1
|
Chandora K, Chandora A, Saeed A, Cavalcante L. Adoptive T Cell Therapy Targeting MAGE-A4. Cancers (Basel) 2025; 17:413. [PMID: 39941782 PMCID: PMC11815873 DOI: 10.3390/cancers17030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
MAGE A4 (Melanoma Antigen Gene A4) is a cancer testis antigen (CTA) that is expressed normally in germline cells (testis/embryonic tissues) but absent in somatic cells. The MAGE A4 CTA is expressed in a variety of tumor types, like synovial sarcoma, ovarian cancer and non-small cell lung cancer. Having its expression profile limited to germline cells has made MAGE A4 a sought-after immunotherapeutic target in certain malignancies. In this review, we focus on MAGE-A4's function and expression, current clinical trials involving targeted immunotherapy approaches, and challenges and opportunities facing MAGE-A4's targeted therapeutics.
Collapse
Affiliation(s)
- Kapil Chandora
- Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA 30310, USA; (K.C.)
| | - Akshay Chandora
- Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA 30310, USA; (K.C.)
| | - Anwaar Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Ludimila Cavalcante
- Division of Hematology and Oncology, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22903, USA
| |
Collapse
|
2
|
Doytchinova I, Atanasova M, Sotirov S, Dimitrov I. In Silico Identification of Peanut Peptides Suitable for Allergy Immunotherapy in HLA-DRB1*03:01-Restricted Patients. Pharmaceuticals (Basel) 2024; 17:1097. [PMID: 39204201 PMCID: PMC11357649 DOI: 10.3390/ph17081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Peanut allergy, a prevalent and potentially severe condition affecting millions worldwide, has been linked to specific human leukocyte antigens (HLAs), suggesting increased susceptibility. Employing an immunoinformatic strategy, we developed a "logo model" based on amino acid frequencies in the peptide binding core and used it to predict peptides originating from 28 known peanut allergens binding to HLA-DRB1*03:01, one of the susceptibility alleles. These peptides hold promise for immunotherapy in HLA-DRB1*03:01 carriers, offering reduced allergenicity compared to whole proteins. By targeting essential epitopes, immunotherapy can modulate immune responses with minimal risk of severe reactions. This precise approach could induce immune tolerance with fewer adverse effects, presenting a safer and more effective treatment for peanut allergy and other allergic conditions.
Collapse
Affiliation(s)
- Irini Doytchinova
- Drug Design and Bioinformatics Lab, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (M.A.); (S.S.); (I.D.)
| | | | | | | |
Collapse
|
3
|
Li Q, Ming R, Huang L, Zhang R. Versatile Peptide-Based Nanosystems for Photodynamic Therapy. Pharmaceutics 2024; 16:218. [PMID: 38399272 PMCID: PMC10892956 DOI: 10.3390/pharmaceutics16020218] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Photodynamic therapy (PDT) has become an important therapeutic strategy because it is highly controllable, effective, and does not cause drug resistance. Moreover, precise delivery of photosensitizers to tumor lesions can greatly reduce the amount of drug administered and optimize therapeutic outcomes. As alternatives to protein antibodies, peptides have been applied as useful targeting ligands for targeted biomedical imaging, drug delivery and PDT. In addition, other functionalities of peptides such as stimuli responsiveness, self-assembly, and therapeutic activity can be integrated with photosensitizers to yield versatile peptide-based nanosystems for PDT. In this article, we start with a brief introduction to PDT and peptide-based nanosystems, followed by more detailed descriptions about the structure, property, and architecture of peptides as background information. Finally, the most recent advances in peptide-based nanosystems for PDT are emphasized and summarized according to the functionalities of peptide in the system to reveal the design and development principle in different therapeutic circumstances. We hope this review could provide useful insights and valuable reference for the development of peptide-based nanosystems for PDT.
Collapse
Affiliation(s)
- Qiuyan Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruiqi Ming
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Lili Huang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruoyu Zhang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Ben Khelil M, Aeberli L, Perchaud M, Genolet R, Abdeljaoued S, Borg C, Binda D, Harari A, Jandus C, Muller G, Loyon R. A new workflow combining magnetic cell separation and impedance-based cell dispensing for gentle, simple and reliable cloning of specific CD8+ T cells. SLAS Technol 2022; 27:130-134. [DOI: 10.1016/j.slast.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Lokhov PG, Balashova EE. Antigenic Essence: Upgrade of Cellular Cancer Vaccines. Cancers (Basel) 2021; 13:cancers13040774. [PMID: 33673325 PMCID: PMC7917603 DOI: 10.3390/cancers13040774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/10/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Early cancer vaccines include whole-cell formulations, which operate on the principle that you should vaccinate with what you want to develop protection against. Such vaccines have been widely tested in various cancers and their advantages described but have not yet managed to pass clinical trials. Antigenic essence technology offers the possibility to revitalize the field of whole-cell-based vaccination, as the essence comprises the entire diversity of native cellular antigens. At the same time, the technology allows for precise control and purposeful change of essence composition as well as purification of essence from ballast cellular substances and also addresses issues of major histocompatibility complex restriction. Antigenic essence technology makes it possible to update many cellular vaccines that have already been developed, as well as to develop new ones, therefore introducing a new direction for anticancer vaccination research. Abstract The development of anticancer immunotherapy is characterized by several approaches, the most recognized of which include cellular vaccines, tumor-associated antigens (TAAs), neoantigens, and chimeric antigen receptor T cells (CAR-T). This paper presents antigenic essence technology as an effective means for the production of new antigen compositions for anticancer vaccination. This technology is developed via proteomics, cell culture technology, and immunological assays. In terms of vaccine development, it does not fit into any of the above-noted approaches and can be considered a new direction. Here we review the development of this technology, its main characteristics, comparison with existing approaches, and the features that distinguish it as a novel approach to anticancer vaccination. This review will also highlight the benefits of this technology over other approaches, such as the ability to control composition, optimize immunogenicity and similarity to target cells, and evade major histocompatibility complex restriction. The first antigenic essence products, presented under the SANTAVAC brand, are also described.
Collapse
Affiliation(s)
- Petr G. Lokhov
- BioBohemia Inc., 177 Huntington Ave., Boston, MA 02115, USA;
- Institute of Biomedical Chemistry, Pogodinskaya st., 10/8, 119121 Moscow, Russia
- Correspondence:
| | - Elena E. Balashova
- BioBohemia Inc., 177 Huntington Ave., Boston, MA 02115, USA;
- Institute of Biomedical Chemistry, Pogodinskaya st., 10/8, 119121 Moscow, Russia
| |
Collapse
|
6
|
Fridman A, Finnefrock AC, Peruzzi D, Pak I, La Monica N, Bagchi A, Casimiro DR, Ciliberto G, Aurisicchio L. An efficient T-cell epitope discovery strategy using in silico prediction and the iTopia assay platform. Oncoimmunology 2021; 1:1258-1270. [PMID: 23243589 PMCID: PMC3518498 DOI: 10.4161/onci.21355] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Functional T-cell epitope discovery is a key process for the development of novel immunotherapies, particularly for cancer immunology. In silico epitope prediction is a common strategy to try to achieve this objective. However, this approach suffers from a significant rate of false-negative results and epitope ranking lists that often are not validated by practical experience. A high-throughput platform for the identification and prioritization of potential T-cell epitopes is the iTopia(TM) Epitope Discovery System(TM), which allows measuring binding and stability of selected peptides to MHC Class I molecules. So far, the value of iTopia combined with in silico epitope prediction has not been investigated systematically. In this study, we have developed a novel in silico selection strategy based on three criteria: (1) predicted binding to one out of five common MHC Class I alleles; (2) uniqueness to the antigen of interest; and (3) increased likelihood of natural processing. We predicted in silico and characterized by iTopia 225 candidate T-cell epitopes and fixed-anchor analogs from three human tumor-associated antigens: CEA, HER2 and TERT. HLA-A2-restricted fragments were further screened for their ability to induce cell-mediated responses in HLA-A2 transgenic mice. The iTopia binding assay was only marginally informative while the stability assay proved to be a valuable experimental screening method complementary to in silico prediction. Thirteen novel T-cell epitopes and analogs were characterized and additional potential epitopes identified, providing the basis for novel anticancer immunotherapies. In conclusion, we show that combination of in silico prediction and an iTopia-based assay may be an accurate and efficient method for MHC Class I epitope discovery among tumor-associated antigens.
Collapse
|
7
|
Jones HF, Molvi Z, Klatt MG, Dao T, Scheinberg DA. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Front Immunol 2021; 11:585385. [PMID: 33569049 PMCID: PMC7868419 DOI: 10.3389/fimmu.2020.585385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
The use of T cells reactive with intracellular tumor-associated or tumor-specific antigens has been a promising strategy for cancer immunotherapies in the past three decades, but the approach has been constrained by a limited understanding of the T cell receptor's (TCR) complex functions and specificities. Newer TCR and T cell-based approaches are in development, including engineered adoptive T cells with enhanced TCR affinities, TCR mimic antibodies, and T cell-redirecting bispecific agents. These new therapeutic modalities are exciting opportunities by which TCR recognition can be further exploited for therapeutic benefit. In this review we summarize the development of TCR-based therapeutic strategies and focus on balancing efficacy and potency versus specificity, and hence, possible toxicity, of these powerful therapeutic modalities.
Collapse
Affiliation(s)
- Heather F. Jones
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| | - Zaki Molvi
- Weill Cornell Medicine, New York, NY, United States
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
8
|
Das B, Senapati S. Immunological and functional aspects of MAGEA3 cancer/testis antigen. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:121-147. [PMID: 33931137 DOI: 10.1016/bs.apcsb.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of ectopic gene activation in cancer cells serves as a basis for both gene signature-guided tumor targeting and unearthing of oncogenic mechanisms to expand the understanding of tumor biology/oncogenic process. Proteins expressed only in germ cells of testis and/or placenta (immunoprivileged organs) and in malignancies are called cancer testis antigens; they are antigenic because of the lack of antigen presentation by those specific cell types (germ cells), which limits the exposure of the proteins to the immune cells. Since the Cancer Testis Antigens (CTAs) are immunogenic and expressed in a wide variety of cancer types, CT antigens have become interesting target for immunotherapy against cancer. Among CT antigens MAGEA family is reported to have 12 members (MAGEA1 to MAGEA12). The current review highlights the studies on MAGEA3 which is a CT antigen and reported in almost all types of cancer. MAGEA3 is well tried for cancer immunotherapy. Recent advances on its functional and immunological aspect warranted much deliberation on effective therapeutic approach, thus making it a more interesting target for cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
9
|
Yang X, Xie S, Yang X, Cueva JC, Hou X, Tang Z, Yao H, Mo F, Yin S, Liu A, Lu X. Opportunities and Challenges for Antibodies against Intracellular Antigens. Am J Cancer Res 2019; 9:7792-7806. [PMID: 31695801 PMCID: PMC6831482 DOI: 10.7150/thno.35486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Therapeutic antibodies are one most significant advances in immunotherapy, the development of antibodies against disease-associated MHC-peptide complexes led to the introduction of TCR-like antibodies. TCR-like antibodies combine the recognition of intracellular proteins with the therapeutic potency and versatility of monoclonal antibodies (mAb), offering an unparalleled opportunity to expand the repertoire of therapeutic antibodies available to treat diseases like cancer. This review details the current state of TCR-like antibodies and describes their production, mechanisms as well as their applications. In addition, it presents an insight on the challenges that they must overcome in order to become commercially and clinically validated.
Collapse
|
10
|
Bertazzoni C, Marchesi E, Dermime S, Ravagnani F, Parmiani G, Gambacorti-Passerini C. HLA Binding Characteristics and Generation of Cytotoxic Lymphocytes against Peptides Derived from Oncogenic Proteins. TUMORI JOURNAL 2018. [DOI: 10.1177/030089169708300515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aims and background Structurally altered proteins (derived from chromosomal translocations or gene mutations) can be considered tumor specific antigens and represent an attractive target for a T-cell mediated response. T lymphocytes recognize antigens in the form of peptides bound to HLA-mole-cules. Materials and methods Peptides derived from oncogenic proteins were screened fro the presence of HLA binding motifs; actual binding were evaluated by HLA stabilization experiments using transfectants and specific anti-HLA antibodies. Specific lymphocytes were induced by in vitro peptide sensitization and screened by thymidine uptake or cellular cytotoxic assays. Results We identified peptides derived from EWS/FLI-1 fusion protein and from mutated K-RAS protein (encompassing respectively the fusion point and the mutation at position 12) that showed binding motif for HLA-Cw*0702 and HLA-A3 respectively. The actual binding of these peptides was analysed in a stabilization assay. We detected binding for the EWS/FLI-I peptide and for 5 RAS peptides (1 wild type and 4 mutated). The effect of temperature, β2-microglobulin (β2-m) and fetal calf serum (FCS) on the binding and the stability of the HLA/peptide complex was studied. A low temperature (26°C) increased the binding both in HLA-A3 and HLA-Cw*0702, while FCS reduced it. β2-m increased the binding to the HLA-A3 molecule but did not influence the binding to the HLA-Cw*0702. The stability of already formed complexed was somewhat different in the HLA-A3 and HLA-Cw*0702 system: both were more stable at 26°C than at 37°C but while the β2-m and FCS did not influence the stability of the HLA-A3/peptide complex, they seemed to cause opposite effects in the HLA-Cw*0702 system (β2-m stabilized and FCS destabilized the complex). Finally, we were able to generate a specific CD8+ CTL line against a K-RAS mutated peptide. Conclusions Although binding motifs and actual HLA binding can be detected in several cases, the generation of a cellular response is infrequent, confirming that HLA binding is necessary but not sufficient to obtain an in vitro response. Further optimization of culture conditions, type of Antigen Presenting Cells (APC), peptides, use of stabilizers like β2-m are still needed.
Collapse
Affiliation(s)
- Carla Bertazzoni
- Division of Experimental Oncology D, Istituto Nazionale Tumori, Milan, Italy
| | - Edoardo Marchesi
- Division of Experimental Oncology D, Istituto Nazionale Tumori, Milan, Italy
| | - Said Dermime
- Division of Experimental Oncology D, Istituto Nazionale Tumori, Milan, Italy
| | | | - Giorgio Parmiani
- Division of Experimental Oncology D, Istituto Nazionale Tumori, Milan, Italy
| | | |
Collapse
|
11
|
Affiliation(s)
- Luigi Buonaguro
- Lab. of Molecular Biology and Viral Oncogenesis, National Cancer Institute "Fond. G. Pascale", Naples, Italy.
| | -
- Lab. of Molecular Biology and Viral Oncogenesis, National Cancer Institute "Fond. G. Pascale", Naples, Italy
| |
Collapse
|
12
|
Abstract
Adoptive cellular therapy represents a robust means of augmenting the tumor-reactive effector population in patients with cancer by adoptive transfer of ex vivo expanded T cells. Three approaches have been developed to achieve this goal: the use of tumor-infiltrating lymphocytes or tumor-infiltrating lymphocytess extracted from patient biopsy material; the redirected engineering of lymphocytes using vectors expressing a chimeric antigen receptor and T-cell receptor; and third, the isolation and expansion of often low-frequency endogenous T cells (ETCs) reactive to tumor antigens from the peripheral blood of patients. This last form of adoptive transfer of T cells, known as ETC therapy, requires specialized methods to isolate and expand from peripheral blood the very low-frequency tumor-reactive T cells, methods that have been developed over the last 2 decades, to the point where such an approach may be broadly applicable not only for the treatment of melanoma but also for that of other solid tumor malignancies. One compelling feature of ETC is the ability to rapidly deploy clinical trials following identification of a tumor-associated target epitope, a feature that may be exploited to develop personalized antigen-specific T-cell therapy for patients with almost any solid tumor. With a well-validated antigen discovery pipeline in place, clinical studies combining ETC with agents that modulate the immune microenvironment can be developed that will transform ETC into a feasible treatment modality.
Collapse
|
13
|
Effect of dendritic cell state and antigen-presentation conditions on resulting T-cell phenotypes and Th cytokine profiles. Immunobiology 2016; 221:862-70. [DOI: 10.1016/j.imbio.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/14/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022]
|
14
|
Sultan H, Fesenkova VI, Addis D, Fan AE, Kumai T, Wu J, Salazar AM, Celis E. Designing therapeutic cancer vaccines by mimicking viral infections. Cancer Immunol Immunother 2016; 66:203-213. [PMID: 27052572 DOI: 10.1007/s00262-016-1834-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/23/2016] [Indexed: 12/25/2022]
Abstract
The design of efficacious and cost-effective therapeutic vaccines against cancer remains both a research priority and a challenge. For more than a decade, our laboratory has been involved in the development of synthetic peptide-based anti-cancer therapeutic vaccines. We first dedicated our efforts in the identification and validation of peptide epitopes for both CD8 and CD4 T cells from tumor-associated antigens (TAAs). Because of suboptimal immune responses and lack of therapeutic benefit of peptide vaccines containing these epitopes, we have focused our recent efforts in optimizing peptide vaccinations in mouse tumor models using numerous TAA epitopes. In this focused research review, we describe how after taking lessons from the immune system's way of dealing with acute viral infections, we have designed peptide vaccination strategies capable of generating very high numbers of therapeutically effective CD8 T cells. We also discuss some of the remaining challenges to translate these findings into the clinical setting.
Collapse
Affiliation(s)
- Hussein Sultan
- Augusta University GRU Cancer Center, CN-4121, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Valentyna I Fesenkova
- Augusta University GRU Cancer Center, CN-4121, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | - Diane Addis
- Augusta University GRU Cancer Center, CN-4121, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | - Aaron E Fan
- Augusta University GRU Cancer Center, CN-4121, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | - Takumi Kumai
- Augusta University GRU Cancer Center, CN-4121, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Juan Wu
- Augusta University GRU Cancer Center, CN-4121, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | | | - Esteban Celis
- Augusta University GRU Cancer Center, CN-4121, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA.
- Departments of Medicine and Biochemistry, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
15
|
Tan MP, Gerry AB, Brewer JE, Melchiori L, Bridgeman JS, Bennett AD, Pumphrey NJ, Jakobsen BK, Price DA, Ladell K, Sewell AK. T cell receptor binding affinity governs the functional profile of cancer-specific CD8+ T cells. Clin Exp Immunol 2015; 180:255-70. [PMID: 25496365 PMCID: PMC4408161 DOI: 10.1111/cei.12570] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 12/17/2022] Open
Abstract
Antigen-specific T cell receptor (TCR) gene transfer via patient-derived T cells is an attractive approach to cancer therapy, with the potential to circumvent immune regulatory networks. However, high-affinity tumour-specific TCR clonotypes are typically deleted from the available repertoire during thymic selection because the vast majority of targeted epitopes are derived from autologous proteins. This process places intrinsic constraints on the efficacy of T cell-based cancer vaccines and therapeutic strategies that employ naturally generated tumour-specific TCRs. In this study, we used altered peptide ligands and lentivirus-mediated transduction of affinity-enhanced TCRs selected by phage display to study the functional properties of CD8(+) T cells specific for three different tumour-associated peptide antigens across a range of binding parameters. The key findings were: (i) TCR affinity controls T cell antigen sensitivity and polyfunctionality; (ii) supraphysiological affinity thresholds exist, above which T cell function cannot be improved; and (iii) T cells transduced with very high-affinity TCRs exhibit cross-reactivity with self-derived peptides presented by the restricting human leucocyte antigen. Optimal system-defined affinity windows above the range established for natural tumour-specific TCRs therefore allow the enhancement of T cell effector function without off-target effects. These findings have major implications for the rational design of novel TCR-based biologics underpinned by rigorous preclinical evaluation.
Collapse
Affiliation(s)
- M P Tan
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hu Y, Petroni GR, Olson WC, Czarkowski A, Smolkin ME, Grosh WW, Chianese-Bullock KA, Slingluff CL. Immunologic hierarchy, class II MHC promiscuity, and epitope spreading of a melanoma helper peptide vaccine. Cancer Immunol Immunother 2014; 63:779-86. [PMID: 24756419 PMCID: PMC4174310 DOI: 10.1007/s00262-014-1551-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/04/2014] [Indexed: 01/08/2023]
Abstract
Immunization with a combination melanoma helper peptide (6MHP) vaccine has been shown to induce CD4(+) T cell responses, which are associated with patient survival. In the present study, we define the relative immunogenicity and HLA allele promiscuity of individual helper peptides and identify helper peptide-mediated augmentation of specific CD8(+) T cell responses. Thirty-seven participants with stage IIIB-IV melanoma were vaccinated with 6MHP in incomplete Freund's adjuvant. The 6MHP vaccine is comprised of 6 peptides representing melanocytic differentiation proteins gp100, tyrosinase, Melan-A/MART-1, and cancer testis antigens from the MAGE family. CD4(+) and CD8(+) T cell responses were assessed in peripheral blood and in sentinel immunized nodes (SIN) by thymidine uptake after exposure to helper peptides and by direct interferon-γ ELIspot assay against 14 MHC class I-restricted peptides. Vaccine-induced CD4(+) T cell responses to individual epitopes were detected in the SIN of 63 % (22/35) and in the peripheral blood of 38 % (14/37) of participants for an overall response rate of 65 % (24/37). The most frequently immunogenic peptides were MAGE-A3281-295 (49 %) and tyrosinase386-406 (32 %). Responses were not limited to HLA restrictions originally described. Vaccine-associated CD8(+) T cell responses against class I-restricted peptides were observed in 45 % (5/11) of evaluable participants. The 6MHP vaccine induces both CD4(+) and CD8(+) T cell responses against melanoma antigens. CD4(+) T cell responses were detected beyond reported HLA-DR restrictions. Induction of CD8(+) T cell responses suggests epitope spreading and systemic activity mediated at the tumor site.
Collapse
Affiliation(s)
- Yinin Hu
- Department of Surgery/Division of Surgical Oncology, University of Virginia Health System, PO Box 800679, Charlottesville, VA, 22908-0679, USA,
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yoshimura S, Tsunoda T, Osawa R, Harada M, Watanabe T, Hikichi T, Katsuda M, Miyazawa M, Tani M, Iwahashi M, Takeda K, Katagiri T, Nakamura Y, Yamaue H. Identification of an HLA-A2-restricted epitope peptide derived from hypoxia-inducible protein 2 (HIG2). PLoS One 2014; 9:e85267. [PMID: 24416375 PMCID: PMC3885709 DOI: 10.1371/journal.pone.0085267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/25/2013] [Indexed: 12/22/2022] Open
Abstract
We herein report the identification of an HLA-A2 supertype-restricted epitope peptide derived from hypoxia-inducible protein 2 (HIG2), which is known to be a diagnostic marker and a potential therapeutic target for renal cell carcinoma. Among several candidate peptides predicted by the HLA-binding prediction algorithm, HIG2-9-4 peptide (VLNLYLLGV) was able to effectively induce peptide-specific cytotoxic T lymphocytes (CTLs). The established HIG2-9-4 peptide-specific CTL clone produced interferon-γ (IFN-γ) in response to HIG2-9-4 peptide-pulsed HLA-A*02:01-positive cells, as well as to cells in which HLA-A*02:01 and HIG2 were exogenously introduced. Moreover, the HIG2-9-4 peptide-specific CTL clone exerted cytotoxic activity against HIG2-expressing HLA-A*02:01-positive renal cancer cells, thus suggesting that the HIG2-9-4 peptide is naturally presented on HLA-A*02:01 of HIG-2-expressing cancer cells and is recognized by CTLs. Furthermore, we found that the HIG2-9-4 peptide could also induce CTLs under HLA-A*02:06 restriction. Taken together, these findings indicate that the HIG2-9-4 peptide is a novel HLA-A2 supertype-restricted epitope peptide that could be useful for peptide-based immunotherapy against cancer cells with HIG2 expression.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Gene Expression/immunology
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- Humans
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/pathology
- Lymphocyte Activation/drug effects
- Molecular Sequence Data
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Peptides/pharmacology
- Protein Binding
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Sachiko Yoshimura
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
- OncoTherapy Science Inc, Research and Development Division, Kanagawa, Japan
| | - Takuya Tsunoda
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
- OncoTherapy Science Inc, Research and Development Division, Kanagawa, Japan
- Laboratory of Molecular Medicine Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryuji Osawa
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
- OncoTherapy Science Inc, Research and Development Division, Kanagawa, Japan
| | - Makiko Harada
- OncoTherapy Science Inc, Research and Development Division, Kanagawa, Japan
| | - Tomohisa Watanabe
- OncoTherapy Science Inc, Research and Development Division, Kanagawa, Japan
| | - Tetsuro Hikichi
- OncoTherapy Science Inc, Research and Development Division, Kanagawa, Japan
| | - Masahiro Katsuda
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Motoki Miyazawa
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Masaji Tani
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Makoto Iwahashi
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Kazuyoshi Takeda
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toyomasa Katagiri
- Laboratory of Molecular Medicine Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
18
|
Messina NL, Banks KM, Vidacs E, Martin BP, Long F, Christiansen AJ, Smyth MJ, Clarke CJP, Johnstone RW. Modulation of antitumour immune responses by intratumoural
Stat1
expression. Immunol Cell Biol 2013; 91:556-67. [DOI: 10.1038/icb.2013.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Nicole L Messina
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
- Deptartment of Pathology, University of MelbourneParkvilleVictoriaAustralia
| | - Kellie M Banks
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
| | - Eva Vidacs
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
| | - Ben P Martin
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
| | - Fennella Long
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
| | - Ailsa J Christiansen
- Institute of Pharmaceutical Science, Swiss Federal Institute of Technology (ETHZ)ZurichSwitzerland
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, Queensland Institute of Medical ResearchHerstonQueenslandAustralia
- School of Medicine, University of QueenslandHerstonQueenslandAustralia
| | - Christopher J P Clarke
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
- Deptartment of Pathology, University of MelbourneParkvilleVictoriaAustralia
| | - Ricky W Johnstone
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
- Sir Peter MacCallum Department of Oncology, University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
19
|
Abstract
INTRODUCTION Immunotherapy has always been a promising therapeutic approach in metastatic renal cell carcinoma (mRCC) with frequently observed long-term responders. Since then, immunotherapy emerged from rather unspecific approaches to a specific stimulation of the immune system by tumor-associated antigens (TAAs) in therapeutic vaccination trials. Current vaccine trials are mainly based on the unspecific stimulation of antigen-presenting cells (APCs) by tumor cell lysates with not clearly defined TAAs. AREAS COVERED IMA901 is a novel synthetic off-the-shelf vaccine consisting of 10 different tumor-associated peptides (TUMAPs), which has entered a Phase III trial. The preceding Phase I and II trials demonstrated a clear association of a clinical benefit in mRCC patients with an immunological response to the administered TUMAPs. EXPERT OPINION IMA901 is a first-in-class drug, which is administered together with GM-CSF and single-dose cyclophosphamide. This triumvirate of vaccine, a local and a systemic immunomodulator showed an improved clinical benefit in mRCC patients. This interplay effectively activated cytotoxic T cells. Future strategies will lead to improved local immunomodulators to boost the activation of APCs, systemic immunomodulators to suppress Tregs and myeloid-derived suppressor cells (MDSCs) and antigens of higher cancer specificity and immunogenicity, together with an optimal schedule and dosage of the vaccine.
Collapse
Affiliation(s)
- Jens Bedke
- University of Tübingen, Department of Urology , Hoppe-Seyler-Str. 3, Tübingen, 72076 , Germany
| | | |
Collapse
|
20
|
Hombrink P, Hassan C, Kester MGD, de Ru AH, van Bergen CAM, Nijveen H, Drijfhout JW, Falkenburg JHF, Heemskerk MHM, van Veelen PA. Discovery of T Cell Epitopes Implementing HLA-Peptidomics into a Reverse Immunology Approach. THE JOURNAL OF IMMUNOLOGY 2013; 190:3869-77. [DOI: 10.4049/jimmunol.1202351] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Ohno T. Induction of auto-logous human cytotoxic T lymphocytes (CTL) from peripheral blood against tumor cells. Cytotechnology 2012; 23:197-203. [PMID: 22358536 DOI: 10.1023/a:1007995013870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- T Ohno
- The Institute of Physical and Chemical Research (Riken), Riken Cell Bank, Koyadai 3-1-1, Tsukuba Science City, 305, Japan
| |
Collapse
|
22
|
Schweighoffer T. Molecular cancer vaccines: Tumor therapy using antigen-specific immunizations. Pathol Oncol Res 2012; 3:164-76. [PMID: 18470726 DOI: 10.1007/bf02899917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/1997] [Accepted: 08/24/1997] [Indexed: 10/21/2022]
Abstract
Vaccination against tumors promises selective destruction of malignant cells by the host's immune system. Molecular cancer vaccines rely on recently identified tumor antigens as immunogens. Tumor antigens can be applied in many forms, as genes in recombinant vectors, as proteins or peptides representing T cell epitopes.Analysis of various aspects indicates some advantage for peptide-based vaccines over the other modalities. Further refinements and extensively monitored clinical trials are necessary to advance molecular cancer vaccines from concepts into powerful therapy.
Collapse
Affiliation(s)
- T Schweighoffer
- Department Cell Biology, Boehringer Ingelheim Research and Development, Dr. Boehringer-Gasse 5, A-l 120, Wien, Austria,
| |
Collapse
|
23
|
Monoclonal TCR-redirected tumor cell killing. Nat Med 2012; 18:980-7. [PMID: 22561687 DOI: 10.1038/nm.2764] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 10/17/2011] [Indexed: 11/08/2022]
Abstract
T cell immunity can potentially eradicate malignant cells and lead to clinical remission in a minority of patients with cancer. In the majority of these individuals, however, there is a failure of the specific T cell receptor (TCR)–mediated immune recognition and activation process. Here we describe the engineering and characterization of new reagents termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs). Four such ImmTACs, each comprising a distinct tumor-associated epitope-specific monoclonal TCR with picomolar affinity fused to a humanized cluster of differentiation 3 (CD3)-specific single-chain antibody fragment (scFv), effectively redirected T cells to kill cancer cells expressing extremely low surface epitope densities. Furthermore, these reagents potently suppressed tumor growth in vivo. Thus, ImmTACs overcome immune tolerance to cancer and represent a new approach to tumor immunotherapy.
Collapse
|
24
|
Identification of HLA-A24-restricted novel T Cell epitope peptides derived from P-cadherin and kinesin family member 20A. J Biomed Biotechnol 2012; 2012:848042. [PMID: 22778556 PMCID: PMC3388625 DOI: 10.1155/2012/848042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/09/2012] [Accepted: 04/09/2012] [Indexed: 12/11/2022] Open
Abstract
We here identified human leukocyte antigen-(HLA-)A∗2402-restricted epitope peptides from Cadherin 3, type 1, P-cadherin (CDH3) and kinesin family member 20A (KIF20A) that were found to be specifically expressed in cancer cells through genome-wide expression profile analysis. CDH3-10-807 peptide and KIF20A-10-66 peptide successfully induced specific CTL clones, and these selectively responded to COS7 cells expressing both HLA-A∗2402 and respective protein while did not respond to parental cells or COS7 cells expressing either HLA-A∗2402 or respective protein. Furthermore, CTL clones responded to cancer cells that endogenously express HLA-A∗2402 and respective protein, suggesting that CDH3-10-807 peptide and KIF20A-10-66 peptide are naturally presented on HLA-A∗2402 molecule of human cancer cells. Our results demonstrated that CDH3-10-807 peptide and KIF20A-10-66 peptide are novel HLA-A24-restricted tumor-associated antigens and would be applicable for CTL-inducing cancer therapies.
Collapse
|
25
|
Vigneron N, Van den Eynde BJ. Proteasome subtypes and the processing of tumor antigens: increasing antigenic diversity. Curr Opin Immunol 2011; 24:84-91. [PMID: 22206698 DOI: 10.1016/j.coi.2011.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/07/2011] [Indexed: 11/25/2022]
Abstract
Protein degradation by the proteasome releases peptides that can be loaded on MHC class I molecules and presented to cytolytic T lymphocytes. Several mechanisms were recently found to increase the diversity of antigenic peptides displayed at the cell surface, thereby maximizing the efficacy of immune responses. The proteasome was shown to produce spliced antigenic peptides, which are made of two fragments initially not contiguous in the parental protein. Different proteasome subtypes also produce distinct sets of antigenic peptides: the standard proteasome and the immunoproteasome, containing different catalytic subunits, have different cleavage specificities and produce different sets of peptides. Moreover, recent work confirmed the existence of two additional proteasome subtypes that are intermediate between the standard and the immunoproteasome, and each produce a unique peptide repertoire.
Collapse
Affiliation(s)
- Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels Branch and de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
26
|
Evolutionary history of the cancer immunity antigen MAGE gene family. PLoS One 2011; 6:e20365. [PMID: 21695252 PMCID: PMC3112145 DOI: 10.1371/journal.pone.0020365] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/18/2011] [Indexed: 11/29/2022] Open
Abstract
The evolutionary mode of a multi-gene family can change over time, depending on the functional differentiation and local genomic environment of family members. In this study, we demonstrate such a change in the melanoma antigen (MAGE) gene family on the mammalian X chromosome. The MAGE gene family is composed of ten subfamilies that can be categorized into two types. Type I genes are of relatively recent origin, and they encode epitopes for human leukocyte antigen (HLA) in cancer cells. Type II genes are relatively ancient and some of their products are known to be involved in apoptosis or cell proliferation. The evolutionary history of the MAGE gene family can be divided into four phases. In phase I, a single-copy state of an ancestral gene and the evolutionarily conserved mode had lasted until the emergence of eutherian mammals. In phase II, eight subfamily ancestors, with the exception for MAGE-C and MAGE-D subfamilies, were formed via retrotransposition independently. This would coincide with a transposition burst of LINE elements at the eutherian radiation. However, MAGE-C was generated by gene duplication of MAGE-A. Phase III is characterized by extensive gene duplication within each subfamily and in particular the formation of palindromes in the MAGE-A subfamily, which occurred in an ancestor of the Catarrhini. Phase IV is characterized by the decay of a palindrome in most Catarrhini, with the exception of humans. Although the palindrome is truncated by frequent deletions in apes and Old World monkeys, it is retained in humans. Here, we argue that this human-specific retention stems from negative selection acting on MAGE-A genes encoding epitopes of cancer cells, which preserves their ability to bind to highly divergent HLA molecules. These findings are interpreted with consideration of the biological factors shaping recent human MAGE-A genes.
Collapse
|
27
|
Vigneron N, Van den Eynde BJ. Insights into the processing of MHC class I ligands gained from the study of human tumor epitopes. Cell Mol Life Sci 2011; 68:1503-20. [PMID: 21387143 PMCID: PMC11114561 DOI: 10.1007/s00018-011-0658-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 12/29/2022]
Abstract
The molecular definition of tumor antigens recognized by cytolytic T lymphocytes (CTL) started in the late 1980s, at a time when the MHC class I antigen processing field was in its infancy. Born together, these two fields of science evolved together and provided each other with critical insights. Over the years, stimulated by the potential interest of tumor antigens for cancer immunotherapy, scientists have identified and characterized numerous antigens recognized by CTL on human tumors. These studies have provided a wealth of information relevant to the mode of production of antigenic peptides presented by MHC class I molecules. A number of tumor antigenic peptides were found to result from unusual mechanisms occurring at the level of transcription, translation or processing. Although many of these mechanisms occur in the cell at very low level, they are relevant to the immune system as they determine the killing of tumor cells by CTL, which are sensitive to low levels of peptide/MHC complexes. Moreover, these unusual mechanisms were found to occur not only in tumor cells but also in normal cells. Thereby, the study of tumor antigens has illuminated many aspects of MHC class I processing. We review here those insights into the MHC I antigen processing pathway that result from the characterization of human tumor antigens recognized by CTL.
Collapse
Affiliation(s)
- Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels Branch and de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, UCL 7459, 1200 Brussels, Belgium
| | - Benoît J. Van den Eynde
- Ludwig Institute for Cancer Research, Brussels Branch and de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, UCL 7459, 1200 Brussels, Belgium
| |
Collapse
|
28
|
Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka EK. Proteomics for development of vaccine. J Proteomics 2011; 74:2596-616. [PMID: 21310271 DOI: 10.1016/j.jprot.2011.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 12/20/2022]
Abstract
The success of genome projects has provided us with a vast amount of information on genes of many pathogenic species and has raised hopes for rapid progress in combating infectious diseases, both by construction of new effective vaccines and by creating a new generation of therapeutic drugs. Proteomics, a strategy complementary to the genomic-based approach, when combined with immunomics (looking for immunogenic proteins) and vaccinomics (characterization of host response to immunization), delivers valuable information on pathogen-host cell interaction. It also speeds the identification and detailed characterization of new antigens, which are potential candidates for vaccine development. This review begins with an overview of the global status of vaccinology based on WHO data. The main part of this review describes the impact of proteomic strategies on advancements in constructing effective antibacterial, antiviral and anticancer vaccines. Diverse aspects of disease mechanisms and disease preventions have been investigated by proteomics.
Collapse
Affiliation(s)
- Monika Adamczyk-Poplawska
- Department of Virology, Institute of Microbiology, Biology Faculty, Warsaw University, Warsaw, Poland
| | | | | |
Collapse
|
29
|
Duvvuri VRSK, Moghadas SM, Guo H, Duvvuri B, Heffernan JM, Fisman DN, Wu GE, Wu J. Highly conserved cross-reactive CD4+ T-cell HA-epitopes of seasonal and the 2009 pandemic influenza viruses. Influenza Other Respir Viruses 2010; 4:249-58. [PMID: 20716156 PMCID: PMC4634651 DOI: 10.1111/j.1750-2659.2010.00161.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Please cite this paper as: Duvvuri et al. (2010) Highly conserved cross‐reactive CD4+ T‐cell HA‐epitopes of seasonal and the 2009 pandemic influenza viruses. Influenza and Other Respiratory Viruses 4(5), 249–258. Background The relatively mild nature of the 2009 influenza pandemic (nH1N1) highlights the overriding importance of pre‐existing immune memory. The absence of cross‐reactive antibodies to nH1N1 in most individuals suggests that such attenuation may be attributed to pre‐existing cellular immune responses to epitopes shared between nH1N1 virus and previously circulating strains of inter‐pandemic influenza A viruses. Results We sought to identify potential CD4+ T cell epitopes and predict the level of cross‐reactivity of responding T cells. By performing large‐scale major histocompatibility complex II analyses on Hemagglutinin (HA) proteins, we investigated the degree of T‐cell cross‐reactivity between seasonal influenza A (sH1N1, H3N2) from 1968 to 2009 and nH1N1 strains. Each epitope was examined against all the protein sequences that correspond to sH1N1, H3N2, and nH1N1. T‐cell cross‐reactivity was estimated to be 52%, and maximum conservancy was found between sH1N1 and nH1N1 with a significant correlation (P < 0·05). Conclusions Given the importance of cellular responses in kinetics of influenza infection in humans, our findings underscore the role of T‐cell assays for understanding the inter‐pandemic variability in severity and for planning treatment methods for emerging influenza viruses.
Collapse
Affiliation(s)
- Venkata R S K Duvvuri
- MITACS Centre for Disease Modeling, York Institute of Health Research, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Preclinical Qualification of a New Multi-antigen Candidate Vaccine for Metastatic Melanoma. J Immunother 2010; 33:743-58. [DOI: 10.1097/cji.0b013e3181eccc87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Feyerabend S, Stevanovic S, Gouttefangeas C, Wernet D, Hennenlotter J, Bedke J, Dietz K, Pascolo S, Kuczyk M, Rammensee HG, Stenzl A. Novel multi-peptide vaccination in Hla-A2+ hormone sensitive patients with biochemical relapse of prostate cancer. Prostate 2009; 69:917-27. [PMID: 19267352 DOI: 10.1002/pros.20941] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND A phase I/II trial was conducted to assess feasibility and tolerability of tumor associated antigen peptide vaccination in hormone sensitive prostate carcinoma (PC) patients with biochemical recurrence after primary surgical treatment. METHODS Nineteen HLA-A2 positive patients with rising PSA without detectable metastatic disease or local recurrence received 11 HLA-A*0201-restricted and two HLA class II synthetic peptides derived from PC tumor antigens subcutaneously for 18 months or until PSA progression. The vaccine was emulgated in montanide ISA51 and combined with imiquimod, GM-CSF, mucin-1-mRNA/protamine complex, local hyperthermia or no adjuvant. PSA was assessed, geometric mean doubling times (DT) calculated and clinical performance monitored. RESULTS PSA DT of 4 out of 19 patients (21%) increased from 4.9 to 25.8 months during vaccination. Out of these, two patients (11%) exhibited PSA stability for 28 and 31 months which were still continuing at data cut-off. One patient showed no change of PSA DT during vaccination but decline after the therapy. Three patients had an interim PSA decline or DT increase followed by DT decrease compared to baseline PSA DT. Three of the responding patients received imiquimod and one the mucin-1-mRNA/protamine complex as adjuvant; both are Toll-like receptor-7 agonists. Eleven (58%) patients had progressive PSA values. The vaccine was well tolerated, and no grade III or IV toxicity occurred. CONCLUSION Multi-peptide vaccination stabilized or slowed down PSA progress in four of 19 cases. The vaccination approach is promising with moderate adverse events. Long-term stability delayed androgen deprivation up to 31 months. TLR-7 co-activation seems to be beneficial.
Collapse
|
32
|
CD8+ T-cell responses to tumor-associated antigens correlate with superior relapse-free survival after allo-SCT. Bone Marrow Transplant 2009; 43:399-410. [PMID: 19139738 DOI: 10.1038/bmt.2008.426] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The GVL effect following allo-SCT is one of the most prominent examples showing the ability of the immune system to eliminate malignant hematological diseases. Tumor-associated Ags (TAA), for instance WT1 and proteinase-3, have been proposed as targets for T cells to establish a GVL effect. Here, we examined an additional TAA (MUC1) as a possible T-cell target of GVL-related immune responses. We have defined new peptide epitopes from the MUC1 Ag to broaden patients' screening and to expand the repertoire of immunologic monitoring as well as for therapeutic approaches in the future. Twenty-eight patients after allo-SCT have been screened for T-cell responses toward TAA (proteinase-3, WT1, MUC1). We could detect a significant relationship between relapse and the absence of a TAA-specific T-cell response, whereby only 2/13 (15%) patients with TAA-specific CTL relapsed, in contrast to 9/15 (60%) patients without TAA-specific CTL responses (P<0.05). In conclusion, CD8(+) T-cell responses directed to TAA might contribute to the GVL effect. These observations highlight both the importance and the potential of immunotherapeutic approaches after allo-SCT.
Collapse
|
33
|
Chen T, Tang XD, Wan Y, Chen L, Yu ST, Xiong Z, Fang DC, Liang GP, Yang SM. HLA-A2-restricted cytotoxic T lymphocyte epitopes from human heparanase as novel targets for broad-spectrum tumor immunotherapy. Neoplasia 2008; 10:977-86. [PMID: 18714399 PMCID: PMC2517643 DOI: 10.1593/neo.08576] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/18/2008] [Accepted: 06/20/2008] [Indexed: 02/01/2023]
Abstract
Peptide vaccination for cancer immunotherapy requires identification of peptide epitopes derived from antigenic proteins associated with tumors. Heparanase (Hpa) is broadly expressed in various advanced tumors and seems to be an attractive new tumor-associated antigen. The present study was designed to predict and identify HLA-A2-restricted cytotoxic T lymphocyte (CTL) epitopes in the protein of human Hpa. For this purpose, HLA-A2-restricted CTL epitopes were identified using the following four-step procedure: 1) a computer-based epitope prediction from the amino acid sequence of human Hpa, 2) a peptide-binding assay to determine the affinity of the predicted protein with the HLA-A2 molecule, 3) stimulation of the primary T-cell response against the predicted peptides in vitro, and 4) testing of the induced CTLs toward different kinds of carcinoma cells expressing Hpa antigens and/or HLA-A2. The results demonstrated that, of the tested peptides, effectors induced by peptides of human Hpa containing residues 525-533 (PAFSYSFFV, Hpa525), 277-285 (KMLKSFLKA, Hpa277), and 405-413 (WLSLLFKKL, Hpa405) could effectively lyse various tumor cell lines that were Hpa-positive and HLA-A2-matched. We also found that these peptide-specific CTLs could not lyse autologous lymphocytes with low Hpa activity. Further study revealed that Hpa525, Hpa277, and Hpa405 peptides increased the frequency of IFN-gamma-producing T cells compared to a negative peptide. Our results suggest that Hpa525, Hpa277, and Hpa405 peptides are new HLA-A2-restricted CTL epitopes capable of inducing Hpa-specific CTLs in vitro. Because Hpa is expressed in most advanced malignant tumors, Hpa525, Hpa277, and Hpa405 peptide-based vaccines may be useful for the immunotherapy for patients with advanced tumors.
Collapse
Affiliation(s)
- Ting Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xu-Dong Tang
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yin Wan
- Institute of Immunology of PLA, Medical College, Third Military Medical University, Chongqing 400038, PR China
| | - Ling Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Song-Tao Yu
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Zhen Xiong
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Dian-Chun Fang
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Guang-Ping Liang
- Institute of Burn Research of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Shi-Ming Yang
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| |
Collapse
|
34
|
Shingler WH, Chikoti P, Kingsman SM, Harrop R. Identification and functional validation of MHC class I epitopes in the tumor-associated antigen 5T4. Int Immunol 2008; 20:1057-66. [DOI: 10.1093/intimm/dxn063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Yokoe T, Tanaka F, Mimori K, Inoue H, Ohmachi T, Kusunoki M, Mori M. Efficient identification of a novel cancer/testis antigen for immunotherapy using three-step microarray analysis. Cancer Res 2008; 68:1074-82. [PMID: 18281482 DOI: 10.1158/0008-5472.can-07-0964] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advanced technology in molecular biology has provided us powerful tools for the diagnosis and treatment for cancer. We herein adopted a new methodology to identify a novel cancer/testis (CT) antigen with high frequency of expression in colorectal cancer as follows: (a) combining laser microdissection and cDNA microarray was used to analyze the gene expression profile of colorectal cancer cells; (b) genes overexpressed in testis and underexpressed in normal colon epithelium were analyzed using cDNA microarray; and (c) the gene expression profile of colorectal cancer cells was compared with that of normal testis. Using this methodology, we selected 38 candidates for CT antigen. Among these genes, we identified a novel CT antigen, serine/threonine kinase 31 (STK31), which was previously reported as a gene expressed in spermatogonia. Reverse transcription-PCR analysis showed that STK31 gene expression levels in cancer samples were significantly higher (P < 0.0001) than those in normal samples. The STK31 gene was frequently expressed not only in colorectal cancer but also in gastric and esophageal cancer. Moreover, STK31 peptide was able to elicit specific CTLs and induced CTLs lysed either peptide-loading or endogenously STK31-expressing target cells. These results showed that the new methodology in this study facilitated identification of CT antigens and that STK31 may be a candidate for cancer immunotherapy against gastrointestinal cancer.
Collapse
Affiliation(s)
- Takeshi Yokoe
- Department of Surgery, Medical Institute of Bioregulation, Kyushu University, Beppu, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Romero P. Current State of Vaccine Therapies in Non–Small-Cell Lung Cancer. Clin Lung Cancer 2008; 9 Suppl 1:S28-36. [DOI: 10.3816/clc.2008.s.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Slingluff CL, Petroni GR, Chianese-Bullock KA, Smolkin ME, Hibbitts S, Murphy C, Johansen N, Grosh WW, Yamshchikov GV, Neese PY, Patterson JW, Fink R, Rehm PK. Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. Clin Cancer Res 2008; 13:6386-95. [PMID: 17975151 DOI: 10.1158/1078-0432.ccr-07-0486] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Human melanoma cells express shared antigens recognized by CD8(+) T lymphocytes, the most common of which are melanocytic differentiation proteins and cancer-testis antigens. However, peptide vaccines for melanoma usually target only one or two MHC class I-associated peptide antigens. Because melanomas commonly evade immune recognition by selective antigen loss, optimization of melanoma vaccines may require development of more complex multipeptide vaccines. EXPERIMENTAL DESIGN In a prospective randomized clinical trial, we have evaluated the safety and immunogenicity of a vaccine containing a mixture of 12 peptides from melanocytic differentiation proteins and cancer-testis antigens, designed for human leukocyte antigen types that represent 80% of the melanoma patient population. This was compared with a four-peptide vaccine with only melanocytic differentiation peptides. Immune responses were assessed in peripheral blood and in vaccine-draining lymph nodes. RESULTS These data show that (a) the 12-peptide mixture is immunogenic in all treated patients; (b) immunogenicity of individual peptides is maintained despite competition with additional peptides for binding to MHC molecules; (c) a broader and more robust immune response is induced by vaccination with the more complex 12-peptide mixture; and (d) clinical outcome in this peptide vaccine trial correlates with immune responses measured in the peripheral blood lymphocytes. CONCLUSIONS These data support continued investigation of complex multipeptide vaccines for melanoma.
Collapse
Affiliation(s)
- Craig L Slingluff
- Department of Surgery, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Paine A, Oelke M, Blasczyk R, Eiz-Vesper B. Expansion of human cytomegalovirus-specific T lymphocytes from unfractionated peripheral blood mononuclear cells with artificial antigen-presenting cells. Transfusion 2008; 47:2143-52. [PMID: 17958544 DOI: 10.1111/j.1537-2995.2007.01439.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The aim of this study was to find a simple and feasible method for ex vivo expansion of human cytomegalovirus (CMV)-specific cytotoxic T cells from unfractionated peripheral blood mononuclear cells (PBMNCs). STUDY DESIGN AND METHODS Unfractionated PBMNCs from three HLA-A*0201-CMV-seropositive donors were stimulated with CMVpp65(495-503) peptide-loaded HLA-A*0201-immunoglobulin fusion protein (HLA-A2-Ig) based artificial antigen-presenting cells (aAPCs) on Day 1. Once a week the CMV-specific T cells were harvested and restimulated with fresh aAPCs. T-cell cultures were maintained for 28 days and then analyzed. RESULTS With aAPCs and starting with 1x10(7) freshly isolated PBMNCs that were less than 0.1 percent CMV-specific, more than 1x10(7) T cells with a CMV-specific frequency greater than 93 percent in all donors tested were generated. Expanded CD8+ cytotoxic T lymphocytes were functionally active and showed antigen-specific secretion of interferon-gamma and cytotoxic activity. No alloreactivity against unpulsed HLA-A*0201-positive cells was detected. CONCLUSION Herein is reported the successful in vitro expansion of CMV-specific cytotoxic CD8+ T cells from unfractionated PBMNCs of healthy CMV-seropositive blood donors by the use of HLA-A2-Ig-based aAPCs. This study demonstrates that more than 1x10(7) CMV-specific T cells can be generated from approximately 1x10(7) unfractionated PBMNCs within 1 month under highly reproducible conditions.
Collapse
Affiliation(s)
- Ananta Paine
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
39
|
Li W, Krishnadas DK, Kumar R, Tyrrell DLJ, Agrawal B. Priming and stimulation of hepatitis C virus-specific CD4+ and CD8+ T cells against HCV antigens NS4, NS5a or NS5b from HCV-naive individuals: implications for prophylactic vaccine. Int Immunol 2007; 20:89-104. [DOI: 10.1093/intimm/dxm121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
40
|
Rodeberg DA, Erskine C, Celis E. In vitro induction of immune responses to shared tumor-associated antigens in rhabdomyosarcoma. J Pediatr Surg 2007; 42:1396-402. [PMID: 17706503 DOI: 10.1016/j.jpedsurg.2007.03.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE Currently, novel therapies to improve survival of patients with rhabdomyosarcoma (RMS) are being investigated. One of the new approaches involves immunotherapy using tumor-specific T-lymphocytes. An effective prolonged immune-mediated response against tumor cells is dependent upon the response of helper T-lymphocytes (HTLs) to tumor-associated antigens in the presence of histocompatibility lymphocyte antigen surface proteins. METHODS Rhabdomyosarcoma tumor lysate-pulsed human dendritic cells were used to stimulate HTL precursors (naive CD4+ T-cells) in vitro. After 3 rounds of antigen stimulation with antigen-presenting cells, the T-cells were tested for reactivity (T-cell proliferation assays) against a large panel of tumor lysate-pulsed autologous antigen-presenting cells. RESULTS Using peripheral blood mononuclear cells from normal naive donors, we have been able to generate HTL clones that recognize and proliferate to multiple tumor cell lines. The HTLs were induced using lysate from a single alveolar RMS tumor cell line (RMS13). The clones generated recognized all of the alveolar RMS cell lines (RMS13, Rh18, Rh28, Rh30, and Rh41), prostate cancer cell lines (LNCAP and LAPC4), melanoma cell lines (Mel 624 and G361), and breast cancer cell line (SKBR3). Helper T-lymphocytes recognition was also confirmed by interferon-gamma production. The clones did not recognize colon, lymphoma, ovarian carcinoma, ERMS or Epstein-Barr virus (EBV) transformed B-cells. This recognition was histocompatibility lymphocyte antigen class II restricted and was not an allogeneic response. CONCLUSION The results of this work demonstrate that HTLs, exposed to RMS lysate, are able to recognize and respond to a broad range of tumor types suggesting that a common antigen exist among these different tumors. These findings suggest novel treatment strategies for patients with RMS using tumor lysate to induce antitumor immune responses.
Collapse
Affiliation(s)
- David A Rodeberg
- Department of Pediatric Surgery, Childrens' Hospital of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
41
|
Michielin O, Blanchet JS, Fagerberg T, Valmori D, Rubio-Godoy V, Speiser D, Ayyoub M, Alves P, Luescher I, Gairin JE, Cerottini JC, Romero P. Tinkering with nature: the tale of optimizing peptide based cancer vaccines. Cancer Treat Res 2007; 123:267-91. [PMID: 16211875 DOI: 10.1007/0-387-27545-2_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Olivier Michielin
- Office of Information Technology, Ludwig Institute for Cancer Research, Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The effectiveness of T-cell-mediated immunotherapy of cancer depends on both an optimal immunostimulatory context of the therapy and the proper selection with respect to quality and quantity of the targeted tumor-associated antigens (TAA), and, more precisely, the T-cell epitopes contained in these tumor proteins. Our progressing insight in human leukocyte antigen (HLA) class I and class II antigen processing and presentation mechanisms has improved the prediction by reverse immunology of novel cytotoxic T lymphocyte and T-helper cell epitopes within known antigens. Computer algorithms that in silico predict HLA class I and class II binding, proteasome cleavage patterns and transporter associated with antigen processing translocation are now available to expedite epitope identification. The advent of genomics allows a high-throughput screening for tumor-specific transcripts and mutations, with that identifying novel shared and unique TAA. The increasing power of mass spectrometry and proteomics will lead to the direct identification from the tumor cell surface of numerous novel tumor-specific HLA class I and class II presented ligands. Together, the expanded repertoire of tumor-specific T-cell epitopes will enable more precise immunomonitoring and the development of effective epitope-defined adoptive T-cell transfer and multi-epitope-based vaccination strategies targeting epitopes derived from a wider diversity of TAA presented in a broader array of HLA molecules.
Collapse
Affiliation(s)
- J H Kessler
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
43
|
Houghton CSB, Engelhorn ME, Liu C, Song D, Gregor P, Livingston PO, Orlandi F, Wolchok JD, McCracken J, Houghton AN, Guevara-Patiño JA. Immunological validation of the EpitOptimizer program for streamlined design of heteroclitic epitopes. Vaccine 2007; 25:5330-42. [PMID: 17570567 DOI: 10.1016/j.vaccine.2007.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/04/2007] [Accepted: 05/09/2007] [Indexed: 11/18/2022]
Abstract
One strategy to generate T-cell responses to tumors is to alter subdominant epitopes through substitution of amino acids that are optimal anchors for specific MHC molecules, termed heteroclitic epitopes. This approach is manually error-prone and time-consuming. In here, we describe a computer-based algorithm (EpitOptimizer) for the streamlined design of heteroclitic epitopes. Analysis of two cancer-related proteins showed that EpitOptimizer-generated peptides have enhanced MHC-I binding compared with their wild-type counterparts; and were able to induce stronger CD8+ T-cell responses against their native epitope. These data demonstrate that this approach can serve as the basis of epitope-engineering against cancer and intracellular pathogens.
Collapse
Affiliation(s)
- Colin S B Houghton
- The Swim Across America Laboratory, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhao Y, Sun Y, Niu Z, Li Q, Peng J, Wang J, Langnas AN. A novel approach to generate host antitumor T cells: adoptive immunotherapy by T cells maturing in xenogeneic thymus. J Immunother 2007; 30:83-8. [PMID: 17198086 DOI: 10.1097/01.cji.0000211322.45772.d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mouse or human T cells developing in xenogeneic porcine thymus are functional. With efficient peripheral repopulation of mouse T cells by grafting fetal pig thymus (FP THY), B6 nude mice were immunized with inactivated syngeneic melanoma, B16 cells. Splenocytes from B16-immunized FP THY-grafted B6 nude mice efficiently killed B16, but not EL4 target cells in cytotoxicity assays in vitro. Adoptive transfer of splenocytes from B16-immunizd FP THY-grafted B6 nude mice to B16-bearing B6 mice significantly prolonged recipient survival and inhibited B16 solid tumor growth when B16 cells were injected IV or SC, respectively, compared with the identical controls. Splenocytes from nonimmunized FP THY-grafted B6 nude mice failed to protect B6 mice from B16-induced mortality. The present data have demonstrated that mouse T cells maturing in xenogeneic thymus have the ability to kill syngeneic tumor cells. This study may offer a novel resource to produce host antitumor T cells for adoptive immunotherapy of tumor patients.
Collapse
Affiliation(s)
- Yong Zhao
- Transplantation Biology Research Division, The State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences.
| | | | | | | | | | | | | |
Collapse
|
45
|
Han JF, Zhao TT, Liu HL, Lin ZH, Wang HM, Ruan ZH, Zou LY, Wu YZ. Identification of a new HLA-A*0201-restricted cytotoxic T lymphocyte epitope from CML28. Cancer Immunol Immunother 2006; 55:1575-83. [PMID: 16534571 PMCID: PMC11031099 DOI: 10.1007/s00262-006-0152-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 02/27/2006] [Indexed: 02/07/2023]
Abstract
Identification of cytotoxic T lymphocyte (CTL) epitopes from additional tumor antigens is essential for the development of specific immunotherapy of malignant tumors. CML28, a recently discovered cancer-testis (CT) antigen from chronic myelogenous leukemia, is considered to be a promising target of tumor-specific immunotherapy. Because HLA-A*0201 is one of the most common histocompatibility molecule in Chinese, we aim at identifying CML28 peptides presented by HLA-A*0201. A panel of CML28-derived antigenic peptides was predicted using a computer-based program. Four peptides with highest predicted score were synthesized and tested for their binding affinities to HLA-A*0201 molecule. Then these peptides were assessed for their immunogenicity to elicit specific immune responses mediated by CTLs both in vitro, from PBMCs sourced from four healthy HLA-A*0201(+) donors, and in vivo, in HLA-A*0201 transgenic mice. One of the tested peptides, CML28((173-181)), induced peptide-specific CTLs in vitro as well as in vivo, which could specifically secrete IFN-gamma and lyse major histocompatibility complex (MHC)-matched tumor cell lines endogenously expressing CML28 antigen and CML28((173-181) )pulsed Jurkat-A2/Kb cells, respectively. These results demonstrate that CML28((173-181) )is a naturally processed and presented CTL epitope with HLA-A*0201 motif and has a promising immunogenicity both in vitro and in vivo. As CML28 is expressed in a large variety of histological tumors besides chronic myelogenous leukemia, we propose that the newly identified epitope, CML28((173-181)), would be of potential use in peptide-based, cancer-specific immunotherapy against a broad spectrum of tumors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/pharmacology
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Antigens, Surface/pharmacology
- COS Cells
- Cell Line, Tumor
- Chlorocebus aethiops
- Epitopes, T-Lymphocyte/immunology
- Exoribonucleases/genetics
- Exoribonucleases/immunology
- Exoribonucleases/pharmacology
- Exosome Multienzyme Ribonuclease Complex
- HLA-A Antigens/metabolism
- HLA-A2 Antigen
- Humans
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Neoplasms/immunology
- Peptides/genetics
- Peptides/immunology
- Peptides/pharmacology
- RNA-Binding Proteins
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Jun-Feng Han
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, 400038 Chongqing, China
| | - Ting-Ting Zhao
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, 400038 Chongqing, China
| | - Hong-Li Liu
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, 400038 Chongqing, China
| | - Zhi-Hua Lin
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, 400038 Chongqing, China
| | - Hui-Ming Wang
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, 400038 Chongqing, China
| | - Zhi-Hua Ruan
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, 400038 Chongqing, China
| | - Li-Yun Zou
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, 400038 Chongqing, China
| | - Yu-Zhang Wu
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, 400038 Chongqing, China
| |
Collapse
|
46
|
Mimura K, Kono K, Southwood S, Fikes J, Takahashi A, Miyagawa N, Sugai H, Fujii H. Substitution analog peptide derived from HER-2 can efficiently induce HER-2-specific, HLA-A24 restricted CTLs. Cancer Immunol Immunother 2006; 55:1358-66. [PMID: 16435129 PMCID: PMC11030792 DOI: 10.1007/s00262-006-0123-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 12/30/2005] [Indexed: 02/07/2023]
Abstract
In order to broaden the possibility for anti-HER-2/neu (HER-2) immune targeting, it is important to identify HLA-A24 restricted peptide epitopes derived from HER-2, since HLA-A24 is one of the most common alleles in Japanese and Asian people. In the present study, we have screened HER-2-derived, HLA-A24 binding peptides for cytotoxic T lymphocyte (CTL) epitopes. A panel of HER-2-derived peptides with HLA-A24 binding motifs and the corresponding analogs designed to enhance HLA-A24 binding affinity were selected. Identification of HER-2-reactive and HLA-A24 restricted CTL epitopes were performed by a reverse immunology approach. To induce HER-2-reactive and HLA-A24 restricted CTLs, PBMCs from healthy donors were repeatedly stimulated with monocytes-derived, mature DCs pulsed with HER-2 peptide. Subsequent peptide-induced T cells were tested for the specificity by enzyme linked immunospot, cytotoxicity and tetramer assays. CTL clones were then obtained from the CTL lines by limiting dilution. Of the peptides containing HLA-A24 binding motifs, 16 peptides (nine mers) including wild type peptides (IC50 <1,000 nM) and substituted analog peptides (IC50 <50 nM) were selected for the present study. Our studies show that an analog peptide, HER-2(905AA), derived from HER-2(905) could efficiently induce HER-2-reactive and HLA-A24 restricted CTLs. The reactivity of the HER-2(905AA)-induced CTL (CTL905AA) was confirmed by different CTL assays. The CTL905AA clones also were able to lyse HER-2(+), HLA-A24(+) tumor cells and cytotoxicity could be significantly reduced in cold target inhibition assays using cold targets pulsed with the HER-2(905) wild type peptide as well as the inducing HER-2(905AA) analog peptide. A newly identified HER-2(905) peptide epitope is naturally processed and presented as a CTL epitope on HER-2 overexpressing tumor cells, and an MHC anchor-substituted analog, HER-2(905AA), can efficiently induce HER-2-specific, HLA-A24 restricted CTLs.
Collapse
Affiliation(s)
- Kousaku Mimura
- First Department of Surgery, University of Yamanashi, 1110 Tamaho, 409-3898 Yamanashi, Japan
| | - Koji Kono
- First Department of Surgery, University of Yamanashi, 1110 Tamaho, 409-3898 Yamanashi, Japan
| | | | | | - Akihiro Takahashi
- First Department of Surgery, University of Yamanashi, 1110 Tamaho, 409-3898 Yamanashi, Japan
| | - Naoto Miyagawa
- First Department of Surgery, University of Yamanashi, 1110 Tamaho, 409-3898 Yamanashi, Japan
| | - Hidemitsu Sugai
- First Department of Surgery, University of Yamanashi, 1110 Tamaho, 409-3898 Yamanashi, Japan
| | - Hideki Fujii
- First Department of Surgery, University of Yamanashi, 1110 Tamaho, 409-3898 Yamanashi, Japan
| |
Collapse
|
47
|
Eiz-Vesper B, Horn PA, Daubert C, Khattab B, Blasczyk R. Tetanus toxoid provides efficient T-cell help for the induction of HA-1(H) cytotoxic T cells. Transfusion 2006; 46:1210-20. [PMID: 16836569 DOI: 10.1111/j.1537-2995.2006.00872.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND In vitro generation and expansion of leukemia-reactive T cells may improve the efficacy and specificity of cellular immunotherapy against hematologic malignancies in the context of allogeneic stem cell transplantation. Since the expression of minor histocompatibility antigen HA-1(H) is limited to hematopoietic cells, ex vivo generated HA-1(H)-specific CD8+ cytotoxic T lymphocytes (CTLs) can be used for adoptive immunotherapy. STUDY DESIGN AND METHODS Numerous studies have shown that primary CTL induction from naïve precursors requires professional antigen-presenting cells. Here, the feasibility of ex vivo induction of HA-1(H)-specific CD8+ CTLs is demonstrated from unfractionated peripheral blood mononuclear cells (PBMNCs) from healthy blood donors when CD4+ T-cell help is provided during primary stimulation. As a stimulus for the induction of T-cell help, tetanus toxoid (TT) was used. RESULTS After the second restimulation cycle, approximately 1 percent of CD8+ T cells stained positively with the HLA-A*0201/HA-1(H) pentamer. Positive T cells were further expanded more than 1000-fold by antigen-independent stimulation with anti-CD3/CD28 monoclonal antibodies. HA-1(H)-induced T cells showed the classical phenotype for CD8+ memory effector cells: the phenotype changed from a mixed CD45RA/RO phenotype to an activated phenotype characterized by high expression of CD45RO and no expression of CCR7. The generated T cells revealed a very potent CTL response, even at low E:T ratios. CONCLUSION This study demonstrates that TT provides a very potent and cost-effective tool for the in vitro induction of antigen-specific CTLs from precursor PBMNCs that can easily be adapted to GMP conditions for translational purposes.
Collapse
Affiliation(s)
- Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
48
|
Viatte S, Alves PM, Romero P. Reverse immunology approach for the identification of CD8 T-cell-defined antigens: advantages and hurdles. Immunol Cell Biol 2006; 84:318-30. [PMID: 16681829 DOI: 10.1111/j.1440-1711.2006.01447.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the challenges of tumour immunology remains the identification of strongly immunogenic tumour antigens for vaccination. Reverse immunology, that is, the procedure to predict and identify immunogenic peptides from the sequence of a gene product of interest, has been postulated to be a particularly efficient, high-throughput approach for tumour antigen discovery. Over one decade after this concept was born, we discuss the reverse immunology approach in terms of costs and efficacy: data mining with bioinformatic algorithms, molecular methods to identify tumour-specific transcripts, prediction and determination of proteasomal cleavage sites, peptide-binding prediction to HLA molecules and experimental validation, assessment of the in vitro and in vivo immunogenic potential of selected peptide antigens, isolation of specific cytolytic T lymphocyte clones and final validation in functional assays of tumour cell recognition. We conclude that the overall low sensitivity and yield of every prediction step often requires a compensatory up-scaling of the initial number of candidate sequences to be screened, rendering reverse immunology an unexpectedly complex approach.
Collapse
Affiliation(s)
- Sebastien Viatte
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne branch, University Hospital, CHUV, and National Center for Competence in Research, NCCR, Molecular Oncology, Lausanne, Switzerland
| | | | | |
Collapse
|
49
|
Rodeberg DA, Nuss RA, Elsawa SF, Erskine CL, Celis E. Generation of tumoricidal PAX3 peptide antigen specific cytotoxic T lymphocytes. Int J Cancer 2006; 119:126-32. [PMID: 16450380 DOI: 10.1002/ijc.21817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The transcription factor PAX3 is expressed during early embryogenesis and in multiple cancer types, including embryonal rhabdomyosarcoma (ERMS), Ewing sarcoma (ES) and malignant melanoma (MEL), suggesting that it could function as a general tumor associated antigen. Major histocompatibility complex (MHC) peptide binding algorithms were used to predict potential epitopes in PAX3 capable of stimulating in vitro naïve HLA-A0201 restricted cytotoxic T-lymphocytes (CTLs). Two peptides, PAX3-282 (QLMAFNHLI) and a modified version of this peptide PAX3-282.9V (QLMAFNHLV), were capable of inducing antigen-specific CTLs. Of these peptides, PAX3-282.9V was the most efficient inducer of primary CTL response. These CTLs were able to lyse HLA-A0201 expressing target cells that were pulsed with peptide, and more importantly, were effective in killing tumor cells that express PAX3, including ERMS, ES and MEL cell lines. These findings provide compelling evidence that peptide PAX3-282 is naturally processed by tumors and is presented in the context of HLA-A0201 in adequate amounts to allow CTL recognition. Also, PAX3-282.9V is an effective immunogenic peptide able to induce CTL recognition of PAX3-containing tumors and may be used as an antitumor peptide vaccine.
Collapse
|
50
|
Li W, Krishnadas DK, Li J, Tyrrell DLJ, Agrawal B. Induction of Primary Human T Cell Responses against Hepatitis C Virus-Derived Antigens NS3 or Core by Autologous Dendritic Cells Expressing Hepatitis C Virus Antigens: Potential for Vaccine and Immunotherapy. THE JOURNAL OF IMMUNOLOGY 2006; 176:6065-75. [PMID: 16670315 DOI: 10.4049/jimmunol.176.10.6065] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV)-specific T cell responses have been suggested to play significant role in viral clearance. Dendritic cells (DCs) are professional APCs that play a major role in priming, initiating, and sustaining strong T cell responses against pathogen-derived Ags. DCs also have inherent capabilities of priming naive T cells against given Ags. Recombinant adenoviral vectors containing HCV-derived Core and NS3 genes were used to endogenously express HCV Core and NS3 proteins in human DCs. These HCV Ags expressing DCs were used to prime and stimulate autologous T cells obtained from uninfected healthy donors. The DCs expressing HCV Core or NS3 Ags were able to stimulate T cells to produce various cytokines and proliferate in HCV Ag-dependent manner. Evidence of both CD4(+) and CD8(+) T cell responses against HCV Core and NS3 generated in vitro were obtained by flow cytometry and Ab blocking experiments. Further, in secondary assays, the T cells primed in vitro exhibited HCV Ag-specific proliferative responses against recombinant protein Ags and also against immunodominant permissive peptide epitopes from HCV Ags. In summary, we demonstrate that the dendritic cells expressing HCV Ags are able to prime the Ag-specific T cells from uninfected healthy individuals in vitro. These studies have implications in designing cellular vaccines, T cell adoptive transfer therapy or vaccine candidates for HCV infection in both prophylactic and therapeutic settings.
Collapse
Affiliation(s)
- Wen Li
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, 720 Heritage Medical Research Centre, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|