1
|
Gentry ZO, McAteer OD, Hamad JL, Moran JA, Kim JT, Marsden MD, Zack JA, Wender PA. Synthesis and preclinical evaluation of tigilanol tiglate analogs as latency-reversing agents for the eradication of HIV. SCIENCE ADVANCES 2025; 11:eads1911. [PMID: 39854456 PMCID: PMC11778240 DOI: 10.1126/sciadv.ads1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Tigilanol tiglate (EBC-46) is a selective modulator of protein kinase C (PKC) isoforms that is Food and Drug Administration (FDA) approved for the treatment of mast cell tumors in canines with up to an 88% cure rate. Recently, it has been FDA approved for the treatment of soft tissue sarcomas in humans. The role of EBC-46 and, especially, its analogs in efforts to eradicate HIV, treat neurological and cardiovascular disorders, or enhance antigen density in antigen-targeted chimeric antigen receptor-T cell and chimeric antigen receptor-natural killer cell immunotherapies has not been reported. Enabled by our previously reported scalable synthesis of EBC-46, we report herein the systematic design, synthesis, and evaluation of EBC-46 analogs, including those inaccessible from the natural source and their PKC affinities, ability to translocate PKC, nuclear factor κB activity, and efficacy in reversing HIV latency in Jurkat-Latency cells. Leading analogs show exceptional PKC affinities, isoform selectivities, and functional activities, serving as promising candidates for therapeutic applications.
Collapse
Affiliation(s)
- Zachary O. Gentry
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Owen D. McAteer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Jennifer L. Hamad
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jose A. Moran
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Jocelyn T. Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew D. Marsden
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Medicine (Division of Infectious Diseases), School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Jerome A. Zack
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Zhou Y, Roseli RB, Hungerford NL, Fletcher MT, Ouwerkerk D, Gilbert RA, Krenske EH. Binding of the plant-derived toxin simplexin to bovine protein kinase C: insights from molecular dynamics. Org Biomol Chem 2024; 22:2863-2876. [PMID: 38525790 DOI: 10.1039/d4ob00065j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Pimelea poisoning of cattle is toxicologically linked to the activation of bovine protein kinase C (PKC) by the plant-derived toxin simplexin. To understand the affinity of PKC for simplexin, we performed molecular dynamics (MD) studies of simplexin, simplexin analogues, and several other activators of PKC. Binding enthalpy calculations indicated that simplexin had the strongest affinity for PKCα-C1B among the activators studied. Key to simplexin's affinity is its ability to form more hydrogen bonds to PKC, compared to the other activators. The C-3 carbonyl group and C-20 hydroxyl group of simplexin were identified as especially important for stabilizing the PKC binding interaction. The hydrophobic alkyl chain of simplexin induces deep membrane embedding of the PKC-simplexin complex, enhancing the protein-ligand hydrogen bonding. Our findings align with previous experiments on structure-activity relationships (SAR) for simplexin analogues, and provide insights that may guide the development of interventions or treatments for Pimelea poisoning.
Collapse
Affiliation(s)
- Yuchen Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Ras Baizureen Roseli
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Natasha L Hungerford
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia
| | - Mary T Fletcher
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia
| | - Diane Ouwerkerk
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), EcoSciences Precinct, Dutton Park, Queensland, 4102, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Queensland Bioscience Precinct, St Lucia, QLD 4072, Australia
| | - Rosalind A Gilbert
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), EcoSciences Precinct, Dutton Park, Queensland, 4102, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Queensland Bioscience Precinct, St Lucia, QLD 4072, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
3
|
Irie K. New diagnostic method for Alzheimer’s disease based on the toxic conformation theory of amyloid β. Biosci Biotechnol Biochem 2020; 84:1-16. [DOI: 10.1080/09168451.2019.1667222] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Abstract
Recent investigations suggest that soluble oligomeric amyloid β (Aβ) species may be involved in early onset of Alzheimer’s disease (AD). Using systematic proline replacement, solid-state NMR, and ESR, we identified a toxic turn at position 22 and 23 of Aβ42, the most potent neurotoxic Aβ species. Through radicalization, the toxic turn can induce formation of the C-terminal hydrophobic core to obtain putative Aβ42 dimers and trimers. Synthesized dimer and trimer models showed that the C-terminal hydrophobic core plays a critical role in the formation of high molecular weight oligomers with neurotoxicity. Accordingly, an anti-toxic turn antibody (24B3) that selectively recognizes a toxic dimer model of E22P-Aβ42 was developed. Sandwich enzyme-linked immunosorbent assay with 24B3 and 82E1 detected a significantly higher ratio of Aβ42 with a toxic turn to total Aβ42 in cerebrospinal fluid of AD patients compared with controls, suggesting that 24B3 could be useful for early onset of AD diagnosis.
Collapse
Affiliation(s)
- Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Yang H, Staveness D, Ryckbosch SM, Axtman AD, Loy BA, Barnes AB, Pande VS, Schaefer J, Wender PA, Cegelski L. REDOR NMR Reveals Multiple Conformers for a Protein Kinase C Ligand in a Membrane Environment. ACS CENTRAL SCIENCE 2018; 4:89-96. [PMID: 29392180 PMCID: PMC5785774 DOI: 10.1021/acscentsci.7b00475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 05/05/2023]
Abstract
Bryostatin 1 (henceforth bryostatin) is in clinical trials for the treatment of Alzheimer's disease and for HIV/AIDS eradication. It is also a preclinical lead for cancer immunotherapy and other therapeutic indications. Yet nothing is known about the conformation of bryostatin bound to its protein kinase C (PKC) target in a membrane microenvironment. As a result, efforts to design more efficacious, better tolerated, or more synthetically accessible ligands have been limited to structures that do not include PKC or membrane effects known to influence PKC-ligand binding. This problem extends more generally to many membrane-associated proteins in the human proteome. Here, we use rotational-echo double-resonance (REDOR) solid-state NMR to determine the conformations of PKC modulators bound to the PKCδ-C1b domain in the presence of phospholipid vesicles. The conformationally limited PKC modulator phorbol diacetate (PDAc) is used as an initial test substrate. While unanticipated partitioning of PDAc between an immobilized protein-bound state and a mobile state in the phospholipid assembly was observed, a single conformation in the bound state was identified. In striking contrast, a bryostatin analogue (bryolog) was found to exist exclusively in a protein-bound state, but adopts a distribution of conformations as defined by three independent distance measurements. The detection of multiple PKCδ-C1b-bound bryolog conformers in a functionally relevant phospholipid complex reveals the inherent dynamic nature of cellular systems that is not captured with single-conformation static structures. These results indicate that binding, selectivity, and function of PKC modulators, as well as the design of new modulators, are best addressed using a dynamic multistate model, an analysis potentially applicable to other membrane-associated proteins.
Collapse
Affiliation(s)
- Hao Yang
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United
States
| | - Daryl Staveness
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven M. Ryckbosch
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alison D. Axtman
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Brian A. Loy
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alexander B. Barnes
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United
States
| | - Vijay S. Pande
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jacob Schaefer
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United
States
| | - Paul A. Wender
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Department
of Chemical and Systems Biology, Stanford
University, Stanford, California 94305, United States
| | - Lynette Cegelski
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
The potential role of in silico approaches to identify novel bioactive molecules from natural resources. Future Med Chem 2017; 9:1665-1686. [PMID: 28841048 DOI: 10.4155/fmc-2017-0124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In recent years, integration of in silico approaches to natural product (NP) research reawakened the declined interest in NP-based drug discovery efforts. In particular, advancements in cheminformatics enabled comparison of NP databases with contemporary small-molecule libraries in terms of molecular properties and chemical space localizations. Virtual screening and target fishing approaches were successful in recognizing the untold macromolecular targets for NPs to exploit the unmet therapeutic needs. Developments in molecular docking and scoring methods along with molecular dynamics enabled to predict the target-ligand interactions more accurately taking into consideration the remarkable structural complexity of NPs. Hence, innovative in silico strategies have contributed valuably to the NP research in drug discovery processes as reviewed herein. [Formula: see text].
Collapse
|
6
|
Molecular dynamics simulations reveal ligand-controlled positioning of a peripheral protein complex in membranes. Nat Commun 2017; 8:6. [PMID: 28232750 PMCID: PMC5431895 DOI: 10.1038/s41467-016-0015-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 11/17/2016] [Indexed: 01/13/2023] Open
Abstract
Bryostatin is in clinical trials for Alzheimer’s disease, cancer, and HIV/AIDS eradication. It binds to protein kinase C competitively with diacylglycerol, the endogenous protein kinase C regulator, and plant-derived phorbol esters, but each ligand induces different activities. Determination of the structural origin for these differing activities by X-ray analysis has not succeeded due to difficulties in co-crystallizing protein kinase C with relevant ligands. More importantly, static, crystal-lattice bound complexes do not address the influence of the membrane on the structure and dynamics of membrane-associated proteins. To address this general problem, we performed long-timescale (400–500 µs aggregate) all-atom molecular dynamics simulations of protein kinase C–ligand–membrane complexes and observed that different protein kinase C activators differentially position the complex in the membrane due in part to their differing interactions with waters at the membrane inner leaf. These new findings enable new strategies for the design of simpler, more effective protein kinase C analogs and could also prove relevant to other peripheral protein complexes. Natural supplies of bryostatin, a compound in clinical trials for Alzheimer’s disease, cancer, and HIV, are scarce. Here, the authors perform molecular dynamics simulations to understand how bryostatin interacts with membrane-bound protein kinase C, offering insights for the design of bryostatin analogs.
Collapse
|
7
|
Thangsunan P, Tateing S, Hannongbua S, Suree N. Structural insights into the interactions of phorbol ester and bryostatin complexed with protein kinase C: a comparative molecular dynamics simulation study. J Biomol Struct Dyn 2015; 34:1561-75. [PMID: 26292580 DOI: 10.1080/07391102.2015.1084479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Protein kinase C (PKC) isozymes are important regulatory enzymes that have been implicated in many diseases, including cancer, Alzheimer's disease, and in the eradication of HIV/AIDS. Given their potential clinical ramifications, PKC modulators, e.g. phorbol esters and bryostatin, are also of great interest in the drug development. However, structural details on the binding between PKC and its modulators, especially bryostatin - the highly potent and non-tumor promoting activator for PKCs, are still lacking. Here, we report the first comparative molecular dynamics study aimed at gaining structural insight into the mechanisms by which the PKC delta cys2 activator domain is used in its binding to phorbol ester and bryostatin-1. As anticipated in the phorbol ester binding, hydrogen bonds are formed through the backbone atoms of Thr242, Leu251, and Gly253 of PKC. However, the opposition of H-bond formation between Thr242 and Gly253 may cause the phorbol ester complex to become less stable when compared with the bryostatin binding. For the PKC delta-bryostatin complex, hydrogen bonds are formed between the Gly253 backbone carbonyl and the C30 carbomethoxy substituent of the ligand. Additionally, the indole Nε1 of the highly homologous Trp252 also forms an H-bond to the C20 ester group on bryostatin. Backbone fluctuations also suggest that this latter H-bond formation may abrogate the transient interaction between Trp252 and His269, thus dampening the fluctuations observed on the nearby Zn(2+)-coordinating residues. This new dynamic fluctuation dampening model can potentially benefit future design of new PKC modulators.
Collapse
Affiliation(s)
- Patcharapong Thangsunan
- a Graduate Program in Biotechnology , The Graduate School, Chiang Mai University , 239 Huay Kaew Rd, Suthep, Muang, Chiang Mai 50200 , Thailand.,b Faculty of Science, Department of Chemistry, Division of Biochemistry and Biochemical Technology , Chiang Mai University , 239 Huay Kaew Rd, Suthep, Muang, Chiang Mai 50200 , Thailand
| | - Suriya Tateing
- a Graduate Program in Biotechnology , The Graduate School, Chiang Mai University , 239 Huay Kaew Rd, Suthep, Muang, Chiang Mai 50200 , Thailand.,b Faculty of Science, Department of Chemistry, Division of Biochemistry and Biochemical Technology , Chiang Mai University , 239 Huay Kaew Rd, Suthep, Muang, Chiang Mai 50200 , Thailand
| | - Supa Hannongbua
- c Faculty of Science, Department of Chemistry , Kasetsart University , Bangkok 10900 , Thailand
| | - Nuttee Suree
- b Faculty of Science, Department of Chemistry, Division of Biochemistry and Biochemical Technology , Chiang Mai University , 239 Huay Kaew Rd, Suthep, Muang, Chiang Mai 50200 , Thailand
| |
Collapse
|
8
|
Loy BA, Lesser AB, Staveness D, Billingsley KL, Cegelski L, Wender PA. Toward a biorelevant structure of protein kinase C bound modulators: design, synthesis, and evaluation of labeled bryostatin analogues for analysis with rotational echo double resonance NMR spectroscopy. J Am Chem Soc 2015; 137:3678-85. [PMID: 25710634 DOI: 10.1021/jacs.5b00886] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein kinase C (PKC) modulators are currently of great importance in preclinical and clinical studies directed at cancer, immunotherapy, HIV eradication, and Alzheimer's disease. However, the bound conformation of PKC modulators in a membrane environment is not known. Rotational echo double resonance (REDOR) NMR spectroscopy could uniquely address this challenge. However, REDOR NMR requires strategically labeled, high affinity ligands to determine interlabel distances from which the conformation of the bound ligand in the PKC-ligand complex could be identified. Here we report the first computer-guided design and syntheses of three bryostatin analogues strategically labeled for REDOR NMR analysis. Extensive computer analyses of energetically accessible analogue conformations suggested preferred labeling sites for the identification of the PKC-bound conformers. Significantly, three labeled analogues were synthesized, and, as required for REDOR analysis, all proved highly potent with PKC affinities (∼1 nM) on par with bryostatin. These potent and strategically labeled bryostatin analogues are new structural leads and provide the necessary starting point for projected efforts to determine the PKC-bound conformation of such analogues in a membrane environment, as needed to design new PKC modulators and understand PKC-ligand-membrane structure and dynamics.
Collapse
Affiliation(s)
- Brian A Loy
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Adam B Lesser
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Daryl Staveness
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Kelvin L Billingsley
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Lynette Cegelski
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
Irie K, Yanagita RC. Synthesis and Biological Activities of Simplified Analogs of the Natural PKC Ligands, Bryostatin-1 and Aplysiatoxin. CHEM REC 2014; 14:251-67. [DOI: 10.1002/tcr.201300036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuhiro Irie
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Ryo C. Yanagita
- Department of Applied Biological Science; Faculty of Agriculture, Kagawa University; Kagawa 761-0795 Japan
| |
Collapse
|
10
|
Smith AB, Risatti CA, Atasoylu O, Bennett CS, Liu J, Cheng H, TenDyke K, Xu Q. Design, synthesis, and biological evaluation of diminutive forms of (+)-spongistatin 1: lessons learned. J Am Chem Soc 2011; 133:14042-53. [PMID: 21761891 PMCID: PMC3164888 DOI: 10.1021/ja2046167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The design, synthesis, and biological evaluation of two diminutive forms of (+)-spongistatin 1, in conjunction with the development of a potentially general design strategy to simplify highly flexible macrocyclic molecules while maintaining biological activity, have been achieved. Examination of the solution conformations of (+)-spongistatin 1 revealed a common conformational preference along the western perimeter comprising the ABEF rings. Exploiting the hypothesis that the small-molecule recognition/binding domains are likely to comprise the conformationally less mobile portions of a ligand led to the design of analogues, incorporating tethers (blue) in place of the CD and the ABCD components of the (+)-spongistatin 1 macrolide, such that the conformation of the retained (+)-spongistatin 1 skeleton would mimic the assigned solution conformations of the natural product. The observed nanomolar cytotoxicity and microtubule destabilizing activity of the ABEF analogue provide support for both the assigned solution conformation of (+)-spongistatin 1 and the validity of the design strategy.
Collapse
Affiliation(s)
- Amos B Smith
- Monell Chemical Senses Center and Laboratory for Research on the Structure of Matter, Department of Chemistry, University of Pennsylvania , Philadelphia, 19104, United States.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Irie K, Yanagita RC, Nakagawa Y. Challenges to the development of bryostatin-type anticancer drugs based on the activation mechanism of protein kinase Cδ. Med Res Rev 2010; 32:518-35. [DOI: 10.1002/med.20220] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kazuhiro Irie
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto Japan
| | - Ryo C. Yanagita
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto Japan
| | - Yu Nakagawa
- Synthetic Cellular Chemistry Laboratory; Advanced Science Institute; RIKEN; Wako-shi Saitama Japan
| |
Collapse
|
12
|
Wender PA, Verma VA. The design, synthesis, and evaluation of C7 diversified bryostatin analogs reveals a hot spot for PKC affinity. Org Lett 2008; 10:3331-4. [PMID: 18588309 DOI: 10.1021/ol801235h] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first series of systematically varied C7-functionalized bryostatin analogs (12 members in all) have been synthesized through an efficient and convergent route. A new hotspot for PKC affinity, not present in the natural products, has been discovered, allowing for affinity control and potentially for selective regulation of PKC isozymes. Several analogs exhibit single-digit nanomolar affinity to PKC and display superior activity compared to bryostatin against the leukemia cell line K562.
Collapse
Affiliation(s)
- Paul A Wender
- Department of Chemistry, Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305-5080, USA.
| | | |
Collapse
|
13
|
Takahashi H, Namiki H. Mechanism of membrane redistribution of protein kinase C by its ATP-competitive inhibitors. Biochem J 2007; 405:331-40. [PMID: 17373912 PMCID: PMC1904528 DOI: 10.1042/bj20070299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ATP-competitive inhibitors of PKC (protein kinase C) such as the bisindolylmaleimide GF 109203X, which interact with the ATP-binding site in the PKC molecule, have also been shown to affect several redistribution events of PKC. However, the reason why these inhibitors affect the redistribution is still controversial. In the present study, using immunoblot analysis and GFP (green fluorescent protein)-tagged PKC, we showed that, at commonly used concentrations, these ATP-competitive inhibitors alone induced redistribution of DAG (diacylglycerol)-sensitive PKCalpha, PKCbetaII, PKCdelta and PKCepsilon, but not atypical PKCzeta, to the endomembrane or the plasma membrane. Studies with deletion and point mutants showed that the DAG-sensitive C1 domain of PKC was required for membrane redistribution by these inhibitors. Furthermore, membrane redistribution was prevented by the aminosteroid PLC (phospholipase C) inhibitor U-73122, although an ATP-competitive inhibitor had no significant effect on acute DAG generation. Immunoblot analysis showed that an ATP-competitive inhibitor enhanced cell-permeable DAG analogue- or phorbol-ester-induced translocation of endogenous PKC. Furthermore, these inhibitors also enhanced [3H]phorbol 12,13-dibutyrate binding to the cytosolic fractions from PKCalpha-GFP-overexpressing cells. These results clearly demonstrate that ATP-competitive inhibitors cause redistribution of DAG-sensitive PKCs to membranes containing endogenous DAG by altering the DAG sensitivity of PKC and support the idea that the inhibitors destabilize the closed conformation of PKC and make the C1 domain accessible to DAG. Most importantly, our findings provide novel insights for the interpretation of studies using ATP-competitive inhibitors, and, especially, suggest caution about the interpretation of the relationship between the redistribution and kinase activity of PKC.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Department of Biology, School of Education, Waseda University, Shinjuku-ku, Tokyo 169-0051, Japan.
| | | |
Collapse
|
14
|
Vucetic S, Xie H, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res 2007; 6:1899-916. [PMID: 17391015 PMCID: PMC2588346 DOI: 10.1021/pr060393m] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes approximately 90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions.
Collapse
Affiliation(s)
- Slobodan Vucetic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Hongbo Xie
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Lilia M. Iakoucheva
- Laboratory of Statistical Genetics, The Rockefeller University, New York, NY 10021
| | - Christopher J. Oldfield
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - Zoran Obradovic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- CORRESPONDING AUTHOR FOOTNOTE: Correspondence should be addressed to: Vladimir N. Uversky, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS#4021, Indianapolis, IN 46202, USA; Phone: 317-278-9194; Fax: 317-274-4686; E-mail:
| |
Collapse
|
15
|
Irie K, Masuda A, Shindo M, Nakagawa Y, Ohigashi H. Tumor promoter binding of the protein kinase C C1 homology domain peptides of RasGRPs, chimaerins, and Unc13s. Bioorg Med Chem 2005; 12:4575-83. [PMID: 15358285 DOI: 10.1016/j.bmc.2004.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 07/05/2004] [Accepted: 07/05/2004] [Indexed: 11/28/2022]
Abstract
Recent investigations discovered nonkinase-type phorbol ester receptors, RasGRPs, chimaerins, and Unc13s. Phorbol ester binding occurs at the cysteine-rich sequences of about 50 residues in the C1 domains of these receptors. Fifty-one-residue RasGRP C1 peptides except for RasGRP2 showed significant phorbol 12,13-dibutyrate (PDBu) binding, but the K(d) values of the RasGRP1 and RasGRP3 C1 peptides were about 10-fold larger than those for the corresponding whole enzymes. Addition of the C-terminal basic amino acid cluster decreased their K(d) values about 10-fold, suggesting that the positive charges of these C1 peptides play an important role in the PDBu binding in the presence of negatively-charged phosphatidylserine. The 51-mer chimaerin C1 peptides showed potent PDBu binding, while the Unc13 and Munc13-1 C1 peptides without sufficient positive charges hardly bound PDBu. By the rapid screening system using this C1 peptide library, 5-prenyl-indolactam-V was identified as a promising lead for the novel protein kinase C isozyme specific ligands.
Collapse
Affiliation(s)
- Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
16
|
Irie K, Nakagawa Y, Ohigashi H. Toward the development of new medicinal leads with selectivity for protein kinase C isozymes. CHEM REC 2005; 5:185-95. [PMID: 16041745 DOI: 10.1002/tcr.20044] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumor promoters such as phorbol esters bind strongly to protein kinase C (PKC) isozymes to induce their activation. Since each PKC isozyme is involved in diverse biological events in addition to tumor promotion, the isozymes serve as promising therapeutic targets. Tumor promoters bind to the C1A and/or C1B domain of conventional (alpha, betaI, betaII, and gamma) and novel PKC isozymes (delta, epsilon, eta, and theta). As these C1 domains play differential roles in PKC activation and their translocation in cells, the development of agents with binding selectivity for individual C1 domains is a pressing need. For this purpose, we established a synthetic C1 peptide library of all PKC isozymes. The library enabled us to identify indolactam-V (1) as a promising lead compound. Our diverse structure-activity studies on 1 indicated that the position of the hydrophobic substituent on the indole ring dominates the PKC isozyme- and C1 domain-selective binding rather than conformation of the nine-membered lactam. Moreover, we suggested that the indole ring of 1 could be involved in the CH/pi interaction with Pro-11 of the C1B domain of PKCdelta. This invaluable information will lead to the structural optimization of the PKCdelta ligand as exemplified by the design and synthesis of naphtholactam-V8 (21).
Collapse
Affiliation(s)
- Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
17
|
Slater SJ, Ho C, Stubbs CD. The use of fluorescent phorbol esters in studies of protein kinase C-membrane interactions. Chem Phys Lipids 2002; 116:75-91. [PMID: 12093536 DOI: 10.1016/s0009-3084(02)00021-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The family of protein kinase C (PKC) isozymes belongs to a growing class of proteins that become active by associating with membranes containing anionic phospholipids, such as phosphatidylserine. Depending on the particular PKC isoform, this process is mediated by Ca(2+)-binding to a C2 domain and interaction of activators such as 1,2-diacyl-sn-glycerol or phorbol esters with tandem C1 domains. This cooperation between the C1 and C2 domains in inducing the association of PKC with lipid membranes provides the energy for a conformational change that consists of the release of a pseudosubstrate sequence from the active site, culminating in activation. Thus, the properties of the interactions of the C1 and C2 domains with membranes, both as isolated domains, and as modules in the full length PKC isoforms, have been the subject of intense scrutiny. Here, we review the findings of studies in which fluorescent phorbol esters have been utilized to probe the properties of the C1 domains of PKC with respect to the interaction with activators, the subsequent interaction with membranes, and the role of the activating conformational change that leads to activation.
Collapse
Affiliation(s)
- Simon J Slater
- Department of Anatomy, Pathology and Cell Biology, Thomas Jefferson University, Room 271 JAH, 1020 Locust St., Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
18
|
Irie K, Nakahara A, Nakagawa Y, Ohigashi H, Shindo M, Fukuda H, Konishi H, Kikkawa U, Kashiwagi K, Saito N. Establishment of a binding assay for protein kinase C isozymes using synthetic C1 peptides and development of new medicinal leads with protein kinase C isozyme and C1 domain selectivity. Pharmacol Ther 2002; 93:271-81. [PMID: 12191619 DOI: 10.1016/s0163-7258(02)00196-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Conventional and novel protein kinase C (PKC) isozymes contain two cysteine-rich C1 domains (C1A and C1B), both of which are candidate phorbol-12, 13-dibutyrate (PDBu)-binding sites. We synthesized C1 peptides of 50-70 residues corresponding to all PKC isozyme C1 domains using an Fmoc solid-phase strategy. These C1 peptides were successfully folded by zinc treatment, as monitored by electrospray ionization time-of-flight mass spectrometry. We measured the K(d)'s of [3H]PDBu for all PKC C1 peptides. Most of the C1 peptides, except for delta-C1A and theta-C1A, showed strong PDBu binding affinities with K(d)'s in the nanomolar range (0.45-7.4 nM) comparable with the respective whole PKC isozymes. The resultant C1 peptide library can be used to screen for new ligands with PKC isozyme and C1 domain selectivity. Non-tumor-promoting 1-oleoyl-2-acetyl-sn-glycerol and bryostatin 1 showed relatively strong binding to all CIA peptides of novel PKCs (delta, epsilon, and eta). In contrast, the tumor promoters (-)-indolactam-V, ingenol-3-benzoate, and PDBu bound selectively to all C1B peptides of novel PKCs. The preference of tumor promoters for the domain might be related to tumorigenesis since recent investigations proposed the involvement of novel PKCs in tumor promotion in vivo using transgenic or knockout mice. Moreover, we recently have found that a new lactone analogue of benzolactams (6) shows significant selectivity in PKCeta-C1B binding.
Collapse
Affiliation(s)
- Kazuhiro Irie
- Laboratory of Organic Chemistry in Life Science, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, 606-8502, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shindo M, Irie K, Nakahara A, Ohigashi H, Konishi H, Kikkawa U, Fukuda H, Wender PA. Toward the identification of selective modulators of protein kinase C (PKC) isozymes: establishment of a binding assay for PKC isozymes using synthetic C1 peptide receptors and identification of the critical residues involved in the phorbol ester binding. Bioorg Med Chem 2001; 9:2073-81. [PMID: 11504643 DOI: 10.1016/s0968-0896(01)00100-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Conventional and novel protein kinase C (PKC) isozymes contain two cysteine-rich C1 domains (C1A and C1B), both of which are candidate phorbol-12,13-dibutyrate (PDBu) binding sites. We previously synthesized C1 peptides (of approximately 50 residues) corresponding to all PKC isozymes and measured their PDBu binding affinity. While many of these peptide receptors exhibited PDBu affinities comparable to the respective complete isozyme, some of the C1A peptides could not be used because they undergo temperature dependent inactivation. This problem was however eliminated by 4 degrees C incubation or elongation of the 50-mer C1 peptides at both N- and C-termini to increase their folding efficiency and stability. These findings enabled us to determine the K(d)'s of PDBu for all PKC C1 peptides (except for theta-C1A) and establish the value of these peptides as readily available, stable, and easily handled surrogates of the individual isozymes. The resultant C1 peptide receptor library can be used to screen for new ligands with PKC isozyme and importantly C1 domain selectivity. Most of the C1 peptide receptors showed strong PDBu binding affinities with K(d)'s in the nanomolar range (0.45-7.4 nM). Two peptides (delta-C1A and theta-C1A) bound PDBu over 100-fold less tightly. To identify the residues that contribute to this affinity difference, several mutants of delta-C1A and theta-C1A were synthesized. Both the G9K mutant of delta-C1A and the P9K mutant of theta-C1A showed K(d)'s of 2-3 nM. This approach provides a useful procedure to determine the role of each C1 domain of the PKC isozymes by point mutation.
Collapse
Affiliation(s)
- M Shindo
- Applied Biosystems Japan Ltd, 104-0032, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Irie K, Nakahara A, Ikawa Y, Tanaka M, Nakagawa Y, Nakamura Y, Ohigashi H, Wender PA. Synthesis and tumor-promoting activities of 12-Epi-phorbol-12,13-dibutyrate. Biosci Biotechnol Biochem 2000; 64:2429-36. [PMID: 11193412 DOI: 10.1271/bbb.64.2429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
12-Epi-phorbol-12,13-dibutyrate (1), the C12-epimer of the most frequently used phorbol ester probe, phorbol-12,13-dibutyrate (PDBu), has been synthesized from phorbol in 9 steps in order to investigate the structural requirements for tumor-promoting activity. Compound 1 showed about 100-fold weaker in vitro biological activities related to in vivo tumor promotion, Epstein-Barr virus early antigen (EBV-EA)-inducing ability, superoxide (O2-) generation-inducing ability, and binding to the protein kinase C (PKC) regulatory domain surrogate peptides. The results indicated that the beta-stereochemistry at position 12 of the phorbol skeleton is important for optimal activity. Binding selectivity to each PKC C1 domain of 1 was almost equal to that of PDBu.
Collapse
Affiliation(s)
- K Irie
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Nakagawa Y, Irie K, Ohigashi H, Hayashi H, Wender PA. Synthesis and PKC isozyme surrogate binding of indothiolactam-V, a new thioamide analogue of tumor promoting indolactam-V. Bioorg Med Chem Lett 2000; 10:2087-90. [PMID: 10999477 DOI: 10.1016/s0960-894x(00)00411-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the role of the amide group of (-)-indolactam-V (1) on PKC binding, we synthesized (-)-indothiolactam-V (2), a new thioamide analogue of 1, by microbial conversion using Streptomyces blastmyceticum. Compounds 2 and 1 showed similar binding affinities to conventional PKCs but 2 had lower affinities to novel PKCs, suggesting that novel PKCs recognize amide modifications more effectively than conventional PKCs.
Collapse
Affiliation(s)
- Y Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
22
|
Ho C, Slater SJ, Stagliano BA, Stubbs CD. Conformation of the C1 phorbol-ester-binding domain participates in the activating conformational change of protein kinase C. Biochem J 1999; 344 Pt 2:451-60. [PMID: 10567228 PMCID: PMC1220663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The fluorescent phorbol ester 12-N-methylanthraniloylphorbol 13-acetate [sapintoxin D (SAPD)] was used as both the activator and the probe for the activating conformational change of the C1 domain of recombinant protein kinase C (PKC)alpha. Fluorescence emission spectra and steady-state anisotropy measurements of SAPD in fully active membrane-associated PKC show that there is a relatively hydrophobic environment and restricted motional freedom characterizing the phorbol-ester-binding site. SAPD also interacts with the membrane lipids so that it was necessary to resort to time-resolved anisotropy measurements to resolve the signals corresponding to PKC-bound SAPD from that associated with buffer and lipid. In the presence of membrane lipids (unilamellar vesicles of phosphatidylcholine and phosphatidylserine, 4:1 molar ratio) and Ca(2+), at a concentration sufficient to activate the enzyme fully, a long correlation time characteristic of highly restricted motion was observed for PKC-associated SAPD. The fraction of SAPD molecules displaying this restricted motion, in comparison with the total SAPD including that in lipids and in buffer, increased with increasing concentrations of Ca(2+) and paralleled the appearance of enzyme activity, whereas the rotational correlation time remained constant. This could be rationalized as an increase in the number of active PKC conformers in the total population of PKC molecules. It therefore seems that there is a distinct conformation of the C1 activator-binding domain associated with the active form of PKC. The addition of SAPD and dioleoyl-sn-glycerol together produced an activity higher than that achievable by either activator alone both at concentrations that alone induced maximal activity for the respective activator; this higher activity was associated with a further restriction in SAPD motion. Increasing the cholesterol concentration, the phosphatidylethanolamine concentration, the sn-2 unsaturation in phosphatidylcholine and the vesicle curvature each also elevated SAPD-induced PKC activity and again increased the PKC-associated SAPD rotational correlation time. In summary, the rotational correlation time of PKC-bound SAPD, extractable from a single time-resolved fluorescence anisotropy measurement, provides a novel probe for the involvement of interactions between the C1 domain and phorbol ester in the modulation of PKC activity.
Collapse
Affiliation(s)
- C Ho
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
23
|
Wender PA, Kirschberg TA, Williams PD, Bastiaans HM, Irie K. A new class of simplified phorbol ester analogues: synthesis and binding to PKC and eta PKC-C1B (eta PKC-CRD2). Org Lett 1999; 1:1009-12. [PMID: 10825954 DOI: 10.1021/ol990809k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[formula: see text] A unique class of simplified phorbol ester analogues is described for the first time. A highly efficient retro-annelation sequence was developed in order to remove the five-membered ring from the phorbol diterpene core, allowing access to BCD ring analogues of the phorbol esters. The binding of these analogues to protein kinase C (PKC) and the truncated peptide eta PKC-C1B (eta PKC-CRD2) is also reported.
Collapse
Affiliation(s)
- P A Wender
- Department of Chemistry, Stanford University, California 94305, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
The bryostatins are a unique family of cancer chemotherapeutic candidates isolated from marine bryozoa. While their molecular mode of action is not known, these macrolactones exhibit high affinities for protein kinase C (PKC) isozymes, compete for the phorbol ester binding site on PKC, and stimulate kinase activity in vitro and in vivo. Unlike the phorbol esters, they do not act as tumor promoters. Despite promising biological properties, the supply of these compounds is limited by the difficulty of their isolation from natural sources and their synthetic complexity. A new class of bryostatin analogues which retain the putative recognition domain of the bryostatins but are simplified through deletions and modifications in the C1-C14 spacer domain have been designed using computer models. A convergent synthesis has been realized for the production, in gram quantities, of these recognition and spacer domains whose coupling allows for the generation of a range of analogues. The final closure process involves a novel macrotransacetalization reaction which proceeds with complete stereoselectivity. The solution structures of two synthetic analogues were determined by NMR spectroscopy and found to be very similar to the previously reported structures of bryostatins 1 and 10. In addition, these structures appear to indicate that the stereochemistry of the C3 hydroxyl group plays a significant role in the conformation of the macrolactone. All analogues bound strongly to a mixture of PKC isozymes, and several exhibited significant levels of in vitro growth inhibitory activity against human cancer cell lines. Taken together, this work provides important steps toward the development and understanding of simplified, synthetically accessible analogues of the bryostatins as potential chemotherapeutic agents.
Collapse
Affiliation(s)
- P A Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | | | | | |
Collapse
|
25
|
Fukuda H, Irie K, Nakahara A, Ohigashi H, Wender PA. Solid-phase synthesis, mass spectrometric analysis of the zinc-folding, and phorbol ester-binding studies of the 116-mer peptide containing the tandem cysteine-rich C1 domains of protein kinase C gamma. Bioorg Med Chem 1999; 7:1213-21. [PMID: 10428394 DOI: 10.1016/s0968-0896(99)00037-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tumor-promoting phorbol esters activate protein kinase C (PKC) isozymes by binding to the zinc-finger like cysteine-rich domains in the N-terminal regulatory region. Our recent studies have revealed that only PKCgamma has two high affinity phorbol ester-binding domains, providing a structural blueprint for the rational design of PKCgamma-selective modulators for the treatment of neuropathic pain. To extend this approach, the 116-mer peptide containing the double cysteine-rich motifs of PKCgamma (gamma-C1A-C1B) has been synthesized for the first time using an Fmoc-solid phase strategy with a stepwise chain elongation. This peptide was purified by the reversed phase HPLC to give satisfactory mass data (MALDI-TOF-MS and ESI-TOF-MS). The peptide was successfully folded by zinc treatment and the folded peptide was analyzed intact under neutral conditions by ESI-TOF-MS. The multiple charge mass envelopes shifted to those of the lower mass charge state by addition of 4 molar equiv. ZnCl2, suggesting that gamma-C1A-C1B preserves some higher order structure by the zinc folding. Moreover, the mass spectrum of the zinc-folded peptide in the presence of EDTA clearly showed that gamma-C1A-C1B coordinates exactly four atoms of zinc. This zinc stoichiometry is identical to that of native PKCgamma. Scatchard analysis of the zinc-folded peptide revealed two binding sites of distinctly different affinities (Kd=6.0 +/- 1.5 and 47.0 +/- 6.6 nM) comparable to those reported by Quest and Bell for the GST fusion protein of gamma-C1A-C1B prepared by DNA recombination. These results indicate that gamma-C1A-C1B serves as an effective surrogate for native PKCgamma for the study of the structural characteristics of the binding recognition event and the design, discovery, and development of new PKCgamma-selective modulators.
Collapse
Affiliation(s)
- H Fukuda
- Nihon PerSeptive Ltd., Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Slater SJ, Taddeo FJ, Mazurek A, Stagliano BA, Milano SK, Kelly MB, Ho C, Stubbs CD. Inhibition of membrane lipid-independent protein kinase Calpha activity by phorbol esters, diacylglycerols, and bryostatin-1. J Biol Chem 1998; 273:23160-8. [PMID: 9722545 DOI: 10.1074/jbc.273.36.23160] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of membrane-associated protein kinase C (PKC) has previously been shown to be regulated by two discrete high and low affinity binding regions for diacylglycerols and phorbol esters (Slater, S. J., Ho, C., Kelly, M. B., Larkin, J. D., Taddeo, F. J., Yeager, M. D., and Stubbs, C. D. (1996) J. Biol. Chem. 271, 4627-4631). PKC is also known to interact with both cytoskeletal and nuclear proteins; however, less is known concerning the mode of activation of this non-membrane form of PKC. By using the fluorescent phorbol ester, sapintoxin D (SAPD), PKCalpha, alone, was found to possess both low and high affinity phorbol ester-binding sites, showing that interaction with these sites does not require association with the membrane. Importantly, a fusion protein containing the isolated C1A/C1B (C1) domain of PKCalpha also bound SAPD with low and high affinity, indicating that the sites may be confined to this domain rather than residing elsewhere on the enzyme molecule. Both high and low affinity interactions with native PKCalpha were enhanced by protamine sulfate, which activates the enzyme without requiring Ca2+ or membrane lipids. However, this "non-membrane" PKC activity was inhibited by the phorbol ester 4beta-12-O-tetradecanoylphorbol-13-acetate (TPA) and also by the fluorescent analog, SAPD, opposite to its effect on membrane-associated PKCalpha. Bryostatin-1 and the soluble diacylglycerol, 1-oleoyl-2-acetylglycerol, both potent activators of membrane-associated PKC, also competed for both low and high affinity SAPD binding and inhibited protamine sulfate-induced activity. Furthermore, the inactive phorbol ester analog 4alpha-TPA (4alpha-12-O-tetradecanoylphorbol-13-acetate) also inhibited non-membrane-associated PKC. In keeping with these observations, although TPA could displace high affinity SAPD binding from both forms of the enzyme, 4alpha-TPA was only effective at displacing high affinity SAPD binding from non-membrane-associated PKC. 4alpha-TPA also displaced SAPD from the isolated C1 domain. These results show that although high and low affinity phorbol ester-binding sites are found on non-membrane-associated PKC, the phorbol ester binding properties change significantly upon association with membranes.
Collapse
Affiliation(s)
- S J Slater
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Irie K, Oie K, Nakahara A, Yanai Y, Ohigashi H, Wender PA, Fukuda H, Konishi H, Kikkawa U. Molecular Basis for Protein Kinase C Isozyme-Selective Binding: The Synthesis, Folding, and Phorbol Ester Binding of the Cysteine-Rich Domains of All Protein Kinase C Isozymes. J Am Chem Soc 1998. [DOI: 10.1021/ja981087f] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazuhiro Irie
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Kentaro Oie
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Akifumi Nakahara
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Yoshiaki Yanai
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hajime Ohigashi
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Paul A. Wender
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hiroyuki Fukuda
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hiroaki Konishi
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Ushio Kikkawa
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
28
|
Mochly-Rosen D, Kauvar LM. Modulating protein kinase C signal transduction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1998; 44:91-145. [PMID: 9547885 DOI: 10.1016/s1054-3589(08)60126-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D Mochly-Rosen
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
29
|
|
30
|
Sodeoka M, Arai MA, Adachi K, Uotsu K, Shibasaki M. Rational Design, Synthesis, and Evaluation of a New Type of PKC Inhibitor. J Am Chem Soc 1998. [DOI: 10.1021/ja971270t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mikiko Sodeoka
- Graduate School of Pharmaceutical Sciences The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113, Japan
| | - Midori A. Arai
- Graduate School of Pharmaceutical Sciences The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113, Japan
| | - Koji Adachi
- Graduate School of Pharmaceutical Sciences The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113, Japan
| | - Koichiro Uotsu
- Graduate School of Pharmaceutical Sciences The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113, Japan
| | - Masakatsu Shibasaki
- Graduate School of Pharmaceutical Sciences The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113, Japan
| |
Collapse
|
31
|
Aballay A, Arenas NG, Quest AF, Mayorga LS. A factor with a zinc- and phorbol ester-binding domain is necessary for endosome fusion. Exp Cell Res 1997; 235:28-34. [PMID: 9281349 DOI: 10.1006/excr.1997.3643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An inhibitory effect of several zinc chelators on endosome fusion reconstituted in an in vitro system has been recently reported (A. Aballay et al., 1995, Biochem. J. 312, 919-923). The factor that requires zinc for its activity is still unknown. Since the regulatory domain of protein kinase C (PKC) contains cysteine-rich motifs which coordinate zinc, we suspected that PKC or a PKC-like protein might be that factor. To test this hypothesis, we studied the effect of calphostin C, a specific inhibitor of PKC that interacts with the cysteine-rich motif, and PMA (phorbol 12-myristate 13-acetate), an activator of several PKC isoforms that bind to the same region, on endosome fusion. Calphostin C inhibited endosome fusion in a zinc-regulated manner, whereas PMA enhanced endosome fusion. Moreover, fusion was strongly stimulated when both PMA and zinc were added together to zinc-depleted fusion reactions. Inhibitors of the catalytic domain of PKC had no effect on the assay suggesting that the kinase activity is not required. In contrast, a glutathione S-transferase fusion protein containing a cysteine-rich region of the regulatory domain of PKCgamma inhibited endosome fusion in a PMA-dependent manner. Western blot analysis demonstrated the presence of proteins containing PKC-like cysteine-rich regions that are released from endosomal fractions by zinc chelators. These results indicate that the previously proposed zinc-dependent factor required for endosome fusion could be either a PKC isoform or a protein containing the phorbol ester-binding domain of PKC.
Collapse
Affiliation(s)
- A Aballay
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, 5500, Argentina
| | | | | | | |
Collapse
|
32
|
Irie K, Isaka T, Iwata Y, Yanai Y, Nakamura Y, Koizumi F, Ohigashi H, Wender PA, Satomi Y, Nishino H. Synthesis and Biological Activities of New Conformationally Restricted Analogues of (−)-Indolactam-V: Elucidation of the Biologically Active Conformation of the Tumor-Promoting Teleocidins. J Am Chem Soc 1996. [DOI: 10.1021/ja961727j] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuhiro Irie
- Contribution from the Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto 602, Japan
| | - Tomomi Isaka
- Contribution from the Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto 602, Japan
| | - Yoriko Iwata
- Contribution from the Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto 602, Japan
| | - Yoshiaki Yanai
- Contribution from the Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto 602, Japan
| | - Yoshimasa Nakamura
- Contribution from the Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto 602, Japan
| | - Fumito Koizumi
- Contribution from the Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto 602, Japan
| | - Hajime Ohigashi
- Contribution from the Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto 602, Japan
| | - Paul A. Wender
- Contribution from the Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto 602, Japan
| | - Yoshiko Satomi
- Contribution from the Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto 602, Japan
| | - Hoyoku Nishino
- Contribution from the Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto 602, Japan
| |
Collapse
|
33
|
Wang S, Kazanietz MG, Blumberg PM, Marquez VE, Milne GW. Molecular modeling and site-directed mutagenesis studies of a phorbol ester-binding site in protein kinase C. J Med Chem 1996; 39:2541-53. [PMID: 8691452 DOI: 10.1021/jm950403n] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The protein kinase C (PKC) binding site used by PKC activators such as phorbol esters and diacylglycerols (DAGs) has been characterized by means of molecular modeling and site-directed mutagenesis studies. Based upon a NMR-determined solution structure of the second cysteinerich domain of PKC alpha, molecular modeling was used to study the structures of the complexes formed between the PKC receptor and a number of PKC ligands, phorbol esters, and DAGs. Site-directed mutagenesis studies identified a number of residues important to the binding of phorbol esters to PKC. Analysis of the molecular modeling and mutagenesis results allows the development of a binding model for PKC ligands for which the precise binding nature is defined. The calculated hydrogen bond energies between the protein and various ligands in this binding model are consistent with their measured binding affinities. The binding site for phorbol esters and DAGs is located in a highly conserved, hydrophobic loop region formed by residues 6-12 and 20-27. For the binding elements in phorbol esters, the oxygen at C20 contributes most to the overall binding energy, and that at C3 plays a significant role. The oxygen atom at C12 is not directly involved in the interaction between phorbol esters and PKC. Our results also suggest that the oxygens at C9 and C13 are involved in PKC binding, while the oxygen at C4 is of minimal significance. These results are consistent with known structure-activity relationships in the phorbol ester family of compounds. Comparisons with the X-ray structure showed that although the X-ray data support the results for oxygens at C3, C12, and C20 of phorbol esters, they suggest different roles for oxygens at C4, C9, and C13. Several factors which may contribute to these discrepancies are discussed.
Collapse
Affiliation(s)
- S Wang
- Laboratory of Medicinal Chemistry, Division of Basic Sciences, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
34
|
Irie K, Ishii T, Ohigashi H, Wender PA, Miller BL, Takeda N. Synthesis and Characterization of New Photolabile Phorbol Esters for Affinity Labeling of Protein Kinase C. J Org Chem 1996. [DOI: 10.1021/jo9512867] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuhiro Irie
- Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Faculty of Pharmacy, Meijo University, Nagoya 468, Japan
| | - Takashi Ishii
- Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Faculty of Pharmacy, Meijo University, Nagoya 468, Japan
| | - Hajime Ohigashi
- Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Faculty of Pharmacy, Meijo University, Nagoya 468, Japan
| | - Paul A. Wender
- Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Faculty of Pharmacy, Meijo University, Nagoya 468, Japan
| | - Benjamin L. Miller
- Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Faculty of Pharmacy, Meijo University, Nagoya 468, Japan
| | - Naohito Takeda
- Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, and Faculty of Pharmacy, Meijo University, Nagoya 468, Japan
| |
Collapse
|
35
|
Slater SJ, Ho C, Kelly MB, Larkin JD, Taddeo FJ, Yeager MD, Stubbs CD. Protein kinase Calpha contains two activator binding sites that bind phorbol esters and diacylglycerols with opposite affinities. J Biol Chem 1996; 271:4627-31. [PMID: 8617724 DOI: 10.1074/jbc.271.9.4627] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Based on marked differences in the enzymatic properties of diacylglycerols compared with phorbol ester-activated protein kinase C (PKC), we recently proposed that activation induced by these compounds may not be equivalent (Slater, S. J., Kelly, M. B., Taddeo, F. J., Rubin, E., and Stubbs, C. D. (1994) J. Biol. Chem. 269, 17160-17165). In the present study, direct evidence is provided showing that phorbol esters and diacylglycerols bind simultaneously to PKC alpha. Using a novel binding assay employing the fluorescent phorbol ester, sapintoxin-D (SAPD), evidence for two sites of high and low affinity was obtained. Thus, both binding and activation dose-response curves for SAPD were double sigmoidal, which was also observed for dose-dependent activation by the commonly used phorbol ester, 4beta-12-O-tetradecanoylphorbol-13-acetate (TPA). TPA removed high affinity SAPD binding and also competed for the low affinity site. By contrast with TPA, low affinity binding of SAPD was inhibited by sn-1,2-dioleoylglycerol (DAG), while binding to the high affinity site was markedly enhanced. Again contrasting with both TPA and DAG, the potent PKC activator, bryostatin-I (B-I), inhibited SAPD binding to its high affinity site, while low affinity binding was unaffected. Based on these findings, a model for PKC activation is proposed in which binding of one activator to the low affinity site allosterically promotes binding of a second activator to the high affinity site, resulting in an enhanced level of activity. Overall, the results provide direct evidence that PKCalpha contains two distinct binding sites, with affinities that differ for each activator in the order: DAG > phorbol ester > B-I and B-I > phorbol ester > DAG, respectively.
Collapse
Affiliation(s)
- S J Slater
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Kazanietz MG, Wang S, Milne GW, Lewin NE, Liu HL, Blumberg PM. Residues in the second cysteine-rich region of protein kinase C delta relevant to phorbol ester binding as revealed by site-directed mutagenesis. J Biol Chem 1995; 270:21852-9. [PMID: 7665608 DOI: 10.1074/jbc.270.37.21852] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phorbol esters bind with high affinity to protein kinase C (PKC) isozymes as well as to two novel receptors, n-chimaerin and Unc-13. The cysteine-rich regions present in these proteins were identified as the binding sites for the phorbol ester tumor promoters and the lipophilic second messenger sn-diacylglycerol. A 50-amino-acid peptide comprising the second cysteine-rich region of PKC delta, expressed in Escherichia coli as a glutathione S-transferase (GST)-fusion protein, bound [3H]phorbol 12,13-dibutyrate (PDBu) with high affinity (Kd = 0.8 nM). Using the cDNA of that cysteine-rich region as a template, a series of 37 point mutations was generated by site-directed mutagenesis, and the mutated proteins were analyzed quantitatively for binding of [3H]PDBu and, as appropriate, for binding of the ultrapotent analog [3H]bryostatin 1. Mutants displayed one of three patterns of behavior: phorbol ester binding was completely abolished, binding affinity was reduced, or binding was not significantly modified. As expected, five of the six cysteines as well as the two histidines involved in Zn2+ coordination are critical for the interaction of the protein with the phorbol esters. In addition, mutations in several positions, including phenylalanine 3, tyrosine 8, proline 11, leucines 20, 21 and 24, tryptophan 21, glutamine 27, and valine 38 drastically reduced the interaction with the ligands. The effect of these mutations can be rationalized from the three-dimensional (NMR) structure of the cysteine-rich region. In particular, the C-terminal portion of the protein does not appear to be essential, and the loop comprising amino acids 20 to 28 is implicated in the binding activity.
Collapse
Affiliation(s)
- M G Kazanietz
- Molecular Mechanisms of Tumor Promotion Section, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kazanietz MG, Barchi JJ, Omichinski JG, Blumberg PM. Low affinity binding of phorbol esters to protein kinase C and its recombinant cysteine-rich region in the absence of phospholipids. J Biol Chem 1995; 270:14679-84. [PMID: 7782331 DOI: 10.1074/jbc.270.24.14679] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Binding of phorbol esters to protein kinase C (PKC) has been regarded as dependent on phospholipids, with phosphatidylserine being the most effective for reconstituting binding. By using a purified single cysteine-rich region from PKC delta expressed in Escherichia coli we were able to demonstrate that specific binding of [3H]phorbol 12,13-dibutyrate to the receptor still takes place in the absence of the phospholipid cofactor. However, [3H]phorbol 12,13-dibutyrate bound to the cysteine-rich region with 80-fold lower affinity in the absence than in the presence of 100 micrograms/ml phosphatidylserine. Similar results were observed with the intact recombinant PKC delta isolated from insect cells. When different phorbol derivatives were examined, distinct structure-activity relations for the cysteine-rich region were found in the presence and absence of phospholipid. Our results have potential implications for PKC translocation, for inhibitor design, and for PKC structural determination.
Collapse
Affiliation(s)
- M G Kazanietz
- Molecular Mechanisms of Tumor Promotion Section, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | |
Collapse
|