1
|
Özçete ÖD, Banerjee A, Kaeser PS. Mechanisms of neuromodulatory volume transmission. Mol Psychiatry 2024; 29:3680-3693. [PMID: 38789677 PMCID: PMC11540752 DOI: 10.1038/s41380-024-02608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
A wealth of neuromodulatory transmitters regulate synaptic circuits in the brain. Their mode of signaling, often called volume transmission, differs from classical synaptic transmission in important ways. In synaptic transmission, vesicles rapidly fuse in response to action potentials and release their transmitter content. The transmitters are then sensed by nearby receptors on select target cells with minimal delay. Signal transmission is restricted to synaptic contacts and typically occurs within ~1 ms. Volume transmission doesn't rely on synaptic contact sites and is the main mode of monoamines and neuropeptides, important neuromodulators in the brain. It is less precise than synaptic transmission, and the underlying molecular mechanisms and spatiotemporal scales are often not well understood. Here, we review literature on mechanisms of volume transmission and raise scientific questions that should be addressed in the years ahead. We define five domains by which volume transmission systems can differ from synaptic transmission and from one another. These domains are (1) innervation patterns and firing properties, (2) transmitter synthesis and loading into different types of vesicles, (3) architecture and distribution of release sites, (4) transmitter diffusion, degradation, and reuptake, and (5) receptor types and their positioning on target cells. We discuss these five domains for dopamine, a well-studied monoamine, and then compare the literature on dopamine with that on norepinephrine and serotonin. We include assessments of neuropeptide signaling and of central acetylcholine transmission. Through this review, we provide a molecular and cellular framework for volume transmission. This mechanistic knowledge is essential to define how neuromodulatory systems control behavior in health and disease and to understand how they are modulated by medical treatments and by drugs of abuse.
Collapse
Affiliation(s)
- Özge D Özçete
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Peng L, Wang T. Histamine synthesis and transport are coupled in axon terminals via a dual quality control system. EMBO J 2024; 43:4472-4491. [PMID: 39242788 PMCID: PMC11480334 DOI: 10.1038/s44318-024-00223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024] Open
Abstract
Monoamine neurotransmitters generated by de novo synthesis are rapidly transported and stored into synaptic vesicles at axon terminals. This transport is essential both for sustaining synaptic transmission and for limiting the toxic effects of monoamines. Here, synthesis of the monoamine histamine by histidine decarboxylase (HDC) and subsequent loading of histamine into synaptic vesicles are shown to be physically and functionally coupled within Drosophila photoreceptor terminals. This process requires HDC anchoring to synaptic vesicles via interactions with N-ethylmaleimide-sensitive fusion protein 1 (NSF1). Disassociating HDC from synaptic vesicles disrupts visual synaptic transmission and causes somatic accumulation of histamine, which leads to retinal degeneration. We further identified a proteasome degradation system mediated by the E3 ubiquitin ligase, purity of essence (POE), which clears mislocalized HDC from the soma, thus eliminating the cytotoxic effects of histamine. Taken together, our results reveal a dual mechanism for translocation and degradation of HDC that ensures restriction of histamine synthesis to axonal terminals and at the same time rapid loading into synaptic vesicles. This is crucial for sustaining neurotransmission and protecting against cytotoxic monoamines.
Collapse
Affiliation(s)
- Lei Peng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
- National Institute of Biological Sciences, Beijing, 102206, China.
| |
Collapse
|
3
|
Chauhan H, Carruthers N, Stemmer P, Schneider BP, Moszczynska A. Neurotoxic Methamphetamine Doses Alter CDCel-1 Levels and Its Interaction with Vesicular Monoamine Transporter-2 in Rat Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604458. [PMID: 39091864 PMCID: PMC11291068 DOI: 10.1101/2024.07.21.604458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, methamphetamine METH misuse in the US has been rapidly increasing and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). In addition to being dependent on the drug, people with MUD develop a variety of neurological problems related to the toxicity of this drug. A variety of molecular mechanisms underlying METH neurotoxicity has been identified, including dysfunction of the neuroprotective protein parkin. However, it is not known whether parkin loss of function within striatal dopaminergic (DAergic) terminals translates into a decrease in DA storage capacity. This study examined the relationship between parkin, its substrate cell division cycle related-1 (CDCrel-1), and vesicular monoamine transporter-2 (VMAT2) in METH neurotoxicity in male Sprague Dawley rats. To also assess individual differences in response to METH's neurotoxic effects, a large group of rats was treated with binge METH or saline and sacrificed 1h or 24h later. This study is the first to show that binge METH alters the levels and subcellular localization of CDCrel-1 and that CDCrel-1 interacts with VMAT2 and increases its levels at the plasma membrane. Furthermore, we found wide individual differences in the responses of measured indices to METH. Proteomic analysis of VMAT-2-associated proteins revealed upregulation of several proteins involved in the exocytosis/endocytosis cycle. The results suggest that at 1h after METH binge, DAergic neurons are engaged in counteracting METH-induced toxic effects, including oxidative stress- and hyperthermia-induced inhibition of synaptic vesicle cycling, with the responses varying between individual rats. Studying CDCrel-1, VMAT2, and other proteins in large groups of outbred rats can help define individual genetic and molecular differences in responses to METH neurotoxicity which, in turn, will aid treating humans suffering from METH use disorder and its neurological consequences.
Collapse
Affiliation(s)
- Heli Chauhan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI, USA 48201
| | - Nick Carruthers
- Institute of Environmental Health Sciences and Proteomics Core Facility, 540 East Canfield Ave., Detroit, MI 48202
| | - Paul Stemmer
- Institute of Environmental Health Sciences and Proteomics Core Facility, 540 East Canfield Ave., Detroit, MI 48202
| | - Bernard P. Schneider
- Brain Mind Institute École Polytechnique Fédérale de Lausanne School of Life Sciences, Ch. Des Mines, 9, CH-1202 Geneve, Switzerland
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI, USA 48201
| |
Collapse
|
4
|
Baginska U, Balagura G, Toonen RF, Verhage M. High-throughput assay for regulated secretion of neuropeptides in mouse and human neurons. J Biol Chem 2024; 300:107321. [PMID: 38677517 PMCID: PMC11170154 DOI: 10.1016/j.jbc.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024] Open
Abstract
Neuropeptides are the largest group of chemical signals in the brain. More than 100 different neuropeptides modulate various brain functions and their dysregulation has been associated with neurological disorders. Neuropeptides are packed into dense core vesicles (DCVs), which fuse with the plasma membrane in a calcium-dependent manner. Here, we describe a novel high-throughput assay for DCV exocytosis using a chimera of Nanoluc luciferase and the DCV-cargo neuropeptide Y (NPY). The NPY-Nanoluc reporter colocalized with endogenous DCV markers in all neurons with little mislocalization to other cellular compartments. NPY-Nanoluc reported DCV exocytosis in both rodent and induced pluripotent stem cell-derived human neurons, with similar depolarization, Ca2+, RAB3, and STXBP1/MUNC18 dependence as low-throughput assays. Moreover, NPY-Nanoluc accurately reported modulation of DCV exocytosis by known modulators diacylglycerol analog and Ca2+ channel blocker and showed a higher assay sensitivity than a widely used single-cell low-throughput assay. Lastly, we showed that Nanoluc coupled to other secretory markers reports on constitutive secretion. In conclusion, the NPY-Nanoluc is a sensitive reporter of DCV exocytosis in mammalian neurons, suitable for pharmacological and genomic screening for DCV exocytosis genes and for mechanism-based treatments for central nervous system disorders.
Collapse
Affiliation(s)
- Urszula Baginska
- Department of Functional Genomics, Faculty of Exact Science, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Ganna Balagura
- Department of Functional Genomics, Faculty of Exact Science, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, Genoa, Italy
| | - Ruud F Toonen
- Department of Functional Genomics, Faculty of Exact Science, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Faculty of Exact Science, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands; Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Li L, Rana AN, Li EM, Feng J, Li Y, Bruchas MR. Activity-dependent constraints on catecholamine signaling. Cell Rep 2023; 42:113566. [PMID: 38100349 PMCID: PMC11090260 DOI: 10.1016/j.celrep.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/24/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Catecholamine signaling is thought to modulate cognition in an inverted-U relationship, but the mechanisms are unclear. We measured norepinephrine and dopamine release, postsynaptic calcium responses, and interactions between tonic and phasic firing modes under various stimuli and conditions. High tonic activity in vivo depleted catecholamine stores, desensitized postsynaptic responses, and decreased phasic transmission. Together, these findings provide a more complete understanding of the inverted-U relationship, offering insights into psychiatric disorders and neurodegenerative diseases with impaired catecholamine signaling.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Akshay N Rana
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Esther M Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Psychology, University of Washington, Seattle, WA 98105, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Michael R Bruchas
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
Alwindi M, Bizanti A. Vesicular monoamine transporter (VMAT) regional expression and roles in pathological conditions. Heliyon 2023; 9:e22413. [PMID: 38034713 PMCID: PMC10687066 DOI: 10.1016/j.heliyon.2023.e22413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 09/28/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
Vesicular monoamine transporters (VMATs) are key regulators of neurotransmitter release responsible for controlling numerous physiological, cognitive, emotional, and behavioral functions. They represent important therapeutic targets for numerous pathological conditions. There are two isoforms of VMAT transporter proteins that function as secondary active transporters into the vesicle for storage and release via exocytosis: VMAT1 (SLC18A1) and VMAT2 (SLC18A2) which differ in their function, quantity, and regional expression. VMAT2 has gained considerable interest as a therapeutic target and diagnostic marker. Inhibitors of VMAT2 have been used as an effective therapy for a range of pathological conditions. Additionally, the functionality and phenotypic classification of classical and nonclassical catecholaminergic neurons are identified by the presence of VMAT2 in catecholaminergic neurons. Dysregulation of VMAT2 is also implicated in many neuropsychiatric diseases. Despite the complex role of VMAT2, many aspects of its function remain unclear. Therefore, our aim is to expand our knowledge of the role of VMAT with a special focus on VMAT2 in different systems and cellular pathways which may potentially facilitate development of novel, more specific therapeutic targets. The current review provides a summary demonstrating the mechanism of action of VMAT, its functional role, and its contribution to disease progression and utilization as therapeutic targets.
Collapse
Affiliation(s)
- Malik Alwindi
- St George's University Hospital, London SW17 0QT, United Kingdom
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
7
|
Li L, Rana A, Li EM, Feng J, Li Y, Bruchas MR. Activity-dependent constraints on catecholamine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534970. [PMID: 37034631 PMCID: PMC10081217 DOI: 10.1101/2023.03.30.534970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Catecholamine signaling is thought to modulate cognition in an inverted-U relationship, but the mechanisms are unclear. We measured norepinephrine and dopamine release, postsynaptic calcium responses, and interactions between tonic and phasic firing modes under various stimuli and conditions. High tonic activity in vivo depleted catecholamine stores, desensitized postsynaptic responses, and decreased phasic transmission. Together this provides a clearer understanding of the inverted-U relationship, offering insights into psychiatric disorders and neurodegenerative diseases with impaired catecholamine signaling.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle WA 98145, USA
| | - Akshay Rana
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Equal contribution
| | - Esther M. Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle WA 98105, USA
- Equal contribution
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Michael R. Bruchas
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Pharmacology, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
8
|
Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022; 79:492. [PMID: 35997826 PMCID: PMC11072502 DOI: 10.1007/s00018-022-04451-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect 'classical' transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.
Collapse
Affiliation(s)
- Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA.
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sunny Z Jiang
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
9
|
Du Y, Lee YB, Graves SM. Chronic methamphetamine-induced neurodegeneration: Differential vulnerability of ventral tegmental area and substantia nigra pars compacta dopamine neurons. Neuropharmacology 2021; 200:108817. [PMID: 34610287 PMCID: PMC8556701 DOI: 10.1016/j.neuropharm.2021.108817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
Methamphetamine (meth) increases monoamine oxidase (MAO)-dependent mitochondrial stress in substantia nigra pars compacta (SNc) axons; chronic administration produces SNc degeneration that is prevented by MAO inhibition suggesting that MAO-dependent axonal mitochondrial stress is a causal factor. To test whether meth similarly increases mitochondrial stress in ventral tegmental area (VTA) axons, we used a genetically encoded redox biosensor to assess mitochondrial stress ex vivo. Meth increased MAO-dependent mitochondrial stress in both SNc and VTA axons. However, despite having the same meth-induced stress as SNc neurons, VTA neurons were resistant to chronic meth-induced degeneration indicating that meth-induced MAO-dependent mitochondrial stress in axons was necessary but not sufficient for degeneration. To determine whether L-type Ca2+ channel-dependent stress differentiates SNc and VTA axons, as reported in the soma, the L-type Ca2+ channel activator Bay K8644 was used. Opening L-type Ca2+ channels increased axonal mitochondrial stress in SNc but not VTA axons. To first determine whether mitochondrial stress was necessary for SNc degeneration, mice were treated with the mitochondrial antioxidant mitoTEMPO. Chronic meth-induced SNc degeneration was prevented by mitoTEMPO thereby confirming the necessity of mitochondrial stress. Similar to results with the antioxidant, both MAO inhibition and L-type Ca2+ channel inhibition also prevented SNc degeneration. Taken together the presented data demonstrate that both MAO- and L-type Ca2+ channel-dependent mitochondrial stress is necessary for chronic meth-induced degeneration.
Collapse
Affiliation(s)
- Yijuan Du
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - You Bin Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Steven M Graves
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Xu Y, Tang J, Liu C, Zhao C, Cao S, Yu H, Chen Z, Xie M. MicroPET imaging of vesicular monoamine transporter 2 revealed the potentiation of (+)-dihydrotetrabenazine on MPTP-induced degeneration of dopaminergic neurons. Nucl Med Biol 2021; 96-97:9-18. [PMID: 33647803 DOI: 10.1016/j.nucmedbio.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/10/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Vesicular monoamine transporter 2 (VMAT2) has been associated with the risk of PD. Genetic reduction of VMAT2 level is reported to increase the vulnerability for dopaminergic neurodegeneration. In this study, by using in vivo microPET imaging with a VMAT2 radioligand [18F]fluoropropyl-(+)-dihydrotetrabenazine ([18F]FP-(+)-DTBZ), we investigated the enhanced role of inhibiting VMAT2 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons. METHODS The (+)-α-dihydrotetrabenazine ((+)-DTBZ, an inhibitor of VMAT2, 5 mg/kg), or MPTP (low dose (ld): 10 mg/kg, high dose (hd): 30 mg/kg) or both of them were intraperitoneally injected into C57BL/6 mice for 5 or 10 consecutive days. MicroPET imaging with [18F]FP-(+)-DTBZ was performed to test the dopaminergic neuronal integrity. [18F]FP-(+)-DTBZ uptake in striatum was quantified as standardized uptake value (SUV). The pathological changes in the striata and substantia nigra were confirmed by measuring the DA contents and immunohistochemical staining of tyrosine hydroxylase (TH). RESULTS In vivo imaging results showed that the striatal SUVs of both DTBZ&MPTPld and MPTPhd groups were substantially declined compared to the baseline. Moreover, the striatal uptakes of [18F]FP-(+)-DTBZ in DTBZ&MPTPld and MPTPhd groups were obviously lower than the control, DTBZ group and MPTPld group. Notably, the decrease of the striatal uptake in the DTBZ&MPTPld/10d group was more serious than the DTBZ&MPTPld/5d group and comparable to the MPTPhd group. Consistently, the ratios of DA metabolites to DA in DTBZ&MPTPld/10d and MPTPhd mice were significantly increased. The correlation analysis showed that SUVs were highly correlated to the striatal dopaminergic fiber density and TH-positive dopaminergic neuron number in the substantia nigra. CONCLUSIONS MicroPET brain imaging with [18F]FP-(+)-DTBZ noninvasively revealed that (+)-DTBZ co-administration significantly aggravated the neurotoxicity of MPTP to dopaminergic neurons, suggesting that inhibition of VMAT2 may be related to the pathogenesis of PD and tracing VMAT2 activity with PET imaging is of potential value in monitoring PD progression.
Collapse
Affiliation(s)
- Yingjiao Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Chao Zhao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Shanshan Cao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Zhengping Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China.
| | - Minhao Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
11
|
Abstract
Mammalian central synapses of diverse functions contribute to highly complex brain organization, but the molecular basis of synaptic diversity remains open. This is because current synapse proteomics are restricted to the “average” composition of abundant synaptic proteins. Here, we demonstrate a subcellular proteomic workflow that can identify and quantify the deep proteome of synaptic vesicles, including previously missing proteins present in a small percentage of central synapses. This synaptic vesicle proteome revealed many proteins of physiological and pathological relevance, particularly in the low-abundance range, thus providing a resource for future investigations on diversified synaptic functions and neuronal dysfunctions. Current proteomic studies clarified canonical synaptic proteins that are common to many types of synapses. However, proteins of diversified functions in a subset of synapses are largely hidden because of their low abundance or structural similarities to abundant proteins. To overcome this limitation, we have developed an “ultra-definition” (UD) subcellular proteomic workflow. Using purified synaptic vesicle (SV) fraction from rat brain, we identified 1,466 proteins, three times more than reported previously. This refined proteome includes all canonical SV proteins, as well as numerous proteins of low abundance, many of which were hitherto undetected. Comparison of UD quantifications between SV and synaptosomal fractions has enabled us to distinguish SV-resident proteins from potential SV-visitor proteins. We found 134 SV residents, of which 86 are present in an average copy number per SV of less than one, including vesicular transporters of nonubiquitous neurotransmitters in the brain. We provide a fully annotated resource of all categorized SV-resident and potential SV-visitor proteins, which can be utilized to drive novel functional studies, as we characterized here Aak1 as a regulator of synaptic transmission. Moreover, proteins in the SV fraction are associated with more than 200 distinct brain diseases. Remarkably, a majority of these proteins was found in the low-abundance proteome range, highlighting its pathological significance. Our deep SV proteome will provide a fundamental resource for a variety of future investigations on the function of synapses in health and disease.
Collapse
|
12
|
Blockade of the dopaminergic neurotransmission with AMPT and reserpine induces a differential expression of genes of the dopaminergic phenotype in substantia nigra. Neuropharmacology 2019; 166:107920. [PMID: 31870855 DOI: 10.1016/j.neuropharm.2019.107920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 11/28/2019] [Accepted: 12/20/2019] [Indexed: 11/23/2022]
Abstract
Dopaminergic neurons have the ability to release Dopamine from their axons as well as from their soma and dendrites. This somatodendritically-released Dopamine induces an autoinhibition of Dopaminergic neurons mediated by D2 autoreceptors, and the stimulation of neighbor GABAergic neurons mediated by D1 receptors (D1r). Here, our results suggest that the somatodendritic release of Dopamine in the substantia nigra (SN) may stimulate GABAergic neurons that project their axons into the hippocampus. Using semiquantitative multiplex RT-PCR we show that chronic blockade of the Dopaminergic neurotransmission with both AMPT and reserpine specifically decreases the expression levels of D1r, remarkably this may be the result of an antagonistic effect between AMPT and reserpine, as they induced the expression of a different set of genes when treated by separate. Furthermore, using anterograde and retrograde tracing techniques, we found that the GABAergic neurons that express D1r also project their axons in to the CA1 region of the hippocampus. Finally, we also found that the same treatment that decreases the expression levels of D1r in SN, also induces an impairment in the performance in an appetitive learning task that requires the coding of reward as well as navigational skills. Overall, our findings show the presence of a GABAergic interconnection between the SNr and the hippocampus mediated by D1r.
Collapse
|
13
|
Gabrych DR, Lau VZ, Niwa S, Silverman MA. Going Too Far Is the Same as Falling Short †: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Front Cell Neurosci 2019; 13:419. [PMID: 31616253 PMCID: PMC6775250 DOI: 10.3389/fncel.2019.00419] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
Proper intracellular trafficking is essential for neuronal development and function, and when any aspect of this process is dysregulated, the resulting "transportopathy" causes neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such as those relating to microtubule structure and function and organelle biogenesis are representative disease loci. Microtubule motor proteins, or kinesins, are also causal in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons, and involved in the anterograde transport of a variety of vesicles that contribute to pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is ubiquitously expressed and, in addition to anterograde cargo transport, also functions in retrograde transport between the Golgi and the endoplasmic reticulum. Only a handful of KIF1C cargos have been identified; however, many have crucial roles such as neuronal differentiation, outgrowth, plasticity and survival. HSP-related kinesin-3 mutants are characterized mainly as loss-of-function resulting in deficits in motility, regulation, and cargo binding. Gain-of-function mutants are also seen, and are characterized by increased microtubule-on rates and hypermotility. Both sets of mutations ultimately result in misdelivery of critical cargos within the neuron. This likely leads to deleterious cell biological cascades that likely underlie or contribute to HSP clinical pathology and ultimately, symptomology. Due to the paucity of histopathological or cell biological data assessing perturbations in cargo localization, it has been difficult to positively link these mutations to the outcomes seen in HSPs. Ultimately, the goal of this review is to encourage future academic and clinical efforts to focus on "transportopathies" through a cargo-centric lens.
Collapse
Affiliation(s)
- Dominik R Gabrych
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Victor Z Lau
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
14
|
Mulvihill KG. Presynaptic regulation of dopamine release: Role of the DAT and VMAT2 transporters. Neurochem Int 2018; 122:94-105. [PMID: 30465801 DOI: 10.1016/j.neuint.2018.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/28/2018] [Accepted: 11/08/2018] [Indexed: 01/23/2023]
Abstract
The signaling dynamics of the neurotransmitter dopamine has been established to have an important role in a variety of behavioural processes including motor control, cognition, and emotional processing. Key regulators of transmitter release and the signaling dynamics of dopamine are the plasma membrane reuptake transporter (DAT) and the vesicular monoamine transporter (VMAT2). These proteins serve to remove dopamine molecules from the extracellular and cytosolic space, respectively and both determine the amount of transmitter released from synaptic vesicles. This review provides an overview of how these transporter proteins are involved in molecular regulation and function together to govern the dynamics of vesicular release with opposing effects on the quantal size and extracellular concentration of dopamine. These transporter proteins are both focal points of convergence for a variety of regulatory molecular cascades as well as targets for many pharmacological agents. The ratio between these transporters is argued to be useful as a molecular marker for delineating dopamine functional subsystems that may differ in transmitter release patterns.
Collapse
Affiliation(s)
- Kevin G Mulvihill
- Department of Psychology, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
15
|
Harriott ND, Williams JP, Smith EB, Bozigian HP, Grigoriadis DE. VMAT2 Inhibitors and the Path to Ingrezza (Valbenazine). PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:87-111. [DOI: 10.1016/bs.pmch.2017.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
16
|
Dijkstra AA, Lin LC, Nana AL, Gaus SE, Seeley WW. Von Economo Neurons and Fork Cells: A Neurochemical Signature Linked to Monoaminergic Function. Cereb Cortex 2018; 28:131-144. [PMID: 27913432 PMCID: PMC6075576 DOI: 10.1093/cercor/bhw358] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 09/29/2016] [Indexed: 12/13/2022] Open
Abstract
The human anterior cingulate and frontoinsular cortices are distinguished by 2 unique Layer 5 neuronal morphotypes, the von Economo neurons (VENs) and fork cells, whose biological identity remains mysterious. Insights could impact research on diverse neuropsychiatric diseases to which these cells have been linked. Here, we leveraged the Allen Brain Atlas to evaluate mRNA expression of 176 neurotransmitter-related genes and identified vesicular monoamine transporter 2 (VMAT2), gamma-aminobutyric acid (GABA) receptor subunit θ (GABRQ), and adrenoreceptor α-1A (ADRA1A) expression in human VENs, fork cells, and a minority of neighboring Layer 5 neurons. We confirmed these results using immunohistochemistry or in situ hybridization. VMAT2 and GABRQ expression was absent in mouse cerebral cortex. Although VMAT2 is known to package monoamines into synaptic vesicles, in VENs and fork cells its expression occurs in the absence of monoamine-synthesizing enzymes or reuptake transporters. Thus, VENs and fork cells may possess a novel, uncharacterized mode of cortical monoaminergic function that distinguishes them from most other mammalian Layer 5 neurons.
Collapse
Affiliation(s)
- Anke A Dijkstra
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Li-Chun Lin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Alissa L Nana
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Stephanie E Gaus
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
17
|
Haase J, Grudzinska-Goebel J, Müller HK, Münster-Wandowski A, Chow E, Wynne K, Farsi Z, Zander JF, Ahnert-Hilger G. Serotonin Transporter Associated Protein Complexes Are Enriched in Synaptic Vesicle Proteins and Proteins Involved in Energy Metabolism and Ion Homeostasis. ACS Chem Neurosci 2017; 8:1101-1116. [PMID: 28362488 DOI: 10.1021/acschemneuro.6b00437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The serotonin transporter (SERT) mediates Na+-dependent high-affinity serotonin uptake and plays a key role in regulating extracellular serotonin concentration in the brain and periphery. To gain novel insight into SERT regulation, we conducted a comprehensive proteomics screen to identify components of SERT-associated protein complexes in the brain by employing three independent approaches. In vivo SERT complexes were purified from rat brain using an immobilized high-affinity SERT ligand, amino-methyl citalopram. This approach was combined with GST pulldown and yeast two-hybrid screens using N- and C-terminal cytoplasmic transporter domains as bait. Potential SERT associated proteins detected by at least two of the interaction methods were subjected to gene ontology analysis resulting in the identification of functional protein clusters that are enriched in SERT complexes. Prominent clusters include synaptic vesicle proteins, as well as proteins involved in energy metabolism and ion homeostasis. Using subcellular fractionation and electron microscopy we provide further evidence that SERT is indeed associated with synaptic vesicle fractions, and colocalizes with small vesicular structures in axons and axon terminals. We also show that SERT is found in close proximity to mitochondrial membranes in both, hippocampal and neocortical regions. We propose a model of the SERT interactome, in which SERT is distributed between different subcellular compartments through dynamic interactions with site-specific protein complexes. Finally, our protein interaction data suggest novel hypotheses for the regulation of SERT activity and trafficking, which ultimately impact on serotonergic neurotransmission and serotonin dependent brain functions.
Collapse
Affiliation(s)
- Jana Haase
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Joanna Grudzinska-Goebel
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Heidi Kaastrup Müller
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
- Department
of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Risskov DK-8240, Denmark
| | | | - Elysian Chow
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Kieran Wynne
- Proteomic Core Facility, UCD Conway Institute, School
of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Zohreh Farsi
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité University Medicine Berlin, 10117 Berlin, Germany
| |
Collapse
|
18
|
Wu Q, Xu H, Wang W, Chang F, Jiang Y, Liu Y. Retrograde trafficking of VMAT2 and its role in protein stability in non-neuronal cells. J Biomed Res 2016; 30:502-509. [PMID: 27924069 PMCID: PMC5138583 DOI: 10.7555/jbr.30.20160061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/08/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence suggests that the impaired neuroprotection of vesicular monoamine transporter 2 (VMAT2) contributes to the pathogenesis of Parkinson's disease. That has been linked to aberrant subcellular retrograde trafficking as strongly indicated by recent genomic studies on familial Parkinson's diseases. However, whether VMAT2 function is regulated by retrograde trafficking is unknown. By using biochemistry and cell biology approaches, we have shown that VMAT2 was stringently localized to the trans-Golgi network and underwent retrograde trafficking in non-neuronal cells. The transporter also interacted with the key component of retromer, Vps35, biochemically and subcellularly. Using specific siRNA, we further showed that Vps35 depletion altered subcellular localization of VMAT2. Moreover, siRNA-mediated Vps35 knockdown also decreased the stability of VMAT2 as demonstrated by the reduced half-life. Thus, our work suggested that altered vesicular trafficking of VMAT2 may play a vital role in neuroprotection of the transporter as well as in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Qiuzi Wu
- Department of Physiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongfei Xu
- Department of Physiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Wang
- Department of Physiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fei Chang
- Department of Physiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Jiang
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Yongjian Liu
- Department of Physiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA;
| |
Collapse
|
19
|
German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets and Implications for Disease. Pharmacol Rev 2016; 67:1005-24. [PMID: 26408528 DOI: 10.1124/pr.114.010397] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dopamine (DA) plays a well recognized role in a variety of physiologic functions such as movement, cognition, mood, and reward. Consequently, many human disorders are due, in part, to dysfunctional dopaminergic systems, including Parkinson's disease, attention deficit hyperactivity disorder, and substance abuse. Drugs that modify the DA system are clinically effective in treating symptoms of these diseases or are involved in their manifestation, implicating DA in their etiology. DA signaling and distribution are primarily modulated by the DA transporter (DAT) and by vesicular monoamine transporter (VMAT)-2, which transport DA into presynaptic terminals and synaptic vesicles, respectively. These transporters are regulated by complex processes such as phosphorylation, protein-protein interactions, and changes in intracellular localization. This review provides an overview of 1) the current understanding of DAT and VMAT2 neurobiology, including discussion of studies ranging from those conducted in vitro to those involving human subjects; 2) the role of these transporters in disease and how these transporters are affected by disease; and 3) and how selected drugs alter the function and expression of these transporters. Understanding the regulatory processes and the pathologic consequences of DAT and VMAT2 dysfunction underlies the evolution of therapeutic development for the treatment of DA-related disorders.
Collapse
Affiliation(s)
- Christopher L German
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Michelle G Baladi
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Lisa M McFadden
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Glen R Hanson
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Annette E Fleckenstein
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| |
Collapse
|
20
|
Kourtesis I, Kasparov S, Verkade P, Teschemacher AG. Ultrastructural Correlates of Enhanced Norepinephrine and Neuropeptide Y Cotransmission in the Spontaneously Hypertensive Rat Brain. ASN Neuro 2015; 7:7/5/1759091415610115. [PMID: 26514659 PMCID: PMC4641560 DOI: 10.1177/1759091415610115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spontaneously hypertensive rat (SHR) replicates many clinically relevant features of human essential hypertension and also exhibits behavioral symptoms of attention-deficit/hyperactivity disorder and dementia. The SHR phenotype is highly complex and cannot be explained by a single genetic or physiological mechanism. Nevertheless, numerous studies including our own work have revealed striking differences in central catecholaminergic transmission in SHR such as increased vesicular catecholamine content in the ventral brainstem. Here, we used immunolabeling followed by confocal microscopy and electron microscopy to quantify vesicle sizes and populations across three catecholaminergic brain areas—nucleus tractus solitarius and rostral ventrolateral medulla, both key regions for cardiovascular control, and the locus coeruleus. We also studied colocalization of neuropeptide Y (NPY) in norepinephrine and epinephrine-containing neurons as NPY is a common cotransmitter with central and peripheral catecholamines. We found significantly increased expression and coexpression of NPY in norepinephrine and epinephrine-positive neurons of locus coeruleus in SHR compared with Wistar rats. Ultrastructural analysis revealed immunolabeled vesicles of 150 to 650 nm in diameter (means ranging from 250 to 300 nm), which is much larger than previously reported. In locus coeruleus and rostral ventrolateral medulla, but not in nucleus tractus solitarius, of SHR, noradrenergic and adrenergic vesicles were significantly larger and showed increased NPY colocalization when compared with Wistar rats. Our morphological evidence underpins the hypothesis of hyperactivity of the noradrenergic and adrenergic system and increased norepinephrine and epinephrine and NPY cotransmission in specific brain areas in SHR. It further strengthens the argument for a prohypertensive role of C1 neurons in the rostral ventrolateral medulla as a potential causative factor for essential hypertension.
Collapse
Affiliation(s)
- Ioannis Kourtesis
- School of Physiology & Pharmacology, University of Bristol, UK Bristol Heart Institute, University of Bristol, UK Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Sergey Kasparov
- School of Physiology & Pharmacology, University of Bristol, UK Bristol Heart Institute, University of Bristol, UK
| | - Paul Verkade
- School of Physiology & Pharmacology, University of Bristol, UK Bristol Heart Institute, University of Bristol, UK School of Biochemistry, University of Bristol, UK Wolfson Bioimaging Facility, University of Bristol, UK
| | - Anja G Teschemacher
- School of Physiology & Pharmacology, University of Bristol, UK Bristol Heart Institute, University of Bristol, UK
| |
Collapse
|
21
|
Larhammar M, Patra K, Blunder M, Emilsson L, Peuckert C, Arvidsson E, Rönnlund D, Preobraschenski J, Birgner C, Limbach C, Widengren J, Blom H, Jahn R, Wallén-Mackenzie Å, Kullander K. SLC10A4 is a vesicular amine-associated transporter modulating dopamine homeostasis. Biol Psychiatry 2015; 77:526-36. [PMID: 25176177 DOI: 10.1016/j.biopsych.2014.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND The neuromodulatory transmitters, biogenic amines, have profound effects on multiple neurons and are essential for normal behavior and mental health. Here we report that the orphan transporter SLC10A4, which in the brain is exclusively expressed in presynaptic vesicles of monoaminergic and cholinergic neurons, has a regulatory role in dopamine homeostasis. METHODS We used a combination of molecular and behavioral analyses, pharmacology, and in vivo amperometry to assess the role of SLC10A4 in dopamine-regulated behaviors. RESULTS We show that SLC10A4 is localized on the same synaptic vesicles as either vesicular acetylcholine transporter or vesicular monoamine transporter 2. We did not find evidence for direct transport of dopamine by SLC10A4; however, synaptic vesicle preparations lacking SLC10A4 showed decreased dopamine vesicular uptake efficiency. Furthermore, we observed an increased acidification in synaptic vesicles isolated from mice overexpressing SLC10A4. Loss of SLC10A4 in mice resulted in reduced striatal serotonin, noradrenaline, and dopamine concentrations and a significantly higher dopamine turnover ratio. Absence of SLC10A4 led to slower dopamine clearance rates in vivo, which resulted in accumulation of extracellular dopamine. Finally, whereas SLC10A4 null mutant mice were slightly hypoactive, they displayed hypersensitivity to administration of amphetamine and tranylcypromine. CONCLUSIONS Our results demonstrate that SLC10A4 is a vesicular monoaminergic and cholinergic associated transporter that is important for dopamine homeostasis and neuromodulation in vivo. The discovery of SLC10A4 and its role in dopaminergic signaling reveals a novel mechanism for neuromodulation and represents an unexplored target for the treatment of neurological and mental disorders.
Collapse
Affiliation(s)
| | | | - Martina Blunder
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lina Emilsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Emma Arvidsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniel Rönnlund
- Department of Biomolecular Physics, Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Julia Preobraschenski
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | - Jerker Widengren
- Department of Biomolecular Physics, Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Hans Blom
- Department of Biomolecular Physics, Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Klas Kullander
- Department of Neuroscience, Uppsala University, Uppsala, Sweden..
| |
Collapse
|
22
|
Engster KM, Frommelt L, Hofmann T, Nolte S, Fischer F, Rose M, Stengel A, Kobelt P. Peripheral injected cholecystokinin-8S modulates the concentration of serotonin in nerve fibers of the rat brainstem. Peptides 2014; 59:25-33. [PMID: 25017242 DOI: 10.1016/j.peptides.2014.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 02/05/2023]
Abstract
Serotonin and cholecystokinin (CCK) play a role in the short-term inhibition of food intake. It is known that peripheral injection of CCK increases c-Fos-immunoreactivity (Fos-IR) in the nucleus of the solitary tract (NTS) in rats, and injection of the serotonin antagonist ondansetron decreases the number of c-Fos-IR cells in the NTS. This supports the idea of serotonin contributing to the effects of CCK. The aim of the present study was to elucidate whether peripherally injected CCK-8S modulates the concentration of serotonin in brain feeding-regulatory nuclei. Ad libitum fed male Sprague-Dawley rats received 5.2 and 8.7 nmol/kg CCK-8S (n=3/group) or 0.15M NaCl (n=3-5/group) injected intraperitoneally (ip). The number of c-Fos-IR neurons, and the fluorescence intensity of serotonin in nerve fibers were assessed in the paraventricular nucleus (PVN), arcuate nucleus (ARC), NTS and dorsal motor nucleus of the vagus (DMV). CCK-8S increased the number of c-Fos-ir neurons in the NTS (mean±SEM: 72±4, and 112±5 neurons/section, respectively) compared to vehicle-treated rats (7±2 neurons/section, P<0.05), but did not modulate c-Fos expression in the DMV or ARC. Additionally, CCK-8S dose-dependently increased the number of c-Fos-positive neurons in the PVN (218±15 and 128±14, respectively vs. 19±5, P<0.05). In the NTS and DMV we observed a decrease of serotonin-immunoreactivity 90 min after injection of CCK-8S (46±2 and 49±8 pixel/section, respectively) compared to vehicle (81±8 pixel/section, P<0.05). No changes of serotonin-immunoreactivity were observed in the PVN and ARC. Our results suggest that serotonin is involved in the mediation of CCK-8's effects in the brainstem.
Collapse
Affiliation(s)
- Kim-Marie Engster
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Lisa Frommelt
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Tobias Hofmann
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Sandra Nolte
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Felix Fischer
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Matthias Rose
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Andreas Stengel
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Peter Kobelt
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
23
|
Non-serine-phosphorylated tyrosine hydroxylase expressing neurons are present in mouse striatum, accumbens and cortex that increase in number following dopaminergic denervation. J Chem Neuroanat 2014; 56:35-44. [DOI: 10.1016/j.jchemneu.2014.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 01/23/2014] [Accepted: 02/06/2014] [Indexed: 01/08/2023]
|
24
|
Hong F, Liu L, Fan RF, Chen Y, Chen H, Zheng RP, Zhang Y, Gao Y, Zhu JX. New perspectives of vesicular monoamine transporter 2 chemical characteristics in mammals and its constant expression in type 1 diabetes rat models. Transl Res 2014; 163:171-82. [PMID: 24161354 DOI: 10.1016/j.trsl.2013.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/23/2013] [Accepted: 10/01/2013] [Indexed: 11/18/2022]
Abstract
Vesicular monoamine transporter 2 (VMAT2) has been exploited as a biomarker of β-cell mass in human islets. However, a current report suggested no immunoreactivity of VMAT2 in the β cells of rat islets. To investigate the cellular localization of VMAT2 in islets further, the pancreatic tissues from monkeys and humans were compared with those of rats and mice. The study was performed using among-species comparisons and a type 1 diabetes model (T1DM) for rats by Western blotting, double-label immunofluorescence, and confocal laser scanning microscopy. We found that VMAT2-immunoreactivity (IR) was distributed peripherally in the islets of rodents, but was widely scattered throughout the islets of primates. Consistent with rodent islets, VMAT2-IR did not exist in insulin (INS)-IR cells but was abundantly present in glucagon (GLU)-IR and pancreatic polypeptide (PP)-IR cells in monkey and human islets. VMAT2-IR had no colocalization with INS-IR in any part of the rat pancreas (head, body, and tail). INS-IR cells were reduced dramatically in T1DM rat islets, but no significant alteration in the proportion of VMAT2-IR cells and GLU-IR cells was observed. Furthermore, a strong colocalization of VMAT2-IR with GLU-IR was distributed in the peripheral regions of diabetic islets. For the first time, the current study demonstrates the presence of VMAT2 in α cells and PP cells but not in β cells in the islets of monkeys and humans. This study provides convinced morphologic evidence that VMAT2 is not present in β cells. There needs to be studies for new markers for β cell mass.
Collapse
Affiliation(s)
- Feng Hong
- Department of Physiology and Pathophysiology, School of Basic Medicinal Sciences, Capital Medical University, Beijing 100069, China
| | - Li Liu
- Department of Human Anatomy, School of Basic Medicinal Sciences, Capital Medical University, Beijing 100069, China
| | - Rui-Fang Fan
- Department of Physiology and Pathophysiology, School of Basic Medicinal Sciences, Capital Medical University, Beijing 100069, China
| | - Ye Chen
- Department of Physiology and Pathophysiology, School of Basic Medicinal Sciences, Capital Medical University, Beijing 100069, China
| | - Hui Chen
- Department of Physiology and Pathophysiology, School of Basic Medicinal Sciences, Capital Medical University, Beijing 100069, China
| | - Rui-Pan Zheng
- Department of Human Anatomy, School of Basic Medicinal Sciences, Capital Medical University, Beijing 100069, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicinal Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Gao
- Department of Human Anatomy, School of Basic Medicinal Sciences, Capital Medical University, Beijing 100069, China
| | - Jin-Xia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medicinal Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
25
|
Nevalainen N, Af Bjerkén S, Gerhardt GA, Strömberg I. Serotonergic nerve fibers in L-DOPA-derived dopamine release and dyskinesia. Neuroscience 2013; 260:73-86. [PMID: 24361918 DOI: 10.1016/j.neuroscience.2013.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/04/2013] [Accepted: 12/11/2013] [Indexed: 02/02/2023]
Abstract
The 5-HT (5-hydroxytryptamine) system has been assigned a key role in the development of 3,4-dihydroxyphenyl-l-alanine (l-DOPA)-induced dyskinesia, mainly due to 5-HT neuronal ability to decarboxylate l-DOPA into dopamine. Nevertheless, knowledge of l-DOPA-induced events that could lead to development of dyskinesias are limited and therefore the present work has evaluated (i) the role of the 5-HT system in l-DOPA-derived dopamine synthesis when dopamine neurons are present, (ii) l-DOPA-induced effects on striatal dopamine release and clearance, and on 5-HT nerve fiber density, and (iii) the behavioral outcome of altered 5-HT transmission in dyskinetic rats. Chronoamperometric recordings demonstrated attenuated striatal l-DOPA-derived dopamine release (∼30%) upon removal of 5-HT nerve fibers in intact animals. Interestingly, four weeks of daily l-DOPA treatment yielded similar-sized dopamine peak amplitudes in intact animals as found after a 5-HT-lesion. Moreover, chronic l-DOPA exposure attenuated striatal 5-HT nerve fiber density in the absence of dopamine nerve terminals. Furthermore, fluoxetine-induced altered 5-HT transmission blocked dyskinetic behavior via action on 5-HT1A receptors. Taken together, the results indicate a central role for the 5-HT system in l-DOPA-derived dopamine synthesis and in dyskinesia, and therefore potential l-DOPA-induced deterioration of 5-HT function might reduce l-DOPA efficacy as well as promote the upcoming of motor side effects.
Collapse
Affiliation(s)
- N Nevalainen
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - S Af Bjerkén
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - G A Gerhardt
- Department of Anatomy, Neurobiology, and Neurology, University of Kentucky Medical Center, Lexington, KY, USA
| | - I Strömberg
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
26
|
Böttner M, Harde J, Barrenschee M, Hellwig I, Vogel I, Ebsen M, Wedel T. GDNF induces synaptic vesicle markers in enteric neurons. Neurosci Res 2013; 77:128-36. [DOI: 10.1016/j.neures.2013.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/18/2013] [Accepted: 08/29/2013] [Indexed: 11/25/2022]
|
27
|
Wang CC, Billett E, Borchert A, Kuhn H, Ufer C. Monoamine oxidases in development. Cell Mol Life Sci 2013; 70:599-630. [PMID: 22782111 PMCID: PMC11113580 DOI: 10.1007/s00018-012-1065-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/13/2012] [Accepted: 06/19/2012] [Indexed: 12/29/2022]
Abstract
Monoamine oxidases (MAOs) are flavoproteins of the outer mitochondrial membrane that catalyze the oxidative deamination of biogenic and xenobiotic amines. In mammals there are two isoforms (MAO-A and MAO-B) that can be distinguished on the basis of their substrate specificity and their sensitivity towards specific inhibitors. Both isoforms are expressed in most tissues, but their expression in the central nervous system and their ability to metabolize monoaminergic neurotransmitters have focused MAO research on the functionality of the mature brain. MAO activities have been related to neurodegenerative diseases as well as to neurological and psychiatric disorders. More recently evidence has been accumulating indicating that MAO isoforms are expressed not only in adult mammals, but also before birth, and that defective MAO expression induces developmental abnormalities in particular of the brain. This review is aimed at summarizing and critically evaluating the new findings on the developmental functions of MAO isoforms during embryogenesis.
Collapse
Affiliation(s)
- Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, Shatin, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ellen Billett
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS UK
| | - Astrid Borchert
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| | - Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| |
Collapse
|
28
|
Andresen MC, Fawley JA, Hofmann ME. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus. Front Neurosci 2013; 6:191. [PMID: 23335875 PMCID: PMC3541483 DOI: 10.3389/fnins.2012.00191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/17/2012] [Indexed: 12/21/2022] Open
Abstract
The brainstem nucleus of the solitary tract (NTS) holds the first central neurons in major homeostatic reflex pathways. These homeostatic reflexes regulate and coordinate multiple organ systems from gastrointestinal to cardiopulmonary functions. The core of many of these pathways arise from cranial visceral afferent neurons that enter the brain as the solitary tract (ST) with more than two-thirds arising from the gastrointestinal system. About one quarter of ST afferents have myelinated axons but the majority are classed as unmyelinated C-fibers. All ST afferents release the fast neurotransmitter glutamate with remarkably similar, high-probability release characteristics. Second order NTS neurons receive surprisingly limited primary afferent information with one or two individual inputs converging on single second order NTS neurons. A- and C-fiber afferents never mix at NTS second order neurons. Many transmitters modify the basic glutamatergic excitatory postsynaptic current often by reducing glutamate release or interrupting terminal depolarization. Thus, a distinguishing feature of ST transmission is presynaptic expression of G-protein coupled receptors for peptides common to peripheral or forebrain (e.g., hypothalamus) neuron sources. Presynaptic receptors for angiotensin (AT1), vasopressin (V1a), oxytocin, opioid (MOR), ghrelin (GHSR1), and cholecystokinin differentially control glutamate release on particular subsets of neurons with most other ST afferents unaffected. Lastly, lipid-like signals are transduced by two key ST presynaptic receptors, the transient receptor potential vanilloid type 1 and the cannabinoid receptor that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central terminals to control excitation and are major sites of signal integration of peripheral and central inputs particularly from the hypothalamus.
Collapse
Affiliation(s)
- Michael C Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University Portland, OR, USA
| | | | | |
Collapse
|
29
|
Neurotransmitter segregation: functional and plastic implications. Prog Neurobiol 2012; 97:277-87. [PMID: 22531669 DOI: 10.1016/j.pneurobio.2012.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 03/21/2012] [Accepted: 04/10/2012] [Indexed: 12/25/2022]
Abstract
Synaptic cotransmission is the ability of neurons to use more than one transmitter to convey synaptic signals. Cotransmission was originally described as the presence of a classic transmitter, which conveys main signal, along one or more cotransmitters that modulate transmission, later on, it was found cotransmission of classic transmitters. It has been generally accepted that neurons store and release the same set of transmitters in all their synaptic processes. However, some findings that show axon endings of individual neurons storing and releasing different sets of transmitters, are not in accordance with this assumption, and give support to the hypothesis that neurons can segregate transmitters to different synapses. Here, we review the studies showing segregation of transmitters in invertebrate and mammalian central nervous system neurons, and correlate them with our results obtained in sympathetic neurons. Our data show that these neurons segregate even classic transmitters to separated axons. Based on our data we suggest that segregation is a plastic phenomenon and responds to functional synaptic requirements, and to 'environmental' cues such as neurotrophins. We propose that neurons have the machinery to guide the different molecules required in synaptic transmission through axons and sort them to different axon endings. We believe that transmitter segregation improves neuron interactions during cotransmission and gives them selective and better control of synaptic plasticity.
Collapse
|
30
|
Abstract
Platelets store signaling molecules (eg, serotonin and ADP) within their granules. Transporters mediate accumulation of these molecules in platelet granules and, on platelet activation, their translocation across the plasma membrane. The balance between transporter-mediated uptake and elimination of signaling molecules and drugs in platelets determines their intracellular concentrations and effects. Several members of the 2 major transporter families, ATP-binding cassette (ABC) transporters and solute carriers (SLCs), have been identified in platelets. An example of an ABC transporter is MRP4 (ABCC4), which facilitates ADP accumulation in dense granules. MRP4 is a versatile transporter, and various additional functions have been proposed, notably lipid mediator release and a role in aspirin resistance. Several other ABC proteins have been detected in platelets with functions in glutathione and lipid homeostasis. The serotonin transporter (SERT, SLC6A4) in the platelet plasma membrane represents a well-characterized example of the SLC family. Moreover, recent experiments indicate expression of OATP2B1 (SLCO2B1), a high affinity transporter for certain statins, in platelets. Changes in transporter localization and expression can affect platelet function and drug sensitivity. This review summarizes available data on the physiologic and pharmacologic role of transporters in platelets.
Collapse
|
31
|
Brooks ES, Greer CL, Romero-Calderón R, Serway CN, Grygoruk A, Haimovitz JM, Nguyen BT, Najibi R, Tabone CJ, de Belle JS, Krantz DE. A putative vesicular transporter expressed in Drosophila mushroom bodies that mediates sexual behavior may define a neurotransmitter system. Neuron 2011; 72:316-29. [PMID: 22017990 DOI: 10.1016/j.neuron.2011.08.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 11/15/2022]
Abstract
Vesicular transporters are required for the storage of all classical and amino acid neurotransmitters in synaptic vesicles. Some neurons lack known vesicular transporters, suggesting additional neurotransmitter systems remain unidentified. Insect mushroom bodies (MBs) are critical for several behaviors, including learning, but the neurotransmitters released by the intrinsic Kenyon cells (KCs) remain unknown. Likewise, KCs do not express a known vesicular transporter. We report the identification of a novel Drosophila gene portabella (prt) that is structurally similar to known vesicular transporters. Both larval and adult brains express PRT in the KCs of the MBs. Additional PRT cells project to the central complex and optic ganglia. prt mutation causes an olfactory learning deficit and an unusual defect in the male's position during copulation that is rescued by expression in KCs. Because prt is expressed in neurons that lack other known vesicular transporters or neurotransmitters, it may define a previously unknown neurotransmitter system responsible for sexual behavior and a component of olfactory learning.
Collapse
Affiliation(s)
- Elizabeth S Brooks
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology and Jane & Terry Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, 695 Charles Young Drive, Los Angeles, CA 90095-1761, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Regulation of extrasynaptic 5-HT by serotonin reuptake transporter function in 5-HT-absorbing neurons underscores adaptation behavior in Caenorhabditis elegans. J Neurosci 2011; 31:8948-57. [PMID: 21677178 DOI: 10.1523/jneurosci.1692-11.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serotonin [5-hydroxytryptamine (5-HT)]-absorbing neurons use serotonin reuptake transporter (SERT) to uptake 5-HT from extracellular space but do not synthesize it. While 5-HT-absorbing neurons have been identified in diverse organisms from Caenorhabditis elegans to humans, their function has not been elucidated. Here, we show that SERT in 5-HT-absorbing neurons controls behavioral response to food deprivation in C. elegans. The AIM and RIH interneurons uptake 5-HT released from chemosensory neurons and secretory neurons. Genetic analyses suggest that 5-HT secreted by both synaptic vesicles and dense core vesicles diffuse readily to the extrasynaptic space adjacent to the AIM and RIH neurons. Loss of mod-5/SERT function blocks the 5-HT absorption. mod-5/SERT mutants have been shown to exhibit exaggerated locomotor response to food deprivation. We found that transgenic expression of MOD-5/SERT in the 5-HT-absorbing neurons fully corrected the exaggerated behavior. Experiments of cell-specific inhibition of synaptic transmission suggest that the synaptic release of 5-HT from the 5-HT-absorbing neurons is not required for this behavioral modulation. Our data point to the role of 5-HT-absorbing neurons as temporal-spatial regulators of extrasynaptic 5-HT. Regulation of extrasynaptic 5-HT levels by 5-HT-absorbing neurons may represent a fundamental mechanism of 5-HT homeostasis, integrating the activity of 5-HT-producing neurons with distant targets in the neural circuits, and could be relevant to some actions of selective serotonin reuptake inhibitors in humans.
Collapse
|
33
|
Park JJ, Gondré-Lewis MC, Eiden LE, Loh YP. A distinct trans-Golgi network subcompartment for sorting of synaptic and granule proteins in neurons and neuroendocrine cells. J Cell Sci 2011; 124:735-44. [PMID: 21321327 DOI: 10.1242/jcs.076372] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Golgi-to-plasma-membrane trafficking of synaptic-like microvesicle (SLMV) proteins, vesicular acetylcholine transporter (VAChT) and synaptophysin (SYN), and a large dense-core vesicle (LDCV) protein, chromogranin A (CgA), was investigated in undifferentiated neuroendocrine PC12 cells. Live cell imaging and 20°C block-release experiments showed that VAChT-GFP, SYN-GFP and CgA-RFP specifically and transiently cohabitated in a distinct sorting compartment during cold block and then separated into synaptic protein transport vesicles (SPTVs) and LDCVs, after release from temperature block. We found that in this trans-Golgi subcompartment there was colocalization of SPTV and LDCV proteins, most significantly with VAMP4 and Golgin97, and to some degree with TGN46, but not at all with TGN38. Moreover, some SNAP25 and VAMP2, two subunits of the exocytic machinery, were also recruited onto this compartment. Thus, in neuroendocrine cells, synaptic vesicle and LDCV proteins converge briefly in a distinct trans-Golgi network subcompartment before sorting into SPTVs and LDCVs, ultimately for delivery to the plasma membrane. This specialized sorting compartment from which SPTVs and LDCVs bud might facilitate the acquisition of common exocytic machinery needed on the membranes of these vesicles.
Collapse
Affiliation(s)
- Joshua J Park
- Section on Cellular Neurobiology, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
34
|
Nevalainen N, Af Bjerkén S, Lundblad M, Gerhardt GA, Strömberg I. Dopamine release from serotonergic nerve fibers is reduced in L-DOPA-induced dyskinesia. J Neurochem 2011; 118:12-23. [PMID: 21534956 DOI: 10.1111/j.1471-4159.2011.07292.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
L-DOPA is the most commonly used treatment for symptomatic control in patients with Parkinson's disease. Unfortunately, most patients develop severe side-effects, such as dyskinesia, upon chronic l-DOPA treatment. The patophysiology of dyskinesia is unclear; however, involvement of serotonergic nerve fibers in converting l-DOPA to dopamine has been suggested. Therefore, potassium-evoked dopamine release was studied after local application of l-DOPA in the striata of normal, dopamine- and dopamine/serotonin-lesioned l-DOPA naïve, and dopamine-denervated chronically l-DOPA-treated dyskinetic rats using in vivo chronoamperometry. The results revealed that local l-DOPA administration into normal and intact hemisphere of dopamine-lesioned l-DOPA naïve animals significantly increased the potassium-evoked dopamine release. l-DOPA application also increased the dopamine peak amplitude in the dopamine-depleted l-DOPA naïve striatum, although these dopamine levels were several-folds lower than in the normal striatum, whereas no increased dopamine release was found in the dopamine/serotonin-denervated striatum. In dyskinetic animals, local l-DOPA application did not affect the dopamine release, resulting in significantly attenuated dopamine levels compared with those measured in l-DOPA naïve dopamine-denervated striatum. To conclude, l-DOPA is most likely converted to dopamine in serotonergic nerve fibers in the dopamine-depleted striatum, but the dopamine release is several-fold lower than in normal striatum. Furthermore, l-DOPA loading does not increase the dopamine release in dyskinetic animals as found in l-DOPA naïve animals, despite similar density of serotonergic innervation. Thus, the dopamine overflow produced from the serotonergic nerve fibers appears not to be the major cause of dyskinetic behavior.
Collapse
|
35
|
Abstract
Synapsins are a family of synaptic vesicle proteins that are important for neurotransmitter release. Here we have used triple knock-out (TKO) mice lacking all three synapsin genes to determine the roles of synapsins in the release of two monoamine neurotransmitters, dopamine and serotonin. Serotonin release evoked by electrical stimulation was identical in substantia nigra pars reticulata slices prepared from TKO and wild-type mice. In contrast, release of dopamine in response to electrical stimulation was approximately doubled in striatum of TKO mice, both in vivo and in striatal slices, in comparison to wild-type controls. This was due to loss of synapsin III, because deletion of synapsin III alone was sufficient to increase dopamine release. Deletion of synapsins also increased the sensitivity of dopamine release to extracellular calcium ions. Although cocaine did not affect the release of serotonin from nigral tissue, this drug did enhance dopamine release. Cocaine-induced facilitation of dopamine release was a function of external calcium, an effect that was reduced in TKO mice. We conclude that synapsins play different roles in the control of release of dopamine and serotonin, with release of dopamine being negatively regulated by synapsins, specifically synapsin III, while serotonin release appears to be relatively independent of synapsins. These results provide further support for the concept that synapsin function in presynaptic terminals varies according to the neurotransmitter being released.
Collapse
|
36
|
Verheij MMM, de Mulder ELW, De Leonibus E, van Loo KMJ, Cools AR. Rats that differentially respond to cocaine differ in their dopaminergic storage capacity of the nucleus accumbens. J Neurochem 2010; 105:2122-33. [PMID: 18315567 PMCID: PMC2492658 DOI: 10.1111/j.1471-4159.2008.05323.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cocaine (COC) inhibits the re-uptake of dopamine. However, the dopamine response to COC also depends on dopamine inside storage vesicles. The aim of this study was to investigate whether rats that differentially respond to COC differ in their dopaminergic storage capacity of the nucleus accumbens. Total and vesicular levels of accumbal dopamine as well as accumbal vesicular monoamine transporter-2 levels were established in high (HR) and low responders (LR) to novelty rats. Moreover, the effects of reserpine (RES) on the COC-induced increase of extracellular accumbal dopamine were investigated. HR displayed higher accumbal levels of total and vesicular dopamine than LR. Moreover, HR displayed more accumbal vesicular monoamine transporters-2 than LR. COC increased extracellular accumbal dopamine more strongly in HR than in LR. A low dose of RES prevented the COC-induced increase of accumbal dopamine in LR, but not in HR. A higher dose of RES was required to inhibit the COC-induced increase of accumbal dopamine in HR. These data demonstrate that HR were marked by a larger accumbal dopaminergic storage pool than LR. It is hypothesized that HR are more sensitive to COC than LR, because COC can release more dopamine from accumbal storage vesicles in HR than in LR. J. Neurochem. (2008) 105, 2122–2133.
Collapse
Affiliation(s)
- Michel M M Verheij
- Department of Cognitive Neuroscience, Division of Psychoneuropharmacology, Faculty of Medicine, Radboud University of Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Hypothalamic dopamine neurons inhibit pituitary prolactin secretion. In this issue of Neuron, Lyons et al. provide evidence for a novel model, whereby the excitatory neuropeptide TRH depolarizes gap-junction-coupled dopamine neurons, leading to a shift in the population pattern of action potentials from phasic burst firing to regular tonic firing, hypothetically reducing dopamine release while increasing total spike number.
Collapse
|
38
|
Yin W, Mendenhall JM, Monita M, Gore AC. Three-dimensional properties of GnRH neuroterminals in the median eminence of young and old rats. J Comp Neurol 2010; 517:284-95. [PMID: 19757493 DOI: 10.1002/cne.22156] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The decapeptide gonadotropin-releasing hormone (GnRH), which regulates reproduction in all vertebrates, is stored in, and secreted from, large dense-core secretory vesicles in nerve terminals in the median eminence. GnRH is released from these terminals with biological rhythms that are critical for the maintenance of normal reproduction. During reproductive aging in female rats, there is a loss of GnRH pulses and a diminution of the GnRH surge. However, information about the specific role of GnRH nerve terminals is lacking, particularly in the context of aging. We sought to gain novel ultrastructural information about GnRH neuroterminals by performing three-dimensional (3D) reconstructions of GnRH neuroterminals and their surrounding microenvironment in the median eminence of young (4-5 months) and old (22-24 months) ovariectomized Sprague-Dawley female rats. Median eminence tissues were freeze-plunge embedded and serial ultrathin sections were collected on slot grids for immunogold labeling of GnRH immunoreactivity. Sequential images were used to create 3D models of GnRH terminals. These reconstructions provided novel perspectives into the morphological properties of GnRH terminals and their neural and glial environment. We also noted that the cytoarchitectural features of the median eminence became disorganized with aging. Quantitative measures showed a significant decrease in the apposition between GnRH terminal membranes and glial cells. Our data suggest reproductive aging in rats is characterized by structural organizational changes to the GnRH terminal microenvironment in the median eminence.
Collapse
Affiliation(s)
- Weiling Yin
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
39
|
Cartier EA, Parra LA, Baust TB, Quiroz M, Salazar G, Faundez V, Egaña L, Torres GE. A biochemical and functional protein complex involving dopamine synthesis and transport into synaptic vesicles. J Biol Chem 2009; 285:1957-66. [PMID: 19903816 DOI: 10.1074/jbc.m109.054510] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic transmission depends on neurotransmitter pools stored within vesicles that undergo regulated exocytosis. In the brain, the vesicular monoamine transporter-2 (VMAT(2)) is responsible for the loading of dopamine (DA) and other monoamines into synaptic vesicles. Prior to storage within vesicles, DA synthesis occurs at the synaptic terminal in a two-step enzymatic process. First, the rate-limiting enzyme tyrosine hydroxylase (TH) converts tyrosine to di-OH-phenylalanine. Aromatic amino acid decarboxylase (AADC) then converts di-OH-phenylalanine into DA. Here, we provide evidence that VMAT(2) physically and functionally interacts with the enzymes responsible for DA synthesis. In rat striata, TH and AADC co-immunoprecipitate with VMAT(2), whereas in PC 12 cells, TH co-immunoprecipitates with the closely related VMAT(1) and with overexpressed VMAT(2). GST pull-down assays further identified three cytosolic domains of VMAT(2) involved in the interaction with TH and AADC. Furthermore, in vitro binding assays demonstrated that TH directly interacts with VMAT(2). Additionally, using fractionation and immunoisolation approaches, we demonstrate that TH and AADC associate with VMAT(2)-containing synaptic vesicles from rat brain. These vesicles exhibited specific TH activity. Finally, the coupling between synthesis and transport of DA into vesicles was impaired in the presence of fragments involved in the VMAT(2)/TH/AADC interaction. Taken together, our results indicate that DA synthesis can occur at the synaptic vesicle membrane, where it is physically and functionally coupled to VMAT(2)-mediated transport into vesicles.
Collapse
Affiliation(s)
- Etienne A Cartier
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kasparov S, Teschemacher AG. The use of viral gene transfer in studies of brainstem noradrenergic and serotonergic neurons. Philos Trans R Soc Lond B Biol Sci 2009; 364:2565-76. [PMID: 19651657 DOI: 10.1098/rstb.2009.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In contrast to some other neuronal populations, for example hippocampal or cortical pyramidal neurons, mechanisms of synaptic integration and transmitter release in central neurons that contain noradrenaline (NA) and serotonin (5HT) are not well understood. These cells, crucial for a wide range of autonomic and behavioural processes, have long un-myelinated axons with hundreds of varicosities where transmitters are synthesized and released. Both seem to signal mostly in 'volume transmission' mode. Very little is known about the rules that apply to this type of transmission in the brain and the factors that regulate the release of NA and 5HT. We discuss some of our published studies and more recent experiments in which viral vectors were used to investigate the physiology of these neuronal populations. We also focus on currently unresolved issues concerning the mechanism of volume transmission by NA and 5HT in the brain. We suggest that clarifying the role of astroglia in this process could be essential for our understanding of central noradrenergic and 5HT signalling.
Collapse
Affiliation(s)
- S Kasparov
- Department of Physiology and Pharmacology, Bristol Heart Institute, School of Medical Sciences, University of Bristol, , Bristol BS8 1TD, UK.
| | | |
Collapse
|
41
|
Matthies HJG, Han Q, Shields A, Wright J, Moore JL, Winder DG, Galli A, Blakely RD. Subcellular localization of the antidepressant-sensitive norepinephrine transporter. BMC Neurosci 2009; 10:65. [PMID: 19545450 PMCID: PMC2716352 DOI: 10.1186/1471-2202-10-65] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 06/23/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reuptake of synaptic norepinephrine (NE) via the antidepressant-sensitive NE transporter (NET) supports efficient noradrenergic signaling and presynaptic NE homeostasis. Limited, and somewhat contradictory, information currently describes the axonal transport and localization of NET in neurons. RESULTS We elucidate NET localization in brain and superior cervical ganglion (SCG) neurons, aided by a new NET monoclonal antibody, subcellular immunoisolation techniques and quantitative immunofluorescence approaches. We present evidence that axonal NET extensively colocalizes with syntaxin 1A, and to a limited degree with SCAMP2 and synaptophysin. Intracellular NET in SCG axons and boutons also quantitatively segregates from the vesicular monoamine transporter 2 (VMAT2), findings corroborated by organelle isolation studies. At the surface of SCG boutons, NET resides in both lipid raft and non-lipid raft subdomains and colocalizes with syntaxin 1A. CONCLUSION Our findings support the hypothesis that SCG NET is segregated prior to transport from the cell body from proteins comprising large dense core vesicles. Once localized to presynaptic boutons, NET does not recycle via VMAT2-positive, small dense core vesicles. Finally, once NET reaches presynaptic plasma membranes, the transporter localizes to syntaxin 1A-rich plasma membrane domains, with a portion found in cholera toxin-demarcated lipid rafts. Our findings indicate that activity-dependent insertion of NET into the SCG plasma membrane derives from vesicles distinct from those that deliver NE. Moreover, NET is localized in presynaptic membranes in a manner that can take advantage of regulatory processes targeting lipid raft subdomains.
Collapse
Affiliation(s)
- Heinrich J G Matthies
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Guillot TS, Miller GW. Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Mol Neurobiol 2009; 39:149-70. [PMID: 19259829 DOI: 10.1007/s12035-009-8059-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/18/2009] [Indexed: 12/13/2022]
Abstract
Vesicular monoamine transporters (VMATs) are responsible for the packaging of neurotransmitters such as dopamine, serotonin, norepinephrine, and epinephrine into synaptic vesicles. These proteins evolved from precursors in the major facilitator superfamily of transporters and are among the members of the toxin extruding antiporter family. While the primary function of VMATs is to sequester neurotransmitters within vesicles, they can also translocate toxicants away from cytosolic sites of action. In the case of dopamine, this dual role of VMAT2 is combined-dopamine is more readily oxidized in the cytosol where it can cause oxidative stress so packaging into vesicles serves two purposes: neurotransmission and neuroprotection. Furthermore, the deleterious effects of exogenous toxicants on dopamine neurons, such as MPTP, can be attenuated by VMAT2 activity. The active metabolite of MPTP can be kept within vesicles and prevented from disrupting mitochondrial function thereby sparing the dopamine neuron. The highly addictive drug methamphetamine is also neurotoxic to dopamine neurons by using dopamine itself to destroy the axon terminals. Methamphetamine interferes with vesicular sequestration and increases the production of dopamine, escalating the amount in the cytosol and leading to oxidative damage of terminal components. Vesicular transport seems to resist this process by sequestering much of the excess dopamine, which is illustrated by the enhanced methamphetamine neurotoxicity in VMAT2-deficient mice. It is increasingly evident that VMAT2 provides neuroprotection from both endogenous and exogenous toxicants and that while VMAT2 has been adapted by eukaryotes for synaptic transmission, it is derived from phylogenetically ancient proteins that originally evolved for the purpose of cellular protection.
Collapse
Affiliation(s)
- Thomas S Guillot
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
43
|
Sørensen KD, Wild PJ, Mortezavi A, Adolf K, Tørring N, Heebøll S, Ulhøi BP, Ottosen P, Sulser T, Hermanns T, Moch H, Borre M, Ørntoft TF, Dyrskjøt L. Genetic and Epigenetic SLC18A2 Silencing in Prostate Cancer Is an Independent Adverse Predictor of Biochemical Recurrence after Radical Prostatectomy. Clin Cancer Res 2009; 15:1400-10. [DOI: 10.1158/1078-0432.ccr-08-2268] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Jaferi A, Pickel VM. Mu-opioid and corticotropin-releasing-factor receptors show largely postsynaptic co-expression, and separate presynaptic distributions, in the mouse central amygdala and bed nucleus of the stria terminalis. Neuroscience 2009; 159:526-39. [PMID: 19166913 DOI: 10.1016/j.neuroscience.2008.12.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/03/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
Abstract
The anxiolytic effects of opiates active at the mu-opioid receptor (mu-OR) may be ascribed, in part, to suppression of neurons that are responsive to the stress-associated peptide, corticotropin releasing factor (CRF), in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST). The corticotropin releasing factor receptor (CRFr) and mu-OR are expressed in both the CeA and BNST, but their subcellular relationship to each other is not known in either region. To address this question, we used dual electron microscopic immunolabeling of mu-OR and CRFr in the mouse lateral CeA and anterolateral BNST. Immunolabeling for each receptor was detected in the same as well as in separate somatic, dendritic and axonal profiles of neurons in each region. CRFr had a plasmalemmal or cytoplasmic distribution in many dendrites, including those co-expressing mu-OR. The co-expression of CRFr and mu-OR also was seen near excitatory-type synapses on dendritic spines. In both the CeA and BNST, over 50% of the CRFr-labeled dendritic profiles (dendrites and spines) contained immunoreactivity for the mu-OR. However, less than 25% of the dendritic profiles containing the mu-OR were labeled for CRFr in either region, suggesting that opiate activation of the mu-OR affects many neurons in addition to those responsive to CRF. The dendritic profiles containing CRFr and/or mu-OR received asymmetric, excitatory-type synapses from unlabeled or CRFr-labeled axon terminals. In contrast, the mu-OR was identified in terminals forming symmetric, inhibitory-type synapses. Thus, in both the CeA and BNST, mu-OR and CRFr have strategic locations for mediation of CRF and opioid effects on the postsynaptic excitability of single neurons, and on the respective presynaptic release of excitatory and inhibitory neurotransmitters. The commonalities in the synaptic location of both receptors in the CeA and BNST suggest that this is a fundamental cellular association of relevance to both drug addiction and stress-induced disorders.
Collapse
Affiliation(s)
- A Jaferi
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 407 East 61st Street, New York, NY 10065, USA.
| | | |
Collapse
|
45
|
Hansson SR, Bottalico B, Noskova V, Casslén B. Monoamine transporters in human endometrium and decidua. Hum Reprod Update 2008; 15:249-60. [PMID: 18987100 DOI: 10.1093/humupd/dmn048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Monoamines play important roles in decidualization, implantation, immune modulation and inflammation. Furthermore, monoamines are potent vasoactive mediators that regulate blood flow and capillary permeability. Regulation of the uterine blood flow is important both during menstruation and pregnancy. Adequate monoamine concentrations are essential for a proper implantation and physiological development of pregnancy. Unlike most transmitter substances, monoamines are recycled by monoamine transporters rather than enzymatically inactivated. Their intracellular fate is influenced by their lower affinity for inactivating enzymes than for vesicular transporters located in intracellular vesicles. Thus, cells are capable not only of recapturizing and degrading monoamines, but also of storing and releasing them in a controlled fashion. METHODS The general objective of the present review is to summarize the role of the monoamine transporters in the female human reproduction. Since the transporter proteins critically regulate extracellular monoamine concentrations, knowledge of their distribution and cyclic variation is of great importance for a deeper understanding of the contribution of monoaminergic mechanisms in the reproductive process. MEDLINE was searched for relevant publications from 1950 to 2007. RESULTS Two families of monoamine transporters, neuronal and extraneuronal monoamine transporters, are present in the human endometrium and deciduas. CONCLUSIONS New knowledge about monoamine metabolism in the endometrium during menstruation and pregnancy will increase understanding of infertility problems and may offer new pharmacological approaches to optimize assisted reproduction.
Collapse
Affiliation(s)
- Stefan R Hansson
- Department of Obstetrics and Gynecology, Lund University Hospital, Sweden.
| | | | | | | |
Collapse
|
46
|
Sevigny CP, Bassi J, Teschemacher AG, Kim KS, Williams DA, Anderson CR, Allen AM. C1 neurons in the rat rostral ventrolateral medulla differentially express vesicular monoamine transporter 2 in soma and axonal compartments. Eur J Neurosci 2008; 28:1536-44. [DOI: 10.1111/j.1460-9568.2008.06445.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Fei H, Grygoruk A, Brooks ES, Chen A, Krantz DE. Trafficking of vesicular neurotransmitter transporters. Traffic 2008; 9:1425-36. [PMID: 18507811 DOI: 10.1111/j.1600-0854.2008.00771.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vesicular neurotransmitter transporters are required for the storage of all classical and amino acid neurotransmitters in secretory vesicles. Transporter expression can influence neurotransmitter storage and release, and trafficking targets the transporters to different types of secretory vesicles. Vesicular transporters traffic to synaptic vesicles (SVs) as well as large dense core vesicles and are recycled to SVs at the nerve terminal. Some of the intrinsic signals for these trafficking events have been defined and include a dileucine motif present in multiple transporter subtypes, an acidic cluster in the neural isoform of the vesicular monoamine transporter (VMAT) 2 and a polyproline motif in the vesicular glutamate transporter (VGLUT) 1. The sorting of VMAT2 and the vesicular acetylcholine transporter to secretory vesicles is regulated by phosphorylation. In addition, VGLUT1 uses alternative endocytic pathways for recycling back to SVs following exocytosis. Regulation of these sorting events has the potential to influence synaptic transmission and behavior.
Collapse
Affiliation(s)
- Hao Fei
- Departments of Psychiatry and Neurobiology, Gonda Goldschmied Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1761, USA
| | | | | | | | | |
Collapse
|
48
|
Neuroarchitecture of aminergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS One 2008; 3:e1848. [PMID: 18365004 PMCID: PMC2268740 DOI: 10.1371/journal.pone.0001848] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 02/12/2008] [Indexed: 12/24/2022] Open
Abstract
Biogenic amines are important signaling molecules in the central nervous system of both vertebrates and invertebrates. In the fruit fly Drosophila melanogaster, biogenic amines take part in the regulation of various vital physiological processes such as feeding, learning/memory, locomotion, sexual behavior, and sleep/arousal. Consequently, several morphological studies have analyzed the distribution of aminergic neurons in the CNS. Previous descriptions, however, did not determine the exact spatial location of aminergic neurite arborizations within the neuropil. The release sites and pre-/postsynaptic compartments of aminergic neurons also remained largely unidentified. We here used gal4-driven marker gene expression and immunocytochemistry to map presumed serotonergic (5-HT), dopaminergic, and tyraminergic/octopaminergic neurons in the thoracic and abdominal neuromeres of the Drosophila larval ventral ganglion relying on Fasciclin2-immunoreactive tracts as three-dimensional landmarks. With tyrosine hydroxylase- (TH) or tyrosine decarboxylase 2 (TDC2)-specific gal4-drivers, we also analyzed the distribution of ectopically expressed neuronal compartment markers in presumptive dopaminergic TH and tyraminergic/octopaminergic TDC2 neurons, respectively. Our results suggest that thoracic and abdominal 5-HT and TH neurons are exclusively interneurons whereas most TDC2 neurons are efferent. 5-HT and TH neurons are ideally positioned to integrate sensory information and to modulate neuronal transmission within the ventral ganglion, while most TDC2 neurons appear to act peripherally. In contrast to 5-HT neurons, TH and TDC2 neurons each comprise morphologically different neuron subsets with separated in- and output compartments in specific neuropil regions. The three-dimensional mapping of aminergic neurons now facilitates the identification of neuronal network contacts and co-localized signaling molecules, as exemplified for DOPA decarboxylase-synthesizing neurons that co-express crustacean cardioactive peptide and myoinhibiting peptides.
Collapse
|
49
|
Burris RE, Hebrok M. Pancreatic innervation in mouse development and beta-cell regeneration. Neuroscience 2007; 150:592-602. [PMID: 18006238 DOI: 10.1016/j.neuroscience.2007.09.079] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 08/17/2007] [Accepted: 10/23/2007] [Indexed: 01/08/2023]
Abstract
Pancreatic innervation is being viewed with increasing interest with respect to pancreatic disease. At the same time, relatively little is currently known about innervation dynamics during development and disease. The present study employs confocal microscopy to analyze the growth and development of sympathetic and sensory neurons and astroglia during pancreatic organogenesis and maturation. Our research reveals that islet innervation is closely linked to the process of islet maturation-neural cell bodies undergo intrapancreatic migration/shuffling in tandem with endocrine cells, and close neuro-endocrine contacts are established quite early in pancreatic development. In addition, we have assayed the effects of large-scale beta-cell loss and repopulation on the maintenance of islet innervation with respect to particular neuron types. We demonstrate that depletion of the beta-cell population in the rat insulin promoter (RIP)-cmyc(ER) mouse line has cell-type-specific effects on postganglionic sympathetic neurons and pancreatic astroglia. This study contributes to a greater understanding of how cooperating physiological systems develop together and coordinate their functions, and also helps to elucidate how permutation of one organ system through stress or disease can specifically affect parallel systems in an organism.
Collapse
Affiliation(s)
- R E Burris
- University of California, San Francisco, Diabetes Center, San Francisco, CA 94143-0540, USA
| | | |
Collapse
|
50
|
Pearson RJ, Gatti PJ, Sahibzada N, Massari VJ, Gillis RA. Ultrastructural evidence for selective noradrenergic innervation of CNS vagal projections to the fundus of the rat. Auton Neurosci 2007; 136:31-42. [PMID: 17572158 PMCID: PMC2172410 DOI: 10.1016/j.autneu.2007.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/14/2007] [Accepted: 03/29/2007] [Indexed: 11/20/2022]
Abstract
We reported pharmacological data suggesting that stimulation of the vago-vagal reflex activates noradrenergic neurons in the hindbrain that inhibit dorsal motor nucleus of the vagus (DMV) neurons projecting to the fundus, but not to the antrum [Ferreira Jr., M., Sahibzada, N., Shi, M., Panico, W., Neidringhaus, M., Wasserman, A., Kellar, K.J., Verbalis, J., Gillis, R.A., 2002. CNS site of action and brainstem circuitry responsible for the intravenous effects of nicotine on gastric tone. J. Neurosci. 22, 2764-2779.]. The purpose of this study was to use an ultrastructural approach to test the hypothesis that noradrenergic terminals form synapses with DMV fundus-projecting neurons, but not with DMV antrum-projecting neurons. A retrograde tracer, CTbeta-HRP, was injected into the gastric smooth muscle of either the fundus or the antrum of rats. Animals were re-anesthetized 48 h later and perfusion-fixed with acrolein and paraformaldehyde. Brainstems were processed histochemically for CTbeta-HRP, and immunocytochemically for either DbetaH or PNMT by dual-labeling electron microscopic methods. Most cell bodies and dendrites of neurons that were retrogradely labeled from the stomach occurred at the level of the area postrema. Examination of 482 synapses on 238 neurons that projected to the fundus revealed that 17.4+/-2.7% (n=4) of synaptic contacts were with DbetaH-IR terminals. Of 165 fundus-projecting neurons, 4.4+/-1.5% (n=4) formed synaptic contacts with PNMT-IR terminals. In contrast, the examination of 384 synapses on 223 antrum-projecting neurons revealed no synaptic contact with DbetaH-IR terminals. These data provide proof that norepinephrine containing nerve terminals synapse with DMV fundus-projecting neurons but not with DMV antrum-projecting neurons. These data also suggest that brainstem circuitry controlling the fundus differs from circuitry controlling the antrum.
Collapse
Affiliation(s)
- Rebecca J. Pearson
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC
| | - Philip J. Gatti
- Department of Pharmacology, Howard University Medical Center, Washington, DC
| | - Niaz Sahibzada
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC
| | - V. John Massari
- Department of Pharmacology, Howard University Medical Center, Washington, DC
| | - Richard A. Gillis
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC
| |
Collapse
|