1
|
Gasparini S, Balestrini S, Saccaro LF, Bacci G, Panichella G, Montomoli M, Cantalupo G, Bigoni S, Mancano G, Pellacani S, Leuzzi V, Volpi N, Mari F, Melani F, Cavallin M, Pisano T, Porcedda G, Vaglio A, Mei D, Barba C, Parrini E, Guerrini R. Multiorgan manifestations of COL4A1 and COL4A2 variants and proposal for a clinical management protocol. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2024:e32099. [PMID: 39016117 DOI: 10.1002/ajmg.c.32099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
COL4A1/2 variants are associated with highly variable multiorgan manifestations. Depicting the whole clinical spectrum of COL4A1/2-related manifestations is challenging, and there is no consensus on management and preventative strategies. Based on a systematic review of current evidence on COL4A1/2-related disease, we developed a clinical questionnaire that we administered to 43 individuals from 23 distinct families carrying pathogenic variants. In this cohort, we extended ophthalmological and cardiological examinations to asymptomatic individuals and those with only limited or mild, often nonspecific, clinical signs commonly occurring in the general population (i.e., oligosymptomatic). The most frequent clinical findings emerging from both the literature review and the questionnaire included stroke (203/685, 29.6%), seizures or epilepsy (199/685, 29.0%), intellectual disability or developmental delay (168/685, 24.5%), porencephaly/schizencephaly (168/685, 24.5%), motor impairment (162/685, 23.6%), cataract (124/685, 18.1%), hematuria (63/685, 9.2%), and retinal arterial tortuosity (58/685, 8.5%). In oligosymptomatic and asymptomatic carriers, ophthalmological investigations detected retinal vascular tortuosity (5/13, 38.5%), dysgenesis of the anterior segment (4/13, 30.8%), and cataract (2/13, 15.4%), while cardiological investigations were unremarkable except for mild ascending aortic ectasia in 1/8 (12.5%). Our multimodal approach confirms highly variable penetrance and expressivity in COL4A1/2-related conditions, even at the intrafamilial level with neurological involvement being the most frequent and severe finding in both children and adults. We propose a protocol for prevention and management based on individualized risk estimation and periodic multiorgan evaluations.
Collapse
Affiliation(s)
- Simone Gasparini
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
- University of Florence, Florence, Italy
| | - Simona Balestrini
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
- University of Florence, Florence, Italy
| | - Luigi Francesco Saccaro
- Department of Psychiatry, Geneva University and Geneva University Hospitals, Geneva, Switzerland
| | - Giacomo Bacci
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Giorgia Panichella
- University of Florence, Florence, Italy
- Department of Clinical and Experimental Medicine, University Hospital Careggi, Florence, Italy
| | - Martino Montomoli
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
| | - Gaetano Cantalupo
- Child Neuropsychiatry Unit, University Hospital of Verona (full member of the European Reference Network EpiCARE), Verona, Italy
- Department of Engineering for Innovation Medicine, Innovation Biomedicine Section, University of Verona, Verona, Italy
- Center for Research on Epilepsy in Pediatric Age (CREP), University Hospital of Verona, Verona, Italy
| | - Stefania Bigoni
- Medical Genetics Unit, Ferrara University Hospital, Ferrara, Italy
| | - Giorgia Mancano
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
| | - Simona Pellacani
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
- University of Florence, Florence, Italy
| | - Vincenzo Leuzzi
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Nila Volpi
- Neurology and Clinical Neurophysiology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Francesco Mari
- Child and Adolescent Epilepsy and Clinical Neurophysiology Departmental Unit, USL Centro Toscana, Prato, Italy
| | - Federico Melani
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
| | - Mara Cavallin
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
| | - Tiziana Pisano
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
| | - Giulio Porcedda
- Department of Paediatric Cardiology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Augusto Vaglio
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Davide Mei
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
| | - Carmen Barba
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
- University of Florence, Florence, Italy
| | - Elena Parrini
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
| | - Renzo Guerrini
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
- University of Florence, Florence, Italy
| |
Collapse
|
2
|
RN7SK small nuclear RNA controls bidirectional transcription of highly expressed gene pairs in skin. Nat Commun 2021; 12:5864. [PMID: 34620876 PMCID: PMC8497571 DOI: 10.1038/s41467-021-26083-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Pausing of RNA polymerase II (Pol II) close to promoters is a common regulatory step in RNA synthesis, and is coordinated by a ribonucleoprotein complex scaffolded by the noncoding RNA RN7SK. The function of RN7SK-regulated gene transcription in adult tissue homoeostasis is currently unknown. Here, we deplete RN7SK during mouse and human epidermal stem cell differentiation. Unexpectedly, loss of this small nuclear RNA specifically reduces transcription of numerous cell cycle regulators leading to cell cycle exit and differentiation. Mechanistically, we show that RN7SK is required for efficient transcription of highly expressed gene pairs with bidirectional promoters, which in the epidermis co-regulated cell cycle and chromosome organization. The reduction in transcription involves impaired splicing and RNA decay, but occurs in the absence of chromatin remodelling at promoters and putative enhancers. Thus, RN7SK is directly required for efficient Pol II transcription of highly transcribed bidirectional gene pairs, and thereby exerts tissue-specific functions, such as maintaining a cycling cell population in the epidermis. The noncoding RNA RN7SK regulates RNA polymerase II pausing and splicing. Here the authors deplete RN7SK in mouse and human during epidermal stem cell differentiation and reveal a novel role in orchestrating bidirectional transcription of highly expressed gene pairs.
Collapse
|
3
|
Jiang J, Cao Y, Shan H, Wu J, Song X, Jiang Y. The GWAS Analysis of Body Size and Population Verification of Related SNPs in Hu Sheep. Front Genet 2021; 12:642552. [PMID: 34093644 PMCID: PMC8173124 DOI: 10.3389/fgene.2021.642552] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/20/2021] [Indexed: 12/03/2022] Open
Abstract
Body size is an important indicator of growth and health in sheep. In the present study, we performed Genome-Wide Association Studies (GWAS) to detect significant single-nucleotide polymorphisms (SNPs) associated with Hu sheep's body size. After genotyping parental (G1) and offspring (G2) generation of the nucleus herd for meat production of Hu sheep and conducting GWAS on the body height, chest circumference, body length, tail length, and tail width of the two groups, 5 SNPs associated with body height and 4 SNPs correlated with chest circumference were identified at the chromosomal significance level. No SNPs were significantly correlated to body length, tail length, and width. Four out of the 9 SNPs were found to be located within the 4 genes. KITLG and CADM2 are considered as candidate functional genes related to body height; MCTP1 and COL4A6 are candidate functional genes related to chest circumference. The 9 SNPs found in GWAS were verified using the G3 generation of the nucleus herd for meat production. Nine products were amplified around the 9 sites, and 29 SNPs were found; 3 mutation sites, G > C mutation at 134 bp downstream of s554331, T > G mutation at 19 bp upstream of s26859.1, and A > G mutation at 81 bp downstream of s26859.1, were significantly correlated to the body height. Dual-luciferase reporter gene experiments showed that the 3 SNPs could significantly impact dual-luciferase and gene transcription activity.
Collapse
Affiliation(s)
- Junfang Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuhao Cao
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, China
| | - Huili Shan
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianliang Wu
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xuemei Song
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, China
| | - Yongqing Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
4
|
Shi JW, Lai ZZ, Yang HL, Yang SL, Wang CJ, Ao D, Ruan LY, Shen HH, Zhou WJ, Mei J, Fu Q, Li MQ. Collagen at the maternal-fetal interface in human pregnancy. Int J Biol Sci 2020; 16:2220-2234. [PMID: 32549767 PMCID: PMC7294936 DOI: 10.7150/ijbs.45586] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
The survival and development of a semi-allogenic fetus during pregnancy require special immune tolerance microenvironment at the maternal fetal interface. During the establishment of a successful pregnancy, the endometrium undergoes a series of changes, and the extracellular matrix (ECM) breaks down and remodels. Collagen is one of the most abundant ECM. Emerging evidence has shown that collagen and its fragment are expressed at the maternal fetal interface. The regulation of expression of collagen is quite complex, and this process involves a multitude of factors. Collagen exerts a critical role during the successful pregnancy. In addition, the abnormal expressions of collagen and its fragments are associated with certain pathological states associated with pregnancy, including recurrent miscarriage, diabetes mellitus with pregnancy, preeclampsia and so on. In this review, the expression and potential roles of collagen under conditions of physiological and pathological pregnancy are systematically discussed.
Collapse
Affiliation(s)
- Jia-Wei Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Zhen-Zhen Lai
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Li Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Shao-Liang Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Cheng-Jie Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Deng Ao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Lu-Yu Ruan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China
| | - Qiang Fu
- Department of Immunology, Binzhou Medical College, Yantai, 264003, People's Republic of China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| |
Collapse
|
5
|
Abstract
Located at the interface of the circulation system and the CNS, the basement membrane (BM) is well positioned to regulate blood-brain barrier (BBB) integrity. Given the important roles of BBB in the development and progression of various neurological disorders, the BM has been hypothesized to contribute to the pathogenesis of these diseases. After stroke, a cerebrovascular disease caused by rupture (hemorrhagic) or occlusion (ischemic) of cerebral blood vessels, the BM undergoes constant remodeling to modulate disease progression. Although an association between BM dissolution and stroke is observed, how each individual BM component changes after stroke and how these components contribute to stroke pathogenesis are mostly unclear. In this review, I first briefly introduce the composition of the BM in the brain. Next, the functions of the BM and its major components in BBB maintenance under homeostatic conditions are summarized. Furthermore, the roles of the BM and its major components in the pathogenesis of hemorrhagic and ischemic stroke are discussed. Last, unsolved questions and potential future directions are described. This review aims to provide a comprehensive reference for future studies, stimulate the formation of new ideas, and promote the generation of new genetic tools in the field of BM/stroke research.
Collapse
Affiliation(s)
- Yao Yao
- Yao Yao, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 340 Pharmacy South Building, 250 West Green Street, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Abstract
A genome-wide association study (GWAS) was conducted to identify expression quantitative trait loci (eQTLs) for the genes involved in phosphatidylinositol-3-kinase/v-akt murine thymoma viral oncogene homolog (PI3K/AKT) pathway.Data on mRNA expression of 341 genes in lymphoblastoid cell lines of 373 Europeans recruited by the 1000 Genomes Project using Illumina HiSeq2000 were utilized. We used their genotypes at 5,941,815 nucleotide variants obtained by Genome Analyzer II and SOLiD.The association analysis revealed 4166 nucleotide variants associated with expression of 85 genes (P < 5 × 10). A total of 73 eQTLs were identified as association signals for the expression of multiple genes. They included 9 eQTLs for both of the genes encoding collagen type I alpha 1 (COL1A1) and integrin alpha 11 (ITGA11), which synthesize a major complex of plasma membrane. They also included eQTLs for type IV collagen molecules; 13 eQTLs for both collagen type IV alpha 1 (COL4A1) and collagen type IV alpha 2 (COL4A2) and 18 eQTLs for both collagen type IV alpha 5 (COL4A5) and collagen type IV alpha 6 (COL4A6). Some genes expressed by the eQTLs might induce expression of the genes encoding type IV collagen. One eQTL (rs16871986) was located in the promoter of palladin (PALLD) gene which might synthesize collagen by activating fibroblasts through the PI3K/AKT pathway. Another eQTL (rs34845474) was located in an enhancer of cadherin related family member 3 (CDHR3) gene which can mediate cell adhesion.This study showed a profile of eQTLs for the genes involved in the PI3K/AKT pathway using a healthy population, revealing 73 eQTLs associated with expression of multiple genes. They might be candidates of common variants in predicting genetic susceptibility to cancer and in targeting cancer therapy. Further studies are required to examine their underlying mechanisms for regulating expression of the genes.
Collapse
|
7
|
COL4A6 is dispensable for autosomal recessive Alport syndrome. Sci Rep 2016; 6:29450. [PMID: 27377778 PMCID: PMC4932521 DOI: 10.1038/srep29450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/17/2016] [Indexed: 01/27/2023] Open
Abstract
Alport syndrome is caused by mutations in the genes encoding α3, α4, or α5 (IV) chains. Unlike X-linked Alport mice, α5 and α6 (IV) chains are detected in the glomerular basement membrane of autosomal recessive Alport mice, however, the significance of this finding remains to be investigated. We therefore generated mice lacking both α3 and α6 (IV) chains and compared their renal function and survival with Col4a3 knockout mice of 129 × 1/Sv background. No significant difference was observed in the renal function or survival of the two groups, or when the mice were backcrossed once to C57BL/6 background. However, the survival of backcrossed double knockout mice was significantly longer than that of the mice of 129 × 1/Sv background, which suggests that other modifier genes were involved in this phenomenon. In further studies we identified two Alport patients who had a homozygous mutation in intron 46 of COL4A4. The α5 and α6 (IV) chains were focally detected in the glomerular basement membrane of these patients. These findings indicate that although α5 and α6 (IV) chains are induced in the glomerular basement membrane in autosomal recessive Alport syndrome, their induction does not seem to play a major compensatory role.
Collapse
|
8
|
Mao M, Alavi MV, Labelle-Dumais C, Gould DB. Type IV Collagens and Basement Membrane Diseases. CURRENT TOPICS IN MEMBRANES 2015; 76:61-116. [DOI: 10.1016/bs.ctm.2015.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Oefner CM, Sharkey A, Gardner L, Critchley H, Oyen M, Moffett A. Collagen type IV at the fetal-maternal interface. Placenta 2014; 36:59-68. [PMID: 25465704 PMCID: PMC4302218 DOI: 10.1016/j.placenta.2014.10.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 11/25/2022]
Abstract
Introduction Extracellular matrix proteins play a crucial role in influencing the invasion of trophoblast cells. However the role of collagens and collagen type IV (col-IV) in particular at the implantation site is not clear. Methods Immunohistochemistry was used to determine the distribution of collagen types I, III, IV and VI in endometrium and decidua during the menstrual cycle and the first trimester of pregnancy. Expression of col-IV alpha chains during the reproductive cycle was determined by qPCR and protein localisation by immunohistochemistry. The structure of col-IV in placenta was examined using transmission electron microscopy. Finally, the expression of col-IV alpha chain NC1 domains and collagen receptors was localised by immunohistochemistry. Results Col-IV alpha chains were selectively up-regulated during the menstrual cycle and decidualisation. Primary extravillous trophoblast cells express collagen receptors and secrete col-IV in vitro and in vivo, resulting in the increased levels found in decidua basalis compared to decidua parietalis. A novel expression pattern of col-IV in the mesenchyme of placental villi, as a three-dimensional network, was found. NC1 domains of col-IV alpha chains are known to regulate tumour cell migration and the selective expression of these domains in decidua basalis compared to decidua parietalis was determined. Discussion Col-IV is expressed as novel forms in the placenta. These findings suggest that col-IV not only represents a structural protein providing tissue integrity but also influences the invasive behaviour of trophoblast cells at the implantation site. Our data suggest that progesterone might regulate collagen type IV. Primary extravillous trophoblast cells secrete collagen type IV. A novel three-dimensional network of collagen type IV in placenta is presented. Trophoblast cells express integrin alpha 10, integrin alpha 11 and collagen receptors DDR-1 and DDR-2.
Collapse
Affiliation(s)
- C M Oefner
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| | - A Sharkey
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - L Gardner
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - H Critchley
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - M Oyen
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
| | - A Moffett
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
10
|
Sá MJN, Fieremans N, de Brouwer APM, Sousa R, Costa FTE, Brito MJ, Carvalho F, Rodrigues M, de Sousa FT, Felgueiras J, Neves F, Carvalho A, Ramos U, Vizcaíno JR, Alves S, Carvalho F, Froyen G, Oliveira JP. Deletion of the 5′exons ofCOL4A6is not needed for the development of diffuse leiomyomatosis in patients with Alport syndrome. J Med Genet 2013; 50:745-53. [DOI: 10.1136/jmedgenet-2013-101670] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Novel form of X-linked nonsyndromic hearing loss with cochlear malformation caused by a mutation in the type IV collagen gene COL4A6. Eur J Hum Genet 2013; 22:208-15. [PMID: 23714752 DOI: 10.1038/ejhg.2013.108] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/08/2013] [Accepted: 04/19/2013] [Indexed: 12/16/2022] Open
Abstract
Hereditary hearing loss is the most common human sensorineural disorder. Genetic causes are highly heterogeneous, with mutations detected in >40 genes associated with nonsyndromic hearing loss, to date. Whereas autosomal recessive and autosomal dominant inheritance is prevalent, X-linked forms of nonsyndromic hearing impairment are extremely rare. Here, we present a Hungarian three-generation family with X-linked nonsyndromic congenital hearing loss and the underlying genetic defect. Next-generation sequencing and subsequent segregation analysis detected a missense mutation (c.1771G>A, p.Gly591Ser) in the type IV collagen gene COL4A6 in all affected family members. Bioinformatic analysis and expression studies support this substitution as being causative. COL4A6 encodes the alpha-6 chain of type IV collagen of basal membranes, which forms a heterotrimer with two alpha-5 chains encoded by COL4A5. Whereas mutations in COL4A5 and contiguous X-chromosomal deletions involving COL4A5 and COL4A6 are associated with X-linked Alport syndrome, a nephropathy associated with deafness and cataract, mutations in COL4A6 alone have not been related to any hereditary disease so far. Moreover, our index patient and other affected family members show normal renal and ocular function, which is not consistent with Alport syndrome, but with a nonsyndromic type of hearing loss. In situ hybridization and immunostaining demonstrated expression of the COL4A6 homologs in the otic vesicle of the zebrafish and in the murine inner ear, supporting its role in normal ear development and function. In conclusion, our results suggest COL4A6 as being the fourth gene associated with X-linked nonsyndromic hearing loss.
Collapse
|
12
|
Wiradjaja F, DiTommaso T, Smyth I. Basement membranes in development and disease. ACTA ACUST UNITED AC 2010; 90:8-31. [PMID: 20301220 DOI: 10.1002/bdrc.20172] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Basement membranes (BMs) are specializations of the extracellular matrix that act as key mediators of development and disease. Their sheet like protein matrices typically serve to separate epithelial or endothelial cell layers from underlying mesenchymal tissues, providing both a biophysical support to overlying tissue as well as a hub to promote and regulate cell-cell and cell-protein interactions. In the latter context, the BM is increasingly being recognized as a mediator of growth factor interactions during development. In this review, we discuss recent findings regarding the structure of the BM and its roles in mediating the normal development of the embryo, and we examine congenital diseases affecting the BM which impact embryonic development and health in later life.
Collapse
Affiliation(s)
- Fenny Wiradjaja
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Australia
| | | | | |
Collapse
|
13
|
Abstract
Four decades have passed since the first discovery of collagen IV by Kefalides in 1966. Since then collagen IV has been investigated extensively by a large number of research laboratories around the world. Advances in molecular genetics have resulted in identification of six evolutionary related mammalian genes encoding six different polypeptide chains of collagen IV. The genes are differentially expressed during the embryonic development, providing different tissues with specific collagen IV networks each having unique biochemical properties. Newly translated alpha-chains interact and assemble in the endoplasmic reticulum in a chain-specific fashion and form unique heterotrimers. Unlike most collagens, type IV collagen is an exclusive member of the basement membranes and through a complex inter- and intramolecular interactions form supramolecular networks that influence cell adhesion, migration, and differentiation. Collagen IV is directly involved in a number of genetic and acquired disease such as Alport's and Goodpasture's syndromes. Recent discoveries have also highlighted a new and direct role for collagen IV in the development of rare genetic diseases such as cerebral hemorrhage and porencephaly in infants and hemorrhagic stroke in adults. Years of intensive investigations have resulted in a vast body of information about the structure, function, and biology of collagen IV. In this review article, we will summarize essential findings on the structural and functional relationships of different collagen IV chains and their roles in health and disease.
Collapse
Affiliation(s)
- Jamshid Khoshnoodi
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, 37232
| | - Vadim Pedchenko
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, 37232
| | - Billyg Hudson
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, 37232
| |
Collapse
|
14
|
Gubler MC. Inherited diseases of the glomerular basement membrane. ACTA ACUST UNITED AC 2008; 4:24-37. [DOI: 10.1038/ncpneph0671] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 09/13/2007] [Indexed: 01/15/2023]
|
15
|
Baba Y, Iyama KI, Ikeda K, Ishikawa S, Hayashi N, Miyanari N, Sado Y, Ninomiya Y, Baba H. The expression of type IV collagen alpha6 chain is related to the prognosis in patients with esophageal squamous cell carcinoma. Ann Surg Oncol 2007; 15:555-65. [PMID: 17955302 DOI: 10.1245/s10434-007-9592-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 08/02/2007] [Accepted: 08/03/2007] [Indexed: 11/18/2022]
Abstract
BACKGROUND The destruction of the basement membrane (BM) is the first step in cancer cell invasion and metastasis. Type IV collagen is a major component of the BM, and is composed of six genetically distinct alpha(IV) chains: alpha1(IV) to alpha6(IV). The loss of alpha5/alpha6(IV) chains from the epithelial BM at the early stage of cancer cell invasion has been reported in several cancers. However, the expression of alpha5/alpha6(IV) chains in esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS The expression of alpha(IV) chains in 116 resected ESCC specimens was immunohistochemically examined. The role of alpha6(IV) chain was assessed in ESCC cell lines by short interfering RNA (siRNA). RESULTS In intraepithelial carcinoma, the alpha5/alpha6(IV) chains were stained in a continuous linear pattern in the BM. In some cases of ESCC with the invasion beyond the lamina propria, the alpha5/alpha6(IV) chains were lost in the BM zone surrounding the cancer cell nests, but in other cases they remained. In the former, the disease-free survival and overall survival were significantly better than in those with the latter. The down-regulation of alpha6(IV) chain expression by siRNA revealed a slight increase of cancer cell invasiveness. CONCLUSIONS The evaluation of alpha5/alpha6(IV) chains may be a useful marker for determining tumor cell properties, as a prognostic factor, in patients with ESCC.
Collapse
Affiliation(s)
- Yoshifumi Baba
- Department of Surgical Pathology, Kumamoto University Hospital, 1-1-1 Honjo, Kumamoto City, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 2007; 8:424-36. [PMID: 17486122 DOI: 10.1038/nrg2026] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The identification and characterization of mammalian core promoters and transcription start sites is a prerequisite to understanding how RNA polymerase II transcription is controlled. New experimental technologies have enabled genome-wide discovery and characterization of core promoters, revealing that most mammalian genes do not conform to the simple model in which a TATA box directs transcription from a single defined nucleotide position. In fact, most genes have multiple promoters, within which there are multiple start sites, and alternative promoter usage generates diversity and complexity in the mammalian transcriptome and proteome. Promoters can be described by their start site usage distribution, which is coupled to the occurrence of cis-regulatory elements, gene function and evolutionary constraints. A comprehensive survey of mammalian promoters is a major step towards describing and understanding transcriptional control networks.
Collapse
Affiliation(s)
- Albin Sandelin
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Varadan V, Anastassiou D. Inference of disease-related molecular logic from systems-based microarray analysis. PLoS Comput Biol 2006; 2:e68. [PMID: 16789819 PMCID: PMC1479089 DOI: 10.1371/journal.pcbi.0020068] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 05/04/2006] [Indexed: 12/23/2022] Open
Abstract
Computational analysis of gene expression data from microarrays has been useful for medical diagnosis and prognosis. The ability to analyze such data at the level of biological modules, rather than individual genes, has been recognized as important for improving our understanding of disease-related pathways. It has proved difficult, however, to infer pathways from microarray data by deriving modules of multiple synergistically interrelated genes, rather than individual genes. Here we propose a systems-based approach called Entropy Minimization and Boolean Parsimony (EMBP) that identifies, directly from gene expression data, modules of genes that are jointly associated with disease. Furthermore, the technique provides insight into the underlying biomolecular logic by inferring a logic function connecting the joint expression levels in a gene module with the outcome of disease. Coupled with biological knowledge, this information can be useful for identifying disease-related pathways, suggesting potential therapeutic approaches for interfering with the functions of such pathways. We present an example providing such gene modules associated with prostate cancer from publicly available gene expression data, and we successfully validate the results on additional independently derived data. Our results indicate a link between prostate cancer and cellular damage from oxidative stress combined with inhibition of apoptotic mechanisms normally triggered by such damage.
Collapse
Affiliation(s)
- Vinay Varadan
- Department of Electrical Engineering and Center for Computational Biology and Bioinformatics (C2B2), Columbia University, New York, New York, United States of America
| | - Dimitris Anastassiou
- Department of Electrical Engineering and Center for Computational Biology and Bioinformatics (C2B2), Columbia University, New York, New York, United States of America
| |
Collapse
|
18
|
Kato T, Saika S, Ohnishi Y. Effects of the matrix metalloproteinase inhibitor GM6001 on the destruction and alteration of epithelial basement membrane during the healing of post-alkali burn in rabbit cornea. Jpn J Ophthalmol 2006; 50:90-5. [PMID: 16604381 DOI: 10.1007/s10384-005-0287-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 07/04/2005] [Indexed: 11/24/2022]
Abstract
PURPOSE To examine the alteration in structure and matrix composition of epithelial basement membrane (BM) during the healing of alkali-burned rabbit cornea, and the roles of matrix metalloproteinases (MMPs) in these alterations. METHODS The central cornea of one eye of 78 albino rabbits was exposed to 1 N NaOH for 180 s under general and topical anesthesia and allowed to heal with or without subconjunctival injection of GM6001 (an MMP inhibitor). Cryosections of affected corneas were observed by H&E staining, immunohistochemistry for type IV collagen subtypes, or in situ zymography for detection of localization of MMP activity. RESULTS Uninjured corneal epithelial BM exhibited alpha5 (IV)-immunoreactivity, but lacked the alpha1/alpha2-immunoreactivity of collagen IV. Epithelial BM in healing burned cornea transiently exhibited alpha1/alpha2-immunoreactivity. Examination by in situ zymography showed an upregulation of MMP activity in the regenerated central epithelium and anterior stroma of the burned corneas at days 7 and 14. GM6001 suppressed degradation of alpha5-containing epithelial BM in vivo and also in organ culture. CONCLUSIONS Epithelial BM was degraded by endogenous MMPs during healing following an alkali burn in rabbit cornea. GM6001 had an inhibitory effect on the degradation of the epithelial basement membrane in burned cornea in vivo.
Collapse
Affiliation(s)
- Tadashi Kato
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan.
| | | | | |
Collapse
|
19
|
Ikeda K, Iyama KI, Ishikawa N, Egami H, Nakao M, Sado Y, Ninomiya Y, Baba H. Loss of expression of type IV collagen alpha5 and alpha6 chains in colorectal cancer associated with the hypermethylation of their promoter region. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:856-65. [PMID: 16507901 PMCID: PMC1606532 DOI: 10.2353/ajpath.2006.050384] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type IV collagen, a major component of the basement membrane (BM), is composed of six genetically distinct alpha(IV) chains, alpha1(IV) to alpha6(IV). Their genes are paired on three different chromosomes in a head-to-head arrangement. The alpha5(IV) gene (COL4A5) and the alpha6(IV) gene (COL4A6) are on chromosome Xq22 and are regulated by a bidirectional promoter. Loss of the alpha5(IV)/alpha6(IV) chains in epithelial BM occur in the early stage of cancer invasion. However, the regulatory mechanism of the specific loss of the alpha5(IV)/alpha6(IV) chains during cancer cell invasion is still undetermined. In the present study, we examined the expression of the alpha5(IV)/alpha6(IV) chains and the methylation profiles of the bidirectional promoter region of COL4A5/COL4A6 in colon cancer cell lines and colorectal tumor tissues. The expression of the alpha5(IV)/alpha6(IV) chains was down-regulated in colorectal cancer, and the loss of expression of the alpha5(IV)/alpha6(IV) chains was associated with the hypermethylation of their promoter region. In conclusion, the hypermethylation of the bidirectional promoter region of COL4A5/COL4A6 is one of the events that is responsible for the loss of expression of the alpha5(IV)/alpha6(IV) chains and the remodeling of the epithelial BM during cancer cell invasion.
Collapse
Affiliation(s)
- Koei Ikeda
- Department of Surgical Pathology, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sund M, Maeshima Y, Kalluri R. Bifunctional promoter of type IV collagen COL4A5 and COL4A6 genes regulates the expression of alpha5 and alpha6 chains in a distinct cell-specific fashion. Biochem J 2006; 387:755-61. [PMID: 15598179 PMCID: PMC1135006 DOI: 10.1042/bj20041870] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Type IV collagen is present ubiquitously in basement membranes. A bifunctional promoter regulates the expression of the alpha1/alpha2 genes, and the alpha3/alpha4 and the alpha5/alpha6 genes are also considered to be regulated by putative bifunctional promoters. Unlike the other type IV collagen chains, the alpha5(IV) and alpha6(IV) chains do not always co-localize and are present in distinct basement membranes. To address such dichotomy in the alpha5(IV) and alpha6(IV) gene regulation, we cloned a mouse genomic DNA fragment containing the promoter region between the two transcription start sites of these genes and we then placed this putative promoter sequence between the chloramphenicol acetyltransferase and Luciferase reporter genes, so that these genes would be transcribed in opposite directions in this unique construct. Glomerular endothelial cells and mesangial cells generate the kidney glomerular basement membrane, which always contains the alpha5(IV) chain but not the alpha6(IV) chain. In contrast, the basement membranes of Bowman's capsule and distal tubuli (produced by the tubular epithelial cells) contain the alpha6(IV) chain. We demonstrate that, in response to TGF-beta (transforming growth factor beta), epidermal growth factor, vascular endothelial growth factor and platelet-derived growth factor, expression from the alpha5(IV) gene is significantly enhanced in the glomerular endothelial cells and mesangial cells, but not expression from the alpha6(IV) gene. In contrast, the expression from the alpha6(IV) gene, and not that from the alpha5(IV) gene, was significantly enhanced in response to growth factors in the tubular epithelial cells. Our results demonstrate that the proximal bifunctional promoter regulates the expression of the alpha5(IV) and alpha6(IV) genes in a cell-specific manner and offers the first demonstration of the promoter plasticity in growth factor regulation of type IV collagen genes in different tissues of the body.
Collapse
Affiliation(s)
- Malin Sund
- Center for Matrix Biology, Department of Medicine, DANA 514, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Yohei Maeshima
- Center for Matrix Biology, Department of Medicine, DANA 514, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Raghu Kalluri
- Center for Matrix Biology, Department of Medicine, DANA 514, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
21
|
Zheng K, Perry J, Harvey SJ, Sado Y, Ninomiya Y, Jefferson B, Jacobs R, Hudson BG, Thorner PS. Regulation of collagen type IV genes is organ-specific: Evidence from a canine model of Alport syndrome. Kidney Int 2005; 68:2121-30. [PMID: 16221211 DOI: 10.1111/j.1523-1755.2005.00668.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Despite advances in knowledge about collagen type IV at the protein level, little is known about expression of its six alpha chains. X-linked Alport syndrome provides a system to study collagen type IV gene expression within a setting of disturbed protein synthesis. Mutations in the alpha5 chain result in loss of the alpha3/alpha4/alpha5 and alpha1/alpha2/alpha5/alpha6 networks from the kidney, with progressive renal disease. METHODS We used a canine model of Alport syndrome to measure expression of the six type IV collagen chains from 11 days to 7(1/2) months of age. We determined to what extent message levels in kidney change over time, and what correlation exists with clinical and pathologic changes in glomeruli, and the primary mutation. The latter was evaluated by examining testis, an organ normally containing the same collagen type IV networks but uninvolved by disease. RESULTS The alpha1 to alpha6 mRNAs were expressed at all time points in normal canine kidney. By comparison to normal, in Alport dog kidney, the alpha1 and alpha2 mRNAs were up-regulated after 2 months of age, alpha3 and alpha4 mRNAs were down-regulated by 2 months of age, and the alpha5 mRNA was almost undetectable at any time. In testis, all mRNAs were expressed at comparable levels in normal and affected dogs other than the alpha5 chain, which was not expressed in affected testis. CONCLUSION Normal expression of collagen type IV is under control mechanisms specific to each organ and to individual chains. The altered expression in canine Alport syndrome is not the direct result of the mutation, since these changes do not occur in all organs nor are they present from birth. Instead, collagen type IV expression is influenced by disease, with down-regulation of alpha3 and alpha4 chains temporally related to the onset of proteinuria, and up-regulation of alpha1 and alpha2 chains to glomerulosclerosis. This dysregulation of the alpha3 and alpha4 chains is unique to this Alport model, and suggests an unidentified mechanism linking pathology with down-regulation of expression of these two chains.
Collapse
Affiliation(s)
- Keqin Zheng
- Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Structural Macromolecules: Type IV Collagen. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(05)56005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Ahn WS, Kim KW, Bae SM, Yoon JH, Lee JM, Namkoong SE, Kim JH, Kim CK, Lee YJ, Kim YW. Targeted cellular process profiling approach for uterine leiomyoma using cDNA microarray, proteomics and gene ontology analysis. Int J Exp Pathol 2004; 84:267-79. [PMID: 14748746 PMCID: PMC2517572 DOI: 10.1111/j.0959-9673.2003.00362.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This study utilized both cDNA microarray and two-dimensional protein gel electrophoresis technology to investigate the multiple interactions of genes and proteins involved in uterine leiomyoma pathophysiology. Also, the gene ontology analysis was used to systematically characterize the global expression profiles at cellular process levels. We profiled differentially expressed transcriptome and proteome in six-paired leiomyoma and normal myometrium. Screening up to 17 000 genes identified 21 upregulated and 50 downregulated genes. The gene-expression profiles were classified into mutually dependent 420 functional sets, resulting in 611 cellular processes according to the gene ontology. Also, protein analysis using two-dimensional gel electrophoresis identified 33 proteins (17 upregulated and 16 downregulated) of more than 500 total spots, which was classified into 302 cellular processes. Of these functional profilings, downregulations of transcriptomes and proteoms were shown in cell adhesion, cell motility, organogenesis, enzyme regulator, structural molecule activity and response to external stimulus functional activities that are supposed to play important roles in pathophysiology. In contrast, the upregulation was only shown in nucleic acid-binding activity. Taken together, potentially significant pathogenetic cellular processes were identified and showed that the downregulated functional profiling has a significant impact on the discovery of pathogenic pathway in leiomyoma. Also, the gene ontology analysis can overcome the complexity of expression profiles of cDNA microarray and two-dimensional protein analysis via its cellular process-level approach. Therefore, a valuable prognostic candidate gene with relevance to disease-specific pathogenesis can be found at cellular process levels.
Collapse
Affiliation(s)
- Woong Shick Ahn
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bae SM, Kim YW, Lee JM, Namkoong SE, Kim CK, Ahn WS. Expression profiling of the cellular processes in uterine leiomyomas: omic approaches and IGF-2 association with leiomyosarcomas. Cancer Res Treat 2004; 36:31-42. [PMID: 20396563 DOI: 10.4143/crt.2004.36.1.31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 01/27/2004] [Indexed: 11/21/2022] Open
Abstract
PURPOSE This study utilized both cDNA microarray and 2D protein gel electrophoresis technology to investigate the multiple interactions of the genes and proteins involved in the pathophysiology of uterine leiomyomas. Also, Gene Ontology (GO) analysis was used to systematically characterize the global expression profiles, which were found to correlate with the leiomyosarcomas. MATERIALS AND METHODS The uterine leiomyoma biopsies were obtained from patients in the Department of Obstetrics and Gynecology, The Catholic University of Korea. Differentially expressed transcriptome and proteome, in 6 paired leiomyoma and normal myometrium, were profiled. The total RNAs from the leiomyoma and normal myometrium were labeled with Cy5 and Cy3. All specimens were punch-biopsy-obtained, and frozen in liquid nitrogen. RESULTS Screening of up to 17,000 genes identified 71 that were either up-regulated or down-regulated (21 and 50, respectively). The gene expression profiles were classified into 420 mutually dependent functional sets, resulting in 611 cellular processes, according to the gene ontology. Also, the protein analysis, using 2D gel electrophoresis, identified 33 proteins (17 up-regulated and 16 down-regulated) with more than 500 total spots, which were classified into 302 cellular processes. O f these functional profilings, transcriptomes and proteoms down-regulations were shown in the cell adhesion, cell motility, organogenesis, enzyme regulator, structural molecule activity and responses to external stimulus functional activities, which are supposed to play important roles in the pathophysiology. In contrast, up-regulation was only shown in the nucleic acid binding activity. The CDKN2A, ADH1A, DCX, IGF2, CRABP2 and KIF5C were found to increase the reliability of this study, and correlate with the leiomyosarcomas. CONCLUSION Potentially significant pathogenetic cellular processes showed that down-regulated functional profiling has an important impact on the discovery of the pathogenic pathways in leiomyomas and leiomyosarcomas. GO analysis can also overcome the complexity of the expression profiles of cDNA microarrays and 2D protein analyses, via a cellular process level approach. Thereby, a valuable prognostic candidate gene, with real relevance to disease-specific pathogenesis, can be found at cellular process levels.
Collapse
Affiliation(s)
- Su Mi Bae
- Catholic Research Institutes of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Trinklein ND, Aldred SF, Hartman SJ, Schroeder DI, Otillar RP, Myers RM. An abundance of bidirectional promoters in the human genome. Genome Res 2004; 14:62-6. [PMID: 14707170 PMCID: PMC314279 DOI: 10.1101/gr.1982804] [Citation(s) in RCA: 460] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The alignment of full-length human cDNA sequences to the finished sequence of the human genome provides a unique opportunity to study the distribution of genes throughout the genome. By analyzing the distances between 23,752 genes, we identified a class of divergently transcribed gene pairs, representing more than 10% of the genes in the genome, whose transcription start sites are separated by less than 1000 base pairs. Although this bidirectional arrangement has been previously described in humans and other species, the prevalence of bidirectional gene pairs in the human genome is striking, and the mechanisms of regulation of all but a few bidirectional genes are unknown. Our work shows that the transcripts of many bidirectional pairs are coexpressed, but some are antiregulated. Further, we show that many of the promoter segments between two bidirectional genes initiate transcription in both directions and contain shared elements that regulate both genes. We also show that the bidirectional arrangement is often conserved among mouse orthologs. These findings demonstrate that a bidirectional arrangement provides a unique mechanism of regulation for a significant number of mammalian genes.
Collapse
Affiliation(s)
- Nathan D Trinklein
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | | | | | | | |
Collapse
|
26
|
Trinklein ND, Murray JI, Hartman SJ, Botstein D, Myers RM. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 2003; 15:1254-61. [PMID: 14668476 PMCID: PMC363119 DOI: 10.1091/mbc.e03-10-0738] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previous work has implicated heat shock transcription factor 1 (HSF1) as the primary transcription factor responsible for the transcriptional response to heat stress in mammalian cells. We characterized the heat shock response of mammalian cells by measuring changes in transcript levels and assaying binding of HSF1 to promoter regions for candidate heat shock genes chosen by a combination of genome-wide computational and experimental methods. We found that many heat-inducible genes have HSF1 binding sites (heat shock elements, HSEs) in their promoters that are bound by HSF1. Surprisingly, for 24 heat-inducible genes, we detected no HSEs and no HSF1 binding. Furthermore, of 182 promoters with likely HSE sequences, we detected HSF1 binding at only 94 of these promoters. Also unexpectedly, we found 48 genes with HSEs in their promoters that are bound by HSF1 but that nevertheless did not show induction after heat shock in the cell types we examined. We also studied the transcriptional response to heat shock in fibroblasts from mice lacking the HSF1 gene. We found 36 genes in these cells that are induced by heat as well as they are in wild-type cells. These results provide evidence that HSF1 does not regulate the induction of every transcript that accumulates after heat shock, and our results suggest that an independent posttranscriptional mechanism regulates the accumulation of a significant number of transcripts.
Collapse
Affiliation(s)
- Nathan D Trinklein
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | | | | | |
Collapse
|
27
|
Ortega N, Werb Z. New functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci 2002; 115:4201-14. [PMID: 12376553 PMCID: PMC2789001 DOI: 10.1242/jcs.00106] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Collagens IV, XV and XVIII are major components of various basement membranes. In addition to the collagen-specific triple helix, these collagens are characterized by the presence of several non-collagenous domains. It is clear now that these ubiquitous collagen molecules are involved in more subtle and sophisticated functions than just the molecular architecture of basement membranes, particularly in the context of extracellular matrix degradation. Degradation of the basement membrane collagens occurs during numerous physiological and pathological processes such as embryonic development or tumorigenesis and generates collagen fragments. These fragments are involved in the regulation of functions differing from those of their original intact molecules. The non-collagenous C-terminal fragment NC1 of collagen IV, XV and XVIII have been recently highlighted in the literature because of their potential in reducing angiogenesis and tumorigenesis, but it is clear that their biological functions are not limited to these processes. Proteolytic release of soluble NC1 fragments stimulates migration, proliferation, apoptosis or survival of different cell types and suppresses various morphogenetic events.
Collapse
|
28
|
Urabe N, Naito I, Saito K, Yonezawa T, Sado Y, Yoshioka H, Kusachi S, Tsuji T, Ohtsuka A, Taguchi T, Murakami T, Ninomiya Y. Basement membrane type IV collagen molecules in the choroid plexus, pia mater and capillaries in the mouse brain. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2002; 65:133-43. [PMID: 12164337 DOI: 10.1679/aohc.65.133] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the differential distribution of basement membrane type IV collagen a chains in the mouse brain by immunohistochemistry using a chain-specific monoclonal antibodies. Subendothelial basement membranes were found to contain alpha1 and alpha2 chains. Basement membranes surrounding smooth muscle cells on blood vascular walls were immunoreactive for alpha1 and alpha2 chains but not for alpha5 and alpha6 chains. Interestingly, the pia mater contained a thin basement membrane which was positive for alpha1, alpha2, alpha5, and alpha6 chains, suggesting that glia limitans superficialis coheres basement membranes containing [alpha1(IV)]2alpha2(IV) and [alpha5(IV)]2alpha6(IV) molecules. In contrast, capillaries always possessed thin basement membranes of [alpha1(IV)]2alpha2(IV) molecules. Cerebrospinal fluid is produced through filtration of blood at the choroid plexus, where two distinct basement membranes were detected by anti-al and anti-alpha2 antibodies. The subendothelial basement membrane appeared to consist of [alpha1(IV)]2alpha2(IV) molecules, whereas the subependymal basement membrane in the choroid plexus was strongly positive for alpha3, alpha4, and alpha5 chains, indicating that the filtering unit was composed of alpha3(IV)alpha4(IV)alpha5(IV) molecules. That the specific localizations of these molecules are shared by renal glomeruli and the choroid plexus leads us to hypothesize that the supramolecular network containing alpha3(IV) alpha4(IV)alpha5(IV) molecules may function as a permeability selective barrier.
Collapse
Affiliation(s)
- Norio Urabe
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine and Dentistry, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mothes H, Heidet L, Arrondel C, Richter KK, Thiele M, Patzer L, Sado Y, Gubler MC, Antignac C, Scheele J. Alport syndrome associated with diffuse leiomyomatosis: COL4A5-COL4A6 deletion associated with a mild form of Alport nephropathy. Nephrol Dial Transplant 2002; 17:70-4. [PMID: 11773466 DOI: 10.1093/ndt/17.1.70] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The X-linked Alport syndrome (AS) is an inherited nephropathy due to mutations in the COL4A5 gene, encoding the alpha5 chain of type IV collagen, a major component of the glomerular basement membrane (GBM). Here, we report a new kindred with the rare association of X-linked AS and diffuse leiomyomatosis (DL), which is a tumourous process involving smooth muscle cells of the oesophagus, the tracheobronchial tree and, in females, the genital tract. For this syndrome, an almost constant association of large COL4A5 rearrangements with a severe juvenile form of nephropathy has been described for male patients. METHODS DNA rearrangement at the COL4A5-COL4A6 locus was studied in several members of this family using polymerase chain reaction and pulsed field gel electrophoresis. Furthermore, immunohistochemical staining of tumour and skin samples was performed. RESULTS The affected patients in this family carry a 120 kb deletion by which the COL4A5 exon 1 and COL4A6 exons 1, 1', and 2 are removed. Immunohistochemical investigation of a skin biopsy of an affected male patient confirmed the absence of both the alpha5 and the alpha6 chains of type IV collagen in the basement membrane of the skin. Surprisingly, both affected male patients had a rather mild renal phenotype. CONCLUSIONS This report shows that, contrary to what has been reported to date, patients suffering from AS associated with DL can be associated with a late onset renal failure (adult) form of nephropathy.
Collapse
Affiliation(s)
- Henning Mothes
- Department of General and Visceral Surgery, Friedrich-Schiller-University Jena, Bachstrasse 18, D-07740 Jena, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Barker DF, Denison JC, Atkin CL, Gregory MC. Efficient detection of Alport syndrome COL4A5 mutations with multiplex genomic PCR-SSCP. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 98:148-60. [PMID: 11223851 DOI: 10.1002/1096-8628(20010115)98:2<148::aid-ajmg1024>3.0.co;2-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have performed effective mutation screening of COL4A5 with a new method of direct, multiplex genomic amplification that employs a single buffer condition and PCR profile. Application of the method to a consecutive series of 46 United States patients with diverse indications of Alport syndrome resulted in detection of mutations in 31 cases and of five previously unreported polymorphisms. With a correction for the presence of cases that are not likely to be due to changes at the COL4A5 locus, the mutation detection sensitivity is greater than 79%. The test examines 52 segments, including the COL4A6/COL4A5 intergenic promoter region, all 51 of the previously recognized exons and two newly detected exons between exons 41 and 42 that encode an alternatively spliced mRNA segment. New genomic sequence information was generated and used to design primer pairs that span substantial intron sequences on each side of all 53 exons. For SSCP screening, 16 multiplex PCR combinations (15 4-plex and 1 3-plex) were used to provide complete, partially redundant coverage of the gene. The selected combinations allow clear resolution of products from each segment using various SSCP gel formulations. One of the 29 different mutations detected initially seemed to be a missense change in exon 32 but was found to cause exon skipping. Another missense variant may mark a novel functional site located in the collagenous domain.
Collapse
Affiliation(s)
- D F Barker
- Department of Physiology, the University of Utah Health Sciences Center, Salt Lake City 84108, USA.
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- C E Kashtan
- University of Minnesota Medical School Department of Pediatrics Division of Pediatric Nephrology, USA
| |
Collapse
|
32
|
Abstract
Clinical manifestations of type IV collagen mutations can vary from the severe, clinically and genetically heterogeneous renal disorder, Alport syndrome, to autosomal dominant familial benign hematuria. The predominant form of Alport syndrome is X-linked; more than 160 different mutations have yet been identified in the type IV collagen alpha 5 chain (COL4A5) gene, located at Xq22-24 head to head to the COL4A6 gene. The autosomal recessive form of Alport syndrome is caused by mutations in the COL4A3 and COL4A4 genes, located at 2q35-37. Recently, the first mutation in the COL4A4 gene was identified in familial benign hematuria. This paper presents an overview of type IV collagen mutations, including eight novel COL4A5 mutations from our own group in patients with Alport syndrome. The spectrum of mutations is broad and provides insight into the clinical heterogeneity of Alport syndrome with respect to age at renal failure and accompanying features such as deafness, leiomyomatosis, and anti-GBM nephritis.
Collapse
Affiliation(s)
- H H Lemmink
- Department of Pediatrics, University Hospital Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
33
|
Heidet L, Cai Y, Guicharnaud L, Antignac C, Gubler MC. Glomerular expression of type IV collagen chains in normal and X-linked Alport syndrome kidneys. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1901-10. [PMID: 10854213 PMCID: PMC1850092 DOI: 10.1016/s0002-9440(10)65063-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2000] [Indexed: 11/15/2022]
Abstract
Alport syndrome is an inherited nephropathy characterized by alterations of the glomerular basement membrane because of mutations in type IV collagen genes. COL4A5 mutations, causing X-linked Alport syndrome, frequently result in the loss of the alpha5 chains of type IV collagen in basement membranes. This is associated with the absence of the alpha3(IV) and alpha4(IV) chains and increased amounts of alpha1(IV) and alpha2(IV) in glomerular basement membranes. The mechanisms resulting in such a configuration are still controversial and are of fundamental importance for understanding the pathology of the disease and for considering gene therapy. In this article we studied, for the first time, type IV collagen expression in kidneys from X-linked Alport syndrome patients, using in situ hybridization and immunohistochemistry. We show that, independent of the type of mutation and of the level of COL4A5 transcription, both COL4A3 and COL4A4 genes are actively transcribed in podocytes. Moreover, using immunofluorescence amplification, we were able to demonstrate that the alpha3 chain of type IV collagen was present in the podocytes of all patients. Finally, the alpha1(IV) chain, which accumulates within glomerular basement membranes, was found to be synthesized by mesangial/endothelial cells. These results strongly suggest that, contrary to what has been found in dogs affected with X-linked Alport syndrome, there is no transcriptional co-regulation of COL4A3, COL4A4, and COL4A5 genes in humans, and that the absence of alpha3(IV) to alpha5(IV) in glomerular basement membranes in the patients results from events downstream of transcription, RNA processing, and protein synthesis.
Collapse
Affiliation(s)
- L Heidet
- INSERM U423, Hôpital Necker Enfants Malades, Université René Descartes, Paris, France
| | | | | | | | | |
Collapse
|
34
|
Lu W, Phillips CL, Killen PD, Hlaing T, Harrison WR, Elder FF, Miner JH, Overbeek PA, Meisler MH. Insertional mutation of the collagen genes Col4a3 and Col4a4 in a mouse model of Alport syndrome. Genomics 1999; 61:113-24. [PMID: 10534397 DOI: 10.1006/geno.1999.5943] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mice homozygous for the transgenic insertion in line OVE250 exhibit severe progressive glomerulonephritis. Ultrastructural changes in the glomerular basement membrane (GBM) at 2 weeks of age resemble those in Alport syndrome. The transgenic insertion site was mapped by FISH to mouse chromosome 1 close to Pax3. Genetic and molecular analyses identified a deletion of genomic DNA at the transgene insertion site. Exons 1 through 12 of the collagen IV gene Col4a4, exons 1 and 2 of the adjacent Col4a3 gene, and the intergenic promoter region are deleted. Transcripts of Col4a3 and Col4a4 are undetectable in mutant kidney, and both proteins are missing from the GBM. Persistent cellular proliferation in mutant kidneys suggests that interaction with the extracellular matrix may be important for cell maturation. Evolutionarily conserved sequence elements in the promoter regions of human and mouse Col4a3 and Col4a4 include a 19-bp element that was tandemly duplicated in the human lineage and a CTC box element common to several genes encoding extracellular matrix proteins. This new animal model of Alport syndrome, Col4Delta3-4, lacks both alpha3 and alpha4 chains of collagen IV and exhibits an earlier disease onset than mice lacking alpha3 only.
Collapse
Affiliation(s)
- W Lu
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Alport syndrome (AS) is a genetically heterogeneous disease arising from mutations in genes coding for basement membrane type IV collagen. About 80% of AS is X-linked, due to mutations in COL4A5, the gene encoding the alpha 5 chain of type IV collagen (alpha 5[IV]). A subtype of X-linked Alport syndrome (XLAS) in which diffuse leiomyomatosis is an associated feature reflects deletion mutations involving the adjacent COL4A5 and COL4A6 genes. Most other patients have autosomal recessive Alport syndrome (ARAS) due to mutations in COL4A3 or COL4A4, which encode the alpha 3(IV) and alpha 4(IV) chains, respectively. Autosomal dominant AS has been mapped to chromosome 2 in the region of COL4A3 and COL4A4. The features of AS reflect derangements of basement membrane structure and function resulting from changes in type IV collagen expression. The primary pathologic event appears to be the loss from basement membranes of a type IV collagen network composed of alpha 3, alpha 4, and alpha 5(IV) chains. While this network is not critical for normal glomerulogenesis, its absence appears to provoke the overexpression of other extracellular matrix proteins, such as the alpha 1 and alpha 2(IV) chains, in glomerular basement membranes, leading to glomerulosclerosis. The diagnosis of AS still relies heavily on histologic studies, although routine application of molecular genetic diagnosis will probably be available in the future. Absence of epidermal basement membrane expression of alpha 5(IV) is diagnostic of XLAS, so in some cases kidney biopsy may not be necessary for diagnosis. Analysis of renal expression of alpha 3(IV)-alpha 5(IV) chains may be a useful adjunct to routine renal biopsy studies, especially when ultrastructural changes in the GBM are ambiguous. There are no specific therapies for AS. Spontaneous and engineered animal models are being used to study genetic and pharmacologic therapies. Renal transplantation for AS is usually very successful. Occasional patients develop anti-GBM nephritis of the allograft, almost always resulting in graft loss.
Collapse
Affiliation(s)
- C E Kashtan
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis 55455, USA.
| |
Collapse
|
36
|
Zheng K, Harvey S, Sado Y, Naito I, Ninomiya Y, Jacobs R, Thorner PS. Absence of the alpha6(IV) chain of collagen type IV in Alport syndrome is related to a failure at the protein assembly level and does not result in diffuse leiomyomatosis. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1883-91. [PMID: 10362815 PMCID: PMC1866637 DOI: 10.1016/s0002-9440(10)65446-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
X-linked Alport syndrome is a progressive nephropathy associated with mutations in the COL4A5 gene. The kidney usually lacks the alpha3-alpha6 chains of collagen type IV, although each is coded by a separate gene. The molecular basis for this loss remains unclear. In canine X-linked hereditary nephritis, a model for X-linked Alport syndrome, a COL4A5 mutation results in reduced mRNA levels for the alpha3, alpha4, and alpha5 chains in the kidney, implying a mechanism coordinating the production of these 3 chains. To examine whether production of alpha6 chain is under the same control, we studied smooth muscle cells from this animal model. We determined the canine COL4A5 and COL4A6 genes are separated by 435 bp, with two first exons for COL4A6 separated by 978 bp. These two regions are >/= 78% identical to the human sequences that have promoter activity. Despite this potential basis for coordinated transcription of the COL4A5 and COL4A6 genes, the alpha6 mRNA level remained normal in affected male dog smooth muscle while the alpha5 mRNA level was markedly reduced. However, both alpha5 and alpha6 chains were absent at the protein level. Our results suggest that production of the alpha6 chain is under a control mechanism separate from that coordinating the alpha3-alpha5 chains and that the lack of the alpha6 chain in Alport syndrome is related to a failure at the protein assembly level, raising the possibility that the alpha5 and alpha6 chains are present in the same network. The lack of the alpha6 chain does not obviously result in disease, in particular leiomyomatosis, as is seen in Alport patients with deletions involving the COL4A5 and COL4A6 genes.
Collapse
Affiliation(s)
- Keqin Zheng
- Hospital for Sick Children and University of Toronto, Toronto, Canada; the Divisions of Immunology†
| | - Scott Harvey
- Hospital for Sick Children and University of Toronto, Toronto, Canada; the Divisions of Immunology†
| | | | - Ichiro Naito
- Shigei Medical Research Institute, Okayama, Japan; the Department of Molecular Biology and Biochemistry,§
| | - Yoshifumi Ninomiya
- Okayama University Medical School, Okayama, Japan; and the Department of Pathobiology,¶
| | - Robert Jacobs
- Ontario Veterinary College and University of Guelph, Guelph, Canada
| | - Paul S. Thorner
- Hospital for Sick Children and University of Toronto, Toronto, Canada; the Divisions of Immunology†
| |
Collapse
|
37
|
Thorner P, Heidet L, Moreno Merlo F, Edwards V, Antignac C, Gubler MC. Diffuse leiomyomatosis of the esophagus: disorder of cell-matrix interaction? Pediatr Dev Pathol 1998; 1:543-9. [PMID: 9724343 DOI: 10.1007/s100249900075] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Diffuse leiomyomatosis (DL) is rare condition characterized by proliferation of smooth muscle in the upper gastrointestinal tract. Most cases are associated with X-linked Alport syndrome and have partial deletions in the genes encoding both the alpha5 and alpha6 chains of collagen type IV. We studied aspects of cell-matrix interaction of myocytes in an esophagogastrectomy specimen from a 12-year-old patient with DL. Myocytes had central areas of cytoplasmic rarefaction, which were actin positive and desmin poor, with the reverse pattern of staining at the cell periphery. Electron microscopy (EM) showed that the areas of rarefaction consisted of disorganized aggregates of filaments. The basement membranes ranged from thickened to thinned or absent. Immunohistochemical staining for the alpha1-alpha4 chains of collagen type IV, the alpha1, alpha2, beta2, and gamma1 chains of laminin, nidogen, type VI collagen, and fibronectin was normal. There was loss of the alpha5 and alpha6 chains of collagen type IV and the beta1 chain of laminin. Normal staining for alpha1, alpha2, alpha3, alpha4, alpha6, alpha8, and beta1 integrins was noted. Staining for alpha5 integrin varied from normal to reduced or negative in different cells. In DL, a primary abnormality of basement membrane may be associated with disorganization of the contractile apparatus and alterations of certain integrins. This may reflect a disturbance of cell-matrix interactions that play a role in cell differentiation and internal organization.
Collapse
Affiliation(s)
- P Thorner
- Department of Pediatric Laboratory Medicine, Division of Pathology, Hospital for Sick Children and University of Toronto, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
38
|
Simoneau A, Herring-Gillam FE, Vachon PH, Perreault N, Basora N, Bouatrouss Y, Pageot LP, Zhou J, Beaulieu JF. Identification, distribution, and tissular origin of the alpha5(IV) and alpha6(IV) collagen chains in the developing human intestine. Dev Dyn 1998; 212:437-47. [PMID: 9671947 DOI: 10.1002/(sici)1097-0177(199807)212:3<437::aid-aja11>3.0.co;2-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The basement membrane type IV collagen is a family composed of six genetically distinct but structurally similar polypeptide chains, alpha1-alpha6. The alpha1(IV) and alpha2(IV) chains are ubiquitous components of all BMs whereas the other four have a restricted tissue distribution. In the present study, we have analyzed the expression, distribution, and cellular origin of the alpha5(IV) and alpha6(IV) chains in the developing and adult human small intestine and in well-characterized in vitro models by indirect immunofluorescence, Western blot, and RT-PCR. We have found that in the fetal small intestine, alpha(IV) and alpha6(IV) are present in the epithelial BM and, in contrast to alpha1(IV) and alpha2(IV), are produced by both epithelial and mesenchymal cells. A distinct tissular origin for the alpha1/alpha2(IV) and alpha5/alpha6(IV) chains suggests that alpha5(IV) and alpha6(IV) associate as a heterotrimer in this organ. We have also found that a particular situation of alpha5(IV)/alpha6(IV) chain expression occurs in the adult intestine. Indeed, as compared with the fetal intestine, alpha6(IV) chain production is maintained while the expression of the alpha5(IV) chain is substantially reduced. Altered expression of the alpha5(IV) chain was also observed in the differentiating enterocytic-like Caco-2/15 cells, suggesting that in the intestinal model, the alpha5(IV) chain is subject to a regulated expression. Taken together, these observations indicate that the human intestinal epithelial BM contains up to four type IV collagen chains: the classical alpha1(IV)/alpha2(IV) chains, which originate from mesenchymal cells, and the alpha5(IV)/alpha6(IV) chains, which are of both epithelial and mesenchymal origin and have their expression regulated throughout development.
Collapse
Affiliation(s)
- A Simoneau
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Momota R, Sugimoto M, Oohashi T, Kigasawa K, Yoshioka H, Ninomiya Y. Two genes, COL4A3 and COL4A4 coding for the human alpha3(IV) and alpha4(IV) collagen chains are arranged head-to-head on chromosome 2q36. FEBS Lett 1998; 424:11-6. [PMID: 9537506 DOI: 10.1016/s0014-5793(98)00128-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We first isolated and characterized genomic DNA fragments that cover the 5' flanking sequences of COL4A3 and COL4A4 encoding the human basement membrane alpha3(IV) and alpha4(IV) collagen chains, respectively. Nucleotide sequence analysis indicated that the two genes are arranged head-to-head. To determine transcription start site for COL4A4 gene, we performed RACE and RNase protection assays, indicating that there are two alternative transcripts presumably derived from two different promoters. Interestingly, one transcription start site (from exon 1') of COL4A4 is only 5 bp away from the reported transcription start site of COL4A3, whereas the other transcript (from exon 1) starts 373 nucleotides downstream from the first one, generating the two kinds of transcripts that differ in the 5' UTR regions. Expression of these two transcripts appears tissue-specific; exon 1 transcript was expressed predominantly in epithelial cells, while exon 1' transcript showed rather ubiquitous and low expression. The nucleotide sequence of the promoter region is composed of dense CpG dinucleotides, GC boxes, CTC boxes and a CCAAT box but no TATA box. These results provide information to delineate the promoter activity for the tissue-specific expression of the six type IV collagen genes and basement membrane assembly in different tissues and organs.
Collapse
Affiliation(s)
- R Momota
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Ueki Y, Naito I, Oohashi T, Sugimoto M, Seki T, Yoshioka H, Sado Y, Sato H, Sawai T, Sasaki F, Matsuoka M, Fukuda S, Ninomiya Y. Topoisomerase I and II consensus sequences in a 17-kb deletion junction of the COL4A5 and COL4A6 genes and immunohistochemical analysis of esophageal leiomyomatosis associated with Alport syndrome. Am J Hum Genet 1998; 62:253-61. [PMID: 9463311 PMCID: PMC1376880 DOI: 10.1086/301703] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diffuse esophageal leiomyomatosis (DL), a benign smooth-muscle-cell tumor, is characterized by abnormal cell proliferation. DL is sometimes associated with X-linked Alport syndrome (AS), an inherited nephropathy caused by COL4A5 gene mutations. COL4A5 is tightly linked, in a head-to-head fashion, to the functionally related and coordinately regulated COL4A6 gene. No X-linked AS cases are due to COL4A6 mutations, but all DL/AS cases are always associated with deletions spanning the 5' regions of the COL4A5/COL4A6 cluster. Unlike the COL4A5 breakpoints, those of COL4A6 are clustered within intron 2 of the gene. We identified a DL/AS deletion and the first characterization of the breakpoint sequences. We show that a deletion eliminates the first coding exon of COL4A5 and the first two coding exons of COL4A6. The breakpoints share the same sequence, which, in turn, is closely homologous to the consensus sequences of topoisomerases I and II. Additional DNA evidence suggested that the male patient is a somatic mosaic for the mutation. Immunohistochemical analysis using alpha-chain-specific monoclonal antibodies supported this conclusion, since it revealed the absence of the alpha5(IV) and alpha6(IV) collagen chains in most but not all of the basement membranes of the smooth-muscle-cell tumor. We also documented a similar segmental staining pattern in the glomerular basement membranes of the patient's kidney. This study is particularly relevant to the understanding of DL pathogenesis and its etiology.
Collapse
Affiliation(s)
- Y Ueki
- Department of Molecular Biology, Okayama University Medical School, Shigei Medical Research Institute, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kalluri R, Shield CF, Todd P, Hudson BG, Neilson EG. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J Clin Invest 1997; 99:2470-8. [PMID: 9153291 PMCID: PMC508088 DOI: 10.1172/jci119431] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Normal glomerular capillaries filter plasma through a basement membrane (GBM) rich in alpha3(IV), alpha4(IV), and alpha5(IV) chains of type IV collagen. We now show that these latter isoforms are absent biochemically from the glomeruli in patients with X-linked Alport syndrome (XAS). Their GBM instead retain a fetal distribution of alpha1(IV) and alpha2(IV) isoforms because they fail to developmentally switch their alpha-chain use. The anomalous persistence of these fetal isoforms of type IV collagen in the GBM in XAS also confers an unexpected increase in susceptibility to proteolytic attack by collagenases and cathepsins. The incorporation of cysteine-rich alpha3(IV), alpha4(IV), and alpha5(IV) chains into specialized basement membranes like the GBM may have normally evolved to protectively enhance their resistance to proteolytic degradation at the site of glomerular filtration. The relative absence of these potentially protective collagen IV isoforms in GBM from XAS may explain the progressive basement membrane splitting and increased damage as these kidneys deteriorate.
Collapse
Affiliation(s)
- R Kalluri
- Penn Center for Molecular Studies of Kidney Diseases, Renal Electrolyte and Hypertension Division, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104-6144, USA
| | | | | | | | | |
Collapse
|
42
|
Fukuda K, Hori H, Utani A, Burbelo PD, Yamada Y. Formation of recombinant triple-helical [alpha 1(IV)]2 alpha 2(IV) collagen molecules in CHO cells. Biochem Biophys Res Commun 1997; 231:178-82. [PMID: 9070244 DOI: 10.1006/bbrc.1997.6069] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Collagen IV molecules represent a major structural component of basement membranes providing a network of support for the supramolecular structure. Like other collagens, collagen IV forms a triple-helical molecule composed of three alpha chains. Six different alpha chains exist for collagen IV, although the most common isoform consists of two alpha 1(IV) and one alpha 2(IV) chain. To understand the molecular mechanism of triple-helical formation of collagen IV, we expressed recombinant alpha 1(IV) and alpha 2(IV) mouse collagen chains in Chinese hamster ovary (CHO) cells. An expression vector containing the full length cDNA for the mouse alpha 1(IV) chain was stably transfected into CHO cells and a cell line, A222, which expressed recombinant alpha 1(IV) chains was selected. These A222 cells were then infected with a retroviral expression vector containing the mouse alpha 2(IV) chain and a cell line, A222-A2, stably expressing both recombinant alpha 1(IV) and alpha 2(IV) chains was obtained. Immunoprecipitation of A222 cell lysates revealed a high level of alpha 1(IV) chain monomer, which was unable to form a homotrimer. Analysis of A222-A2 cell lysates revealed the presence of both monomeric alpha 2(IV) and alpha 1(IV) chains as well as a higher molecular weight collagen IV species. Second dimensional SDS-PAGE analysis demonstrated that the high molecular weight species was a heterotrimer consisting of two alpha 1(IV) and one alpha 2(IV) chain. This heterotrimer collagen IV species was pepsin-resistant indicating the formation of a stable triple-helical structure. Pulse-chase experiments showed that the monomer alpha 1(IV) chain was secreted, but at a much slower rate than the heterotrimer. Together these results demonstrate that the alpha 1(IV) chain is not capable of forming homotrimers and suggest that the coexpression with the alpha 2(IV) chain is necessary to form a triple-helical structure.
Collapse
Affiliation(s)
- K Fukuda
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental Research, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
43
|
Cosgrove D, Meehan DT, Grunkemeyer JA, Kornak JM, Sayers R, Hunter WJ, Samuelson GC. Collagen COL4A3 knockout: a mouse model for autosomal Alport syndrome. Genes Dev 1996; 10:2981-92. [PMID: 8956999 DOI: 10.1101/gad.10.23.2981] [Citation(s) in RCA: 259] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A mouse model for the autosomal form of Alport syndrome was produced. These mice develop a progressive glomerulonephritis with microhematuria and proteinuria, consistent with the human disease. End-stage renal disease develops at approximately 14 weeks of age. TEM analysis of the glomerular basement membranes (GBM) during development of renal pathology revealed focal multilaminated thickening and thinning beginning in the external capillary loops at 4 weeks and spreading throughout the GBM by 8 weeks. By 14 weeks, half of the glomeruli were fibrotic with collapsed capillaries. Immunofluorescence analysis of the GBM showed the absence of type IV collagen alpha-3, alpha-4, and alpha-5 chains and a persistence of alpha-1 and alpha-2 chains (these chains normally localize to the mesangial matrix). Northern blot analysis using probes specific for the collagen chains illustrate the absence of COL4A3 in the knockout, whereas mRNAs for the remaining chains are unchanged. An accumulation of fibronectin, heparan sulfate proteoglycan, laminin-1, and entactin was observed in the GBM of the affected animals. The temporal and spatial pattern of accumulation was consistent with that for thickening of the GBM as observed by TEM. Thus, expression of these basement membrane-associated proteins may be involved in the progression of Alport renal disease pathogenesis. The levels of mRNAs encoding the basement membrane-associated proteins at 7 weeks were unchanged.
Collapse
Affiliation(s)
- D Cosgrove
- Department of Genetics, Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- C E Kashtan
- University of Minnesota Medical School, Department of Pediatrics, Minneapolis 55455, USA.
| | | |
Collapse
|
45
|
Abstract
This review discusses some rules for assessing the completeness of a cDNA sequence and identifying the start site for translation. Features commonly invoked-such as an ATG codon in a favorable context for initiation, or the presence of an upstream in-frame terminator codon, or the prediction of a signal peptide-like sequence at the amino terminus-have some validity; but examples drawn from the literature illustrate limitations to each of these criteria. The best advice is to inspect a cDNA sequence not only for these positive features but also for the absence of certain negative indicators. Three specific warning signs are discussed and documented: (i) The presence of numerous ATG codons upstream from the presumptive start site for translation often indicates an aberration (sometimes a retained intron) at the 5' end of the cDNA. (ii) Even one strong, upstream, out-of-frame ATG codon poses a problem if the reading frame set by the upstream ATG overlaps the presumptive start of the major open reading frame. Many cDNAs that display this arrangement turn out to be incomplete; that is, the out-of-frame ATG codon is within, rather than upstream from, the protein coding domain. (iii) A very weak context at the putative start site for translation often means that the cDNA lacks the authentic initiator codon. In addition to presenting some criteria that may aid in recognizing incomplete cDNA sequences, the review includes some advice for using in vitro translation systems for the expression of cDNAs. Some unresolved questions about translational regulation are discussed by way of illustrating the importance of verifying mRNA structures before making deductions about translation.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| |
Collapse
|
46
|
Rauf S, Kagawa M, Kishiro Y, Inoue S, Naito I, Oohashi T, Sugimoto M, Ninomiya Y, Sado Y. Nephritogenicity and alpha-chain composition of NC1 fractions of type IV collagen from bovine renal basement membrane. Virchows Arch 1996; 428:281-8. [PMID: 8764938 DOI: 10.1007/bf00196702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nephritogenicity (anti-GBM-nephritis-inducing activity) and alpha-chain composition of globular-do-main (NCI) fractions of type IV collagen from bovine renal, pulmonary, and placental basement membranes (BMs) was examined by injecting these fractions with adjuvant into WKY/NCrj rats and by Western blotting using epitope-defined monoclonal antibodies to the six different alpha chains of type IV collagen. A purified nephritogenic fraction from renal BM contained alpha 1-alpha 6(IV)NCI, whereas a non-nephritogenic fraction contained only alpha 1-alpha 2(IV)NCI. Renal and pulmonary NCI had strong nephritogenic activity: placental NCI had weak activity. The renal and pulmonary fractions contained alpha 1-alpha 6(IV)NCI, and the placental fraction had a large amount of alpha 1-alpha 2(IV)NCI and a very small amount of alpha 3-alpha 6(IV)NCI. Immunohistochemical study of bovine renal BM with the monoclonal antibodies revealed that bovine glomerular BM contained alpha 1-alpha 5(IV) chains, but not the alpha 6(IV) chain. The absence of alpha 6(IV) chain in glomerular BM in bovine and in humans indicates that alpha 6(IV) chain is not a target antigen of anti-GBM nephritis. Nephritogenicity is apparently a property of alpha 3-alpha 5(IV)NCI.
Collapse
Affiliation(s)
- S Rauf
- Division of Immunology, Shigei Medical Research Institute, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Durkin ME, Gautam M, Loechel F, Sanes JR, Merlie JP, Albrechtsen R, Wewer UM. Structural organization of the human and mouse laminin beta2 chain genes, and alternative splicing at the 5' end of the human transcript. J Biol Chem 1996; 271:13407-16. [PMID: 8662701 DOI: 10.1074/jbc.271.23.13407] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have determined the structural organization of the human and mouse genes that encode the laminin beta2 chain (s-laminin), an essential component of the basement membranes of the neuromuscular synapse and the kidney glomerulus. The human and mouse genes have a nearly identical exon-intron organization and are the smallest laminin chain genes characterized to date, due to the unusually small size of their introns. The laminin beta2 chain genes of both species consist of 33 exons that span </=12 kilobase pairs of genomic DNA. The exon-intron pattern of the laminin beta2 chain gene is also highly similar to that of the human genes encoding the homologous laminin beta1 and beta3 chains. The putative promoter regions of the human and mouse laminin beta2 chain genes have features characteristic of the promoters of genes that have a limited tissue expression. Considerable conservation of the intron sequences of the mouse and human genes was observed. The first intron of the human gene, located 1 base pair upstream of the translation start codon, contains a non-consensus 5' splice site. This intron was shown to be inefficiently spliced in humans, suggesting that post-transcriptional mechanisms may be involved in the regulation of laminin beta2 chain gene expression.
Collapse
Affiliation(s)
- M E Durkin
- Laboratory of Molecular Pathology, University Institute of Pathological Anatomy, 2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
48
|
Dahan K, Heidet L, Zhou J, Mettler G, Leppig KA, Proesmans W, David A, Roussel B, Mongeau JG, Gould JM. Smooth muscle tumors associated with X-linked Alport syndrome: carrier detection in females. Kidney Int 1995; 48:1900-6. [PMID: 8587250 DOI: 10.1038/ki.1995.489] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
X-linked Alport syndrome (AS) associated with diffuse esophageal leiomyomatosis (DL) has been reported to be due to deletions removing the 5' ends of both the COL4A5 and COL4A6 genes, encoding the alpha 5 and alpha 6 chains of type IV collagen, respectively, whereas a variety of mutations in COL4A5 has been identified in patients with AS alone. Here we report three additional DL-AS patients who also display deletions removing the 5' ends of both COL4A5 and COL4A6 genes. Furthermore, we tracked the mutation in 15 females belonging to six DL-AS families by gene copy number determination. We found that, like AS, DL is transmitted as an X-linked dominant trait but, contrary to AS, DL is fully penetrant and completely expressed in females. These results are in agreement with our previous work suggesting that DL could be due to a dominant effect of an abnormal alpha 6 (IV) collagen chain. Finally, we have detected a similar deletion of the COL4A5 and COl4A6 genes in a DL affected female who showed no sign of nephropathy, demonstrating the AS carrier status of this DL patient. These results emphasize the importance of molecular analysis of female DL patients for genetic counseling.
Collapse
Affiliation(s)
- K Dahan
- INSERM U423, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Oohashi T, Ueki Y, Sugimoto M, Ninomiya Y. Isolation and structure of the COL4A6 gene encoding the human alpha 6(IV) collagen chain and comparison with other type IV collagen genes. J Biol Chem 1995; 270:26863-7. [PMID: 7592929 DOI: 10.1074/jbc.270.45.26863] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The genes COL4A5 and COL4A6, coding for the basement membrane collagen chains, alpha 5(IV) and alpha 6(IV), respectively, are located head-to-head in close proximity on human chromosome Xq22, and COL4A6 is transcribed from two alternative promoters in a tissue-specific fashion (Sugimoto M., Oohashi T., and Ninomiya Y. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 11679-11683). Immunofluorescence studies using alpha chain-specific antibodies demonstrated that the two genes are expressed in a tissue-specific manner (Ninomiya, Y., Kagawa, M., Iyama, K., Naito, L., Kishiro, Y., Seyer, J. M., Sugimoto, M., Oohashi, T., and Sado, Y. (1995) J. Cell Biol. 130, 1219-1229). We report here for the first time the isolation and the structural organization of the human COL4A6 gene. The entire gene presumably exceeds 200 kilobase pairs and contains 46 exons. Exons 1' and 1 encode the two different 5'-UTRs and the two amino-terminal parts of of the signal peptide. The carboxyl part of the signal peptide and the 7 S domain are coded for by the following 6 different exons, 2-7, whereas the exons 7-42 encode the central COL 1 domain, which contains the Gly-X-Y repeats. The last three exons, 43-45, encode the carboxyl-terminal NC1 domain. Sizes of more than a half of the exons of the gene are the same as those of Col4a2 but quite different from those of COL4A5. Within the COL4A6 gene we found three CA repeat markers that can be used for allele detection. The detailed structure of the COL4A6 gene and the high heterozygosity microsatellite markers located within the gene will be useful for linkage analysis and familial diagnosis of diseases caused by mutations of this gene.
Collapse
Affiliation(s)
- T Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Japan
| | | | | | | |
Collapse
|
50
|
Sado Y, Kagawa M, Kishiro Y, Sugihara K, Naito I, Seyer JM, Sugimoto M, Oohashi T, Ninomiya Y. Establishment by the rat lymph node method of epitope-defined monoclonal antibodies recognizing the six different alpha chains of human type IV collagen. Histochem Cell Biol 1995; 104:267-75. [PMID: 8548560 DOI: 10.1007/bf01464322] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A group of rat monoclonal antibodies recognizing the six different alpha chains of human type IV collagen have been established by our novel method. The method is designated the rat lymph node method in which enlarged medial iliac lymph nodes of a rat injected with an antigen emulsion via hind footpads are used as a source of B cells for cell fusion to produce hybridomas. The immunogens used were synthetic peptides having non-consensus amino acid sequences near the carboxyl termini of type IV collagen alpha chains. Hybridomas were screened both by ELISA with synthetic peptides and by indirect immunofluorescence with cryostat sections of human kidneys. Because the epitopes of all antibodies were determined by multipin-peptide scanning, they were confirmed to be isoform-specific. They are useful for identification of alpha chains of type IV collagen at the protein level in normal and abnormal conditions. The combined use of synthetic peptides as immunogens, the rat lymph node method as making monoclonal antibodies, and the multipin-peptide scanning as epitope mapping is found to be a strong tool for identification of peptides and proteins whose amino acid sequences are known or have been deduced.
Collapse
Affiliation(s)
- Y Sado
- Division of Immunology, Shigei Medical Research Institute, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|