 31364359 DOI: 10.1021/jacs.9b05499] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immunoglobulin light-chain amyloidosis is a protein aggregation disease that leads to proteinaceous deposits in a variety of organs in the body and, if untreated, ultimately results in death. The mechanisms by which light-chain aggregation occurs are not well understood. Here we have used solution NMR spectroscopy and biophysical studies to probe immunoglobulin variable domain λV6-57 VL aggregation, a process that appears to drive the degenerative phenotypes in amyloidosis patients. Our results establish that aggregation proceeds via the unfolded state. We identify, through NMR relaxation experiments recorded on the unfolded domain ensemble, a series of hotspots that could be involved in the initial phases of aggregate formation. Mutational analysis of these hotspots reveals that the region that includes K16-R24 is particularly aggregation prone. Notably, this region includes the site of the R24G substitution, a mutation that is found in variable domains of λ light-chain deposits in 25% of patients. The R24G λV6-57 VL domain aggregates more rapidly than would be expected on the basis of thermodynamic stability alone, while substitutions in many of the aggregation-prone regions significantly slow down fibril formation.
Collapse
Affiliation(s)
- Enrico Rennella
- Departments of Molecular Genetics, Biochemistry and Chemistry , The University of Toronto , Toronto , Ontario , Canada M5S1A8
| | - Gareth J Morgan
- Departments of Molecular Medicine and Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States.,Department of Medicine , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Nicholas Yan
- Departments of Molecular Medicine and Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Jeffery W Kelly
- Departments of Molecular Medicine and Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry , The University of Toronto , Toronto , Ontario , Canada M5S1A8.,The Hospital for Sick Children , Program in Molecular Medicine , 555 University Avenue , Toronto , Ontario , Canada M5G1X8
| |
Collapse
|
41
|
Kumagai PS, Martins CS, Sales EM, Rosa HV, Mendonça DC, Damalio JCP, Spinozzi F, Itri R, Araujo APU. Correct partner makes the difference: Septin G-interface plays a critical role in amyloid formation. Int J Biol Macromol 2019; 133:428-435. [DOI: 10.1016/j.ijbiomac.2019.04.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 01/04/2023]
|
42
|
Stabilization of amyloidogenic immunoglobulin light chains by small molecules. Proc Natl Acad Sci U S A 2019; 116:8360-8369. [PMID: 30971495 DOI: 10.1073/pnas.1817567116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In Ig light-chain (LC) amyloidosis (AL), the unique antibody LC protein that is secreted by monoclonal plasma cells in each patient misfolds and/or aggregates, a process leading to organ degeneration. As a step toward developing treatments for AL patients with substantial cardiac involvement who have difficulty tolerating existing chemotherapy regimens, we introduce small-molecule kinetic stabilizers of the native dimeric structure of full-length LCs, which can slow or stop the amyloidogenicity cascade at its origin. A protease-coupled fluorescence polarization-based high-throughput screen was employed to identify small molecules that kinetically stabilize LCs. NMR and X-ray crystallographic data demonstrate that at least one structural family of hits bind at the LC-LC dimerization interface within full-length LCs, utilizing variable-domain residues that are highly conserved in most AL patients. Stopping the amyloidogenesis cascade at the beginning is a proven strategy to ameliorate postmitotic tissue degeneration.
Collapse
|
43
|
Radamaker L, Lin YH, Annamalai K, Huhn S, Hegenbart U, Schönland SO, Fritz G, Schmidt M, Fändrich M. Cryo-EM structure of a light chain-derived amyloid fibril from a patient with systemic AL amyloidosis. Nat Commun 2019; 10:1103. [PMID: 30894526 PMCID: PMC6427026 DOI: 10.1038/s41467-019-09032-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Amyloid fibrils derived from antibody light chains are key pathogenic agents in systemic AL amyloidosis. They can be deposited in multiple organs but cardiac amyloid is the major risk factor of mortality. Here we report the structure of a λ1 AL amyloid fibril from an explanted human heart at a resolution of 3.3 Å which we determined using cryo-electron microscopy. The fibril core consists of a 91-residue segment presenting an all-beta fold with ten mutagenic changes compared to the germ line. The conformation differs substantially from natively folded light chains: a rotational switch around the intramolecular disulphide bond being the crucial structural rearrangement underlying fibril formation. Our structure provides insight into the mechanism of protein misfolding and the role of patient-specific mutations in pathogenicity.
Collapse
Affiliation(s)
- Lynn Radamaker
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Yin-Hsi Lin
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | | | - Stefanie Huhn
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Günter Fritz
- Institute of Microbiology, University of Hohenheim, 70599, Stuttgart, Germany
- Institute for Neuropathology, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
44
|
The CDR1 and Other Regions of Immunoglobulin Light Chains are Hot Spots for Amyloid Aggregation. Sci Rep 2019; 9:3123. [PMID: 30816248 PMCID: PMC6395779 DOI: 10.1038/s41598-019-39781-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Immunoglobulin light chain-derived (AL) amyloidosis is a debilitating disease without known cure. Almost nothing is known about the structural factors driving the amyloidogenesis of the light chains. This study aimed to identify the fibrillogenic hotspots of the model protein 6aJL2 and in pursuing this goal, two complementary approaches were applied. One of them was based on several web-based computational tools optimized to predict fibrillogenic/aggregation-prone sequences based on different structural and biophysical properties of the polypeptide chain. Then, the predictions were confirmed with an ad-hoc synthetic peptide library. In the second approach, 6aJL2 protein was proteolyzed with trypsin, and the products incubated in aggregation-promoting conditions. Then, the aggregation-prone fragments were identified by combining standard proteomic methods, and the results validated with a set of synthetic peptides with the sequence of the tryptic fragments. Both strategies coincided to identify a fibrillogenic hotspot located at the CDR1 and β-strand C of the protein, which was confirmed by scanning proline mutagenesis analysis. However, only the proteolysis-based strategy revealed additional fibrillogenic hotspots in two other regions of the protein. It was shown that a fibrillogenic hotspot associated to the CDR1 is also encoded by several κ and λ germline variable domain gene segments. Some parts of this study have been included in the chapter “The Structural Determinants of the Immunoglobulin Light Chain Amyloid Aggregation”, published in Physical Biology of Proteins and Peptides, Springer 2015 (ISBN 978-3-319-21687-4).
Collapse
|
45
|
Role of domain interactions in the aggregation of full-length immunoglobulin light chains. Proc Natl Acad Sci U S A 2018; 116:854-863. [PMID: 30598439 DOI: 10.1073/pnas.1817538116] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Amyloid light-chain (LC) amyloidosis is a protein misfolding disease in which the aggregation of an overexpressed antibody LC from a clonal plasma cell leads to organ toxicity and patient death if left untreated. While the overall dimeric architecture of LC molecules is established, with each LC composed of variable (VL) and constant (CL) domains, the relative contributions of LC domain-domain interfaces and intrinsic domain stabilities to protection against LC aggregation are not well understood. To address these topics we have engineered a number of domain-destabilized LC mutants and used solution NMR spectroscopy to characterize their structural properties and intrinsic stabilities. Moreover, we used fluorescence spectroscopy to assay their aggregation propensities. Our results point to the importance of both dimerization strength and intrinsic monomer stability in stabilizing VL domains against aggregation. Notably, in all cases considered VL domains aggregate at least 10-fold faster than full-length LCs, establishing the important protective role of CL domains. A strong protective coupling is found between VL-VL and CL-CL dimer interfaces, with destabilization of one interface adversely affecting the stability of the other. Fibril formation is observed when either the VL or CL domain in the full-length protein is severely destabilized (i.e., where domain unfolding free energies are less than 2 kcal/mol). The important role of CL domains in preventing aggregation highlights the potential of the CL-CL interface as a target for the development of drugs to stabilize the dimeric LC structure and hence prevent LC amyloidosis.
Collapse
|
46
|
Weber B, Hora M, Kazman P, Göbl C, Camilloni C, Reif B, Buchner J. The Antibody Light-Chain Linker Regulates Domain Orientation and Amyloidogenicity. J Mol Biol 2018; 430:4925-4940. [PMID: 30414962 DOI: 10.1016/j.jmb.2018.10.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/04/2018] [Accepted: 10/28/2018] [Indexed: 12/21/2022]
Abstract
The antibody light chain (LC) consists of two domains and is essential for antigen binding in mature immunoglobulins. The two domains are connected by a highly conserved linker that comprises the structurally important Arg108 residue. In antibody light chain (AL) amyloidosis, a severe protein amyloid disease, the LC and its N-terminal variable domain (VL) convert to fibrils deposited in the tissues causing organ failure. Understanding the factors shaping the architecture of the LC is important for basic science, biotechnology and for deciphering the principles that lead to fibril formation. In this study, we examined the structure and properties of LC variants with a mutated or extended linker. We show that under destabilizing conditions, the linker modulates the amyloidogenicity of the LC. The fibril formation propensity of LC linker variants and their susceptibility to proteolysis directly correlate implying an interplay between the two LC domains. Using NMR and residual dipolar coupling-based simulations, we found that the linker residue Arg108 is a key factor regulating the relative orientation of the VL and CL domains, keeping them in a bent and dense, but still flexible conformation. Thus, inter-domain contacts and the relative orientation of VL and CL to each other are of major importance for maintaining the structural integrity of the full-length LC.
Collapse
Affiliation(s)
- Benedikt Weber
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr, 4, 85748 Garching, Germany
| | - Manuel Hora
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr, 4, 85748 Garching, Germany
| | - Pamina Kazman
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr, 4, 85748 Garching, Germany
| | - Christoph Göbl
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr, 4, 85748 Garching, Germany; Helmholtz Zentrum München, Institute of Structural Biology, Ingolstädter Landstr, 1, 85764 Neuherberg, Germany
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milan, Italy
| | - Bernd Reif
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr, 4, 85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr, 4, 85748 Garching, Germany.
| |
Collapse
|
47
|
Blancas-Mejia LM, Misra P, Dick CJ, Cooper SA, Redhage KR, Bergman MR, Jordan TL, Maar K, Ramirez-Alvarado M. Immunoglobulin light chain amyloid aggregation. Chem Commun (Camb) 2018; 54:10664-10674. [PMID: 30087961 DOI: 10.1039/c8cc04396e] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Light chain (AL) amyloidosis is a devastating, complex, and incurable protein misfolding disease. It is characterized by an abnormal proliferation of plasma cells (fully differentiated B cells) producing an excess of monoclonal immunoglobulin light chains that are secreted into circulation, where the light chains misfold, aggregate as amyloid fibrils in target organs, and cause organ dysfunction, organ failure, and death. In this article, we will review the factors that contribute to AL amyloidosis complexity, the findings by our laboratory from the last 16 years and the work from other laboratories on understanding the structural, kinetics, and thermodynamic contributions that drive immunoglobulin light chain-associated amyloidosis. We will discuss the role of cofactors and the mechanism of cellular damage. Last, we will review our recent findings on the high resolution structure of AL amyloid fibrils. AL amyloidosis is the best example of protein sequence diversity in misfolding diseases, as each patient has a unique combination of germline donor sequences and multiple amino acid mutations in the protein that forms the amyloid fibril.
Collapse
Affiliation(s)
- Luis M Blancas-Mejia
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schwaigerlehner L, Pechlaner M, Mayrhofer P, Oostenbrink C, Kunert R. Lessons learned from merging wet lab experiments with molecular simulation to improve mAb humanization. Protein Eng Des Sel 2018; 31:257-265. [PMID: 29757445 PMCID: PMC6277173 DOI: 10.1093/protein/gzy009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022] Open
Abstract
Humanized monoclonal antibodies (mAbs) are among the most promising modern therapeutics, but defined engineering strategies are still not available. Antibody humanization often leads to a loss of affinity, as it is the case for our model antibody Ab2/3H6 (PDB entry 3BQU). Identifying appropriate back-to-mouse mutations is needed to restore binding affinity, but highly challenging. In order to get more insight, we have applied molecular dynamics simulations and correlated them to antibody binding and expression in wet lab experiments. In this study, we discuss six mAb variants and investigate a tyrosine conglomeration, an isopolar substitution and the improvement of antibody binding towards wildtype affinity. In the 3D structure of the mouse wildtype, residue R94h is surrounded by three tyrosines which form a so-called 'tyrosine cage'. We demonstrate that the tyrosine cage has a supporting function for the CDRh3 loop conformation. The isopolar substitution is not able to mimic the function appropriately. Finally, we show that additional light chain mutations can restore binding to wildtype-comparable level, and also improve the expression of the mAb significantly. We conclude that the variable light chain of Ab2/3H6 is of underestimated importance for the interaction with its antigen mAb 2F5.
Collapse
Affiliation(s)
- L Schwaigerlehner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria
| | - M Pechlaner
- Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria
| | - P Mayrhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria
| | - C Oostenbrink
- Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria
| | - R Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria
| |
Collapse
|
49
|
Velázquez-López I, Valdés-García G, Romero Romero S, Maya Martínez R, Leal-Cervantes AI, Costas M, Sánchez-López R, Amero C, Pastor N, Fernández Velasco DA. Localized conformational changes trigger the pH-induced fibrillogenesis of an amyloidogenic λ light chain protein. Biochim Biophys Acta Gen Subj 2018; 1862:1656-1666. [PMID: 29669263 DOI: 10.1016/j.bbagen.2018.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/04/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Abstract
Solvent conditions modulate the expression of the amyloidogenic potential of proteins. In this work the effect of pH on the fibrillogenic behavior and the conformational properties of 6aJL2, a model protein of the highly amyloidogenic variable light chain λ6a gene segment, was examined. Ordered aggregates showing the ultrastructural and spectroscopic properties observed in amyloid fibrils were formed in the 2.0-8.0 pH range. At pH <3.0 a drastic decrease in lag time and an increase in fibril formation rate were found. In the 4.0-8.0 pH range there was no spectroscopic evidence for significant conformational changes in the native state. Likewise, heat capacity measurements showed no evidence for residual structure in the unfolded state. However, at pH <3.0 stability is severely decreased and the protein suffers conformational changes as detected by circular dichroism, tryptophan and ANS fluorescence, as well as by NMR spectroscopy. Molecular dynamics simulations indicate that acid-induced conformational changes involve the exposure of the loop connecting strands E and F. These results are compatible with pH-induced changes in the NMR spectra. Overall, the results indicate that the mechanism involved in the acid-induced increase in the fibrillogenic potential of 6aJL2 is profoundly different to that observed in κ light chains, and is promoted by localized conformational changes in a region of the protein that was previously not known to be involved in acid-induced light chain fibril formation. The identification of this region opens the potential for the design of specific inhibitors.
Collapse
Affiliation(s)
- Isabel Velázquez-López
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Gilberto Valdés-García
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, México
| | - Sergio Romero Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Roberto Maya Martínez
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, México
| | - Ana I Leal-Cervantes
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México
| | | | - Carlos Amero
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, México.
| | - D Alejandro Fernández Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
50
|
Hall D, Kinjo AR, Goto Y. A new look at an old view of denaturant induced protein unfolding. Anal Biochem 2018; 542:40-57. [DOI: 10.1016/j.ab.2017.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022]
|