1
|
Zhou M, Jiang Y, Liu X, Kong W, Zhang C, Yang J, Ke S, Li Y. Genome-Wide Identification and Evolution Analysis of the CYP76 Subfamily in Rice ( Oryza sativa). Int J Mol Sci 2023; 24:ijms24108522. [PMID: 37239869 DOI: 10.3390/ijms24108522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The CYP76 subfamily, a member of the CYP superfamily, plays crucial roles in the biosynthesis of phytohormones in plants, involving biosynthesis of secondary metabolites, hormone signaling, and response to environmental stresses. Here, we conducted a genome-wide analysis of the CYP76 subfamily in seven AA genome species: Oryza sativa ssp. japonica, Oryza sativa ssp. indica, Oryza rufipogon, Oryza glaberrima, Oryza meridionalis, Oryza barthii, and Oryza glumaepatula. These were identified and classified into three groups, and it was found that Group 1 contained the largest number of members. Analysis of cis-acting elements revealed a large number of elements related to jasmonic acid and light response. The gene duplication analysis revealed that the CYP76 subfamily expanded mainly in SD/WGD and tandem forms and underwent strong purifying selection during evolution. Expression pattern analysis of OsCYP76s in various developmental stages revealed that the majority of OsCYP76s exhibit relatively restricted expression patterns in leaves and roots. We further analyzed the expression of CYP76s in O. sativa, japonica, and O. sativa, indica under cold, flooding, drought, and salt abiotic stresses by qRT-PCR. We found that OsCYP76-11 showed a huge increase in relative expression after drought and salt stresses. After flooding stress, OsiCYP76-4 showed a greater increase in expression compared to other genes. CYP76 in japonica and indica showed different response patterns to the same abiotic stresses, revealing functional divergence in the gene family during evolution; these may be the key genes responsible for the differences in tolerance to indica japonica. Our results provide valuable insights into the functional diversity and evolutionary history of the CYP76 subfamily and pave the way for the development of new strategies for improving stress tolerance and agronomic traits in rice.
Collapse
Affiliation(s)
- Mingao Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yifei Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xuhui Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weilong Kong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Shenzhen Branch, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chenhao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biomedical Informatics, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China
| | - Jian Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Simin Ke
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Wang C, Fan X. Single-cell multi-omics sequencing and its applications in studying the nervous system. BIOPHYSICS REPORTS 2022; 8:136-149. [PMID: 37288245 PMCID: PMC10189649 DOI: 10.52601/bpr.2021.210031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/04/2021] [Indexed: 11/05/2022] Open
Abstract
Single-cell sequencing has become one of the most powerful and popular techniques in dissecting molecular heterogeneity and modeling the cellular architecture of a biological system. During the past twenty years, the throughput of single-cell sequencing has increased from hundreds of cells to over tens of thousands of cells in parallel. Moreover, this technology has been developed from sequencing transcriptome to measure different omics such as DNA methylome, chromatin accessibility, and so on. Currently, multi-omics which can analyze different omics in the same cell is rapidly advancing. This work advances the study of many biosystems, including the nervous system. Here, we review current single-cell multi-omics sequencing techniques and describe how they improve our understanding of the nervous system. Finally, we discuss the open scientific questions in neural research that may be answered through further improvement of single-cell multi-omics sequencing technology.
Collapse
Affiliation(s)
- Chaoyang Wang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Xiaoying Fan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| |
Collapse
|
3
|
Gao W, Hu L, Zhang M, Liu S, Xu S, Chow VLY, Chan JYW, Wong TS. Mitochondrial DHODH regulates hypoxia-inducible factor 1 expression in OTSCC. Am J Cancer Res 2022; 12:48-67. [PMID: 35141004 PMCID: PMC8822278 DOI: pmid/35141004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/15/2021] [Indexed: 02/05/2023] Open
Abstract
Oral tongue squamous cell carcinoma (OTSCC) was one of the most hypoxic tumors with unfavorable outcomes. Hypoxia-inducible factor-1 (HIF-1) signaling was associated with cancer proliferation, lymph node metastasis, angiogenesis and poor prognosis of OTSCC. Dihydroorotate dehydrogenase (DHODH) catalyzed the rate-limiting step in the de novo pyrimidine biosynthesis. The aim of the study was to explore the biological function of DHODH and investigate whether DHODH regulated HIF-1 signaling in OTSCC. Proliferation, migration and anoikis resistance were used to determine the function of DHODH. Western blot and luciferase activity assays were used to determine the regulatory role of DHODH on HIF-1. We found that increased DHODH expression was associated with advanced tumor stage and poorly differentiated tumor in head and neck cancer patients in The Cancer Genome Atlas (TCGA). DHODH enhanced the proliferation and aggressiveness of OTSCC. Moreover, DHODH prompted tumor growth and metastasis in vivo. DHODH promoted transcription, protein stability, and transactivation activity of HIF1A. DHODH-induced HIF1A upregulation in OTSCC can be reversed by reactive oxygen species (ROS) scavenger, indicating that DHODH enhanced HIF1A expression via ROS production. DHODH inhibitor suppressed DHODH-mediated ROS generation and HIF1A upregulation. Targeting DHODH using clinically available inhibitor, atovaquone, might provide a new strategy to treat OTSCC.
Collapse
Affiliation(s)
- Wei Gao
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Lingyin Hu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Minjuan Zhang
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Shuai Liu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Shaowei Xu
- Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College7 Raoping Road, Shantou 515031, Guangdong Province, China
| | - Velda Ling-Yu Chow
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jimmy Yu-Wai Chan
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Thian-Sze Wong
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
4
|
Zhang J, Han B, Zheng W, Lin S, Li H, Gao Y, Sun D. Genome-Wide DNA Methylation Profile in Jejunum Reveals the Potential Genes Associated With Paratuberculosis in Dairy Cattle. Front Genet 2021; 12:735147. [PMID: 34721525 PMCID: PMC8554095 DOI: 10.3389/fgene.2021.735147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/23/2021] [Indexed: 12/04/2022] Open
Abstract
Paratuberculosis in cattle causes substantial economic losses to the dairy industry. Exploring functional genes and corresponding regulatory pathways related to resistance or susceptibility to paratuberculosis is essential to the breeding of disease resistance in cattle. Co-analysis of genome-wide DNA methylation and transcriptome profiles is a critically important approach to understand potential regulatory mechanism underlying the development of diseases. In this study, we characterized the profiles of DNA methylation of jejunum from nine Holstein cows in clinical, subclinical, and healthy groups using whole-genome bisulfite sequencing (WGBS). The average methylation level in functional regions was 29.95% in the promoter, 29.65% in the 5’ untranslated region (UTR), 68.24% in exons, 71.55% in introns, and 72.81% in the 3’ UTR. A total of 3,911, 4,336, and 4,094 differentially methylated genes (DMGs) were detected in clinical vs. subclinical, clinical vs. healthy, and subclinical vs. healthy comparative group, respectively. Gene ontology (GO) and analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these DMGs were significantly enriched in specific biological processes related to immune response, such as Th1 and Th2 cell differentiation, wnt, TNF, MAPK, ECM-receptor interaction, cellular senescence, calcium, and chemokine signaling pathways (q value <0.05). The integration of information about DMGs, differentially expressed genes (DEGs), and biological functions suggested nine genes CALCRL, TNC, GATA4, CD44, TGM3, CXCL9, CXCL10, PPARG, and NFATC1 as promising candidates related to resistance/susceptibility to Mycobacterium avium subspecies paratuberculosis (MAP). This study reports on the high-resolution DNA methylation landscapes of the jejunum methylome across three conditions (clinical, subclinical, and healthy) in dairy cows. Our investigations integrated different sources of information about DMGs, DEGs, and pathways, enabling us to find nine functional genes that might have potential application in resisting paratuberculosis in dairy cattle.
Collapse
Affiliation(s)
- Junnan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bo Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Weijie Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shan Lin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Houcheng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yahui Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Waseem M, Huang F, Wang Q, Aslam MM, Abbas F, Ahmad F, Ashraf U, Hassan W, Fiaz S, Ye X, Yu L, Ke Y. Identification, methylation profiling, and expression analysis of stress-responsive cytochrome P450 genes in rice under abiotic and phytohormones stresses. GM CROPS & FOOD 2021; 12:551-563. [PMID: 33877001 PMCID: PMC8820252 DOI: 10.1080/21645698.2021.1908813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cytochrome P450 (CYP) is a large and complex eukaryotic gene superfamily with enzymatic activities involved in several physiological and regulatory processes. As an objective, an in-silico genome-wide DNA methylation (5mC) analysis was performed in rice (Oryza sativa cv. Zhonghua11), and the epigenetic role of CYPs in two abiotic stresses was observed. Being a stable representative mark, DNA-methylation alters the gene expression under stressful environmental conditions. Rice plants under salinity and drought stresses were analyzed through MeDIP-chip hybridization, and 14 unique genes of the CYP family were identified in the rice genome with varying degrees of methylation. The gene structure, promoter sequences, and phylogenetic analysis were performed. Furthermore, the responses of CYPs to various abiotic stresses, including salinity, drought, and cold were revealed. Similarly, the expression profile of potential CYPs was also investigated under various phytohormone stresses, which revealed the potential involvement of CYPs to hormone regulations. Overall, the current study provides evidence for CYP's stress regulation and fundamental for further characterization and understanding their epigenetic roles in gene expression regulation and environmental stress regulation in higher plants.
Collapse
Affiliation(s)
- Muhammad Waseem
- College of Horticulture, South China Agricultural University, P.R. China
| | - Feiyan Huang
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Centre, Kunming University, Kunming China
| | - Qiyu Wang
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Centre, Kunming University, Kunming China
| | - Mehtab Muhammad Aslam
- College of Life Sciences, Joint International Research Laboratory of Water and 5 Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Farhat Abbas
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou P.R. China
| | - Fiaz Ahmad
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University , Nanjing PR China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education Lahore, Punjab, Pakistan
| | - Waseem Hassan
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Xianwen Ye
- Kunming Tobacco Corporation of Yunnan Province, Kunming China
| | - Lei Yu
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Centre, Kunming University, Kunming China
| | - Yanguo Ke
- College of Economics and Management, Kunming University, Kunming China
| |
Collapse
|
6
|
Omae N, Suzuki M, Ugaki M. The genome of the Cauliflower mosaic virus, a plant pararetrovirus, is highly methylated in the nucleus. FEBS Lett 2020; 594:1974-1988. [PMID: 32492176 DOI: 10.1002/1873-3468.13852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 11/07/2022]
Abstract
Cytosine methylation is an important defense against invasive DNAs. Here, cytosine methylation profiles of a plant pararetrovirus, Cauliflower mosaic virus (CaMV), were investigated. Nuclear CaMV DNA is highly methylated throughout the genome including at transcription regulatory regions, but the virion DNA is unmethylated. In vitro CG methylation of the viral 35S promoter reduces transcription from the downstream gene. Although nuclear CaMV DNA is highly methylated, its transcripts are accumulated in the nucleus. The data suggest that a small population of unmethylated viral genomes produced through reverse transcription are constantly delivered back to the nucleus. Small RNA profiles suggest that methylation of the CaMV DNA may be due to de novo methylation through 21-, 22-, and 24-nt small RNAs with adenines at their 5' terminus.
Collapse
Affiliation(s)
- Natsuki Omae
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masashi Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masashi Ugaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
7
|
Cheng Y, Cheng L, Cao Q, Zou J, Li X, Ma X, Zhou J, Zhai F, Sun Z, Lan Y, Han L. Heterologous Expression of SvMBD5 from Salix viminalis L. Promotes Flowering in Arabidopsis thaliana L. Genes (Basel) 2020; 11:genes11030285. [PMID: 32156087 PMCID: PMC7140845 DOI: 10.3390/genes11030285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 11/23/2022] Open
Abstract
Methyl-CpG-binding domain (MBD) proteins have diverse molecular and biological functions in plants. Most studies of MBD proteins in plants have focused on the model plant Arabidopsis thaliana L. Here we cloned SvMBD5 from the willow Salix viminalis L. by reverse transcription-polymerase chain reaction (RT-PCR) and analyzed the structure of SvMBD5 and its evolutionary relationships with proteins in other species. The coding sequence of SvMBD5 is 645 bp long, encoding a 214 amino acid protein with a methyl-CpG-binding domain. SvMBD5 belongs to the same subfamily as AtMBD5 and AtMBD6 from Arabidopsis. Subcellular localization analysis showed that SvMBD5 is only expressed in the nucleus. We transformed Arabidopsis plants with a 35S::SvMBD5 expression construct to examine SvMBD5 function. The Arabidopsis SvMBD5-expressing line flowered earlier than the wild type. In the transgenic plants, the expression of FLOWERING LOCUS T and CONSTANS significantly increased, while the expression of FLOWERING LOCUS C greatly decreased. In addition, heterologously expressing SvMBD5 in Arabidopsis significantly inhibited the establishment and maintenance of methylation of CHROMOMETHYLASE 3 and METHYLTRANSFERASE 1, as well as their expression, and significantly increased the expression of the demethylation-related genes REPRESSOR OF SILENCING1 and DEMETER-LIKE PROTEIN3. Our findings suggest that SvMBD5 participates in the flowering process by regulating the methylation levels of flowering genes, laying the foundation for further studying the role of SvMBD5 in regulating DNA demethylation.
Collapse
Affiliation(s)
- Yunhe Cheng
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100193, China; (Y.C.); (J.Z.); (X.L.); (X.M.); (J.Z.); (Z.S.)
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China; (L.C.); (Q.C.)
| | - Lili Cheng
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China; (L.C.); (Q.C.)
| | - Qingchang Cao
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China; (L.C.); (Q.C.)
| | - Junzhu Zou
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100193, China; (Y.C.); (J.Z.); (X.L.); (X.M.); (J.Z.); (Z.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100193, China
| | - Xia Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100193, China; (Y.C.); (J.Z.); (X.L.); (X.M.); (J.Z.); (Z.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100193, China
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China
| | - Xiaodong Ma
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100193, China; (Y.C.); (J.Z.); (X.L.); (X.M.); (J.Z.); (Z.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100193, China
| | - Jingjing Zhou
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100193, China; (Y.C.); (J.Z.); (X.L.); (X.M.); (J.Z.); (Z.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100193, China
| | - Feifei Zhai
- School of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo 454000, China;
| | - Zhenyuan Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100193, China; (Y.C.); (J.Z.); (X.L.); (X.M.); (J.Z.); (Z.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100193, China
| | - Yanping Lan
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China; (L.C.); (Q.C.)
- Correspondence: (Y.L.); (L.H.); Tel.: +86-010-827-596-103 (Y.L.); +86-010-62-889-652 (L.H.)
| | - Lei Han
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100193, China; (Y.C.); (J.Z.); (X.L.); (X.M.); (J.Z.); (Z.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100193, China
- Correspondence: (Y.L.); (L.H.); Tel.: +86-010-827-596-103 (Y.L.); +86-010-62-889-652 (L.H.)
| |
Collapse
|
8
|
Wei J, Dong Z, Ow DW. Spontaneous reactivation of a site-specifically placed transgene independent of copy number or DNA methylation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1574-1584. [PMID: 31740977 DOI: 10.1093/jxb/erz514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
As millions of seeds are produced from a breeding line, the long-term stability of transgene expression is vital for commercial-scale production of seeds with transgenic traits. Transgenes can be silenced by epigenetic mechanisms, but reactivation of expression can occur as a result of treatment with chromatin modification inhibitors such as 5-azacytidine, from stress such as heat or UV-B, or in mutants that have acquired a defect in gene silencing. Previously, we targeted a gfp reporter gene into the tobacco (Nicotiana tabacum) genome by site-specific recombination but still found some silenced lines among independent integration events. One such line also had a second random copy and both copies showed DNA hypermethylation. To test whether removing the second copy would reactivate gfp expression, two T1 plants were backcrossed to the wild type. Whereas the silenced status was maintained in the progenies from one backcross, spontaneous partial reactivation of gfp expression was found among progenies from a second backcross. However, this reactivation did not correlate with loss of the second random copy or with a significant change in the pattern or amount of DNA hypermethylation. This finding supports the suggestion that gene reactivation does not necessarily involve loss of DNA homology or methylation.
Collapse
Affiliation(s)
- Junjie Wei
- Plant Gene Engineering Center; Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement; Guangdong Key Laboratory of Applied Botany. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhicheng Dong
- Plant Gene Engineering Center; Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement; Guangdong Key Laboratory of Applied Botany. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - David W Ow
- Plant Gene Engineering Center; Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement; Guangdong Key Laboratory of Applied Botany. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
9
|
Kumari K, Rai MP, Bansal N, Rama Prashat G, Kumari S, Krishnan V, Srivathsa R, Dahuja A, Sachdev A, Praveen S, Vinutha T. Analysis of γ-Tocopherol methyl transferase3 promoter activity and study of methylation patterns of the promoter and its gene body. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:375-385. [PMID: 31622940 DOI: 10.1016/j.plaphy.2019.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Soybeans are known for its good source of protein (40%), oil (20%) and also serve as a source of nutraceutical compounds including tocopherols (toc). To know the molecular basis of differential α-toc accumulation in two contrasting soybean genotypes: DS74 (low α-toc - 1.36 μg/g and total-toc -29.72 μg/g) and Bragg (high α-toc - 10.48 μg/g and total-toc 178.91 μg/g), the analysis of γ-TMT3 promoter activity and its methylation patterns were carried out. The sequencing results revealed nucleotide variation between Bragg:γ-TMT3-P and DS74:γ-TMT3-P, however none of the variations were found in core-promoter region or in cis-elements. The histochemical GUS assay revealed higher promoter activity of Bragg:γ-TMT3-P than that of DS74:γ-TMT3-P and correlated with significantly higher and lower (P < 0.05) expression of γ-TMT3 gene respectively. To know the molecular basis of differential accumulation of α-toc in these contrasting soybean genotypes, the DNA methylation pattern of γ-TMT3 gene body and its promoter was studied in both varieties. The results showed higher percentage (62.5%) of methylation in DS74:γ-TMT3-P than in Bragg:γ-TMT3-P (50%). Out of all the methylation sites in the promoter region, one of methylation site was found at CAAT box (-190 bp) of DS74:γ-TMT3-P. Further gene body methylation patterns revealed lowest % (40%) of CG methylation in DS74:γ-TMT3 gene as compared to Bragg:γ-TMT3 (64.2%). Thus our study revealed that, expression of γ-TMT3 gene was influenced by its promoter activity and methylation patterns in cis-elements of γ-TMT3 promoter and gene body. This study will help us to understand the possible role of methylation and promoter activity in determining the α-toc content in soybean seeds.
Collapse
Affiliation(s)
- Khushboo Kumari
- Division of Biochemistry, IARI, New Delhi, 110012, India; Amity University, Noida, Uttar Pradesh, 201313, India
| | | | - Navita Bansal
- Division of Biochemistry, IARI, New Delhi, 110012, India; Amity University, Noida, Uttar Pradesh, 201313, India
| | | | - Sweta Kumari
- Division of Biochemistry, IARI, New Delhi, 110012, India
| | - Veda Krishnan
- Division of Biochemistry, IARI, New Delhi, 110012, India
| | - Rohini Srivathsa
- National Research Centre for Plant Biotechnology, Pusa, New Delhi, 110012, India
| | - Anil Dahuja
- Division of Biochemistry, IARI, New Delhi, 110012, India
| | | | - Shelly Praveen
- Division of Biochemistry, IARI, New Delhi, 110012, India.
| | - T Vinutha
- Division of Biochemistry, IARI, New Delhi, 110012, India.
| |
Collapse
|
10
|
Abstract
Accurate annotation of plant genomes remains complex due to the presence of many pseudogenes arising from whole-genome duplication-generated redundancy or the capture and movement of gene fragments by transposable elements. Machine learning on genome-wide epigenetic marks, informed by transcriptomic and proteomic training data, could be used to improve annotations through classification of all putative protein-coding genes as either constitutively silent or able to be expressed. Expressed genes were subclassified as able to express both mRNAs and proteins or only RNAs, and CG gene body methylation was associated only with the former subclass. More than 60,000 protein-coding genes have been annotated in the reference genome of maize inbred B73. About two-thirds of these genes are transcribed and are designated the filtered gene set (FGS). Classification of genes by our trained random forest algorithm was accurate and relied only on histone modifications or DNA methylation patterns within the gene body; promoter methylation was unimportant. Other inbred lines are known to transcribe significantly different sets of genes, indicating that the FGS is specific to B73. We accurately classified the sets of transcribed genes in additional inbred lines, arising from inbred-specific DNA methylation patterns. This approach highlights the potential of using chromatin information to improve annotations of functional genes.
Collapse
|
11
|
Zhao Q, Du Y, Wang H, Rogers HJ, Yu C, Liu W, Zhao M, Xie F. 5-Azacytidine promotes shoot regeneration during Agrobacterium-mediated soybean transformation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:40-50. [PMID: 31128562 DOI: 10.1016/j.plaphy.2019.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/07/2019] [Accepted: 05/14/2019] [Indexed: 05/27/2023]
Abstract
Agrobacterium-mediated soybean transformation has been greatly improved in recent years, however the transformation efficiency is still low and highly genotype-dependent when compared to other species. Here, we characterized seventeen soybean genotypes based on their genetic transformation efficiencies, i.e., high and low, during Agrobacterium-mediated transformation. To reveal the molecular basis of this transformation difference, we constructed a highly efficient transient transgene expression system using soybean cotyledon protoplasts and then assess the methylation levels of promoter and coding regions of an EYFP (enhanced yellow fluorescent protein) gene introduced into the protoplast cultures of various soybean genotypes using BSP (bisulfite sequencing PCR). Increased methylation was found to be associated with the considerably decreased transfection efficiency (as percentage of EYFP fluorescent protoplasts) in low-efficacy genotypes as compared with those in high-efficacy on three DAT (day after transfection). 5-Azacytidine (5-Azac), a demethylating reagent commonly applied in epigenetic researches, significantly improved the transient transfection efficiency and transgene expression level in low-efficiency genotypes. Furthermore, the shoot regeneration efficiency in low-efficiency genotypes was substantially increased by 5-Azac treatment in an Agrobacterium-mediated soybean transformation system. Taken together, we concluded that lower methylation level in transgene contributed to enhanced shoot regeneration in Agrobacterium-mediated soybean transformation.
Collapse
Affiliation(s)
- Qiang Zhao
- Agricultural College, Shenyang Agricultural University, Shenyang, 10866, PR China.
| | - Yanli Du
- Agricultural College, Shenyang Agricultural University, Shenyang, 10866, PR China.
| | - Hetong Wang
- College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, PR China.
| | - Hilary J Rogers
- Cardiff University, School of Biosciences, Cardiff, CF10 3TL, UK.
| | - Cuimei Yu
- Agricultural College, Shenyang Agricultural University, Shenyang, 10866, PR China.
| | - Wan Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Mingzhe Zhao
- Agricultural College, Shenyang Agricultural University, Shenyang, 10866, PR China.
| | - Futi Xie
- Agricultural College, Shenyang Agricultural University, Shenyang, 10866, PR China.
| |
Collapse
|
12
|
Dubrovina AS, Aleynova OA, Kalachev AV, Suprun AR, Ogneva ZV, Kiselev KV. Induction of Transgene Suppression in Plants via External Application of Synthetic dsRNA. Int J Mol Sci 2019; 20:ijms20071585. [PMID: 30934883 PMCID: PMC6479969 DOI: 10.3390/ijms20071585] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
Recent investigations show that exogenously applied small interfering RNAs (siRNA) and long double-stranded RNA (dsRNA) precursors can be taken up and translocated in plants to induce RNA interference (RNAi) in the plant or in its fungal pathogen. The question of whether genes in the plant genome can undergo suppression as a result of exogenous RNA application on plant surface is almost unexplored. This study analyzed whether it is possible to influence transcript levels of transgenes, as more prone sequences to silencing, in Arabidopsis genome by direct exogenous application of target long dsRNAs. The data revealed that in vitro synthesized dsRNAs designed to target the gene coding regions of enhanced green fluorescent protein (EGFP) or neomycin phosphotransferase II (NPTII) suppressed their transcript levels in Arabidopsis. The fact that, simple exogenous application of polynucleotides can affect mRNA levels of plant transgenes, opens new opportunities for the development of new scientific techniques and crop improvement strategies.
Collapse
Affiliation(s)
- Alexandra S Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Olga A Aleynova
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Alexander V Kalachev
- Laboratory of Embryology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia.
| | - Andrey R Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
- Far Eastern Federal University, The School of Natural Sciences, Vladivostok 690090, Russia.
| | - Zlata V Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Konstantin V Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
- Far Eastern Federal University, The School of Natural Sciences, Vladivostok 690090, Russia.
| |
Collapse
|
13
|
Kumar S, Beena AS, Awana M, Singh A. Physiological, Biochemical, Epigenetic and Molecular Analyses of Wheat ( Triticum aestivum) Genotypes with Contrasting Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1151. [PMID: 28713411 PMCID: PMC5491648 DOI: 10.3389/fpls.2017.01151] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/15/2017] [Indexed: 05/03/2023]
Abstract
Abiotic stress exerts significant impact on plant's growth, development, and productivity. Productivity of crop plants under salt stress is lagging behind because of our limited knowledge about physiological, biochemical, epigenetic, and molecular mechanisms of salt tolerance in plants. This study aimed to investigate physio-biochemical, molecular indices and defense responses of selected wheat cultivars to identify the most contrasting salt-responsive genotypes and the mechanisms associated with their differential responses. Physio-biochemical traits specifically membrane stability index, antioxidant potential, osmoprotectants and chlorophyll contents, measured at vegetative stage, were used for multivariate analysis to identify the most contrasting genotypes. Genetic and epigenetic analyses indicated the possible mechanisms associated with differential response of the wheat genotypes under salt stress. Better antioxidant potential, membrane stability, increased accumulation of osmolytes/phytophenolics, and higher K+/Na+ ratio under 200 mM NaCl stress identified Kharchia-65 to be the most salt-tolerant cultivar. By contrast, increased MDA level, reduced soluble sugar, proline, total chlorophyll, total phenolics contents, and lower antioxidant potential in HD-2329 marked it to be sensitive to the stress. Genetic and bioinformatics analyses of HKT1;4 of contrasting genotypes (Kharchia-65 and HD-2329) revealed deletions, transitions, and transversions resulting into altered structure, loss of conserved motifs (Ser-Gly-Gly-Gly and Gly-Arg) and function in salt-sensitive (HD-2329) genotype. Expression analysis of HKTs rationalized the observed responses. Epigenetic variations in cytosine methylation explained tissue- and genotype-specific differential expression of HKT2;1 and HKT2;3.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR – Indian Agricultural Research InstituteNew Delhi, India
| | | | | | | |
Collapse
|
14
|
Kumar S, Beena AS, Awana M, Singh A. Salt-Induced Tissue-Specific Cytosine Methylation Downregulates Expression of HKT Genes in Contrasting Wheat (Triticum aestivum L.) Genotypes. DNA Cell Biol 2017; 36:283-294. [PMID: 28384069 PMCID: PMC5385449 DOI: 10.1089/dna.2016.3505] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Plants have evolved several strategies, including regulation of genes through epigenetic modifications, to cope with environmental stresses. DNA methylation is dynamically regulated through the methylation and demethylation of cytosine in response to environmental perturbations. High-affinity potassium transporters (HKTs) have accounted for the homeostasis of sodium and potassium ions in plants under salt stress. Wheat (Triticum aestivum L.) is sensitive to soil salinity, which impedes its growth and development, resulting in decreased productivity. The differential expression of HKTs has been reported to confer tolerance to salt stress in plants. In this study, we investigated variations in cytosine methylation and their effects on the expression of HKT genes in contrasting wheat genotypes under salt stress. We observed a genotype- and tissue-specific increase in cytosine methylation induced by NaCl stress that downregulated the expression of TaHKT2;1 and TaHKT2;3 in the shoot and root tissues of Kharchia-65, thereby contributing to its improved salt-tolerance ability. Although TaHKT1;4 was expressed only in roots and was downregulated under the stress in salt-tolerant genotypes, it was not regulated through variations in cytosine methylation. Thus, understanding epigenetic regulation and the function of HKTs would enable an improvement in salt tolerance and the development of salt-tolerant crops.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| | - Ananda Sankara Beena
- Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| | - Monika Awana
- Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| | - Archana Singh
- Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| |
Collapse
|
15
|
A Comparative Analysis of 5-Azacytidine- and Zebularine-Induced DNA Demethylation. G3-GENES GENOMES GENETICS 2016; 6:2773-80. [PMID: 27402357 PMCID: PMC5015934 DOI: 10.1534/g3.116.030262] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nonmethylable cytosine analogs, 5-azacytidine and zebularine, are widely used to inhibit DNA methyltransferase activity and reduce genomic DNA methylation. In this study, whole-genome bisulfite sequencing is used to construct maps of DNA methylation with single base pair resolution in Arabidopsis thaliana seedlings treated with each demethylating agent. We find that both inhibitor treatments result in nearly indistinguishable patterns of genome-wide DNA methylation and that 5-azacytidine had a slightly greater demethylating effect at higher concentrations across the genome. Transcriptome analyses revealed a substantial number of upregulated genes, with an overrepresentation of transposable element genes, in particular CACTA-like elements. This demonstrates that chemical demethylating agents have a disproportionately large effect on loci that are otherwise silenced by DNA methylation.
Collapse
|
16
|
Ranade SS, Lin YC, Van de Peer Y, García-Gil MR. Comparative in silico analysis of SSRs in coding regions of high confidence predicted genes in Norway spruce (Picea abies) and Loblolly pine (Pinus taeda). BMC Genet 2015; 16:149. [PMID: 26706685 PMCID: PMC4691297 DOI: 10.1186/s12863-015-0304-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/10/2015] [Indexed: 11/24/2022] Open
Abstract
Background Microsatellites or simple sequence repeats (SSRs) are DNA sequences consisting of 1–6 bp tandem repeat motifs present in the genome. SSRs are considered to be one of the most powerful tools in genetic studies. We carried out a comparative study of perfect SSR loci belonging to class I (≥20) and class II (≥12 and <20 bp) types located in coding regions of high confidence genes in Picea abies and Pinus taeda. SSRLocator was used to retrieve SSRs from the full length CDS of predicted genes in both species. Results Trimers were the most abundant motifs in class I followed by hexamers in Picea abies, while trimers and hexamers were equally abundant in Pinus taeda class I SSRs. Hexamers were most frequent within class II SSRs followed by trimers, in both species. Although the frequency of genes containing SSRs was slightly higher in Pinus taeda, SSR counts per Mbp for class I was similar in both species (P-value = 0.22); while for class II SSRs, it was significantly higher in Picea abies (P-value = 0.00009). AT-rich motifs were higher in abundance than the GC-rich motifs, within class II SSRs in both the species (P-values = 10−9 and 0). With reference to class I SSRs, AT-rich and GC-rich motifs were detected with equal frequency in Pinus taeda (P-value = 0.24); while in Picea abies, GC-rich motifs were detected with higher frequency than the AT-rich motifs (P-value = 0.0005). Conclusions Our study gives a comparative overview of the genome SSRs composition based on high confidence genes in the two recently sequenced and economically important conifers and, also provides information on functional molecular markers that can be applied in genetic studies in Pinus and Picea species. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0304-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
| | - Yao-Cheng Lin
- Department of Plant Systems Biology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Systems Biology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium. .,Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria, 0028, South Africa. .,Bioinformatics Institute Ghent, Ghent University, 9052, Ghent, Belgium.
| | - María Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
| |
Collapse
|
17
|
Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 2015; 5:14922. [PMID: 26449881 PMCID: PMC4598828 DOI: 10.1038/srep14922] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is an epigenetic mechanism that play an important role in gene regulation in response to environmental conditions. The understanding of DNA methylation at the whole genome level can provide insights into the regulatory mechanisms underlying abiotic stress response/adaptation. We report DNA methylation patterns and their influence on transcription in three rice (Oryza sativa) cultivars (IR64, stress-sensitive; Nagina 22, drought-tolerant; Pokkali, salinity-tolerant) via an integrated analysis of whole genome bisulphite sequencing and RNA sequencing. We discovered extensive DNA methylation at single-base resolution in rice cultivars, identified the sequence context and extent of methylation at each site. Overall, methylation levels were significantly different in the three rice cultivars. Numerous differentially methylated regions (DMRs) among different cultivars were identified and many of which were associated with differential expression of genes important for abiotic stress response. Transposon-associated DMRs were found coupled to the transcript abundance of nearby protein-coding gene(s). Small RNA (smRNA) abundance was found to be positively correlated with hypermethylated regions. These results provide insights into interplay among DNA methylation, gene expression and smRNA abundance, and suggest a role in abiotic stress adaptation in rice.
Collapse
|
18
|
Bharti P, Mahajan M, Vishwakarma AK, Bhardwaj J, Yadav SK. AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5959-69. [PMID: 26116024 PMCID: PMC4566984 DOI: 10.1093/jxb/erv304] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In plants, epigenetic changes have been identified as regulators of developmental events during normal growth as well as environmental stress exposures. Flavonoid biosynthetic and antioxidant pathways play a significant role in plant defence during their exposure to environmental cues. The aim of this study was to unravel whether genes encoding enzymes of flavonoid biosynthetic and antioxidant pathways are under epigenetic regulation, particularly DNA methylation, during salt stress. For this, a repressor of silencing from Arabidopsis, AtROS1, was overexpressed in transgenic tobacco. Generated transgenics were evaluated to examine the influence of AtROS1 on methylation status of promoters as well as on coding regions of genes encoding enzymes of flavonoids biosynthesis and antioxidant pathways. Overexpression of AtROS1 increases the demethylation levels of both promoters as well as coding regions of genes encoding chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonol synthase, dihydroflavonol 4-reductase, and anthocyanidin synthase of the flavonoid biosynthetic pathway, and glutathione S-transferase, ascorbate peroxidase, glutathione peroxidase, and glutathione reductase of the antioxidant pathway during control conditions. The level of demethylation was further increased at promoters as well as coding regions of these genes during salt-stress conditions. Transgenic tobacco overexpressing AtROS1 showed tolerance to salt stress that could have been due to the higher expression levels of the genes encoding enzymes of the flavonoid biosynthetic and antioxidant pathways. This is the first comprehensive study documenting the epigenetic regulation of flavonoid biosynthetic and antioxidant pathways during salt-stress exposure of plants.
Collapse
Affiliation(s)
- Poonam Bharti
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himanchal Pradesh, India
| | - Monika Mahajan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himanchal Pradesh, India
| | - Ajay K Vishwakarma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himanchal Pradesh, India
| | - Jyoti Bhardwaj
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himanchal Pradesh, India
| | - Sudesh Kumar Yadav
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himanchal Pradesh, India
| |
Collapse
|
19
|
Lou S, Lee HM, Qin H, Li JW, Gao Z, Liu X, Chan LL, Kl Lam V, So WY, Wang Y, Lok S, Wang J, Ma RC, Tsui SKW, Chan JC, Chan TF, Yip KY. Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol 2014. [PMID: 25074712 DOI: 10.1186/preaccept-1031081530108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
BACKGROUND DNA methylation is an important type of epigenetic modification involved in gene regulation. Although strong DNA methylation at promoters is widely recognized to be associated with transcriptional repression, many aspects of DNA methylation remain not fully understood, including the quantitative relationships between DNA methylation and expression levels, and the individual roles of promoter and gene body methylation. RESULTS Here we present an integrated analysis of whole-genome bisulfite sequencing and RNA sequencing data from human samples and cell lines. We find that while promoter methylation inversely correlates with gene expression as generally observed, the repressive effect is clear only on genes with a very high DNA methylation level. By means of statistical modeling, we find that DNA methylation is indicative of the expression class of a gene in general, but gene body methylation is a better indicator than promoter methylation. These findings are general in that a model constructed from a sample or cell line could accurately fit the unseen data from another. We further find that promoter and gene body methylation have minimal redundancy, and either one is sufficient to signify low expression. Finally, we obtain increased modeling power by integrating histone modification data with the DNA methylation data, showing that neither type of information fully subsumes the other. CONCLUSION Our results suggest that DNA methylation outside promoters also plays critical roles in gene regulation. Future studies on gene regulatory mechanisms and disease-associated differential methylation should pay more attention to DNA methylation at gene bodies and other non-promoter regions.
Collapse
|
20
|
Lou S, Lee HM, Qin H, Li JW, Gao Z, Liu X, Chan LL, Kl Lam V, So WY, Wang Y, Lok S, Wang J, Ma RC, Tsui SKW, Chan JC, Chan TF, Yip KY. Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol 2014; 15:408. [PMID: 25074712 PMCID: PMC4189148 DOI: 10.1186/s13059-014-0408-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 07/11/2014] [Indexed: 12/28/2022] Open
Abstract
Background DNA methylation is an important type of epigenetic modification involved in gene regulation. Although strong DNA methylation at promoters is widely recognized to be associated with transcriptional repression, many aspects of DNA methylation remain not fully understood, including the quantitative relationships between DNA methylation and expression levels, and the individual roles of promoter and gene body methylation. Results Here we present an integrated analysis of whole-genome bisulfite sequencing and RNA sequencing data from human samples and cell lines. We find that while promoter methylation inversely correlates with gene expression as generally observed, the repressive effect is clear only on genes with a very high DNA methylation level. By means of statistical modeling, we find that DNA methylation is indicative of the expression class of a gene in general, but gene body methylation is a better indicator than promoter methylation. These findings are general in that a model constructed from a sample or cell line could accurately fit the unseen data from another. We further find that promoter and gene body methylation have minimal redundancy, and either one is sufficient to signify low expression. Finally, we obtain increased modeling power by integrating histone modification data with the DNA methylation data, showing that neither type of information fully subsumes the other. Conclusion Our results suggest that DNA methylation outside promoters also plays critical roles in gene regulation. Future studies on gene regulatory mechanisms and disease-associated differential methylation should pay more attention to DNA methylation at gene bodies and other non-promoter regions. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0408-0) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Ponts N, Fu L, Harris EY, Zhang J, Chung DWD, Cervantes MC, Prudhomme J, Atanasova-Penichon V, Zehraoui E, Bunnik EM, Rodrigues EM, Lonardi S, Hicks GR, Wang Y, Le Roch KG. Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum. Cell Host Microbe 2014; 14:696-706. [PMID: 24331467 DOI: 10.1016/j.chom.2013.11.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/18/2013] [Accepted: 10/21/2013] [Indexed: 01/13/2023]
Abstract
Cytosine DNA methylation is an epigenetic mark in most eukaryotic cells that regulates numerous processes, including gene expression and stress responses. We performed a genome-wide analysis of DNA methylation in the human malaria parasite Plasmodium falciparum. We mapped the positions of methylated cytosines and identified a single functional DNA methyltransferase (Plasmodium falciparum DNA methyltransferase; PfDNMT) that may mediate these genomic modifications. These analyses revealed that the malaria genome is asymmetrically methylated and shares common features with undifferentiated plant and mammalian cells. Notably, core promoters are hypomethylated, and transcript levels correlate with intraexonic methylation. Additionally, there are sharp methylation transitions at nucleosome and exon-intron boundaries. These data suggest that DNA methylation could regulate virulence gene expression and transcription elongation. Furthermore, the broad range of action of DNA methylation and the uniqueness of PfDNMT suggest that the methylation pathway is a potential target for antimalarial strategies.
Collapse
Affiliation(s)
- Nadia Ponts
- Department of Cell Biology and Neuroscience, University of California, 900 University Avenue, Riverside, CA 92521, USA; INRA, UR1264-MycSA, 71 Avenue E. Bourlaux, CS20032, 33882 Villenave d'Ornon Cedex, France
| | - Lijuan Fu
- Department of Chemistry, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Elena Y Harris
- Department of Computer Science and Engineering, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Jing Zhang
- Department of Chemistry, University of California, 900 University Avenue, Riverside, CA 92521, USA; School of Chemistry & Materials Science, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Duk-Won D Chung
- Department of Cell Biology and Neuroscience, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Michael C Cervantes
- Department of Cell Biology and Neuroscience, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Jacques Prudhomme
- Department of Cell Biology and Neuroscience, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | | | - Enric Zehraoui
- INRA, UR1264-MycSA, 71 Avenue E. Bourlaux, CS20032, 33882 Villenave d'Ornon Cedex, France
| | - Evelien M Bunnik
- Department of Cell Biology and Neuroscience, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Elisandra M Rodrigues
- Department of Cell Biology and Neuroscience, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Glenn R Hicks
- Center for Plant Cell Biology and Department of Botany & Plant Sciences, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Karine G Le Roch
- Department of Cell Biology and Neuroscience, University of California, 900 University Avenue, Riverside, CA 92521, USA.
| |
Collapse
|
22
|
Satterwhite JE, Trumbo CM, Danell AS, Hvastkovs EG. Electrochemical study on the effects of epigenetic cytosine methylation on anti-benzo[a]pyrene diol epoxide damage at TP53 oligomers. Anal Chem 2013; 85:1183-91. [PMID: 23244159 DOI: 10.1021/ac303077h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anti-benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide (anti-BPDE) is a known carcinogen that damages DNA, and this damage is influenced by the DNA sequence and epigenetic factors. The influence of epigenetic cytosine methylation on the reaction with anti-BPDE at a known hotspot DNA damage site was studied electrochemically. Gold electrodes were modified with thiolated DNA oligomers spanning codons 270-276 of the TP53 gene. The oligomers exhibited 5-carbon cytosine methylation at the codon 273 location on the bound probe, the acquired complementary target, or both. Redox active diviologen compounds of the form C(12)H(25)V(2+)C(6)H(12)V(2+)C(12)H(25) (V(2+) = 4,4'-bipyridyl or viologen, C12-Viologen) were employed to detect anti-BPDE damage to DNA. DNA was exposed to racemic (±)- or enantiomerically pure (+)-anti-BPDE solutions followed by electrochemical interrogation in the presence of C12-Viologen. Background subtracted square wave voltammograms (SWV) showed the appearance of two peaks at approximately -0.38 V and -0.55 V vs Ag/AgCl upon anti-BPDE exposure. The acquired voltammetry is consistent with singly reduced C12-Viologen dimers bound at two different DNA environments, which arise from BPDE damage and are influenced by cytosine methylation and BPDE stereochemical considerations. UV spectroscopic and mass spectrometric methods employed to validate the electrochemical responses showed that (+)-anti-BPDE primarily adopts a minor groove bound orientation within the oligomers while selectively targeting the nontranscribed ssDNA sequence within the duplexes.
Collapse
Affiliation(s)
- Jennifer E Satterwhite
- East Carolina University, Department of Chemistry, 300 Science and Technology Building, Greenville, North Carolina 27858, USA
| | | | | | | |
Collapse
|
23
|
Ding Y, He F, Wen H, Li J, Qian K, Chi M, Ni M, Yin X, Bu Y, Zhao Y, Zhang D. Polymorphism in exons CpG rich regions of the cyp17-II gene affecting its mRNA expression and reproductive endocrine levels in female Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol 2012; 179:107-14. [PMID: 22906424 DOI: 10.1016/j.ygcen.2012.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/28/2012] [Accepted: 08/02/2012] [Indexed: 11/23/2022]
Abstract
Cytochrome P450c17-II (cyp17-II) gene is an important factor affecting the growth, gonad differentiation and development, and other reproductive traits of fish. There are three CpG rich regions in the coding region of cyp17-II gene in Japanese flounder (Paralichthys olivaceus). The aim of this study was to understand whether mutations in exons of the cyp17-II gene occured at CpG sites, and mutations and methylation status of those CpG sites were involved in regulation of the expression level of cyp17-II gene and the reproductive endocrine of Japanese flounder. The results showed that three single nucleotide polymorphisms (SNPs) were identified. SNP1 [(c. G594A (p.Gly 188Arg)] located in exon 4 of L1 locus, and SNP2 (c.A939G) and SNP3 (c.C975T) of L2 locus located in CpG rich region of the exon 6 of cyp17-II gene. Furthermore, the A to G transition at 939bp position added a new methylation site to the cyp17-II coding region. According to multiple-comparison analysis, two loci (L1 and L2) were significantly associated with serum testosterone (T) level (P<0.05) and the expression of cyp17-II in ovary (P<0.01). Intriguingly, individuals with GG genotype of L2 locus containing eight CpG methylation sites had significantly lower serum testosterone level and cyp17-II mRNA expression than those with AA genotype containing seven CpG methylation sites. Moreover, the CpG site was highly methylated (≥77.8%) at 938 bp position of individuals with GG genotype of L2 locus. These implied that the mutation and methylation status of the coding region of cyp17-II could influence the gene expression and the reproductive endocrine levels in female Japanese flounder and L2 locus could be regarded as a candidate genetic or epigenetic marker for Japanese flounder breeding programs.
Collapse
Affiliation(s)
- YuXia Ding
- Fisheries College, Ocean University of China, Qingdao 266003, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Demethylation of the coding region triggers the activation of the human testis-specific PDHA2 gene in somatic tissues. PLoS One 2012; 7:e38076. [PMID: 22675509 PMCID: PMC3365900 DOI: 10.1371/journal.pone.0038076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/30/2012] [Indexed: 11/20/2022] Open
Abstract
Human PDHA2 is a testis-specific gene that codes for the E(1)α subunit of Pyruvate Dehydrogenase Complex (PDC), a crucial enzyme system in cell energy metabolism. Since activation of the PDHA2 gene in somatic cells could be a new therapeutic approach for PDC deficiency, we aimed to identify the regulatory mechanisms underlying the human PDHA2 gene expression. Functional deletion studies revealed that the -122 to -6 promoter region is indispensable for basal expression of this TATA-less promoter, and suggested a role of an epigenetic program in the control of PDHA2 gene expression. Indeed, treatment of SH-SY5Y cells with the hypomethylating agent 5-Aza-2'-deoxycytidine (DAC) promoted the reactivation of the PDHA2 gene, by inducing the recruitment of the RNA polymerase II to the proximal promoter region and the consequent increase in PDHA2 mRNA levels. Bisulfite sequencing analysis revealed that DAC treatment induced a significant demethylation of the CpG island II (nucleotides +197 to +460) in PDHA2 coding region, while the promoter region remained highly methylated. Taken together with our previous results that show an in vivo correlation between PDHA2 expression and the demethylation of the CpG island II in testis germ cells, the present results show that internal methylation of the PDHA2 gene plays a part in its repression in somatic cells. In conclusion, our data support the novel finding that methylation of the PDHA2 coding region can inhibit gene transcription. This represents a key mechanism for absence of PDHA2 expression in somatic cells and a target for PDC therapy.
Collapse
|
25
|
Rangani G, Khodakovskaya M, Alimohammadi M, Hoecker U, Srivastava V. Site-specific methylation in gene coding region underlies transcriptional silencing of the Phytochrome A epiallele in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2012; 79:191-202. [PMID: 22466452 DOI: 10.1007/s11103-012-9906-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/17/2012] [Indexed: 05/31/2023]
Abstract
DNA methylation in cytosine residues plays an important role in regulating gene expression. Densely methylated transgenes are often silenced. In contrast, several eukaryotic genomes express moderately methylated genes. These methylations are found in the CG context within the coding region (gene body). The role of gene body methylation in gene expression, however, is not clear. The Arabidopsis Phytochrome A epiallele, phyA', carries hypermethylation in several CG sites resident to the coding region. As a result, phyA' is transcriptionally silenced and confers strong mutant phenotype. Mutations in chromatin modification factors and RNAi genes failed to revert the mutant phenotype, suggesting the involvement of a distinct epigenetic mechanism associated with phyA' silencing. Using the forward genetics approach, a suppressor line, termed as suppressor of p hyA' silencing 1 (sps1), was isolated. Genetic and molecular analysis revealed that sps1 mutation reactivates the phyA' locus without altering its methylation density. However, hypomethylation at a specific CG site in exon 1 was consistently associated with the release of phyA' silencing. While gene underlying sps1 mutation is yet to be identified, microarray analysis suggested that its targets are the expressed genes or euchromatic loci in Arabidopsis genome. By identifying the association of phyA' silencing with the methylation of a specific CG site in exon 1, the present work shows that site-specific methylation confers greater effect on transcription than the methylation density within gene-body. Further, as the identified site (exon 1) is not critical for the promoter activity, transcription elongation rather than transcription initiation is likely to be affected by this site-specific CG methylation.
Collapse
Affiliation(s)
- Gulab Rangani
- Department of Crop, Soil and Environmental Sciences, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | | | | | |
Collapse
|
26
|
Kumar D, Patro S, Ranjan R, Sahoo DK, Maiti IB, Dey N. Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy. PLoS One 2011; 6:e24627. [PMID: 21931783 PMCID: PMC3170401 DOI: 10.1371/journal.pone.0024627] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 08/16/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Designing functionally efficient recombinant promoters having reduced sequence homology and enhanced promoter activity will be an important step toward successful stacking or pyramiding of genes in a plant cell for developing transgenic plants expressing desired traits(s). Also basic knowledge regarding plant cell specific expression of a transgene under control of a promoter is crucial to assess the promoter's efficacy. METHODOLOGY/PRINCIPAL FINDINGS We have constructed a set of 10 recombinant promoters incorporating different up-stream activation sequences (UAS) of Mirabilis mosaic virus sub-genomic transcript (MS8, -306 to +27) and TATA containing core domains of Figwort mosaic virus sub-genomic transcript promoter (FS3, -271 to +31). Efficacies of recombinant promoters coupled to GUS and GFP reporter genes were tested in tobacco protoplasts. Among these, a 369-bp long hybrid sub-genomic transcript promoter (MSgt-FSgt) showed the highest activity in both transient and transgenic systems. In a transient system, MSgt-FSgt was 10.31, 2.86 and 2.18 times more active compared to the CaMV35S, MS8 and FS3 promoters, respectively. In transgenic tobacco (Nicotiana tabaccum, var. Samsun NN) and Arabidopsis plants, the MSgt-FSgt hybrid promoter showed 14.22 and 7.16 times stronger activity compared to CaMV35S promoter respectively. The correlation between GUS activity and uidA-mRNA levels in transgenic tobacco plants were identified by qRT-PCR. Both CaMV35S and MSgt-FSgt promoters caused gene silencing but the degree of silencing are less in the case of the MSgt-FSgt promoter compared to CaMV35S. Quantification of GUS activity in individual plant cells driven by the MSgt-FSgt and the CaMV35S promoter were estimated using confocal laser scanning microscopy and compared. CONCLUSION AND SIGNIFICANCE We propose strong recombinant promoter MSgt-FSgt, developed in this study, could be very useful for high-level constitutive expression of transgenes in a wide variety of plant cells.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| | - Sunita Patro
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| | - Rajiv Ranjan
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| | - Dipak K. Sahoo
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
- Kentucky Tobacco Research and Development Center (KTRDC), College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America
| | - Indu B. Maiti
- Kentucky Tobacco Research and Development Center (KTRDC), College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America
| | - Nrisingha Dey
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| |
Collapse
|
27
|
Methylation patterns in 5′ terminal regions of pluripotency-related genes in bovine in vitro fertilized and cloned embryos. J Genet Genomics 2010; 37:297-304. [DOI: 10.1016/s1673-8527(09)60047-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/20/2010] [Accepted: 02/10/2010] [Indexed: 11/17/2022]
|
28
|
Choi JK, Bae JB, Lyu J, Kim TY, Kim YJ. Nucleosome deposition and DNA methylation at coding region boundaries. Genome Biol 2009; 10:R89. [PMID: 19723310 PMCID: PMC2768978 DOI: 10.1186/gb-2009-10-9-r89] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/10/2009] [Accepted: 09/01/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nucleosome deposition downstream of transcription initiation and DNA methylation in the gene body suggest that control of transcription elongation is a key aspect of epigenetic regulation. RESULTS Here we report a genome-wide observation of distinct peaks of nucleosomes and methylation at both ends of a protein coding unit. Elongating polymerases tend to pause near both coding ends immediately upstream of the epigenetic peaks, causing a significant reduction in elongation efficiency. Conserved features in underlying protein coding sequences seem to dictate their evolutionary conservation across multiple species. The nucleosomal and methylation marks are commonly associated with high sequence-encoded DNA-bending propensity but differentially with CpG density. As the gene grows longer, the epigenetic codes seem to be shifted from variable inner sequences toward boundary regions, rendering the peaks more prominent in higher organisms. CONCLUSIONS Recent studies suggest that epigenetic inhibition of transcription elongation facilitates the inclusion of constitutive exons during RNA splicing. The epigenetic marks we identified here seem to secure the first and last coding exons from exon skipping as they are indispensable for accurate translation.
Collapse
Affiliation(s)
- Jung Kyoon Choi
- Department of Biochemistry, College of Life Science and Technology, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
29
|
Lunerová-Bedrichová J, Bleys A, Fojtová M, Khaitová L, Depicker A, Kovarík A. Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:1049-62. [PMID: 18315537 DOI: 10.1111/j.1365-313x.2008.03475.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We have studied the inheritance of the epigenetic state of tobacco transgenes whose expression was post-transcriptionally silenced by an invertedly repeated silencer locus. We show that, in hybrids, the coding region of the target neomycin phosphotransferase (nptII) gene was almost exclusively methylated at CG configurations, and dense non-CG methylation occurred in the 3' untranslated region. Homologous sequences in the silencer locus were heavily methylated at both CG and non-CG motifs. After segregation of the silencer locus, the CG methylation but not the non-CG methylation of the target genes was transmitted to the progeny. In the segregants, we observed an overall increase of CG methylation in the target genes, associated with a re-distribution from the 3' end of the coding region towards the middle. This pattern was inherited with some fluctuation for at least two additional generations in the absence of a detectable T-DNA-derived small RNA fraction. Thus CG methylation is not cleared during meiosis and may be inherited over generations without RNA signals being present. These epi-allelic variants re-expressed the reporter gene immediately after segregation of the trigger, showing that relatively dense CG methylation (approximately 60-80%) imprinted on most of the coding region (>500 bp) did not reduce expression compared with the parental non-methylated locus. We propose that the genic CG methylation seen in euchromatic regions of the genome may originate from ancient post-transcriptional gene silencing events as a result of adventitiously produced methylation-directing RNA molecules.
Collapse
Affiliation(s)
- Jana Lunerová-Bedrichová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
30
|
Gehring M, Henikoff S. DNA methylation and demethylation in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0102. [PMID: 22303233 PMCID: PMC3243302 DOI: 10.1199/tab.0102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Mary Gehring
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109
| |
Collapse
|
31
|
Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genet 2008; 4:e1000032. [PMID: 18369451 PMCID: PMC2265482 DOI: 10.1371/journal.pgen.1000032] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 02/11/2008] [Indexed: 12/26/2022] Open
Abstract
Whole genome tiling arrays provide a high resolution platform for profiling of genetic, epigenetic, and gene expression polymorphisms. In this study we surveyed natural genomic variation in cytosine methylation among Arabidopsis thaliana wild accessions Columbia (Col) and Vancouver (Van) by comparing hybridization intensity difference between genomic DNA digested with either methylation-sensitive (HpaII) or -insensitive (MspI) restriction enzyme. Single Feature Polymorphisms (SFPs) were assayed on a full set of 1,683,620 unique features of Arabidopsis Tiling Array 1.0F (Affymetrix), while constitutive and polymorphic CG methylation were assayed on a subset of 54,519 features, which contain a 5′CCGG3′ restriction site. 138,552 SFPs (1% FDR) were identified across enzyme treatments, which preferentially accumulated in pericentromeric regions. Our study also demonstrates that at least 8% of all analyzed CCGG sites were constitutively methylated across the two strains, while about 10% of all analyzed CCGG sites were differentially methylated between the two strains. Within euchromatin arms, both constitutive and polymorphic CG methylation accumulated in central regions of genes but under-represented toward the 5′ and 3′ ends of the coding sequences. Nevertheless, polymorphic methylation occurred much more frequently in gene ends than constitutive methylation. Inheritance of methylation polymorphisms in reciprocal F1 hybrids was predominantly additive, with F1 plants generally showing levels of methylation intermediate between the parents. By comparing gene expression profiles, using matched tissue samples, we found that magnitude of methylation polymorphism immediately upstream or downstream of the gene was inversely correlated with the degree of expression variation for that gene. In contrast, methylation polymorphism within genic region showed weak positive correlation with expression variation. Our results demonstrated extensive genetic and epigenetic polymorphisms between Arabidopsis accessions and suggested a possible relationship between natural CG methylation variation and gene expression variation. The functional expression of DNA sequence depends on the chromatin status. Epigenetic marks at specific loci could affect local chromatin accessibility, thus affect the gene activity of that loci. We applied an enzyme methylome approach to globally detect one type of epigenetic mark, cytosine methylation at CCGG restriction sites. Simultaneous transcriptional profiling allowed gene expression differences to be compared with DNA methylation differences, suggesting functional regulatory regions. Our method reveals natural variation in chromatin patterns which may underlie phenotypic variation.
Collapse
|
32
|
Li X, Wang X, He K, Ma Y, Su N, He H, Stolc V, Tongprasit W, Jin W, Jiang J, Terzaghi W, Li S, Deng XW. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. THE PLANT CELL 2008; 20:259-76. [PMID: 18263775 PMCID: PMC2276441 DOI: 10.1105/tpc.107.056879] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 12/12/2007] [Accepted: 12/20/2007] [Indexed: 05/17/2023]
Abstract
We present high-resolution maps of DNA methylation and H3K4 di- and trimethylation of two entire chromosomes and two fully sequenced centromeres in rice (Oryza sativa) shoots and cultured cells. This analysis reveals combinatorial interactions between these epigenetic modifications and chromatin structure and gene expression. Cytologically densely stained heterochromatin had less H3K4me2 and H3K4me3 and more methylated DNA than the less densely stained euchromatin, whereas centromeres had a unique epigenetic composition. Most transposable elements had highly methylated DNA but no H3K4 methylation, whereas more than half of protein-coding genes had both methylated DNA and di- and/or trimethylated H3K4. Methylation of DNA but not H3K4 was correlated with suppressed transcription. By contrast, when both DNA and H3K4 were methylated, transcription was only slightly reduced. Transcriptional activity was positively correlated with the ratio of H3K4me3/H3K4me2: genes with predominantly H3K4me3 were actively transcribed, whereas genes with predominantly H3K4me2 were transcribed at moderate levels. More protein-coding genes contained all three modifications, and more transposons contained DNA methylation in shoots than cultured cells. Differential epigenetic modifications correlated to tissue-specific expression between shoots and cultured cells. Collectively, this study provides insights into the rice epigenomes and their effect on gene expression and plant development.
Collapse
Affiliation(s)
- Xueyong Li
- National Institute of Biological Sciences, Beijing 102206, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chawla R, Nicholson SJ, Folta KM, Srivastava V. Transgene-induced silencing of Arabidopsis phytochrome A gene via exonic methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1105-1118. [PMID: 17931351 DOI: 10.1111/j.1365-313x.2007.03301.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Transgene-induced promoter or enhancer methylation clearly retards gene activity. While exonic methylation of genes is frequently observed in the RNAi process, only sporadic evidence has demonstrated its definitive role in gene suppression. Here, we report the isolation of a transcriptionally suppressed epi-allele of the Arabidopsis thaliana phytochrome A gene (PHYA) termed phyA' that shows methylation only in symmetric CG sites resident in exonic regions. These exonic modifications confer a strong phyA mutant phenotype, characterized by elongated hypocotyls in seedlings grown under continuous far-red light. De-methylation of phyA' in the DNA methyl transferase I (met1) mutant background increased PHYA expression and restored the wild-type phenotype, confirming the pivotal role of exonic CG methylation in maintaining the altered epigenetic state. PHYA epimutation was apparently induced by a transgene locus; however, it is stably maintained following segregation. Chromatin immunoprecipitation assays revealed association with dimethyl histone H3 lysine 9 (H3K9me2), a heterochromatic marker, within the phyA' coding region. Therefore, transgene-induced exonic methylation can lead to chromatin alteration that affects gene expression, most likely through reduction in the transcription rate.
Collapse
Affiliation(s)
- Rekha Chawla
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | |
Collapse
|
34
|
Yazaki J, Gregory BD, Ecker JR. Mapping the genome landscape using tiling array technology. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:534-42. [PMID: 17703988 PMCID: PMC2665186 DOI: 10.1016/j.pbi.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 06/29/2007] [Accepted: 07/09/2007] [Indexed: 05/16/2023]
Abstract
With the availability of complete genome sequences for a growing number of organisms, high-throughput methods for gene annotation and analysis of genome dynamics are needed. The application of whole-genome tiling microarrays for studies of global gene expression is providing a more unbiased view of the transcriptional activity within genomes. For example, this approach has led to the identification and isolation of many novel non-protein-coding RNAs (ncRNAs), which have been suggested to comprise a major component of the transcriptome that have novel functions involved in epigenetic regulation of the genome. Additionally, tiling arrays have been recently applied to the study of histone modifications and methylation of cytosine bases (DNA methylation). Surprisingly, recent studies combining the analysis of gene expression (transcriptome) and DNA methylation (methylome) using whole-genome tiling arrays revealed that DNA methylation regulates the expression levels of many ncRNAs. Further capture and integration of additional types of genome-wide data sets will help to illuminate additional hidden features of the dynamic genomic landscape that are regulated by both genetic and epigenetic pathways in plants.
Collapse
Affiliation(s)
- Junshi Yazaki
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Brian D. Gregory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joseph R. Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Corresponding author: Joseph R. Ecker ()
| |
Collapse
|
35
|
Gehring M, Henikoff S. DNA methylation dynamics in plant genomes. ACTA ACUST UNITED AC 2007; 1769:276-86. [PMID: 17341434 DOI: 10.1016/j.bbaexp.2007.01.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 12/28/2022]
Abstract
Cytosine bases are extensively methylated in the DNA of plant genomes. DNA methylation has been implicated in the silencing of transposable elements and genes, and loss of methylation can have severe consequences for the organism. The recent methylation profiling of the entire Arabidopsis genome has provided insight into the extent of DNA methylation and its functions in silencing and gene transcription. Patterns of DNA methylation are faithfully maintained across generations, but some changes in DNA methylation are observed in terminally differentiated tissues. Demethylation by a DNA glycosylase is required for the expression of imprinted genes in the endosperm and de novo methylation might play a role in the selective silencing of certain self-incompatibility alleles in the tapetum. Because DNA methylation patterns are faithfully inherited, changes in DNA methylation that arise somatically during the plant life cycle have the possibility of being propagated. Therefore, epimutations might be an important source of variation during plant evolution.
Collapse
Affiliation(s)
- Mary Gehring
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
36
|
Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 2006; 39:61-9. [PMID: 17128275 DOI: 10.1038/ng1929] [Citation(s) in RCA: 931] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 10/24/2006] [Indexed: 11/09/2022]
Abstract
Cytosine methylation, a common form of DNA modification that antagonizes transcription, is found at transposons and repeats in vertebrates, plants and fungi. Here we have mapped DNA methylation in the entire Arabidopsis thaliana genome at high resolution. DNA methylation covers transposons and is present within a large fraction of A. thaliana genes. Methylation within genes is conspicuously biased away from gene ends, suggesting a dependence on RNA polymerase transit. Genic methylation is strongly influenced by transcription: moderately transcribed genes are most likely to be methylated, whereas genes at either extreme are least likely. In turn, transcription is influenced by methylation: short methylated genes are poorly expressed, and loss of methylation in the body of a gene leads to enhanced transcription. Our results indicate that genic transcription and DNA methylation are closely interwoven processes.
Collapse
Affiliation(s)
- Daniel Zilberman
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
37
|
Barra JL, Holmes AM, Grégoire A, Rossignol JL, Faugeron G. Novel relationships among DNA methylation, histone modifications and gene expression in Ascobolus. Mol Microbiol 2005; 57:180-95. [PMID: 15948959 DOI: 10.1111/j.1365-2958.2005.04665.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
By studying Ascobolus strains methylated in various portions of the native met2 gene or of the hph transgene, we generalized our previous observation that methylation of the downstream portion of a gene promotes its stable silencing and triggers the production of truncated transcripts which rarely extend through the methylated region. In contrast, methylation of the promoter region does not promote efficient gene silencing. The chromatin state of met2 methylated strains was investigated after partial micrococcal nuclease (MNase) digestion. We show that MNase sensitive sites present along the unmethylated regions are no longer observed along the methylated ones. These chromatin changes are not resulting from the absence of transcription. They are associated, in both met2 and hph, with modifications of core histones corresponding, on the N terminus of histone H3, to an increase of dimethylation of lysine 9 and a decrease of dimethylation of lysine 4. Contrary to other organisms, these changes are independent of the transcriptional state of the genes, and furthermore, no decrease in acetylation of histone H4 is observed in silenced genes.
Collapse
Affiliation(s)
- José L Barra
- Institut Jacques Monod, UMR 7592 CNRS/Université Paris 7/Université Paris 6, Tour 43, 2 Place Jussieu, 75251 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
38
|
Pauli S, Rothnie HM, Chen G, He X, Hohn T. The cauliflower mosaic virus 35S promoter extends into the transcribed region. J Virol 2004; 78:12120-8. [PMID: 15507598 PMCID: PMC525061 DOI: 10.1128/jvi.78.22.12120-12128.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A 60-nucleotide region (S1) downstream of the transcription start site of the cauliflower mosaic virus 35S RNA can enhance gene expression. By using transient expression assays with plant protoplasts, this activity was shown to be at least partially due to the effect of transcriptional enhancers within this region. We identify sequence motifs with enhancer function, which are normally masked by the powerful upstream enhancers of the 35S promoter. A repeated CT-rich motif is involved both in enhancer function and in interaction with plant nuclear proteins. The S1 region can also enhance expression from heterologous promoters.
Collapse
Affiliation(s)
- Sandra Pauli
- Friedrich Miescher Institute, P.O. Box 2543, CH-4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Onaga Y, Ido A, Uto H, Hasuike S, Kusumoto K, Moriuchi A, Numata M, Nagata K, Hori T, Hayashi K, Tsubouchi H. Hypermethylation of the wild-type ferrochelatase allele is closely associated with severe liver complication in a family with erythropoietic protoporphyria. Biochem Biophys Res Commun 2004; 321:851-8. [PMID: 15358105 DOI: 10.1016/j.bbrc.2004.06.178] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Indexed: 11/27/2022]
Abstract
Erythropoietic protoporphyria (EPP) is an inherited disorder of heme biosynthesis caused by cellular decreases in ferrochelatase (FECH) activity. Clinical expression of this disorder usually requires coinheritance of a mutant FECH allele and a normal FECH allele expressed at a low level. In this study, we investigated the methylation status of a normal, but poorly expressed, FECH gene in a single Japanese family with EPP. In this family, the proband died from liver failure, whereas the mother and sister exhibited overt EPP with mild liver dysfunction. A splicing mutation (IVS9+1g-->a) in the FECH gene, which produces a mutant FECH transcript lacking exon 9, was detected in the maternal allele of the proband and his sister. All subjects, including the father, who did not exhibit EPP, possessed the IVS3-48c/c genotype. This allele increases the proportion of aberrantly spliced mRNA, resulting in reduced FECH activity. Normal FECH transcripts were, however, detected in the mother and sister, but not in the proband. The CpG sites in the region from bases -78 to -31 were partially methylated in the proband and his father, but not in his mother or sister. Additionally, CpG methylation within this region reduced transcription of the FECH gene. These results suggest that whereas the combination of a maternal IVS9+1a allele and a paternal IVS3-48c allele results in overt EPP, CpG methylation of the FECH gene promoter, likely inherited from the father, increases the severity of EPP, leading to fatal liver failure, as seen in the proband.
Collapse
Affiliation(s)
- Yukiko Onaga
- Department of Internal Medicine II, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1962, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lin K, Tan SB, Kolatkar PR, Epstein RJ. Nonrandom intragenic variations in patterns of codon bias implicate a sequential interplay between transitional genetic drift and functional amino acid selection. J Mol Evol 2004; 57:538-45. [PMID: 14738312 DOI: 10.1007/s00239-003-2507-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Accepted: 05/20/2003] [Indexed: 11/28/2022]
Abstract
Although most codon third bases appear to be functionless, the synonymous codons so defined exhibit a strikingly nonrandom distribution (codon bias) within human and other genes. To examine this phenomenon further, we generated a database of DNA sequences encoding human transmembrane cell-surface receptor proteins. Using this database we show here that the guanine and cytosine content of codon third bases (GC3) varies intragenically with the nature of the specified receptor domains (transmembrane > extracellular > intracellular domains; p < 0.001), the phenotype of the encoded amino acids (hydrophobic > hydrophilic > neutral amino acids; p < 0.001), and the receptor affiliation of the transmembrane (G-protein-coupled receptors > receptor tyrosine kinases; p < 0.001). Within gene regions specifying transmembrane domains, GC3 declines as domain functionality becomes redundant with increasing hydrophobicity (p < 0.001). Codons containing the second-base cytosine (XCZ, which encodes neutral amino acids) are selectively depleted of third-base adenine content (A3: XCA codons) when encoding transmembrane domain residues, consistent with positive selection for transitional mutation of XCG to XTG (which encodes hydrophobic amino acids) rather than to the synonymous XCA. Supporting this XCG --> XTG mechanism of codon bias, the G3:A3 ratio of codons specifying the transmembrane amino acid glycine (GGZ) is intermediate between that of its functional homolog alanine (GCZ) and that of hydrophobic valine (GTZ), even though the C3:T3 ratios are similar. Conversely, nearest-neighbor analysis of third bases 5' to codons specifying valine and leucine (CTZ) confirms a significant difference in C3:T3 but not G3:A3 ratios (i.e., C3/G1 --> T3/G1 > C3/A1; p < 0.001), consistent with the functionally advantageous retention of hydrophobic residues. These data raise the possibility that patterns of intragenic codon bias reflect a balance between negative and positive selection, suggesting in turn that analysis of codon third-base usage may help to predict the functional significance of encoded products.
Collapse
Affiliation(s)
- K Lin
- Institute of Molecular and Cell Biology, Bioinformatics Centre, National University of Singapore, 117609, Singapore
| | | | | | | |
Collapse
|
41
|
Fujimori S, Washio T, Higo K, Ohtomo Y, Murakami K, Matsubara K, Kawai J, Carninci P, Hayashizaki Y, Kikuchi S, Tomita M. A novel feature of microsatellites in plants: a distribution gradient along the direction of transcription. FEBS Lett 2003; 554:17-22. [PMID: 14596907 DOI: 10.1016/s0014-5793(03)01041-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A computer-based analysis was conducted to assess the characteristics of microsatellites in transcribed regions of rice and Arabidopsis. In addition, two mammals were simultaneously analyzed for a comparative analysis. Our analyses confirmed a novel plant-specific feature in which there is a gradient in microsatellite density along the direction of transcription. It was also confirmed that pyrimidine-rich microsatellites are found intensively near the transcription start sites, specifically in the two plants, but not in the mammals. Our results suggest that microsatellites located at high frequency in the 5'-flanking regions of plant genes can potentially act as factors in regulating gene expression.
Collapse
Affiliation(s)
- Shigeo Fujimori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0035, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Asada K, Miyamoto K, Fukutomi T, Tsuda H, Yagi Y, Wakazono K, Oishi S, Fukui H, Sugimura T, Ushijima T. Reduced expression of GNA11 and silencing of MCT1 in human breast cancers. Oncology 2003; 64:380-8. [PMID: 12759536 DOI: 10.1159/000070297] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alteration in the methylation status of a gene is often associated with its altered expression. Based on a genome scanning technique for differences in CpG methylations, methylation-sensitive representational difference analysis, DNA fragments hypermethylated in a human breast cancer were isolated. A DNA fragment was isolated from intron 1 of guanine-nucleotide-binding protein alpha-11 (GNA11). mRNA expression of GNA11 was shown to be decreased in 10 of 16 breast cancers by RT-PCR analysis, and the immunoreactivity of the GNA11 product, Galpha11 subunit of heterotrimeric G-protein, was observed to be reduced in 14 of the 16 cancers by immunohistochemistry. Methylation of a CpG island (CGI) in the 5' region of GNA11 or that of intron 1 did not show a clear correlation with its decreased expression. Another DNA fragment was isolated from a CGI in the 5' upstream region of monocarboxylate transporter 1 (MCT1), and was methylated in 4 of 20 breast cancers. The CGI was also methylated in a human breast cancer cell line, MDA-MB-231, and quantitative RT-PCR showed that its expression was almost lost in the cell line. By treatment of the cells with a demethylating agent, 5-aza-2'-deoxycytidine, the methylation was removed and the expression was restored. GNA11 is involved in signalling of gonadotropin-releasing hormone receptor, which negatively regulates cell growth. MCT1 is involved in cellular transportation of butyrate, which induces cellular differentiation. Downregulation of these two genes was suggested to be involved in human breast cancers.
Collapse
Affiliation(s)
- Kiyoshi Asada
- Division of Carcinogenesis, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Singal R, vanWert JM, Ferdinand L. Methylation of alpha-type embryonic globin gene alpha pi represses transcription in primary erythroid cells. Blood 2002; 100:4217-22. [PMID: 12393573 DOI: 10.1182/blood-2002-02-0457] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inverse relationship between expression and methylation of beta-type globin genes is well established. However, little is known about the relationship between expression and methylation of avian alpha-type globin genes. The embryonic alpha(pi)-globin promoter was unmethylated, and alpha(pi)-globin RNA was easily detected in 5-day chicken erythroid cells. A progressive methylation of the CpG dinucleotides in the alpha(pi) promoter associated with loss of expression of alpha(pi)-globin gene was seen during development in primary erythroid cells. A 315-bp alpha(pi)-globin promoter region was cloned in an expression construct (alpha(pi)pGL3E) containing a luciferase reporter gene and SV40 enhancer. The alpha(pi)pGL3E construct was transfected into primary erythroid cells derived from 5-day-old chicken embryos. Methylation of alpha(pi)pGL3E plasmid and alpha(pi)-globin promoter alone resulted in a 20-fold and 7-fold inhibition of expression, respectively. The fully methylated but not the unmethylated 315-bp alpha(pi)-globin gene promoter fragment formed a methyl cytosine-binding protein complex (MeCPC). Chromatin immunoprecipitation assays were combined with quantitative real-time polymerase chain reaction to assess histone acetylation associated with the alpha(pi)-globin gene promoter. Slight hyperacetylation of histone H3 but a marked hyperacetylation of histone H4 was seen in 5-day when compared with 14-day erythroid cells. These results demonstrate that methylation can silence transcription of an avian alpha-type embryonic globin gene in homologous primary erythroid cells, possibly by interacting with an MeCPC and histone deacetylase complex.
Collapse
Affiliation(s)
- Rakesh Singal
- Department of Medicine, Overton Brooks VA Medical Center and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport 71101, USA.
| | | | | |
Collapse
|
44
|
Cui H, Fedoroff NV. Inducible DNA demethylation mediated by the maize Suppressor-mutator transposon-encoded TnpA protein. THE PLANT CELL 2002; 14:2883-99. [PMID: 12417708 PMCID: PMC152734 DOI: 10.1105/tpc.006163] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2002] [Accepted: 08/19/2002] [Indexed: 05/10/2023]
Abstract
Heritable epigenetic inactivation of the maize Suppressor-mutator (Spm) transposon is associated with promoter methylation, and its reversal is mediated by the transposon-encoded TnpA protein. We have developed an assay that permits demethylation of the Spm sequence to be controlled by inducing the expression of TnpA in plant cells. Using this assay, we show that demethylation is a rapid, active process. TnpA is a weak transcriptional activator, and deletions that abolish its transcriptional activity also eliminate its demethylation activity. We show that cell cycle and DNA synthesis inhibitors interfere with TnpA-mediated Spm demethylation. We further show that TnpA has a much lower affinity for fully methylated than for hemimethylated or unmethylated DNA fragments derived from Spm termini. Based on these observations, we suggest that TnpA binds to the postreplicative, hemimethylated Spm sequence and promotes demethylation either by creating an appropriate demethylation substrate or by itself participating in or recruiting a demethylase.
Collapse
Affiliation(s)
- Hongchang Cui
- Biology Department, Life Sciences Consortium and Plant Physiology Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
45
|
Kaneda A, Kaminishi M, Nakanishi Y, Sugimura T, Ushijima T. Reduced expression of the insulin-induced protein 1 and p41 Arp2/3 complex genes in human gastric cancers. Int J Cancer 2002; 100:57-62. [PMID: 12115587 DOI: 10.1002/ijc.10464] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aberrantly methylated DNA fragments in a human gastric cancer were searched for by a genome-scanning method, methylation-sensitive-representational difference analysis (MS-RDA). Six DNA fragments flanked by CpG islands (CGIs) and hypermethylated in the cancer were isolated. Four of the 6 fragments possessed genes in their vicinities. Quantitative RT-PCR analysis of the 4 genes showed reduced expression of 2 genes in cancers: Insulin-induced protein 1 (INSIG1/CL-6) and p41 Arp2/3 complex (p41-Arc). As for INSIG1, a DNA fragment was derived from the edge of a CGI in the promoter region. The edge was methylated in 11 of 22 primary gastric cancers, whereas the center was not methylated in any cancer. INSIG1 expression was markedly reduced in 19 cancers, including the 11 cancers with the methylation. By 5-aza-2'-deoxycytidine treatment of 5 cell lines with the methylation of the edge, partial restoration of INSIG1 expression was detected only in 2 of them. These data indicated that, although the reduced INSIG1 expression in cancers was associated with the methylation at the edge of the CGI in the promoter region, the methylation was likely to be a secondary change. As for p41-Arc, a DNA fragment was derived from a CGI overlapping exon 8, and its methylation did not correlate with its expression. However, methylation of a CGI in the promoter region with a marked reduction of its expression was observed in 1 of the 22 primary cancers. INSIG1 and p41-Arc are known to be involved in cellular differentiation and morphology, respectively, and it was suggested that their reduced expressions might be involved in gastric cancer development or progression.
Collapse
Affiliation(s)
- Atsushi Kaneda
- Carcinogenesis Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | |
Collapse
|
46
|
Singal R, Wang SZ, Sargent T, Zhu SZ, Ginder GD. Methylation of promoter proximal-transcribed sequences of an embryonic globin gene inhibits transcription in primary erythroid cells and promotes formation of a cell type-specific methyl cytosine binding complex. J Biol Chem 2002; 277:1897-905. [PMID: 11684679 DOI: 10.1074/jbc.m105580200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The methylation pattern of a 248-base pair proximal transcribed region (rho248) of the avian embryonic rho-globin gene was found to correlate inversely with stage-specific expression in avian erythroid cells. In vitro methylation of the rho248 segment alone (in the absence of promoter methylation) resulted in a 5-fold inhibition of transcription in a transient transfection assay in primary erythroid cells in which the transfected gene is packaged into nucleosomal chromatin. This effect was observed if the rho248 segment was positioned adjacent to the promoter but not when it was located 2.7 kilobases downstream. Fully methylated but not unmethylated rho248 formed a novel cell type-specific methyl cytosine-binding protein complex (MeCPC) that contained methyl binding domain protein-2 (MBD-2) and histone deacetylase 1 proteins but differed from MeCP-1. The histone deacetylase inhibitor trichostatin A failed to relieve methylation-mediated repression of transcription from the rho-gene promoter, supporting the notion of the dominance of methylation over histone deacetylation in silencing through CpG-rich sequences at this locus. These data demonstrate that site-specific methylation of a vertebrate gene 5'-transcribed region alone at the exact CpGs that are methylated in vivo can suppress transcription in homologous primary cells and facilitate binding to a cell type-specific MeCPC.
Collapse
Affiliation(s)
- Rakesh Singal
- Massey Cancer Center and Departments of Internal Medicine and Human Genetics, Virginia Commonwealth University, Richmond, Virginia 23298-0037, USA
| | | | | | | | | |
Collapse
|
47
|
He X, Fütterer J, Hohn T. Contribution of downstream promoter elements to transcriptional regulation of the rice tungro bacilliform virus promoter. Nucleic Acids Res 2002; 30:497-506. [PMID: 11788712 PMCID: PMC99825 DOI: 10.1093/nar/30.2.497] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Downstream sequences influence activity of the rice tungro bacilliform virus (RTBV) promoter in protoplasts derived from cultured rice cells. We previously identified a DNA element located between positions +50 and +90 relative to the transcription start site to which rice nuclear proteins bind. In this study, using DNA UV crosslinking assays, we show that two rice nuclear proteins bind specifically to this DNA element. We demonstrate that the DNA element enhances RTBV promoter activity in a copy number-dependent manner when transferred to a position upstream of the promoter. In addition, using electrophoretic mobility shift assays, we show that at least two novel nuclear proteins from rice cell suspension cultures bind to a subregion (from +50 to +59) of the DNA element and that a protein from rice root, but not shoot, nuclear extracts interacts with a perfect palindromic sequence motif located within the sequence +45 to +59. Furthermore, a position-dependent GAGA motif, present in three copies within downstream promoter sequences from +1 to +50, is involved in the regulation of RTBV promoter activity.
Collapse
Affiliation(s)
- Xiaoyuan He
- Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
48
|
Soppe WJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJ. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 2000; 6:791-802. [PMID: 11090618 DOI: 10.1016/s1097-2765(05)00090-0] [Citation(s) in RCA: 399] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The transition to flowering in Arabidopsis thaliana is delayed in fwa mutant plants. FWA was identified by loss-of-function mutations in normally flowering revertants of the fwa mutant, and it encodes a homeodomain-containing transcription factor. The DNA sequence of wild-type and fwa mutant alleles was identical in the genomic region of FWA. Furthermore, the FWA gene is ectopically expressed in fwa mutants and silenced in mature wild-type plants. This silencing is associated with extensive methylation of two direct repeats in the 5' region of the gene. The late flowering phenotype, ectopic FWA expression, and hypomethylation of the repeats were also induced in the ddm1 hypomethylated background. Mechanisms for establishment and maintenance of the epigenetic mark on FWA are discussed.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/physiology
- Arabidopsis Proteins
- Base Sequence
- Chromosomes, Artificial, Yeast
- DNA Methylation
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Gene Silencing
- Genes, Homeobox
- Genes, Plant
- Homeodomain Proteins/chemistry
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Molecular Sequence Data
- Mutagenesis
- Plant Proteins
- Plant Stems/physiology
- RNA, Messenger/analysis
- Repetitive Sequences, Nucleic Acid
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transformation, Genetic
Collapse
Affiliation(s)
- W J Soppe
- Laboratory of Genetics, Wageningen University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
Iyer LM, Kumpatla SP, Chandrasekharan MB, Hall TC. Transgene silencing in monocots. PLANT MOLECULAR BIOLOGY 2000; 43:323-346. [PMID: 10999414 DOI: 10.1023/a:1006412318311] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant gene silencing was originally thought to be a quirk of transformation procedures, but is now recognized to be a facet of vitally important gene regulatory systems, present in all organisms. Monocot plants, especially the grasses, play a foremost role in the agricultural economy of all nations, and their biotechnological manipulation offers great potential for both developed and developing countries. Here, we review reported instances of transgene silencing in monocots and relate the processes of transcriptional and post-transcriptional gene silencing (TGS, PTGS) in perspective to the rapidly burgeoning knowledge of these phenomena in many organisms. Recent findings include the involvement of an RNA-dependent RNA polymerase and a nuclease in PTGS systems and the close relationship between methylation and chromatin structure in TGS events.
Collapse
Affiliation(s)
- L M Iyer
- Institute of Developmental and Molecular Biology, Texas A&M University, College Station 77843-3155, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Epigenetic silencing of transgenes and endogenous genes can occur at the transcriptional level (TGS) or at the posttranscriptional level (PTGS). Because they can be induced by transgenes and viruses, TGS and PTGS probably reflect alternative (although not exclusive) responses to two important stress factors that the plant's genome has to face: the stable integration of additional DNA into chromosomes and the extrachromosomal replication of a viral genome. TGS, which results from the impairment of transcription initiation through methylation and/or chromatin condensation, could derive from the mechanisms by which transposed copies of mobile elements and T-DNA insertions are tamed. PTGS, which results from the degradation of mRNA when aberrant sense, antisense, or double-stranded forms of RNA are produced, could derive from the process of recovery by which cells eliminate pathogens (RNA viruses) or their undesirable products (RNA encoded by DNA viruses). Mechanisms involving DNA-DNA, DNA-RNA, or RNA-RNA interactions are discussed to explain the various pathways for triggering (trans)gene silencing in plants.
Collapse
Affiliation(s)
- M. Fagard
- Laboratoire de Biologie Cellulaire, INRA, 78026 Versailles Cedex, France; e-mail:
| | | |
Collapse
|