1
|
Lorena MDSV, Santos EKD, Ferretti R, Nagana Gowda GA, Odom GL, Chamberlain JS, Matsumura CY. Biomarkers for Duchenne muscular dystrophy progression: impact of age in the mdx tongue spared muscle. Skelet Muscle 2023; 13:16. [PMID: 37705069 PMCID: PMC10500803 DOI: 10.1186/s13395-023-00325-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy without an effective treatment, caused by mutations in the DMD gene, leading to the absence of dystrophin. DMD results in muscle weakness, loss of ambulation, and death at an early age. Metabolomics studies in mdx mice, the most used model for DMD, reveal changes in metabolites associated with muscle degeneration and aging. In DMD, the tongue muscles exhibit unique behavior, initially showing partial protection against inflammation but later experiencing fibrosis and loss of muscle fibers. Certain metabolites and proteins, like TNF-α and TGF-β, are potential biomarkers for dystrophic muscle characterization. METHODS To investigate disease progression and aging, we utilized young (1 month old) and old (21-25 months old) mdx and wild-type tongue muscles. Metabolite changes were analyzed using 1H nuclear magnetic resonance, while TNF-α and TGF-β were assessed using Western blotting to examine inflammation and fibrosis. Morphometric analysis was conducted to assess the extent of myofiber damage between groups. RESULTS The histological analysis of the mid-belly tongue showed no differences between groups. No differences were found between the concentrations of metabolites from wild-type or mdx whole tongues of the same age. The metabolites alanine, methionine, and 3-methylhistidine were higher, and taurine and glycerol were lower in young tongues in both wild type and mdx (p < 0.001). The metabolites glycine (p < 0.001) and glutamic acid (p = 0.0018) were different only in the mdx groups, being higher in young mdx mice. Acetic acid, phosphocreatine, isoleucine, succinic acid, creatine, and the proteins TNF-α and TGF-β had no difference in the analysis between groups (p > 0.05). CONCLUSIONS Surprisingly, histological, metabolite, and protein analysis reveal that the tongue of old mdx remains partially spared from the severe myonecrosis observed in other muscles. The metabolites alanine, methionine, 3-methylhistidine, taurine, and glycerol may be effective for specific assessments, although their use for disease progression monitoring should be cautious due to age-related changes in the tongue muscle. Acetic acid, phosphocreatine, isoleucine, succinate, creatine, TNF-α, and TGF-β do not vary with aging and remain constant in spared muscles, suggesting their potential as specific biomarkers for DMD progression independent of aging.
Collapse
Affiliation(s)
- Marcelo Dos Santos Voltani Lorena
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Estela Kato Dos Santos
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Renato Ferretti
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - G A Nagana Gowda
- Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, USA
| | - Guy L Odom
- Department of Neurology, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeffrey S Chamberlain
- Department of Neurology, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Cintia Yuri Matsumura
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
2
|
Li C, Wilborn J, Pittman S, Daw J, Alonso-Pérez J, Díaz-Manera J, Weihl CC, Haller G. Comprehensive functional characterization of SGCB coding variants predicts pathogenicity in limb-girdle muscular dystrophy type R4/2E. J Clin Invest 2023; 133:e168156. [PMID: 37317968 PMCID: PMC10266784 DOI: 10.1172/jci168156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
Genetic testing is essential for patients with a suspected hereditary myopathy. More than 50% of patients clinically diagnosed with a myopathy carry a variant of unknown significance in a myopathy gene, often leaving them without a genetic diagnosis. Limb-girdle muscular dystrophy (LGMD) type R4/2E is caused by mutations in β-sarcoglycan (SGCB). Together, β-, α-, γ-, and δ-sarcoglycan form a 4-protein transmembrane complex (SGC) that localizes to the sarcolemma. Biallelic loss-of-function mutations in any subunit can lead to LGMD. To provide functional evidence for the pathogenicity of missense variants, we performed deep mutational scanning of SGCB and assessed SGC cell surface localization for all 6,340 possible amino acid changes. Variant functional scores were bimodally distributed and perfectly predicted pathogenicity of known variants. Variants with less severe functional scores more often appeared in patients with slower disease progression, implying a relationship between variant function and disease severity. Amino acid positions intolerant to variation mapped to points of predicted SGC interactions, validated in silico structural models, and enabled accurate prediction of pathogenic variants in other SGC genes. These results will be useful for clinical interpretation of SGCB variants and improving diagnosis of LGMD; we hope they enable wider use of potentially life-saving gene therapy.
Collapse
Affiliation(s)
| | - Jackson Wilborn
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Jorge Alonso-Pérez
- Neuromuscular Disease Unit, Neurology Department, Hospital Universitario Nuestra Señora de Candelaria, Fundación Canaria Instituto de Investigación Sanitaria de Canarias, Tenerife, Spain
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Center, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Gabe Haller
- Department of Neurology and
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Lorena MDSV, Santos EK, Ferretti R, Gowda GAN, Odom GL, Chamberlain JS, Matsumura CY. Biomarkers for Duchenne muscular dystrophy progression: impact of age in the mdx tongue spared muscle. RESEARCH SQUARE 2023:rs.3.rs-3038923. [PMID: 37398370 PMCID: PMC10312970 DOI: 10.21203/rs.3.rs-3038923/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background: Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy without an effective treatment, caused by mutations in the DMD gene, leading to the absence of dystrophin. DMD results in muscle weakness, loss of ambulation and death at an early age. Metabolomics studies in mdx mice, the most used model for DMD, reveal changes in metabolites associated with muscle degeneration and aging. In DMD, the tongue muscles exhibit unique behavior, initially showing partial protection against inflammation but later experiencing fibrosis and loss of muscle fibers. Certain metabolites and proteins, like TNF-α and TGF-β, are potential biomarkers for dystrophic muscle characterization. Methods: To investigate disease progression and aging, we utilized young (1-month old) and old (21-25 months old) mdx and wild-type mice. Metabolite changes were analyzed using 1-H Nuclear Magnetic Resonance, while TNF-α and TGF-β were assessed using Western blotting to examine inflammation, and fibrosis. Morphometric analysis was conducted to assess the extent of myofiber damage between groups. Results: The histological analysis of the tongue showed no differences between groups. No differences were found between the concentrations of metabolites from wild type or mdx animals of the same age. The metabolites alanine, methionine, 3-methylhistidine were higher, and taurine and glycerol were lower in young animals in both wild type and mdx (p < 0.001). The metabolites glycine (p < 0.001) and glutamic acid (p = 0.0018) were different only in the mdx groups, being higher in young mdx mice. Acetic acid, phosphocreatine, isoleucine, succinic acid, creatine and the proteins TNF-α and TGF-β had no difference in the analysis between groups (p > 0.05). Conclusions: Surprisingly, histological and protein analysis reveals that the tongue of young and old mdx animals is protected from severe myonecrosis observed in other muscles. The metabolites alanine, methionine, 3-methylhistidine, taurine, and glycerol may be effective for specific assessments, although their use for disease progression monitoring should be cautious due to age-related changes. Acetic acid, phosphocreatine, isoleucine, succinate, creatine, TNF-α, and TGF-β do not vary with aging and remain constant in spared muscles, suggesting their potential as specific biomarkers for DMD progression independent of aging.
Collapse
Affiliation(s)
| | - Estela Kato Santos
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP)
| | - Renato Ferretti
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP)
| | - G A Nagana Gowda
- Northwest Metabolomics Research Center; Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington
| | - Guy L Odom
- Department of Neurology, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine
| | - Jeffrey S Chamberlain
- Department of Neurology, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine
| | - Cintia Yuri Matsumura
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP)
| |
Collapse
|
4
|
Barboni MTS, Joachimsthaler A, Roux MJ, Nagy ZZ, Ventura DF, Rendon A, Kremers J, Vaillend C. Retinal dystrophins and the retinopathy of Duchenne muscular dystrophy. Prog Retin Eye Res 2022:101137. [DOI: 10.1016/j.preteyeres.2022.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
5
|
Karnam S, Skiba NP, Rao PV. Biochemical and biomechanical characteristics of dystrophin-deficient mdx 3cv mouse lens. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165998. [PMID: 33127476 PMCID: PMC8323981 DOI: 10.1016/j.bbadis.2020.165998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
The molecular and cellular basis for cataract development in mice lacking dystrophin, a scaffolding protein that links the cytoskeleton to the extracellular matrix, is poorly understood. In this study, we characterized lenses derived from the dystrophin-deficient mdx3cv mouse model. Expression of Dp71, a predominant isoform of dystrophin in the lens, was induced during lens fiber cell differentiation. Dp71 was found to co-distribute with dystroglycan, connexin-50 and 46, aquaporin-0, and NrCAM as a large cluster at the center of long arms of the hexagonal fibers. Although mdx3cv mouse lenses exhibited dramatically reduced levels of Dp71, only older lenses revealed punctate nuclear opacities compared to littermate wild type (WT) lenses. The levels of dystroglycan, syntrophin, and dystrobrevin which comprise the dystrophin-associated protein complex (DAPC), and NrCAM, connexin-50, and aquaporin-0, were significantly lower in the lens membrane fraction of adult mdx3cv mice compared to WT mice. Additionally, decreases were observed in myosin light chain phosphorylation and lens stiffness together with a significant elevation in the levels of utrophin, a functional homolog of dystrophin in mdx3cv mouse lenses compared to WT lenses. The levels of perlecan and laminin (ligands of α-dystroglycan) remained normal in dystrophin-deficient lens fibers. Taken together, although mdx3cv mouse lenses exhibit only minor defects in lens clarity possibly due to a compensatory increase in utrophin, the noted disruptions of DAPC, stability, and organization of membrane integral proteins of fibers, and stiffness of mdx3cv lenses reveal the importance of dystrophin and DAPC in maintaining lens clarity and function.
Collapse
Affiliation(s)
- Shruthi Karnam
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
6
|
Xu S, Tang S, Li X, Iyer SR, Lovering RM. Abnormalities in Brain and Muscle Microstructure and Neurochemistry of the DMD Rat Measured by in vivo Diffusion Tensor Imaging and High Resolution Localized 1H MRS. Front Neurosci 2020; 14:739. [PMID: 32760246 PMCID: PMC7372970 DOI: 10.3389/fnins.2020.00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/22/2020] [Indexed: 12/03/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disorder caused by the lack of dystrophin with progressive degeneration of skeletal muscles. Most studies regarding DMD understandably focus on muscle, but dystrophin is also expressed in the central nervous system, potentially resulting in cognitive and behavioral changes. Animal models are being used for developing more comprehensive neuromonitoring protocols and clinical image acquisition procedures. The recently developed DMD rat is an animal model that parallels the progressive muscle wasting seen in DMD. Here, we studied the brain and temporalis muscle structure and neurochemistry of wild type (WT) and dystrophic (DMD) rats using magnetic resonance imaging and spectroscopy. Both structural and neurochemistry alterations were observed in the DMD rat brain and the temporalis muscle. There was a decrease in absolute brain volume (WT = 1579 mm3; DMD = 1501 mm3; p = 0.039, Cohen’s d = 1.867), but not normalized (WT = 4.27; DMD = 4.02; p = 0.306) brain volume. Diffusion tensor imaging (DTI) revealed structural alterations in the DMD temporalis muscle, with increased mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). In the DMD rat thalamus, DTI revealed an increase in fractional anisotropy (FA) and a decrease in RD. Smaller normalized brain volume correlated to severity of muscle dystrophy (r = −0.975). Neurochemical changes in the DMD rat brain included increased GABA and NAA in the prefrontal cortex, and GABA in the hippocampus. Such findings could indicate disturbed motor and sensory signaling, resulting in a dysfunctional GABAergic neurotransmission, and an unstable osmoregulation in the dystrophin-null brain.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xin Li
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Iwata Y, Katayama Y, Okuno Y, Wakabayashi S. Novel inhibitor candidates of TRPV2 prevent damage of dystrophic myocytes and ameliorate against dilated cardiomyopathy in a hamster model. Oncotarget 2018; 9:14042-14057. [PMID: 29581825 PMCID: PMC5865651 DOI: 10.18632/oncotarget.24449] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/25/2022] Open
Abstract
Transient receptor potential cation channel, subfamily V, member 2 (TRPV2) is a principal candidate for abnormal Ca2+-entry pathways, which is a potential target for therapy of muscular dystrophy and cardiomyopathy. Here, an in silico drug screening and the following cell-based screening to measure the TRPV2 activation were carried out in HEK293 cells expressing TRPV2 using lead compounds (tranilast or SKF96365) and off-patent drug stocks. We identified 4 chemical compounds containing amino-benzoyl groups and 1 compound (lumin) containing an ethylquinolinium group as candidate TRPV2 inhibitors. Three of these compounds inhibited Ca2+ entry through both mouse and human TRPV2, with IC50 of less than 10 μM, but had no apparent effect on other members of TRP family such as TRPV1 and TRPC1. Particularly, lumin inhibited agonist-induced TRPV2 channel activity at a low dose. These compounds inhibited abnormally increased Ca2+ influx and prevented stretch-induced skeletal muscle damage in cultured myocytes from dystrophic hamsters (J2N-k). Further, they ameliorated cardiac dysfunction, and prevented disease progression in vivo in the same J2N-k hamsters developing dilated cardiomyopathy as well as muscular dystrophy. The identified compounds described here are available as experimental tools and represent potential treatments for patients with cardiomyopathy and muscular dystrophy.
Collapse
Affiliation(s)
- Yuko Iwata
- Departments of Molecular Physiology and Clinical Research, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yoshimi Katayama
- Pharmacological Research Laboratories, Drug Safety Testing Center Co., Ltd., Higashimatsuyama, Saitama, Japan.,Present affiliation: Biological Research Laboratories, Nissan Chemical Industries, Ltd, Shiraoka, Saitama, Japan
| | - Yasushi Okuno
- Department of Clinical System Onco-Informatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeo Wakabayashi
- Departments of Molecular Physiology and Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Present affiliation: Department of Pharmocology, Osaka Medical Collage, Takatsuki, Osaka, Japan
| |
Collapse
|
8
|
Mavrogeni S, Papavasiliou A, Giannakopoulou K, Markousis-Mavrogenis G, Pons MR, Karanasios E, Nikas I, Papadopoulos G, Kolovou G, Chrousos GP. Oedema-fibrosis in Duchenne Muscular Dystrophy: Role of cardiovascular magnetic resonance imaging. Eur J Clin Invest 2017; 47. [PMID: 29027210 DOI: 10.1111/eci.12843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle disorder characterized by progressive, irreversible loss of cardiac and skeletal muscular function. Muscular enlargement in DMD is attributed to oedema, due to the increased cytoplasmic Na+ concentration. The aim of this review was to present the current experience and emphasize the role of cardiovascular magnetic resonance (CMR) in the diagnosis of this condition. DMD patients' survival depends on ventilatory assistance, as respiratory muscle dysfunction was the most common cause of death in the past. Currently, due to improved ventilatory assistance, cardiomyopathy has become the main cause of death, even though clinically overt heart failure may be absent. CMR is the technique of choice to assess the pathophysiologic phenomena taking place in DMD, such as myocardial oedema and subepicardial fibrosis. The classic index to assess oedema is the T2-weighted short-tau inversion recovery (T2w-STIR), as it suppresses the signal from flowing blood and resident fat and enhances sensitivity to tissue fluid. Furthermore, CMR is the most reliable technique to detect and quantify fibrosis in DMD. Recently, the new indices T2, T1 mapping (native and postcontrast) and the extracellular volume (ECV) allow a more accurate approach of myocardial oedema and fibrosis. To conclude, the assessment of cardiac oedema and subepicardial fibrosis in the inferolateral wall of the left heart ventricle are the most important early finding in DMD with preserved ventricular function, and CMR, using both the classic and the new indices, is the best technique to detect and monitor these lesions.
Collapse
Affiliation(s)
| | | | - Katerina Giannakopoulou
- First Dept of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Maria Roser Pons
- First Dept of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Evangelos Karanasios
- First Dept of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Ioannis Nikas
- First Dept of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - George Papadopoulos
- First Dept of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | | | - George P Chrousos
- First Dept of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
9
|
Mavrogeni S, Pons R, Nikas I, Papadopoulos G, Verganelakis DA, Kolovou G, Chrousos GP. Brain and heart magnetic resonance imaging/spectroscopy in duchenne muscular dystrophy. Eur J Clin Invest 2017; 47. [PMID: 28981141 DOI: 10.1111/eci.12842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle disorder characterized by progressive and irreversible loss of muscular function. As muscular disease progresses, the repair mechanisms cannot compensate for cellular damage, leading inevitably to necrosis and progressive replacement by fibrous and fatty tissue. Cardiomyopathy and respiratory failure are the main causes of death in DMD. In addition to the well-described muscle and heart disease, cognitive dysfunction affects around 30% of DMD boys. Myocardial fibrosis, assessed by late gadolinium enhancement (LGE), using cardiovascular magnetic resonance imaging (CMR), is an early marker of heart involvement in both DMD patients and female carriers. In parallel, brain MRI identifies smaller total brain volume, smaller grey matter volume, lower white matter fractional anisotropy and higher white matter radial diffusivity in DMD patients. The in vivo brain evaluation of mdx mice, a surrogate animal model of DMD, showed an increased inorganic phosphate (P(i))/phosphocreatine (PCr) and pH. In this paper, we propose a holistic approach using techniques of magnetic resonance imaging, spectroscopy and diffusion tensor imaging as a tool to create a "heart and brain imaging map" in DMD patients that could potentially facilitate the patients' risk stratification and also future research studies in the field.
Collapse
Affiliation(s)
| | - Roser Pons
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Ioannis Nikas
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - George Papadopoulos
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Dimitrios A Verganelakis
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | | | - George P Chrousos
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
10
|
Wada E, Tanihata J, Iwamura A, Takeda S, Hayashi YK, Matsuda R. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice. Skelet Muscle 2017; 7:23. [PMID: 29078808 PMCID: PMC5660454 DOI: 10.1186/s13395-017-0140-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 11/12/2022] Open
Abstract
Background Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Methods Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Results Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. Conclusion As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy particularly for promoting skeletal muscle regeneration. Electronic supplementary material The online version of this article (10.1186/s13395-017-0140-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eiji Wada
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, Japan. .,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan.
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, Japan
| | - Akira Iwamura
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, Japan
| | - Ryoichi Matsuda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| |
Collapse
|
11
|
van de Steeg E, Läppchen T, Aguilera B, Jansen HT, Muilwijk D, Vermue R, van der Hoorn JW, Donato K, Rossin R, de Visser PC, Vlaming MLH. Feasibility of SPECT-CT Imaging to Study the Pharmacokinetics of Antisense Oligonucleotides in a Mouse Model of Duchenne Muscular Dystrophy. Nucleic Acid Ther 2017; 27:221-231. [PMID: 28418733 DOI: 10.1089/nat.2016.0649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antisense oligonucleotides (AONs) are promising candidates for treatment of Duchenne muscular dystrophy (DMD), a severe and progressive disease resulting in premature death. However, more knowledge on the pharmacokinetics of new AON drug candidates is desired for effective application in the clinic. We assessed the feasibility of using noninvasive single-photon emission computed tomography-computed tomography (SPECT-CT) imaging to determine AON pharmacokinetics in vivo. To this end, a 2'-O-methyl phosphorothioate AON was radiolabeled with 123I or 111In, and administered to mdx mice, a rodent model of DMD. SPECT-CT imaging was performed to determine AON tissue levels, and the results were compared to data obtained with invasive analysis methods (scintillation counting and a ligation-hybridization assay). We found that SPECT-CT data obtained with 123I-AON and 111In-AON were qualitatively comparable to data derived from invasive analytical methods, confirming the feasibility of using SPECT-CT analysis to study AON pharmacokinetics. Notably, also AON uptake in skeletal muscle, the target tissue in DMD, could be readily quantified using SPECT-CT imaging, which was considered a particular challenge in mice, due to their small size. In conclusion, our results demonstrate that SPECT-CT imaging allows for noninvasive characterization of biodistribution and pharmacokinetics of AONs, thereby enabling quantitative comparisons between different radiolabeled AON drug candidates and qualitative conclusions about the corresponding unmodified parent AONs. This technology may contribute to improved (pre)clinical drug development, leading to drug candidates with optimized characteristics in vivo.
Collapse
Affiliation(s)
| | - Tilman Läppchen
- 2 Department Minimally Invasive Healthcare, Philips Research , Eindhoven, the Netherlands
| | | | | | | | - Rick Vermue
- 3 BioMarin Nederland BV , Leiden, the Netherlands
| | | | - Katia Donato
- 2 Department Minimally Invasive Healthcare, Philips Research , Eindhoven, the Netherlands
| | - Raffaella Rossin
- 2 Department Minimally Invasive Healthcare, Philips Research , Eindhoven, the Netherlands
| | | | | |
Collapse
|
12
|
Sanchez B, Iyer SR, Li J, Kapur K, Xu S, Rutkove SB, Lovering RM. Non-invasive assessment of muscle injury in healthy and dystrophic animals with electrical impedance myography. Muscle Nerve 2017; 56:E85-E94. [PMID: 28056487 DOI: 10.1002/mus.25559] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Dystrophic muscle is particularly susceptible to eccentric contraction-induced injury. We tested the hypothesis that electrical impedance myography (EIM) can detect injury induced by maximal-force lengthening contractions. METHODS We induced injury in the quadriceps of wild-type (WT) and dystrophic (mdx) mice with eccentric contractions using an established model. RESULTS mdx quadriceps had significantly greater losses in peak twitch and tetany compared with losses in WT quadriceps. Injured muscle showed a significant increase in EIM characteristic frequency in both WT (177 ± 7.7%) and mdx (167 ± 7.8%) quadriceps. EIM also revealed decreased extracellular resistance for both WT and mdx quadriceps after injury. DISCUSSION Our results show overall agreement between muscle function and EIM measurements of injured muscle, indicating that EIM is a viable tool to assess injury in dystrophic muscle. Muscle Nerve 56: E85-E94, 2017.
Collapse
Affiliation(s)
- Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Room 540, 100 Penn Street, Baltimore, Maryland, 21201, USA
| | - Jia Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kush Kapur
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Boston Children's Hospital, Boston, Massachusetts, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Room 540, 100 Penn Street, Baltimore, Maryland, 21201, USA
| |
Collapse
|
13
|
Hendriksen RGF, Schipper S, Hoogland G, Schijns OEMG, Dings JTA, Aalbers MW, Vles JSH. Dystrophin Distribution and Expression in Human and Experimental Temporal Lobe Epilepsy. Front Cell Neurosci 2016; 10:174. [PMID: 27458343 PMCID: PMC4937016 DOI: 10.3389/fncel.2016.00174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/21/2016] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Dystrophin is part of a protein complex that connects the cytoskeleton to the extracellular matrix. In addition to its role in muscle tissue, it functions as an anchoring protein within the central nervous system such as in hippocampus and cerebellum. Its presence in the latter regions is illustrated by the cognitive problems seen in Duchenne Muscular Dystrophy (DMD). Since epilepsy is also supposed to constitute a comorbidity of DMD, it is hypothesized that dystrophin plays a role in neuronal excitability. Here, we aimed to study brain dystrophin distribution and expression in both, human and experimental temporal lobe epilepsy (TLE). METHOD Regional and cellular dystrophin distribution was evaluated in both human and rat hippocampi and in rat cerebellar tissue by immunofluorescent colocalization with neuronal (NeuN and calbindin) and glial (GFAP) markers. In addition, hippocampal dystrophin levels were estimated by Western blot analysis in biopsies from TLE patients, post-mortem controls, amygdala kindled (AK)-, and control rats. RESULTS Dystrophin was expressed in all hippocampal pyramidal subfields and in the molecular-, Purkinje-, and granular cell layer of the cerebellum. In these regions it colocalized with GFAP, suggesting expression in astrocytes such as Bergmann glia (BG) and velate protoplasmic astrocytes. In rat hippocampus and cerebellum there were neither differences in dystrophin positive cell types, nor in the regional dystrophin distribution between AK and control animals. Quantitatively, hippocampal full-length dystrophin (Dp427) levels were about 60% higher in human TLE patients than in post-mortem controls (p < 0.05), whereas the level of the shorter Dp71 isoform did not differ. In contrast, AK animals showed similar dystrophin levels as controls. CONCLUSION Dystrophin is ubiquitously expressed by astrocytes in the human and rat hippocampus and in the rat cerebellum. Hippocampal full-length dystrophin (Dp427) levels are upregulated in human TLE, but not in AK rats, possibly indicating a compensatory mechanism in the chronic epileptic human brain.
Collapse
Affiliation(s)
- Ruben G F Hendriksen
- Department of Neurology, Maastricht University Medical Centre Maastricht, Netherlands
| | - Sandra Schipper
- Department of Neurology, Maastricht University Medical CentreMaastricht, Netherlands; School for Mental Health and Neuroscience, Maastricht UniversityMaastricht, Netherlands
| | - Govert Hoogland
- School for Mental Health and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Department of Neurosurgery, Maastricht University Medical CentreMaastricht, Netherlands
| | - Olaf E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Centre Maastricht, Netherlands
| | - Jim T A Dings
- Department of Neurosurgery, Maastricht University Medical Centre Maastricht, Netherlands
| | - Marlien W Aalbers
- Department of Neurosurgery, Groningen University Medical Centre Groningen, Netherlands
| | - Johan S H Vles
- Department of Neurology, Maastricht University Medical Centre Maastricht, Netherlands
| |
Collapse
|
14
|
Xu S, Shi D, Pratt SJP, Zhu W, Marshall A, Lovering RM. Abnormalities in brain structure and biochemistry associated with mdx mice measured by in vivo MRI and high resolution localized (1)H MRS. Neuromuscul Disord 2015; 25:764-72. [PMID: 26236031 DOI: 10.1016/j.nmd.2015.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/21/2015] [Accepted: 07/06/2015] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD), an X-linked disorder caused by the lack of dystrophin, is characterized by the progressive wasting of skeletal muscles. To date, what is known about dystrophin function is derived from studies of dystrophin-deficient animals, with the most common model being the mdx mouse. Most studies on patients with DMD and in mdx mice have focused on skeletal muscle and the development of therapies to reverse, or at least slow, the severe muscle wasting and progressive degeneration. However, dystrophin is also expressed in the CNS. Both mdx mice and patients with DMD can have cognitive and behavioral changes, but studies in the dystrophic brain are limited. We examined the brain structure and metabolites of mature wild type (WT) and mdx mice using magnetic resonance imaging and spectroscopy (MRI/MRS). Both structural and metabolic alterations were observed in the mdx brain. Enlarged lateral ventricles were detected in mdx mice when compared to WT. Diffusion tensor imaging (DTI) revealed elevations in diffusion diffusivities in the prefrontal cortex and a reduction of fractional anisotropy in the hippocampus. Metabolic changes included elevations in phosphocholine and glutathione, and a reduction in γ-aminobutyric acid in the hippocampus. In addition, an elevation in taurine was observed in the prefrontal cortex. Such findings indicate a regional structural change, altered cellular antioxidant defenses, a dysfunction of GABAergic neurotransmission, and a perturbed osmoregulation in the brain lacking dystrophin.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Da Shi
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Stephen J P Pratt
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Wenjun Zhu
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Andrew Marshall
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
15
|
Hendriksen RG, Hoogland G, Schipper S, Hendriksen JG, Vles JS, Aalbers MW. A possible role of dystrophin in neuronal excitability: A review of the current literature. Neurosci Biobehav Rev 2015; 51:255-62. [DOI: 10.1016/j.neubiorev.2015.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 01/18/2015] [Accepted: 01/31/2015] [Indexed: 10/24/2022]
|
16
|
Goodnough CL, Gao Y, Li X, Qutaish MQ, Goodnough LH, Molter J, Wilson D, Flask CA, Yu X. Lack of dystrophin results in abnormal cerebral diffusion and perfusion in vivo. Neuroimage 2014; 102 Pt 2:809-16. [PMID: 25213753 PMCID: PMC4320943 DOI: 10.1016/j.neuroimage.2014.08.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/08/2023] Open
Abstract
Dystrophin, the main component of the dystrophin–glycoprotein complex, plays an important role in maintaining the structural integrity of cells. It is also involved in the formation of the blood–brain barrier (BBB). To elucidate the impact of dystrophin disruption in vivo, we characterized changes in cerebral perfusion and diffusion in dystrophin-deficient mice (mdx) by magnetic resonance imaging (MRI). Arterial spin labeling (ASL) and diffusion-weighted MRI (DWI) studies were performed on 2-month-old and 10-month-old mdx mice and their age-matched wild-type controls (WT). The imaging results were correlated with Evan's blue extravasation and vascular density studies. The results show that dystrophin disruption significantly decreased the mean cerebral diffusivity in both 2-month-old (7.38± 0.30 × 10−4mm2/s) and 10-month-old (6.93 ± 0.53 × 10−4 mm2/s) mdx mice as compared to WT (8.49±0.24×10−4, 8.24±0.25× 10−4mm2/s, respectively). There was also an 18% decrease in cerebral perfusion in 10-month-old mdx mice as compared to WT, which was associated with enhanced arteriogenesis. The reduction in water diffusivity in mdx mice is likely due to an increase in cerebral edema or the existence of large molecules in the extracellular space from a leaky BBB. The observation of decreased perfusion in the setting of enhanced arteriogenesis may be caused by an increase of intracranial pressure from cerebral edema. This study demonstrates the defects in water handling at the BBB and consequently, abnormal perfusion associated with the absence of dystrophin.
Collapse
Affiliation(s)
- Candida L Goodnough
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ying Gao
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xin Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mohammed Q Qutaish
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - L Henry Goodnough
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph Molter
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - David Wilson
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chris A Flask
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xin Yu
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
17
|
Lu A, Poddar M, Tang Y, Proto JD, Sohn J, Mu X, Oyster N, Wang B, Huard J. Rapid depletion of muscle progenitor cells in dystrophic mdx/utrophin-/- mice. Hum Mol Genet 2014; 23:4786-800. [PMID: 24781208 DOI: 10.1093/hmg/ddu194] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) patients lack dystrophin from birth; however, muscle weakness becomes apparent only at 3-5 years of age, which happens to coincide with the depletion of the muscle progenitor cell (MPC) pools. Indeed, MPCs isolated from older DMD patients demonstrate impairments in myogenic potential. To determine whether the progression of muscular dystrophy is a consequence of the decline in functional MPCs, we investigated two animal models of DMD: (i) dystrophin-deficient mdx mice, the most commonly utilized model of DMD, which has a relatively mild dystrophic phenotype and (ii) dystrophin/utrophin double knock-out (dKO) mice, which display a similar histopathologic phenotype to DMD patients. In contrast to age-matched mdx mice, we observed that both the number and regeneration potential of dKO MPCs rapidly declines during disease progression. This occurred in MPCs at both early and late stages of myogenic commitment. In fact, early MPCs isolated from 6-week-old dKO mice have reductions in proliferation, resistance to oxidative stress and multilineage differentiation capacities compared with age-matched mdx MPCs. This effect may potentially be mediated by fibroblast growth factor overexpression and/or a reduction in telomerase activity. Our results demonstrate that the rapid disease progression in the dKO model is associated, at least in part, with MPC depletion. Therefore, alleviating MPC depletion could represent an approach to delay the onset of the histopathologies associated with DMD patients.
Collapse
Affiliation(s)
- Aiping Lu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Minakshi Poddar
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jonathan D Proto
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jihee Sohn
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Xiaodong Mu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Nicholas Oyster
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
18
|
Edeleva EV, Shcherbata HR. Stress-induced ECM alteration modulates cellular microRNAs that feedback to readjust the extracellular environment and cell behavior. Front Genet 2013; 4:305. [PMID: 24427166 PMCID: PMC3876577 DOI: 10.3389/fgene.2013.00305] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/16/2013] [Indexed: 12/14/2022] Open
Abstract
The extracellular environment is a complex entity comprising of the extracellular matrix (ECM) and regulatory molecules. It is highly dynamic and under cell-extrinsic stress, transmits the stressed organism’s state to each individual ECM-connected cell. microRNAs (miRNAs) are regulatory molecules involved in virtually all the processes in the cell, especially under stress. In this review, we analyse how miRNA expression is regulated downstream of various signal transduction pathways induced by changes in the extracellular environment. In particular, we focus on the muscular dystrophy-associated cell adhesion molecule dystroglycan capable of signal transduction. Then we show how exactly the same miRNAs feedback to regulate the extracellular environment. The ultimate goal of this bi-directional signal transduction process is to change cell behavior under cell-extrinsic stress in order to respond to it accordingly.
Collapse
Affiliation(s)
- Evgeniia V Edeleva
- Max Planck Research Group for Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group for Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| |
Collapse
|
19
|
Temporal changes in magnetic resonance imaging in the mdx mouse. BMC Res Notes 2013; 6:262. [PMID: 23837666 PMCID: PMC3716616 DOI: 10.1186/1756-0500-6-262] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/10/2013] [Indexed: 12/03/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is characterized clinically by severe, progressive loss of skeletal muscle. The phenotype is much less severe in the mdx mouse model of DMD than that seen in patients with DMD. However, a “critical period” has been described for the mdx mouse, during which there is a peak in muscle weakness and degeneration/regeneration between the 2nd and 5th weeks of life. A number of studies have employed small animal magnetic resonance imaging (MRI) to examine skeletal muscle in various dystrophic models, but such studies represent a snapshot in time rather than a longitudinal view. Results The in vivo cross-sectional T2-weighted image of the healthy (wild type, WT) muscles is homogeneously dark and this homogeneity does not change with time, as there is no disease. We, and others, have shown marked changes in MRI in dystrophic muscle, with multiple, unevenly distributed focal hyperintensities throughout the bulk of the muscles. Here we monitored an mdx mouse using MRI from 5 to 80 weeks of age. Temporal MRI scans show an increase in heterogeneity shortly after the critical period, at 9 and 13 weeks of age, with a decrease in heterogeneity thereafter. The 4.3-fold increase in percent heterogeneity at week 9 and 13 is consistent with the notion of an early critical period described for mdx mice. Conclusions Age is a significant variable in quantitative MR studies of the mdx mouse. The mdx mouse is typically studied during the critical period, at a time that most closely mimics the DMD pathology, but the preliminary findings here, albeit based on imaging only one mdx mouse over time, suggest that the changes in MRI can occur shortly after this period, when the muscles are still recovering.
Collapse
|
20
|
Koo T, Wood MJ. Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy. Hum Gene Ther 2013; 24:479-88. [PMID: 23521559 DOI: 10.1089/hum.2012.234] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the DMD gene, affecting 1 in 3500 newborn males. Complete loss of muscle dystrophin protein causes progressive muscle weakness and heart and respiratory failure, leading to premature death. Antisense oligonucleotides (AONs) that bind to complementary sequences of the dystrophin pre-mRNA to induce skipping of the targeted exon by modulating pre-mRNA splicing are promising therapeutic agents for DMD. Such AONs can restore the open reading frame of the DMD gene and produce internally deleted, yet partially functional dystrophin protein isoforms in skeletal muscle. Within the last few years, clinical trials using AONs have made considerable progress demonstrating the restoration of functional dystrophin protein and acceptable safety profiles following both local and systemic delivery in DMD patients. However, improvement of AON delivery and efficacy, along with the development of multiple AONs to treat as many DMD patients as possible needs to be addressed for this approach to fulfill its potential. Here, we review the recent progress made in clinical trials using AONs to treat DMD and discuss the current challenges to the development of AON-based therapy for DMD.
Collapse
Affiliation(s)
- Taeyoung Koo
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | | |
Collapse
|
21
|
Xu S, Pratt SJP, Spangenburg EE, Lovering RM. Early metabolic changes measured by 1H MRS in healthy and dystrophic muscle after injury. J Appl Physiol (1985) 2012; 113:808-16. [PMID: 22744967 DOI: 10.1152/japplphysiol.00530.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle injury is often assessed by clinical findings (history, pain, tenderness, strength loss), by imaging, or by invasive techniques. The purpose of this work was to determine if in vivo proton magnetic resonance spectroscopy ((1)H MRS) could reveal metabolic changes in murine skeletal muscle after contraction-induced injury. We compared findings in the tibialis anterior muscle from both healthy wild-type (WT) muscles (C57BL/10 mice) and dystrophic (mdx mice) muscles (an animal model for human Duchenne muscular dystrophy) before and after contraction-induced injury. A mild in vivo eccentric injury protocol was used due to the high susceptibility of mdx muscles to injury. As expected, mdx mice sustained a greater loss of force (81%) after injury compared with WT (42%). In the uninjured muscles, choline (Cho) levels were 47% lower in the mdx muscles compared with WT muscles. In mdx mice, taurine levels decreased 17%, and Cho levels increased 25% in injured muscles compared with uninjured mdx muscles. Intramyocellular lipids and total muscle lipid levels increased significantly after injury but only in WT. The increase in lipid was confirmed using a permeable lipophilic fluorescence dye. In summary, loss of torque after injury was associated with alterations in muscle metabolite levels that may contribute to the overall injury response in mdx mice. These results show that it is possible to obtain meaningful in vivo (1)H MRS regarding skeletal muscle injury.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
22
|
Benabdesselam R, Dorbani-Mamine L, Benmessaoud-Mesbah O, Rendon A, Mhaouty-Kodja S, Hardin-Pouzet H. Dp71 gene disruption alters the composition of the dystrophin-associated protein complex and neuronal nitric oxide synthase expression in the hypothalamic supraoptic and paraventricular nuclei. J Endocrinol 2012; 213:239-49. [PMID: 22493004 DOI: 10.1530/joe-12-0066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DP71 is the major cerebral dystrophin isoform and exerts its multiple functions via the dystrophin-associated protein complex (DAPC), also comprised of β-dystroglycan (β-DG) and α1-syntrophin (α1-Syn). Since DP71 disruption leads to impairment in the central control of the osmoregulatory axis, we investigated: 1) the DAPC composition in the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) of Dp71-null mice; and 2) the expression and activity of neuronal nitric oxide synthase (nNOS), because it is a potential partner of the DAPC and a functional index of osmoregulatory axis activity. In wild-type mice, dystrophins and their autosomal homologs the utrophins, β-DG, and α1-Syn were localized in astrocyte end feet. In Dp71-null mice, the levels of β-DG and α1-Syn were lower and utrophin expression did not change. The location of the DAPC in astrocytic end feet suggests that it could be involved in hypothalamic osmosensitivity, which adapts the osmotic response. The altered composition of the DAPC in Dp71-null mice could thus explain why these mice manifest an hypo-osmolar status. In the SON and PVN neurons of Dp71-null mice, nNOS expression and activity were increased. Although we previously established that DP140 is expressed de novo in these neurons, the DAPC remained incomplete due to the low levels of β-DG and α1-Syn produced in these cells. Our data reveal the importance of DP71 for the constitution of a functional DAPC in the hypothalamus. Such DAPC disorganization may lead to modification of the microenvironment of the SON and PVN neurons and thus may result in a perturbed osmoregulation.
Collapse
Affiliation(s)
- Roza Benabdesselam
- Unité de Recherches, Faculté des Sciences Biologiques/UMMTO, BP 17, Tizi-Ouzou, Algeria
| | | | | | | | | | | |
Collapse
|
23
|
Koo T, Okada T, Athanasopoulos T, Foster H, Takeda S, Dickson G. Long-term functional adeno-associated virus-microdystrophin expression in the dystrophic CXMDj dog. J Gene Med 2012; 13:497-506. [PMID: 22144143 DOI: 10.1002/jgm.1602] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a severe, inherited, muscle-wasting disorder caused by mutations in the dystrophin gene. Preclinical studies of adeno-associated virus gene therapy for DMD have been described in mouse and dog models of this disease. However, low and transient expression of microdystrophin in dystrophic dogs and a lack of long-term microdystrophin expression associated with a CD8(+) T-cell response in DMD patients suggests that the development of improved microdystrophin genes and delivery strategies is essential for successful clinical trials in DMD patients. METHODS We have previously shown the efficiency of mRNA sequence optimization of mouse microdystrophin in ameliorating the pathology of dystrophic mdx mice. In the present study, we generated adeno-associated virus (AAV)2/8 vectors expressing an mRNA sequence-optimized canine microdystrophin under the control of a muscle-specific promoter and injected intramuscularly into a single canine X-linked muscular dystrophy (CXMDj) dog. RESULTS Expression of stable and high levels of microdystrophin was observed along with an association of the dystrophin-associated protein complex in intramuscularly injected muscles of a CXMDj dog for at least 8 weeks without immune responses. Treated muscles were highly protected from dystrophic damage, with reduced levels of myofiber permeability and central nucleation. CONCLUSIONS The data obtained in the present study suggest that the use of canine-specific and mRNA sequence-optimized microdystrophin genes in conjunction with a muscle-specific promoter results in high and stable levels of microdystrophin expression in a canine model of DMD. This approach will potentially allow the reduction of dosage and contribute towards the development of a safe and effective AAV gene therapy clinical trial protocol for DMD.
Collapse
Affiliation(s)
- Taeyoung Koo
- SWAN Institute of Biomedical and Life Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | | | | | | | | | | |
Collapse
|
24
|
Jung HK, Ryu HJ, Kim MJ, Kim WI, Choi HK, Choi HC, Song HK, Jo SM, Kang TC. Interleukin-18 attenuates disruption of brain-blood barrier induced by status epilepticus within the rat piriform cortex in interferon-γ independent pathway. Brain Res 2012; 1447:126-34. [PMID: 22338606 DOI: 10.1016/j.brainres.2012.01.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/18/2012] [Accepted: 01/24/2012] [Indexed: 01/05/2023]
Abstract
Status epilepticus increases brain-blood barrier (BBB) permeability leading to vasogenic edema. This BBB disruption is usually confined within relatively limited cerebral regions including the piriform cortex (PC), and leads to epileptogenesis and contributes to progression of epilepsy. Although cytokines are at least partly responsible for changes in BBB permeability, the role of interleukin-18 (IL-18) in vasogenic edema is not yet explored in detail. In the present study, we investigated the role of IL-18 in SE-induced vasogenic edema formation. Following SE, IL-18/interferon-γ (IFN-γ) system was up-regulated in astrocytes and microglia/macrophages. Recombinant rat (rr) IL-18 infusion decreased vasogenic edema formation, while anti-rat IL-18 infusion increased it. In contrast, rrIFN-γ, and anti-rat IFN-γ infusion showed reverse effects on vasogenic edema formation. rrIL-18 or anti-rat IFN-γ IgG infusion elevated dystrophin expression accompanied by the reduction in vasogenic edema. However, rr-IFN-γ or anti-rat IL-18 IgG infusion significantly decreased dystrophin immunoreactivity within the PC following SE. These findings indicate that IL-18-mediated up-regulation of dystrophin expression may play either a direct or indirect role in maintenance of BBB function following SE. Therefore, our findings suggest that IL-18 may have protective effect on SE-induced BBB disruption in IFN-γ independent mechanism.
Collapse
Affiliation(s)
- Hyung Keon Jung
- Department of Emergency Medical Services, Eulji University, Seongnam, Gyeonggi-do, 461-713, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim JE, Ryu HJ, Choi SY, Kang TC. Tumor necrosis factor-α-mediated threonine 435 phosphorylation of p65 nuclear factor-κB subunit in endothelial cells induces vasogenic edema and neutrophil infiltration in the rat piriform cortex following status epilepticus. J Neuroinflammation 2012; 9:6. [PMID: 22240205 PMCID: PMC3312845 DOI: 10.1186/1742-2094-9-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 01/12/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Status epilepticus (SE) induces severe vasogenic edema in the piriform cortex (PC) accompanied by neuronal and astroglial damages. To elucidate the mechanism of SE-induced vasogenic edema, we investigated the roles of tumor necrosis factor (TNF)-α in blood-brain barrier (BBB) disruption during vasogenic edema and its related events in rat epilepsy models provoked by pilocarpine-induced SE. METHODS SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline-, and soluble TNF p55 receptor (sTNFp55R) prior to SE induction. Thereafter, we performed Fluoro-Jade B staining and immunohistochemical studies for TNF-α and NF-κB subunits. RESULTS Following SE, most activated microglia showed strong TNF-α immunoreactivity. In addition, TNF p75 receptor expression was detected in endothelial cells as well as astrocytes. In addition, only p65-Thr435 phosphorylation was increased in endothelial cells accompanied by SMI-71 expression (an endothelial barrier antigen). Neutralization of TNF-α by soluble TNF p55 receptor (sTNFp55R) infusion attenuated SE-induced vasogenic edema and neuronal damages via inhibition of p65-Thr435 phosphorylation in endothelial cells. Furthermore, sTNFp55R infusion reduced SE-induced neutrophil infiltration in the PC. CONCLUSION These findings suggest that impairments of endothelial cell functions via TNF-α-mediated p65-Thr 485 NF-κB phosphorylation may be involved in SE-induced vasogenic edema. Subsequently, vasogenic edema results in extensive neutrophil infiltration and neuronal-astroglial loss.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
- Department of Neurology, UCSF, and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | - Hea Jin Ryu
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
| | - Soo Young Choi
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
- Department of Biomedical Sciences, College of Life Science, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
| |
Collapse
|
26
|
Koo T, Malerba A, Athanasopoulos T, Trollet C, Boldrin L, Ferry A, Popplewell L, Foster H, Foster K, Dickson G. Delivery of AAV2/9-microdystrophin genes incorporating helix 1 of the coiled-coil motif in the C-terminal domain of dystrophin improves muscle pathology and restores the level of α1-syntrophin and α-dystrobrevin in skeletal muscles of mdx mice. Hum Gene Ther 2011; 22:1379-88. [PMID: 21453126 DOI: 10.1089/hum.2011.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (<5 kb), truncated recombinant microdystrophin genes with deletions of most of rod and carboxyl-terminal (CT) domains of dystrophin have been developed. We have previously shown the efficiency of mRNA sequence-optimized microdystrophin (ΔR4-23/ΔCT, called MD1) with deletion of spectrin-like repeat domain 4 to 23 and CT domain in ameliorating the pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signaling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain-extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction-induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Taeyoung Koo
- SWAN Institute of Biomedical and Life Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang Q, Cao DH, Jin CL, Lin CK, Ma HW, Wu YY. A Method of Utrophin Up-Regulation through RNAi-Mediated Knockdown of the Transcription Factor EN1. J Int Med Res 2011; 39:161-71. [PMID: 21672318 DOI: 10.1177/147323001103900117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to induce up-regulation of the dystrophin-related gene UTRN that encodes the protein utrophin, to determine whether this could compensate for the lack of dystrophin function in Duchenne muscular dystrophy. The human UTRN promoter, which contains two putative binding sites for homeobox protein engrailed-1 (EN1), was analysed. It was found that EN1 binding site 2 in the UTRN gene promoter directly interacted with transcription factor EN1 in vitro. Chromatin immunoprecipitation assays of the EN1– UTRN promoter complex from rhabdomyosarcoma and HeLa cell lines confirmed that endogenous EN1 interacted with this region in vivo. The findings suggest that EN1 directly interacts with the UTRN promoter. Small interfering RNA was used to inhibit EN1 gene expression. Higher utrophin mRNA levels were observed in EN1-inhibited cells compared with controls. The increase in utrophin mRNA in rhabdomyosarcoma cells and HeLa cells may have resulted from inhibition of EN1 expression.
Collapse
Affiliation(s)
- Q Wang
- Senior Profession College, China Medical University, Shenyang, China
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - D-H Cao
- Department of Laboratory Medicine, No. 202 Hospital of the People's Liberation Army, Shenyang, China
| | - C-L Jin
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - C-K Lin
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - H-W Ma
- Department of Paediatrics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Y-Y Wu
- Department of Paediatrics, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
28
|
Sheen SH, Kim JE, Ryu HJ, Yang Y, Choi KC, Kang TC. Decrease in dystrophin expression prior to disruption of brain-blood barrier within the rat piriform cortex following status epilepticus. Brain Res 2010; 1369:173-83. [PMID: 21029730 DOI: 10.1016/j.brainres.2010.10.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 11/16/2022]
Abstract
Increased permeability of the brain-blood barrier (BBB) in the piriform cortex (PC) has been reported in various animal models of temporal lobe epilepsy. Since BBB disruption induced by epileptogenic insult has not fully clarified, we attempted to determine whether changes in BBB-related molecules are associated with vasogenic edema in the PC. One day after status epilepticus (SE), PC neurons and astrocytes showed a pyknotic nucleus and shrunken cytoplasm accompanied by vasogenic edema. At this time point, SMI-71 (an endothelial barrier antigen) immunoreactivity had decreased in the PC. Prior to vasogenic edema formation (12 h after SE), dystrophin immunoreactivity disappeared within astrocytes, while the change in glial fibrillary acidic protein immunoreactivity was negligible. However, glucose transporter-1 (an endothelial cell marker) had increased at 12 h after SE. These findings indicate that dysfunction of dystrophin induced by SE may result in endothelial and astroglial damage with BBB breakdown and increase vascular permeability, leading to vasogenic edema that is involved in pathogenesis of epileptogenesis.
Collapse
Affiliation(s)
- Seung Hun Sheen
- Department of Neurosurgery, College of Medicine, Hallym University, Chunchon 200-702, Republic of Korea
| | | | | | | | | | | |
Collapse
|
29
|
Pócsai K, Bagyura Z, Kálmán M. Components of the basal lamina and dystrophin-dystroglycan complex in the neurointermediate lobe of rat pituitary gland: different localizations of beta-dystroglycan, dystrobrevins, alpha1-syntrophin, and aquaporin-4. J Histochem Cytochem 2010; 58:463-79. [PMID: 20124096 PMCID: PMC2857818 DOI: 10.1369/jhc.2010.954768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 01/21/2010] [Indexed: 11/22/2022] Open
Abstract
The so-called neurointermediate lobe is composed of the intermediate and neural lobes of the pituitary. The present immunohistochemical study investigated components of the basal lamina (laminin, agrin, and perlecan), the dystrophin-dystroglycan complex (dystrophin, beta-dystroglycan, alpha1-dystrobrevin, beta-dystrobrevin, utrophin, and alpha1-syntrophin), and the aquaporins (aquaporin-4 and -9). Glia markers (GFAP, S100, and glutamine synthetase) and components of connective tissue (collagen type I and fibronectin) were also labeled. In the neurohypophysis, immunostaining of basal lamina delineated meningeal invaginations. In these invaginations, vessels were seen to penetrate the organ without submerging into its parenchyma. On the parenchymal side of the invaginations, beta-dystroglycan was detected, whereas utrophin was detected in the walls of vessels. Immunostaining of alpha1-dystrobrevin and alpha1-syntrophin did not delineate the vessels. The cells of the intermediate lobe were fully immunoreactive to alpha1-dystrobrevin and alpha1-syntrophin, whereas components of the basal lamina delineated the contours of the cells. GFAP-immunoreactive processes surrounded them. Aquaporin-4 localized at the periphery of the neurohypophysis, mainly adjacent to the intermediate lobe but not along the vessels. It colocalized only partially with GFAP and not at all with alpha1-syntrophin. Aquaporin-9 was not detected. These results emphasize the possibility that the components of the dystrophin-dystroglycan complex localize differently and raise the question about the roles of dystrobrevins, alpha1-syntrophin, and aquaporin-4 in the functions of the intermediate and neural lobes, respectively.
Collapse
Affiliation(s)
- Károly Pócsai
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzoltó 58, Budapest, H-1094, Hungary
| | | | | |
Collapse
|
30
|
Ozawa E. Our trails and trials in the subsarcolemmal cytoskeleton network and muscular dystrophy researches in the dystrophin era. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:798-821. [PMID: 20948175 PMCID: PMC3037518 DOI: 10.2183/pjab.86.798] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/09/2010] [Indexed: 05/30/2023]
Abstract
In 1987, about 150 years after the discovery of Duchenne muscular dystrophy (DMD), its responsible gene, the dystrophin gene, was cloned by Kunkel. This was a new substance. During these 20 odd years after the cloning, our understanding on dystrophin as a component of the subsarcolemmal cytoskeleton networks and on the pathomechanisms of and experimental therapeutics for DMD has been greatly enhanced. During this paradigm change, I was fortunately able to work as an active researcher on its frontiers for 12 years. After we discovered that dystrophin is located on the cell membrane in 1988, we studied the architecture of dystrophin and dystrophin-associated proteins (DAPs) complex in order to investigate the function of dystrophin and pathomechanism of DMD. During the conduct of these studies, we came to consider that the dystrophin-DAP complex serves to transmembranously connect the subsarcolemmal cytoskeleton networks and basal lamina to protect the lipid bilayer. It then became our working hypothesis that injury of the lipid bilayer upon muscle contraction is the cause of DMD. During this process, we predicted that subunits of the sarcoglycan (SG) complex are responsible for respective types of DMD-like muscular dystrophy with autosomal recessive inheritance. Our prediction was confirmed to be true by many researchers including ourselves. In this review, I will try to explain what we observed and how we considered concerning the architecture and function of the dystrophin-DAP complex, and the pathomechanisms of DMD and related muscular dystrophies.
Collapse
Affiliation(s)
- Eijiro Ozawa
- National Center of Neuroscience, NCNP, Kodairashi, Tokyo 187-8502, Japan.
| |
Collapse
|
31
|
Yin H, Moulton HM, Betts C, Seow Y, Boutilier J, Iverson PL, Wood MJA. A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum Mol Genet 2009; 18:4405-14. [DOI: 10.1093/hmg/ddp395] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene that abolish the synthesis of dystrophin protein. Antisense oligonucleotides (AOs) targeted to trigger excision of an exon bearing a mutant premature stop codon in the DMD transcript have been shown to skip the mutated exon and partially restore functional dystrophin protein in dystrophin-deficient mdx mice. To fully exploit the therapeutic potential of this method requires highly efficient systemic AO delivery to multiple muscle groups, to modify the disease process and restore muscle function. While systemic delivery of naked AOs in DMD animal models requires high doses and is of relatively poor efficiency, we and others have recently shown that short arginine-rich peptide-AO conjugates can dramatically improve in vivo DMD splice correction. Here we report for the first time that a chimeric fusion peptide (B-MSP-PMO) consisting of a muscle-targeting heptapeptide (MSP) fused to an arginine-rich cell-penetrating peptide (B-peptide) and conjugated to a morpholino oligomer (PMO) AO directs highly efficient systemic dystrophin splice correction in mdx mice. With very low systemic doses, we demonstrate that B-MSP-PMO restores high-level, uniform dystrophin protein expression in multiple peripheral muscle groups, yielding functional correction and improvement of the mdx dystrophic phenotype. Our data demonstrate proof-of-concept for this chimeric peptide approach in DMD splice correction therapy and is likely to have broad application.
Collapse
Affiliation(s)
- HaiFang Yin
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Tianjin Research Centre of Basic Medical Science, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, China
| | | | - Corinne Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Yiqi Seow
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
32
|
Adorjan I, Kalman M. Distribution of β-dystroglycan immunopositive globules in the subventricular zone of rat brain. Glia 2009; 57:657-66. [DOI: 10.1002/glia.20794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Kimura S, Ito K, Ueno H, Ikezawa M, Takeshima Y, Yoshioka K, Ozasa S, Nakamura K, Nomura K, Matsukura M, Mitsui K, Matsuo M, Miike T. A 2-bp deletion in exon 74 of the dystrophin gene does not clearly induce muscle weakness. Brain Dev 2009; 31:169-72. [PMID: 18430534 DOI: 10.1016/j.braindev.2008.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 03/10/2008] [Accepted: 03/12/2008] [Indexed: 11/26/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutation of the dystrophin gene. Cases of dystrophinopathy with a 2-bp deletion in the dystrophin gene commonly result in DMD. We report here a case of dystrophinopathy in a 9-years-old boy with a 2-bp deletion in exon 74 of the dystrophin gene; however, the boy had no clear clinical signs of muscle weakness. Immunohistochemical studies with N-terminal (DYS3) and rod-domain anti-dystrophin (DYS1) antibodies revealed that the dystrophin signals were weaker than in the control sample (non-dystrophinopathy) at the sarcolemma of myofibers, and the studies with C-terminus anti-dystrophin antibody (DYS2) were negative. Our patient's mutation is located between the binding sites of alpha-syntrophin and alpha-dystrobrevin. These results suggest that this mutation does not clearly induce muscle weakness at least through the age of 9 years.
Collapse
Affiliation(s)
- Shigemi Kimura
- Department of Child Development, Kumamoto University Graduate School, 1-1-1 Honjou, Kumamoto 860-0811, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Iwata Y, Katanosaka Y, Arai Y, Shigekawa M, Wakabayashi S. Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum Mol Genet 2008; 18:824-34. [PMID: 19050039 DOI: 10.1093/hmg/ddn408] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophy is a severe degenerative disorder of skeletal muscle characterized by progressive muscle weakness. One subgroup of this disease is caused by a defect in the gene encoding one of the components of the dystrophin-glycoprotein complex, resulting in a significant disruption of membrane integrity and/or stability and, consequently, a sustained increase in the cytosolic Ca(2+) concentration ([Ca(2+)](i)). In the present study, we demonstrate that muscular dystrophy is ameliorated in two animal models, dystrophin-deficient mdx mice and delta-sarcoglycan-deficient BIO14.6 hamsters by dominant-negative inhibition of the transient receptor potential cation channel, TRPV2, a principal candidate for Ca(2+)-entry pathways. When transgenic (Tg) mice expressing a TRPV2 mutant in muscle were crossed with mdx mice, the [Ca(2+)](i) increase in muscle fibers was reduced by dominant-negative inhibition of endogenous TRPV2. Furthermore, histological, biochemical and physiological indices characterizing dystrophic pathology, such as an increased number of central nuclei and fiber size variability/fibrosis/apoptosis, elevated serum creatine kinase levels, and reduced muscle performance, were all ameliorated in the mdx/Tg mice. Similar beneficial effects were also observed in the muscles of BIO14.6 hamsters infected with adenovirus carrying mutant TRPV2. We propose that TRPV2 is a principal Ca(2+)-entry route leading to a sustained [Ca(2+)](i) increase and muscle degeneration, and that it is a promising therapeutic target for the treatment of muscular dystrophy.
Collapse
Affiliation(s)
- Yuko Iwata
- Department of Molecular Physiology, National Cardiovascular Center Research Institute Suita, Osaka 565-8565, Japan.
| | | | | | | | | |
Collapse
|
35
|
Tanihata J, Suzuki N, Miyagoe-Suzuki Y, Imaizumi K, Takeda S. Downstream utrophin enhancer is required for expression of utrophin in skeletal muscle. J Gene Med 2008; 10:702-13. [PMID: 18338831 DOI: 10.1002/jgm.1190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy is caused by the absence of the muscle cytoskeletal protein dystrophin. Utrophin is an autosomal homologue of dystrophin, and overexpression of utrophin is expected to compensate for the dystrophin deficit. We previously reported that the 5.4-kb 5'-flanking region of the utrophin gene containing the A-utrophin core promoter did not drive transgene expression in heart and skeletal muscle. To clarify the regulatory mechanism of utrophin expression, we generated a nuclear localization signal-tagged LacZ transgenic (Tg) mouse, in which the LacZ gene was driven by the 129-bp downstream utrophin enhancer (DUE) and the 5.4-kb 5'-flanking region of the utrophin promoter. METHODS Two Tg lines were established. The levels of transgene mRNA expression in several tissues were examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and quantitative RT-PCR. Cryosections of several tissues were stained with haematoxylin and eosin and X-gal. RESULTS The transgene expression patterns were consistent with endogenous utrophin in several tissues including heart and skeletal muscle. Transgene expression was also up-regulated more in regenerating muscle than in nonregenerating muscle. Moreover, utrophin expression was augmented in the skeletal muscle of DUE Tg/dystrophin-deficient mdx mice through cross-breeding experiments. We finally established cultures of primary myogenic cells from this Tg mouse and found that utrophin up-regulation during muscle differentiation depends on the DUE motif. CONCLUSIONS Our results showed that DUE is indispensable for utrophin expression in skeletal muscle and heart, and primary myogenic cells from this Tg mice provide a high through-put screening system for drugs that up-regulate utrophin expression.
Collapse
Affiliation(s)
- Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawa-higashi, Kodaira, Tokyo, Japan
| | | | | | | | | |
Collapse
|
36
|
Yin H, Moulton HM, Seow Y, Boyd C, Boutilier J, Iverson P, Wood MJ. Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 2008; 17:3909-18. [PMID: 18784278 PMCID: PMC7108561 DOI: 10.1093/hmg/ddn293] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antisense oligonucleotides (AOs) have the potential to induce functional dystrophin protein expression via exon skipping by restoring in-frame transcripts in the majority of patients suffering from Duchenne muscular dystrophy (DMD). AOs of morpholino phosphoroamidate (PMO) and 2'-O-methyl phosphorothioate RNA (2'Ome RNA) chemistry have been shown to restore dystrophin expression in skeletal muscle but not in heart, following high-dose systemic delivery in murine models of muscular dystrophy (mdx). Exploiting the cell transduction properties of two basic arginine-rich cell penetrating peptides, we demonstrate widespread systemic correction of dystrophin expression in body-wide muscles and cardiac tissue in adult dystrophic mdx mice, with a single low-dose injection of peptide-conjugated PMO AO. This approach was sufficient to restore uniform, high-level dystrophin protein expression in peripheral muscle and cardiac tissue, with robust sarcolemmal relocalization of the dystrophin-associated protein complex and functional improvement in muscle. Peptide-conjugated AOs therefore have significant potential for systemic correction of the DMD phenotype.
Collapse
MESH Headings
- Animals
- Cell Membrane Permeability/drug effects
- Cell Membrane Permeability/genetics
- Dose-Response Relationship, Drug
- Dystrophin/biosynthesis
- Dystrophin/genetics
- Dystrophin/physiology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Heart Injuries/drug therapy
- Heart Injuries/metabolism
- Heart Injuries/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Morpholines/pharmacokinetics
- Morpholines/therapeutic use
- Morpholinos
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Muscular Dystrophy, Animal/drug therapy
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacokinetics
- Peptides/genetics
- Peptides/pharmacokinetics
- Peptides/therapeutic use
Collapse
Affiliation(s)
- HaiFang Yin
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | - Yiqi Seow
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Corinne Boyd
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | - Matthew J.A. Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- To whom correspondence should be addressed. Tel: +44 1865272419; Fax: +44 1865272420;
| |
Collapse
|
37
|
Iwata Y, Katanosaka Y, Hisamitsu T, Wakabayashi S. Enhanced Na+/H+ exchange activity contributes to the pathogenesis of muscular dystrophy via involvement of P2 receptors. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1576-87. [PMID: 17823278 PMCID: PMC2043518 DOI: 10.2353/ajpath.2007.070452] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A subset of muscular dystrophy is caused by genetic defects in dystrophin-associated glycoprotein complex. Using two animal models (BIO14.6 hamsters and mdx mice), we found that Na(+)/H(+) exchanger (NHE) inhibitors prevented muscle degeneration. NHE activity was constitutively enhanced in BIO myotubes, as evidenced by the elevated intracellular pH and enhanced (22)Na(+) influx, with activation of putative upstream kinases ERK42/44. NHE inhibitor significantly reduced the increases in baseline intracellular Ca(2+) as well as Na(+) concentration and stretch-induced damage, suggesting that Na(+)(i)-dependent Ca(2+)overload via the Na(+)/Ca(2+) exchanger may cause muscle damage. Furthermore, ATP was found to be released continuously from BIO myotubes in a manner further stimulated by stretching and that the P2 receptor antagonists reduce the enhanced NHE activity and dystrophic muscle damage. These observations suggest that autocrine ATP release may be primarily involved in genesis of abnormal ionic homeostasis in dystrophic muscles and that Na(+)-dependent ion exchangers play a critical pathological role in muscular dystrophy.
Collapse
Affiliation(s)
- Yuko Iwata
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
38
|
Nico B, Mangieri D, Crivellato E, Longo V, De Giorgis M, Capobianco C, Corsi P, Benagiano V, Roncali L, Ribatti D. HIF activation and VEGF overexpression are coupled with ZO-1 up-phosphorylation in the brain of dystrophic mdx mouse. Brain Pathol 2007; 17:399-406. [PMID: 17784876 PMCID: PMC8095599 DOI: 10.1111/j.1750-3639.2007.00090.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD) metabolic and structural alterations of the central nervous system are described. Here, we investigated in the brain of 10 mdx mice and in five control ones, the expression of hypoxia inducible factor-1alpha (HIF-1alpha) and we correlated it with the expression of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor-2 (VEGFR-2) and of the endothelial tight junction proteins zonula occludens-1 (ZO-1) and claudin-1. Results showed an activation of mRNA HIF-1alpha by reverse transcription polymerase chain reaction (RT-PCR) and a strong HIF1-alpha labeling of perivascular glial cells and cortical neurons by immunohistochemistry, in mdx mouse. Moreover, overexpression of VEGF and VEGFR-2, respectively, in neurons and in endothelial cells coupled with changes to endothelial ZO-1 and claudin-1 expression in the latter were detected by immunoblotting and immunohistochemistry, in the mdx brain. Furthermore, by immunoprecipitation, an up-phosphorylation of ZO-1 was demonstrated in mdx endothelial cells in parallel with the reduction in ZO-1 protein content. These data suggest that the activation of HIF-1alpha in the brain of dystrophic mice coupled with VEGF and VEGFR-2 up-regulation and ZO-1 and claudin-1 rearrangement might contribute to both blood-brain barrier opening and increased angiogenesis.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/physiopathology
- Brain/metabolism
- Brain/physiopathology
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- Brain Diseases, Metabolic, Inborn/physiopathology
- Claudin-1
- Disease Models, Animal
- Endothelial Cells/metabolism
- Female
- Hypoxia-Inducible Factor 1/genetics
- Hypoxia-Inducible Factor 1/metabolism
- Immunohistochemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/physiopathology
- Neuroglia/metabolism
- Neurons/metabolism
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphorylation
- RNA, Messenger/metabolism
- Up-Regulation/physiology
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/metabolism
- Zonula Occludens-1 Protein
Collapse
Affiliation(s)
- Beatrice Nico
- Department of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Baccari MC, Nistri S, Vannucchi MG, Calamai F, Bani D. Reversal by relaxin of altered ileal spontaneous contractions in dystrophic (mdx) mice through a nitric oxide-mediated mechanism. Am J Physiol Regul Integr Comp Physiol 2007; 293:R662-8. [PMID: 17522128 DOI: 10.1152/ajpregu.00214.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Altered nitric oxide (NO) production/release is involved in gastrointestinal motor disorders occurring in dystrophic (mdx) mice. Since the hormone relaxin (RLX) can upregulate NO biosynthesis, its effects on spontaneous motility and NO synthase (NOS) expression in the ileum of dystrophic (mdx) mice were investigated. Mechanical responses of ileal preparations were recorded in vitro via force-displacement transducers. Evaluation of the expression of NOS isoforms was performed by immunohistochemistry and Western blot. Normal and mdx mice were distributed into three groups: untreated, RLX pretreated, and vehicle pretreated. Ileal preparations from the untreated animals showed spontaneous muscular contractions whose amplitude was significantly higher in mdx than in normal mice. Addition of RLX, alone or together with l-arginine, to the bath medium depressed the amplitude of the contractions in the mdx mice, thus reestablishing a motility pattern typical of the normal mice. The NOS inhibitor N(G)-nitro-L-arginine (L-NNA) or the guanylate cyclase inhibitor ODQ reversed the effects of RLX. In RLX-pretreated mdx mice, the amplitude of spontaneous motility was reduced, thus resembling that of the normal mice, and NOS II expression in the muscle coat was increased in respect to the vehicle-pretreated mdx animals. These results indicate that RLX can reverse the altered ileal motility of mdx mice to a normal pattern, likely by upregulating NOS II expression and NO biosynthesis in the ileal smooth muscle.
Collapse
Affiliation(s)
- M C Baccari
- Department of Physiological Sciences, University of Florence, V.le G.B. Morgagni 63, I-50134, Florence, Italy.
| | | | | | | | | |
Collapse
|
40
|
Anastasi G, Cutroneo G, Sidoti A, Rinaldi C, Bruschetta D, Rizzo G, D'Angelo R, Tarone G, Amato A, Favaloro A. Sarcoglycan subcomplex expression in normal human smooth muscle. J Histochem Cytochem 2007; 55:831-43. [PMID: 17438352 DOI: 10.1369/jhc.6a7145.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sarcoglycan complex (SGC) is a multimember transmembrane complex interacting with other members of the dystrophin-glycoprotein complex (DGC) to provide a mechanosignaling connection from the cytoskeleton to the extracellular matrix. The SGC consists of four proteins (alpha, beta, gamma, and delta). A fifth sarcoglycan subunit, epsilon-sarcoglycan, shows a wider tissue distribution. Recently, a novel sarcoglycan, the zeta-sarcoglycan, has been identified. All reports about the structure of SGC showed a common assumption of a tetrameric arrangement of sarcoglycans. Addressing this issue, our immunofluorescence and molecular results showed, for the first time, that all sarcoglycans are always detectable in all observed samples. Therefore, one intriguing possibility is the existence of a pentameric or hexameric complex considering zeta-sarcoglycan of SGC, which could present a higher or lower expression of a single sarcoglycan in conformity with muscle type--skeletal, cardiac, or smooth--or also in conformity with the origin of smooth muscle.
Collapse
Affiliation(s)
- Giuseppe Anastasi
- Department of Biomorphology and Biotechnologies, University of Messina, Via Consolare Valeria, 1 IT-98125, Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Baker PE, Kearney JA, Gong B, Merriam AP, Kuhn DE, Porter JD, Rafael-Fortney JA. Analysis of gene expression differences between utrophin/dystrophin-deficient vs mdx skeletal muscles reveals a specific upregulation of slow muscle genes in limb muscles. Neurogenetics 2006; 7:81-91. [PMID: 16525850 DOI: 10.1007/s10048-006-0031-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 12/06/2005] [Indexed: 11/24/2022]
Abstract
Dystrophin deficiency leads to the progressive muscle wasting disease Duchenne muscular dystrophy (DMD). Dystrophin-deficient mdx mice are characterized by skeletal muscle weakness and degeneration but they appear outwardly normal in contrast to DMD patients. Mice lacking both dystrophin and the dystrophin homolog utrophin [double knockout (dko)] have muscle degeneration similar to mdx mice, but they display clinical features similar to DMD patients. Dko limb muscles also lack postsynaptic membrane folding and display fiber-type abnormalities including an abundance of phenotypically oxidative muscle fibers. Extraocular muscles, which are spared in mdx mice, show a significant pathology in dko mice. In this study, microarray analysis was used to characterize gene expression differences between mdx and dko tibialis anterior and extraocular skeletal muscles in an effort to understand the phenotypic differences between these two dystrophic mouse models. Analysis of gene expression differences showed that upregulation of slow muscle genes specifically characterizes dko limb muscle and suggests that upregulation of these genes may directly account for the more severe phenotype of dko mice. To investigate whether any upregulation of slow genes is retained in vitro, independent of postsynaptic membrane abnormalities, we derived mdx and dko primary myogenic cultures and analyzed the expression of Myh7 and Myl2. Real-time reverse transcriptase-polymerase chain reaction analysis demonstrates that transcription of these slow genes is also upregulated in dko vs mdx myotubes. This data suggests that at least part of the fiber-type abnormality is due directly to the combined absence of utrophin and dystrophin and is not an indirect effect of the postsynaptic membrane abnormalities.
Collapse
Affiliation(s)
- Patrick E Baker
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Iwata Y, Katanosaka Y, Shijun Z, Kobayashi Y, Hanada H, Shigekawa M, Wakabayashi S. Protective effects of Ca2+ handling drugs against abnormal Ca2+ homeostasis and cell damage in myopathic skeletal muscle cells. Biochem Pharmacol 2005; 70:740-51. [PMID: 16009351 DOI: 10.1016/j.bcp.2005.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/12/2005] [Accepted: 05/16/2005] [Indexed: 11/24/2022]
Abstract
Deficiency of delta-sarcoglycan (delta-SG), a component of the dystrophin-glycoprotein complex (DGC), causes skeletal muscular dystrophy and cardiomyopathy in BIO14.6 hamsters. Here, we studied the involvement of abnormal Ca2+ homeostasis in muscle degeneration and the protective effect of drugs against Ca2+ handling proteins in vivo as well as in vitro. First, we characterized the properties of cultured myotubes from muscles of normal and BIO14.6 hamsters (30-60 days old). While there were no apparent differences in the levels of expression of various Ca2+ handling proteins (L-type Ca2+ channel, ryanodine receptor, SR-Ca2+ ATPase, and Na+/Ca2+ exchanger), muscle-specific proteins (contractile actin and acetylcholine receptor), or DGC member proteins except SGs, BIO14.6 myotubes showed a high degree of susceptibility to mechanical stressors, such as cyclic stretching and hypo-osmotic stress as compared to normal myotubes, as evidenced by marked increases in creatine phosphokinase (CK) release and bleb formation. BIO14.6 myotubes showed abnormal Ca2+ homeostasis characterized by elevated cytosolic Ca2+ concentration, frequent Ca2+ oscillation, and increased 45Ca2+ uptake. These abnormal Ca2+ events and CK release were significantly prevented by Ca2+ handling drugs, tranilast, diltiazem, and FK506. The calpain inhibitor E64 prevented CK release, but not 45Ca2+ uptake. Some of these drugs (tranilast, diltiazem, and FK506) also exerted a significant protective effect for muscle degeneration in BIO14.6 hamsters and mdx mice in vivo. These observations suggest that elevated Ca2+ entry through sarcolemmal Ca2+ channels predominantly contributes to muscle degeneration and that the drugs tested here may have novel therapeutic potential against muscular dystrophy.
Collapse
Affiliation(s)
- Yuko Iwata
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Takahashi J, Itoh Y, Fujimori K, Imamura M, Wakayama Y, Miyagoe-Suzuki Y, Takeda S. The utrophin promoter A drives high expression of the transgenic LacZ gene in liver, testis, colon, submandibular gland, and small intestine. J Gene Med 2005; 7:237-48. [PMID: 15538725 DOI: 10.1002/jgm.651] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is caused by the absence of the muscle cytoskeletal protein dystrophin. Utrophin is an autosomal homologue of dystrophin, and overexpression of the protein is expected to compensate for the defect of dystrophin. The utrophin gene has two promoters, A and B, and promoter A of the utrophin gene is a possible target of pharmacological interventions for DMD because A-utrophin is up-regulated in dystrophin-deficient mdx skeletal and cardiac muscles. To investigate the utrophin promoter A activity in vivo, we generated nuclear localization signal-tagged LacZ transgenic mice, where the LacZ gene was driven by the 5-kb flanking region of the A-utrophin gene. METHODS Four transgenic lines were established by mating four independent founders with C57BL/6J mice. The levels of mRNA for beta-galactosidase in several tissues were examined by RT-PCR. Cryosections from several tissues were stained with hematoxylin and eosin (H&E) and with 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal). RESULTS The 5-kb upstream region of the A-utrophin gene showed high transcriptional activity in liver, testis, colon, submandibular gland, and small intestine, consistent with the endogenous expression of utrophin protein. Surprisingly, the levels of both beta-gal protein and mRNA for the transgene in cardiac and skeletal muscles were extremely low, even in nuclei near the neuromuscular junctions. These results indicate that the regulation of the utrophin gene in striated muscle is different from that in non-muscle tissues. CONCLUSIONS Our results clearly showed that the utrophin A promoter is not sufficient to drive expression in muscle, but other regulatory elements are required.
Collapse
Affiliation(s)
- Joji Takahashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Ryten M, Yang SY, Dunn PM, Goldspink G, Burnstock G. Purinoceptor expression in regenerating skeletal muscle in the mdx mouse model of muscular dystrophy and in satellite cell cultures. FASEB J 2004; 18:1404-6. [PMID: 15231720 DOI: 10.1096/fj.03-1175fje] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ATP is an important extracellular signaling molecule mediating its effects by activation of P2X and P2Y receptors. P2 receptors are expressed during muscle development, and recent findings demonstrate that ATP can regulate myoblast proliferation and differentiation in vitro. However, the role of purinergic signaling during regeneration of injured skeletal muscle has not been investigated. To examine this process in a clinically relevant system, we used the mouse model of muscular dystrophy (mdx), in which muscle degeneration is rapidly followed by regeneration. The latter process, in vivo muscle regeneration, was the focus of this study, and to study the cellular mechanisms involved in it, a parallel study on normal rat skeletal myoblast cultures was conducted. Using immunohistochemistry, RT-PCR, and electrophysiology, we investigated the expression of the P2X1-7 receptor subtypes and the P2Y1,2,4,6 receptors. Experiments in vitro and in vivo demonstrated the sequential expression of the P2X5, P2Y1, and P2X2 receptors during the process of muscle regeneration. The P2X5 and P2Y1 receptors were expressed first on activated satellite cells, and the P2Y1 receptor was also expressed on infiltrating immune cells. Subsequent P2X2 receptor expression on newly formed myotubes showed significant colocalization with AChRs, suggesting a role in regulation of muscle innervation. Thus, this study provides the first evidence for a role for purinergic signaling in muscle regeneration and raises the possibility of new therapeutic strategies in the treatment of muscle disease.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Cells, Cultured
- Disease Models, Animal
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscular Dystrophies/metabolism
- Myoblasts/metabolism
- Rats
- Receptors, Cholinergic/metabolism
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X2
- Receptors, Purinergic P2X5
- Receptors, Purinergic P2Y1
- Regeneration
Collapse
Affiliation(s)
- Mina Ryten
- Autonomic Neuroscience Institute, Royal Free & University College Medical School, Royal Free Campus, London, UK
| | | | | | | | | |
Collapse
|
45
|
Iwata Y, Sampaolesi M, Shigekawa M, Wakabayashi S. Syntrophin is an actin-binding protein the cellular localization of which is regulated through cytoskeletal reorganization in skeletal muscle cells. Eur J Cell Biol 2004; 83:555-65. [PMID: 15679101 DOI: 10.1078/0171-9335-00415] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have characterized the interaction of syntrophin with F-actin. Subcellular fractionation of cardiac and skeletal muscle tissues showed that alpha-, beta1- and beta2-syntrophins were present in the soluble and the membrane fraction. Syntrophins are known to bind to the dystrophin-glycoprotein complex (DGC), but since the DGC is not present in the soluble fraction, it was concluded that some syntrophin did not associate with the DGC. Native syntrophins purified from the soluble fraction and recombinant syntrophins were both able to bind to F-actin, and binding occurred through several sites on syntrophin, including the second pleckstrin homology domain and the unique carboxyl-terminal domain. Syntrophin was also able to inhibit actin-activated myosin ATPase activity and actomyosin super-precipitation. alpha-Syntrophin co-localized with cortical F-actin fibers when expressed in Chinese hamster ovary cells, and deletion of the actin-binding region abolished co-localization. Most of exogenous or endogenous syntrophin also co-localized with stress fibers in endothelial and smooth muscle (A7r5) cells. However, syntrophins were mostly localized in the cytosol of serum-starved C2C12 or primary cultured skeletal muscle myotubes, and translocated to the membrane upon treatment with lysophosphatidic acid or the actin-stabilizing agent jasplakinolide. The actin-depolymerizing agent latrunculin-B abolished this syntrophin translocation. These findings suggest that syntrophin is an actin-binding protein the subcellular localization of which is regulated through cytoskeletal reorganization.
Collapse
Affiliation(s)
- Yuko Iwata
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7, Suita, Osaka 5658565, Japan.
| | | | | | | |
Collapse
|
46
|
Nico B, Paola Nicchia G, Frigeri A, Corsi P, Mangieri D, Ribatti D, Svelto M, Roncali L. Altered blood–brain barrier development in dystrophic MDX mice. Neuroscience 2004; 125:921-35. [PMID: 15120852 DOI: 10.1016/j.neuroscience.2004.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/29/2004] [Accepted: 02/04/2004] [Indexed: 11/23/2022]
Abstract
In order to ascertain whether the alterations of the blood-brain barrier (BBB) seen in adult dystrophic mdx-mice [Glia 42 (2003) 235], a human model of Duchenne muscular dystrophy (DMD), are developmentally established and correlated with other dystrophin isoforms which are localized at the glial-vascular interface, we used immunocytochemistry to investigate the expression of dystrophin isoforms (Dp71) during BBB development in mdx fetuses and in adult mice. Parallelly, we used Western blot, immunocytochemistry and immunogold electron microscopy to analyze the expression of the zonula occludens (ZO-1), aquaporin-4 (AQP4) and glial fibrillary acidic (GFAP) proteins as endothelial and glial markers, and we evaluated the integrity of the mdx BBB by means of intravascular injection of horseradish peroxidase (HRP). The results show reduced dystrophin isoforms (Dp71) in the mdx mouse compared with the control, starting from early embryonic life. Endothelial ZO-1 expression was reduced, and the tight junctions were altered and unlabeled. AQP4 and GFAP glial proteins in mdx mice also showed modifications in developmental expression, the glial vascular processes being only lightly AQP4- and GFAP-labeled compared with the controls. Confocal microscopy and HRP assays confirmed the alteration in vessel glial investment, GFAP perivascular endfoot reactivity being strongly reduced and BBB permeability increasing. These results demonstrate that a reduction in dystrophin isoforms (Dp71) at glial endfeet leads to an altered development of the BBB, whose no-closure might contribute to the neurological dysfunctions associated with DMD.
Collapse
Affiliation(s)
- B Nico
- Department of Human Anatomy and Histology, University of Bari Medical School, Piazza Giulio Cesare, 11, Policlinico, I-70124 Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Howman EV, Sullivan N, Poon EP, Britton JE, Hilton-Jones D, Davies KE. Syncoilin accumulation in two patients with desmin-related myopathy. Neuromuscul Disord 2003; 13:42-8. [PMID: 12467731 DOI: 10.1016/s0960-8966(02)00181-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have recently shown that syncoilin interacts with desmin in skeletal muscle and has a role in attaching and organising desmin filaments to the Z-lines. We have analysed patients with desmin accumulation and have found that syncoilin is both upregulated at the sarcolemma and aggregates with desmin indicating the presence of two distinct protein populations. Additional dystrophin-associated protein complex components also accumulate. The striking finding was that alpha-dystrobrevin-1 and neuronal nitric oxide synthase (nNOS) are almost completely lost from the membrane of these patients indicating that the myopathy may result from both the abnormal accumulation of proteins and an increase in ischaemic injury due to the loss of nNOS. We speculate that the loss of alpha-dystrobrevin from the membrane, and subsequent loss of nNOS, is due to the alpha-dystrobrevin-syncoilin-desmin interaction.
Collapse
Affiliation(s)
- Emily V Howman
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, OX13QX, Oxford, UK
| | | | | | | | | | | |
Collapse
|
48
|
Austin RC, Fox JEB, Werstuck GH, Stafford AR, Bulman DE, Dally GY, Ackerley CA, Weitz JI, Ray PN. Identification of Dp71 isoforms in the platelet membrane cytoskeleton. Potential role in thrombin-mediated platelet adhesion. J Biol Chem 2002; 277:47106-13. [PMID: 12370193 DOI: 10.1074/jbc.m203289200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Utrophin is a component of the platelet membrane cytoskeleton and participates in cytoskeletal reorganization (Earnest, J. P., Santos, G. F., Zuerbig, S., and Fox, J. E. B. (1995) J. Biol. Chem. 270, 27259-27265). Although platelets do not contain dystrophin, the identification of smaller C-terminal isoforms of dystrophin, including Dp71, which are expressed in a wide range of nonmuscle tissues and cell lines, has not been investigated. In this report, we have identified Dp71 protein variants of 55-60 kDa (designated Dp71Delta(110)) in the membrane cytoskeleton of human platelets. Both Dp71Delta(110) and utrophin sediment from lysed platelets along with the high speed detergent-insoluble pellet, which contains components of the membrane cytoskeleton. Like the membrane cytoskeletal proteins vinculin and spectrin, Dp71Delta(110) and utrophin redistributed from the high speed detergent-insoluble pellet to the integrin-rich low speed pellet of thrombin-stimulated platelets. Immunoelectron microscopy provided further evidence that Dp71Delta(110) was localized to the submembranous cytoskeleton. In addition to Dp71Delta(110), platelets contained several components of the dystrophin-associated protein complex, including beta-dystroglycan and syntrophin. To better understand the potential function of Dp71Delta(110), collagen adhesion assays were performed on platelets isolated from wild-type or Dp71-deficient (mdx(3cv)) mice. Adhesion to collagen in response to thrombin was significantly decreased in platelets isolated from mdx(3cv) mice, compared with wild-type platelets. Collectively, our results provide evidence that Dp71Delta(110) is a component of the platelet membrane cytoskeleton, is involved in cytoskeletal reorganization and/or signaling, and plays a role in thrombin-mediated platelet adhesion.
Collapse
Affiliation(s)
- Richard C Austin
- Department of Pathology, McMaster University and the Henderson Research Centre, Hamilton, Ontario L8V 1C3, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Petrof BJ. Molecular pathophysiology of myofiber injury in deficiencies of the dystrophin-glycoprotein complex. Am J Phys Med Rehabil 2002; 81:S162-74. [PMID: 12409821 DOI: 10.1097/00002060-200211001-00017] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Duchenne muscular dystrophy is caused by mutations in the gene encoding dystrophin, a 427 kd protein normally found at the cytoplasmic face of the sarcolemma. In normal muscle, dystrophin is associated with a multimolecular glycoprotein complex. Primary mutations in the genes encoding members of this glycoprotein complex are also associated with muscular dystrophy. The dystrophin-glycoprotein complex provides a physical linkage between the internal cytoskeleton of myofibers and the extracellular matrix, but the precise functions of the dystrophin-glycoprotein complex remain uncertain. In this review, five potential pathogenetic mechanisms implicated in the initiation of myofiber injury in dystrophin-glycoprotein complex deficiencies are discussed: (1) mechanical weakening of the sarcolemma, (2) inappropriate calcium influx, (3) aberrant cell signaling, (4) increased oxidative stress, and (5) recurrent muscle ischemia. Particular emphasis is placed on the multifunctional nature of the dystrophin-glycoprotein complex and the fact that the above mechanisms are in no way mutually exclusive and may interact with one another to a significant degree.
Collapse
Affiliation(s)
- Basil J Petrof
- Respiratory Division, McGill University Health Center, and Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Chockalingam PS, Cholera R, Oak SA, Zheng Y, Jarrett HW, Thomason DB. Dystrophin-glycoprotein complex and Ras and Rho GTPase signaling are altered in muscle atrophy. Am J Physiol Cell Physiol 2002; 283:C500-11. [PMID: 12107060 DOI: 10.1152/ajpcell.00529.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dystrophin-glycoprotein complex (DGC) is a sarcolemmal complex whose defects cause muscular dystrophies. The normal function of this complex is not clear. We have proposed that this is a signal transduction complex, signaling normal interactions with matrix laminin, and that the response is normal growth and homeostasis. If so, the complex and its signaling should be altered in other physiological states such as atrophy. The amount of some of the DGC proteins, including dystrophin, beta-dystroglycan, and alpha-sarcoglycan, is reduced significantly in rat skeletal muscle atrophy induced by tenotomy. Furthermore, H-Ras, RhoA, and Cdc42 decrease in expression levels and activities in muscle atrophy. When the small GTPases were assayed after laminin or beta-dystroglycan depletion, H-Ras, Rac1, and Cdc42 activities were reduced, suggesting a physical linkage between the DGC and the GTPases. Dominant-negative Cdc42, introduced with a retroviral vector, resulted in fibers that appeared atrophic. These data support a putative role for the DGC in transduction of mechanical signals in muscle.
Collapse
Affiliation(s)
- Priya Sethu Chockalingam
- Department of Molecular Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|