1
|
Kono DH, Hahn BH. Animal models of systemic lupus erythematosus (SLE). DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2025:189-234. [DOI: 10.1016/b978-0-323-93232-5.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Polis B, Cuda CM, Putterman C. Animal models of neuropsychiatric systemic lupus erythematosus: deciphering the complexity and guiding therapeutic development. Autoimmunity 2024; 57:2330387. [PMID: 38555866 DOI: 10.1080/08916934.2024.2330387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Systemic lupus erythematosus (SLE) poses formidable challenges due to its multifaceted etiology while impacting multiple tissues and organs and displaying diverse clinical manifestations. Genetic and environmental factors contribute to SLE complexity, with relatively limited approved therapeutic options. Murine models offer insights into SLE pathogenesis but do not always replicate the nuances of human disease. This review critically evaluates spontaneous and induced animal models, emphasizing their validity and relevance to neuropsychiatric SLE (NPSLE). While these models undoubtedly contribute to understanding disease pathophysiology, discrepancies persist in mimicking some NPSLE intricacies. The lack of literature addressing this issue impedes therapeutic progress. We underscore the urgent need for refining models that truly reflect NPSLE complexities to enhance translational fidelity. We encourage a comprehensive, creative translational approach for targeted SLE interventions, balancing scientific progress with ethical considerations to eventually improve the management of NPSLE patients. A thorough grasp of these issues informs researchers in designing experiments, interpreting results, and exploring alternatives to advance NPSLE research.
Collapse
Affiliation(s)
- Baruh Polis
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
- Division of Rheumatology and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
3
|
Ryder S. Integrated Applied Clinical Pharmacology in the Advancement of Rare and Ultra-Rare Disease Therapeutics. Clin Pharmacol Ther 2024; 116:1485-1495. [PMID: 39034754 DOI: 10.1002/cpt.3382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/29/2024] [Indexed: 07/23/2024]
Abstract
The introduction of safe and effective rare/ultra-rare disease treatments is a focus of many biotherapeutic enterprises. Despite this increased activity, a significant unmet need remains, and the responsibility to meet this need is augmented by enhanced genomic, biologic, medical, analytical, and informatic tools. It is recognized that the development of an effective and safe rare/ultra-rare disease therapeutic faces a number of challenges with an important role noted for clinical pharmacology. Clinical pharmacology is foundationally an integrative discipline which must be embedded in and is interdependent upon understanding the pathogenic biology, clinical presentation, disease progression, and end-point assessment of the disease under study. This manuscript presents an overview and two case examples of this integrative approach, the development of C5-targeted therapeutics for the treatment of generalized myasthenia gravis and asfotase alpha for the treatment of hypophosphatasia. The two presented case examples show the usefulness of understanding the biological drivers and clinical course of a rare disease, having relevant animal models, procuring informative natural history data, importing assessment tools from relevant alternative areas, and using integrated applied clinical pharmacology to inform target engagement, dose, and the cascade of pharmacodynamic and clinical effects that follow. Learnings from these programs include the importance of assuring cross-validation of assays throughout a development program and continued commitment to understanding the relationship among the array of Pd end points and clinical outcomes. Using an integrative approach, substantive work remains to be done to meet the unmet needs of patients with rare/ultra-rare disease.
Collapse
|
4
|
Watanabe-Kusunoki K, Anders HJ. Balancing efficacy and safety of complement inhibitors. J Autoimmun 2024; 145:103216. [PMID: 38552408 DOI: 10.1016/j.jaut.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 05/15/2024]
Abstract
Complement inhibitors have been approved for several immune-mediated diseases and they are considered the next paradigm-shifting approach in the treatment of glomerulonephritis. The hierarchical organization of the complement system offers numerous molecular targets for therapeutic intervention. However, complement is an integral element of host defense and therefore complement inhibition can be associated with serious infectious complications. Here we give a closer look to the hierarchical complement system and how interfering with proximal versus distal or selective versus unselective molecular targets could determine efficacy and safety. Furthermore, we propose to consider the type of disease, immunological activity, and patient immunocompetence when stratifying patients, e.g., proximal/unselective targets for highly active and potentially fatal diseases while distal and selective targets may suit more chronic disease conditions with low or moderate disease activity requiring persistent complement blockade in patients with concomitant immunodeficiency. Certainly, there exists substantial promise for anti-complement therapeutics. However, balancing efficacy and safety will be key to establish powerful treatment effects with minimal adverse events, especially when complement blockade is continued over longer periods of time in chronic disorders.
Collapse
Affiliation(s)
- Kanako Watanabe-Kusunoki
- Renal Division, Department of Medicine IV, Ludwig-Maximilians (LMU) University Hospital, LMU Munich, Germany; Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hans-Joachim Anders
- Renal Division, Department of Medicine IV, Ludwig-Maximilians (LMU) University Hospital, LMU Munich, Germany.
| |
Collapse
|
5
|
Zervopoulou E, Grigoriou M, Doumas SA, Yiannakou D, Pavlidis P, Gasparoni G, Walter J, Filia A, Gakiopoulou H, Banos A, Mitroulis I, Boumpas DT. Enhanced medullary and extramedullary granulopoiesis sustain the inflammatory response in lupus nephritis. Lupus Sci Med 2024; 11:e001110. [PMID: 38471723 DOI: 10.1136/lupus-2023-001110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVES In SLE, deregulation of haematopoiesis is characterised by inflammatory priming and myeloid skewing of haematopoietic stem and progenitor cells (HSPCs). We sought to investigate the role of extramedullary haematopoiesis (EMH) as a key player for tissue injury in systemic autoimmune disorders. METHODS Transcriptomic analysis of bone marrow (BM)-derived HSPCs from patients with SLE and NZBW/F1 lupus-prone mice was performed in combination with DNA methylation profile. Trained immunity (TI) was induced through β-glucan administration to the NZBW/F1 lupus-prone model. Disease activity was assessed through lupus nephritis (LN) histological grading. Colony-forming unit assay and adoptive cell transfer were used to assess HSPCs functionalities. RESULTS Transcriptomic analysis shows that splenic HSPCs carry a higher inflammatory potential compared with their BM counterparts. Further induction of TI, through β-glucan administration, exacerbates splenic EMH, accentuates myeloid skewing and worsens LN. Methylomic analysis of BM-derived HSPCs demonstrates myeloid skewing which is in part driven by epigenetic tinkering. Importantly, transcriptomic analysis of human SLE BM-derived HSPCs demonstrates similar findings to those observed in diseased mice. CONCLUSIONS These data support a key role of granulocytes derived from primed HSPCs both at medullary and extramedullary sites in the pathogenesis of LN. EMH and TI contribute to SLE by sustaining the systemic inflammatory response and increasing the risk for flare.
Collapse
Affiliation(s)
- Eleni Zervopoulou
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Grigoriou
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace School of Health Sciences, Alexandroupoli, Greece
| | - Stavros A Doumas
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Danae Yiannakou
- Institute of Computer Science, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Pavlos Pavlidis
- Institute of Computer Science, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Gilles Gasparoni
- Department of Genetics-Epigenetics, Saarland University, Saarbrucken, Germany
| | - Jörn Walter
- Department of Genetics-Epigenetics, Saarland University, Saarbrucken, Germany
| | - Anastasia Filia
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace School of Health Sciences, Alexandroupoli, Greece
| | - Harikleia Gakiopoulou
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aggelos Banos
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Ioannis Mitroulis
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace School of Health Sciences, Alexandroupoli, Greece
| | - Dimitrios T Boumpas
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Miwa T, Sato S, Golla M, Song WC. Expansion of Anticomplement Therapy Indications from Rare Genetic Disorders to Common Kidney Diseases. Annu Rev Med 2024; 75:189-204. [PMID: 37669567 DOI: 10.1146/annurev-med-042921-102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Complement constitutes a major part of the innate immune system. The study of complement in human health has historically focused on infection risks associated with complement protein deficiencies; however, recent interest in the field has focused on overactivation of complement as a cause of immune injury and the development of anticomplement therapies to treat human diseases. The kidneys are particularly sensitive to complement injury, and anticomplement therapies for several kidney diseases have been investigated. Overactivation of complement can result from loss-of-function mutations in complement regulators; gain-of-function mutations in key complement proteins such as C3 and factor B; or autoantibody production, infection, or tissue stresses, such as ischemia and reperfusion, that perturb the balance of complement activation and regulation. Here, we provide a high-level review of the status of anticomplement therapies, with an emphasis on the transition from rare diseases to more common kidney diseases.
Collapse
Affiliation(s)
- Takashi Miwa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Sayaka Sato
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Madhu Golla
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| |
Collapse
|
7
|
Anderson M, Magro C, Belmont HM. Microvascular C5b-9 deposition in non-lesional skin in patients with SLE and its correlation with active lupus nephritis: a prospective observational study. Lupus Sci Med 2023; 10:e000996. [PMID: 37879755 PMCID: PMC10603335 DOI: 10.1136/lupus-2023-000996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023]
Abstract
OBJECTIVE Tissue damage in lupus nephritis (LN) is mediated by activation of the classical complement pathway. Complement-mediated upregulation of endothelial cell adhesion molecules is seen in dermal blood vessels of non-lesional skin of patients with active lupus. In diseases with systemic complement activation, extensive microvascular C5b-9 deposition is seen in non-lesional skin. In this study, we assess the presence of systemic complement pathway activation as determined by non-lesional skin microvascular C5b-9 deposition in patients with LN. METHODS Eight patients with active LN and eight patients without active LN underwent non-lesional skin biopsies. Using a diaminobenzidine technique, specimens were evaluated for microvascular C5b-9 consistent with systemic complement pathway activation. RESULTS Five of eight patients with active LN and one of eight patients without active LN demonstrated positive C5b-9 staining in non-lesional skin (p=0.04). Positive non-lesional C5b-9 staining has greater specificity, 87.5%, for active LN than pyuria, low complements, elevated double-stranded DNA (dsDNA) and proteinuria. Urine protein creatinine ratio was significantly higher in patients with positive non-lesional C5b-9 deposition (5.18 vs 1.20; p=0.04). C5b-9 deposition was not associated with a higher NIH Activity Index, interstitial fibrosis, dsDNA or lower complements. CONCLUSION This is the first study to demonstrate evidence in non-lesional skin of microvascular C5b-9 indicative of systemic complement pathway activation in LN. C5b-9 deposition is statistically more common and demonstrated greater specificity than most historical biomarkers for active LN. The findings support a potential role for microvascular C5b-9 assessment in non-lesional skin as a biomarker for LN activity.
Collapse
Affiliation(s)
- Meghan Anderson
- Department of Rheumatology, NYU Grossman School of Medicine, New York City, New York, USA
| | - Cynthia Magro
- Department of Pathology, Weill Cornell Medicine, New York City, New York, USA
| | - H Michael Belmont
- Department of Rheumatology, NYU Grossman School of Medicine, New York City, New York, USA
| |
Collapse
|
8
|
Holers VM. Complement therapeutics are coming of age in rheumatology. Nat Rev Rheumatol 2023; 19:470-485. [PMID: 37337038 DOI: 10.1038/s41584-023-00981-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/21/2023]
Abstract
The complement system was described over 100 years ago, and it is well established that activation of this pathway accompanies the great majority of autoimmune and inflammatory diseases. In addition, over three decades of work in murine models of human disease have nearly universally demonstrated that complement activation is upstream of tissue injury and the engagement of pro-inflammatory mechanisms such as the elaboration of cytokines and chemokines, as well as myeloid cell recruitment and activation. With that background, and taking advantage of advances in the development of biologic and small-molecule therapeutics, the creation and clinical evaluation of complement therapeutics is now rapidly expanding. This article reviews the current state of the complement therapeutics field, with a focus on their use in diseases cared for or consulted upon by rheumatologists. Included is an overview of the activation mechanisms and components of the system, in addition to the mechanisms by which the complement system interacts with other immune system constituents. The various therapeutic approaches to modulating the system in rheumatic and autoimmune diseases are reviewed. To understand how best to clinically assess the complement system, methods of its evaluation are described. Finally, next-generation therapeutic and diagnostic advances that can be envisioned for the future are discussed.
Collapse
Affiliation(s)
- V Michael Holers
- Medicine/Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
9
|
Cheung CK, Dormer JP, Barratt J. The role of complement in glomerulonephritis-are novel therapies ready for prime time? Nephrol Dial Transplant 2023; 38:1789-1797. [PMID: 36307926 DOI: 10.1093/ndt/gfac296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 08/01/2023] Open
Abstract
The complement system plays a key pathogenic role in glomerular diseases with a diverse range of aetiologies, including C3 glomerulopathy, immunoglobulin A nephropathy, membranous nephropathy, ANCA-associated vasculitis and lupus nephritis. Several novel therapies targeting complement activity have recently been developed, which have now been approved or are in the late stages of clinical development. In this review, potential benefits and challenges of targeting the complement system in glomerular disease are discussed. We summarize current understanding of the role of complement, and the novel targeted therapies that are being developed for the treatment of glomerular disease.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - John P Dormer
- Department of Histopathology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
10
|
Neves A, Viveiros L, Venturelli V, Isenberg DA. Promising Experimental Treatments for Lupus Nephritis: Key Talking Points and Potential Opportunities. Res Rep Urol 2023; 15:333-353. [PMID: 37456804 PMCID: PMC10348374 DOI: 10.2147/rru.s385836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
Lupus nephritis (LN) is a frequent and serious complication of systemic lupus erythematosus (SLE), impairing patients' quality of life and significantly increasing mortality. Despite optimizing the use of conventional immunosuppressants and other biological drugs, its management remains unsatisfactory. This is mainly due to the heterogeneity of SLE, but also to insufficiently effective treatment regimens and clinical trial limitations (strict criteria, low number of patients included, and side effects). Most clinical trials of new biological therapies have failed to meet their primary endpoints in both general SLE and LN, with only two biological drugs (belimumab and anifrolumab) being approved by the Food and Drug Administration (FDA) for the treatment of SLE. Recently, several Phase II randomized controlled trials have evaluated the efficacy and safety of new biologics in LN, and some of them have demonstrated an improvement in clinical and laboratory measures. Multi-target therapies are also being successfully developed and encourage a belief that there will be an improvement in LN outcomes.
Collapse
Affiliation(s)
- Ana Neves
- Internal Medicine Department, Centro Hospitalar Universitário de São João, Oporto, Portugal
| | - Luísa Viveiros
- Internal Medicine Department, Centro Hospitalar Universitário de Santo António, Oporto, Portugal
| | - Veronica Venturelli
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda Ospedaliero-Universitaria S. Anna, Cona, Italy
| | - David A Isenberg
- Centre for Rheumatology, Department of Medicine, University College London, London, UK
| |
Collapse
|
11
|
CHOI EW. Relationship between neutrophil gelatinase-associated lipocalin levels and disease parameters including clinicopathological parameters and various cytokine levels in systemic lupus erythematosus. J Vet Med Sci 2023; 85:601-608. [PMID: 37088550 PMCID: PMC10315541 DOI: 10.1292/jvms.23-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023] Open
Abstract
Urine neutrophil gelatinase-associated lipocalin (NGAL) is a marker of acute kidney injury and indicates tubular damage. Lupus nephritis-associated renal injury is characterized by damage to the glomeruli and tubular portions of the kidneys. Therefore, NGAL concentrations are expected to vary according to the severity of systemic lupus erythematosus (SLE). In this study, samples from (NZB × NZW) F1 mice at an advanced stage of SLE were used to determine whether serum and urine NGAL concentrations or the urine NGAL:creatinine (uNGAL/C) ratio can be used to reflect diet, disease state, and treatment efficacy. Additionally, the relationship between the levels of NGAL and various cytokines in the serum in SLE was evaluated. Mice were divided into the following four groups (n=15): CN, chow diet and no treatment (saline; intraperitonially injected [i.p.]; 200 μL/day); CP, chow diet and methylprednisolone (i.p.; 5 mg/kg/day); HN, high-fat diet and no treatment (saline [i.p.]; 200 μL/day); and HP, high-fat diet and methylprednisolone treatment (i.p.; 5 mg/kg/day) every day from 6 to 42 weeks of age. The serum and urine NGAL levels and uNGAL/C values were significantly lower in the CP group than those in the CN group. Further, serum NGAL concentration demonstrated a strong positive correlation with urine NGAL levels, uNGAL/C, urine protein concentrations, urine protein:creatinine ratio, and the expression of several cytokines associated with SLE pathogenesis (interleukin [IL]-6, tumor necrosis factor [TNF]-α, and interferon-induced protein [IP]-10). These results suggest that NGAL has a strong positive correlation with the clinicopathological parameters and several key cytokines in SLE.
Collapse
Affiliation(s)
- Eun Wha CHOI
- Department of Veterinary Clinical Pathology, College of
Veterinary Medicine & Institute of Veterinary Science, Kangwon National University,
Gangwon-do, Republic of Korea
| |
Collapse
|
12
|
Nikolopoulos D, Manolakou T, Polissidis A, Filia A, Bertsias G, Koutmani Y, Boumpas DT. Microglia activation in the presence of intact blood-brain barrier and disruption of hippocampal neurogenesis via IL-6 and IL-18 mediate early diffuse neuropsychiatric lupus. Ann Rheum Dis 2023; 82:646-657. [PMID: 36898766 PMCID: PMC10176423 DOI: 10.1136/ard-2022-223506] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/26/2023] [Indexed: 03/12/2023]
Abstract
INTRODUCTION Inflammatory mediators are detected in the cerebrospinal fluid of systemic lupus erythematosus patients with central nervous system involvement (NPSLE), yet the underlying cellular and molecular mechanisms leading to neuropsychiatric disease remain elusive. METHODS We performed a comprehensive phenotyping of NZB/W-F1 lupus-prone mice including tests for depression, anxiety and cognition. Immunofluorescence, flow cytometry, RNA-sequencing, qPCR, cytokine quantification and blood-brain barrier (BBB) permeability assays were applied in hippocampal tissue obtained in both prenephritic (3-month-old) and nephritic (6-month-old) lupus mice and matched control strains. Healthy adult hippocampal neural stem cells (hiNSCs) were exposed ex vivo to exogenous inflammatory cytokines to assess their effects on proliferation and apoptosis. RESULTS At the prenephritic stage, BBB is intact yet mice exhibit hippocampus-related behavioural deficits recapitulating the human diffuse neuropsychiatric disease. This phenotype is accounted by disrupted hippocampal neurogenesis with hiNSCs exhibiting increased proliferation combined with decreased differentiation and increased apoptosis in combination with microglia activation and increased secretion of proinflammatory cytokines and chemokines. Among these cytokines, IL-6 and IL-18 directly induce apoptosis of adult hiNSCs ex vivo. During the nephritic stage, BBB becomes disrupted which facilitates immune components of peripheral blood, particularly B-cells, to penetrate into the hippocampus further augmenting inflammation with locally increased levels of IL-6, IL-12, IL-18 and IL-23. Of note, an interferon gene signature was observed only at nephritic-stage. CONCLUSION An intact BBB with microglial activation disrupting the formation of new neurons within the hippocampus represent early events in NPSLE. Disturbances of the BBB and interferon signature are evident later in the course of the disease.
Collapse
Affiliation(s)
- Dionysis Nikolopoulos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece .,School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Manolakou
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Anastasia Filia
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George Bertsias
- Laboratory of Autoimmunity-Inflammation, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,Rheumatology, Clinical Immunology and Allergy Department, Medical School University of Crete, Heraklion, Greece
| | | | - Dimitrios T Boumpas
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece .,School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
13
|
Holers VM. Contributions of animal models to mechanistic understandings of antibody-dependent disease and roles of the amplification loop. Immunol Rev 2023; 313:181-193. [PMID: 36111456 DOI: 10.1111/imr.13136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complement system plays an important pathophysiologic role in human diseases associated with immune or ischemic insults. In addition to understanding the effector mechanisms that are important for the biological effects of the system, substantial efforts have gone into understanding which specific complement activation pathways generate these potent effects. These approaches include the use of gene-targeted mice and specific pathway inhibitors, as well as the integration of human disease genetic and biomarker studies. In some disease states, it is quite clear that the alternate pathway plays a unique role in the initiation of the complement system. However, although initially a widely unexpected finding, it has now been shown in many tissue-based disease models and in initial human studies that engagement of the amplification loop is also essential for tissue injury when the classical and/or lectin pathways initiate pathway activation through pathogenic autoantibodies. This review provides evidence for such a conclusion through animal models, focusing on pathogenic antibody passive transfer models but also other relevant experimental systems. These data, along with initial biomarkers and clinical trial outcomes in human diseases that are associated with pathogenic autoantibodies, suggest that targeting the alternative pathway amplification loop may have near-universal therapeutic utility for tissue-based diseases.
Collapse
Affiliation(s)
- V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
14
|
Infante B, Mercuri S, Dello Strologo A, Franzin R, Catalano V, Troise D, Cataldo E, Pontrelli P, Alfieri C, Binda V, Frontini G, Netti GS, Ranieri E, Gesualdo L, Castellano G, Stallone G. Unraveling the Link between Interferon-α and Systemic Lupus Erythematosus: From the Molecular Mechanisms to Target Therapies. Int J Mol Sci 2022; 23:ijms232415998. [PMID: 36555640 PMCID: PMC9783870 DOI: 10.3390/ijms232415998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, systemic autoimmune disease with a wide range of clinical expressions. The kidney is often affected, usually within 5 years of the onset of SLE, and lupus nephropathy (LN) carries a high risk for increased morbidity. The clinical heterogeneity of the disease is accompanied by complex disturbances affecting the immune system with inflammation and tissue damage due to loss of tolerance to nuclear antigens and the deposition of immune complexes in tissues. Several studies have reported that in human SLE, there is an important role of the Type-I-interferons (INF) system suggested by the upregulation of INF-inducible genes observed in serial gene expression microarray studies. This review aims to describe the transduction pathways of Type-I-interferons, in particular INFα, and its immune-regulatory function in the pathogenesis of SLE and, in particular, in LN. In addition, recent novelties concerning biologic therapy in LN will be discussed.
Collapse
Affiliation(s)
- Barbara Infante
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Silvia Mercuri
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Andrea Dello Strologo
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Valeria Catalano
- Unit of Clinical Pathology, Center for Molecular Medicine, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Dario Troise
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Emanuela Cataldo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Carlo Alfieri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Valentina Binda
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
| | - Giulia Frontini
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Center for Molecular Medicine, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Center for Molecular Medicine, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-0255034551; Fax: +39-0255034550
| | - Giovanni Stallone
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
15
|
Manolakou T, Nikolopoulos D, Gkikas D, Filia A, Samiotaki M, Stamatakis G, Fanouriakis A, Politis P, Banos A, Alissafi T, Verginis P, Boumpas DT. ATR-mediated DNA damage responses underlie aberrant B cell activity in systemic lupus erythematosus. SCIENCE ADVANCES 2022; 8:eabo5840. [PMID: 36306362 PMCID: PMC9616496 DOI: 10.1126/sciadv.abo5840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
B cells orchestrate autoimmune responses in patients with systemic lupus erythematosus (SLE), but broad-based B cell-directed therapies show only modest efficacy while blunting humoral immune responses to vaccines and inducing immunosuppression. Development of more effective therapies targeting pathogenic clones is a currently unmet need. Here, we demonstrate enhanced activation of the ATR/Chk1 pathway of the DNA damage response (DDR) in B cells of patients with active SLE disease. Treatment of B cells with type I IFN, a key driver of immunity in SLE, induced expression of ATR via binding of interferon regulatory factor 1 to its gene promoter. Pharmacologic targeting of ATR in B cells, via a specific inhibitor (VE-822), attenuated their immunogenic profile, including proinflammatory cytokine secretion, plasmablast formation, and antibody production. Together, these findings identify the ATR-mediated DDR axis as the orchestrator of the type I IFN-mediated B cell responses in SLE and as a potential novel therapeutic target.
Collapse
Affiliation(s)
- Theodora Manolakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Corresponding author. (T.M.); (P.V.); (D.T.B.)
| | - Dionysis Nikolopoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece
| | - Anastasia Filia
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Vari, Attica, Greece
- Centre of New Biotechnologies and Precision Medicine (CNBPM) School of Medicine, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - George Stamatakis
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Vari, Attica, Greece
- Centre of New Biotechnologies and Precision Medicine (CNBPM) School of Medicine, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | | | - Panagiotis Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece
- School of Medicine, European University Cyprus, 1516, Nicosia, Cyprus
| | - Aggelos Banos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Themis Alissafi
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece
- Laboratory of Biology, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Panayotis Verginis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 700 13 Heraklion, Greece
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, 700 13 Heraklion, Greece
- Corresponding author. (T.M.); (P.V.); (D.T.B.)
| | - Dimitrios T. Boumpas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- Joint Rheumatology Program, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
- Corresponding author. (T.M.); (P.V.); (D.T.B.)
| |
Collapse
|
16
|
Yu C, Li P, Dang X, Zhang X, Mao Y, Chen X. Lupus nephritis: new progress in diagnosis and treatment. J Autoimmun 2022; 132:102871. [PMID: 35999111 DOI: 10.1016/j.jaut.2022.102871] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multifactorial autoimmune disease that affects many organs, including the kidney. Lupus nephritis (LN) is a common manifestation characterized by heterogeneous clinical and histopathological findings, and often associates with poor prognosis. The diagnosis and treatment of LN is challenging, depending largely on renal biopsy, and there is no reliable non-invasive LN biomarker. Up to now, the complete remission rate of LN is only 20%∼30% after receiving six months of standard treatment, which is far from satisfactory. Moreover, adverse reactions to immunosuppressants, especially glucocorticoids, further compromise the prognosis of LN. Biological reagents targetting autoimmune responses and inflammatory pathways, bring hope to the treatment of intractable lupus. The European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) and KDIGO (Kidney Disease: Improving Global Outcomes) have been working on and launched the recommendations for the management of LN. In this review, we update our knowledge in the pathogenesis, diagnosis, and management of LN and prospect for the future potential targets in the management of LN.
Collapse
Affiliation(s)
- Chen Yu
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xin Dang
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yonghui Mao
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| |
Collapse
|
17
|
Gong E, Perin L, Da Sacco S, Sedrakyan S. Emerging Technologies to Study the Glomerular Filtration Barrier. Front Med (Lausanne) 2021; 8:772883. [PMID: 34901088 PMCID: PMC8655839 DOI: 10.3389/fmed.2021.772883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Kidney disease is characterized by loss of glomerular function with clinical manifestation of proteinuria. Identifying the cellular and molecular changes that lead to loss of protein in the urine is challenging due to the complexity of the filtration barrier, constituted by podocytes, glomerular endothelial cells, and glomerular basement membrane. In this review, we will discuss how technologies like single cell RNA sequencing and bioinformatics-based spatial transcriptomics, as well as in vitro systems like kidney organoids and the glomerulus-on-a-chip, have contributed to our understanding of glomerular pathophysiology. Knowledge gained from these studies will contribute toward the development of personalized therapeutic approaches for patients affected by proteinuric diseases.
Collapse
Affiliation(s)
- Emma Gong
- Division of Urology, GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States
| | - Laura Perin
- Division of Urology, GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States.,Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Stefano Da Sacco
- Division of Urology, GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States.,Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sargis Sedrakyan
- Division of Urology, GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States.,Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
18
|
Freeley SJ, Tham EL, Robson MG. The lectin pathway does not contribute to glomerular injury in the nephrotoxic nephritis model. Nephrology (Carlton) 2021; 27:208-214. [PMID: 34676615 DOI: 10.1111/nep.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
AIMS Rapidly progressive crescentic glomerulonephritis occurs in number systemic and primary glomerular diseases, including anti-glomerular basement membrane disease, anti-neutrophil cytoplasmic antibody vasculitis and lupus nephritis. Our understanding of pathogenic mechanisms comes from animal models of disease such as the nephrotoxic nephritis model. The lectin pathway of complement activation has been shown to play a key role in several models of inflammation including renal ischaemia reperfusion. However, the lectin pathway is not required for crescentic glomerulonephritis in the anti-myeloperoxidase model of anti-neutrophil cytoplasmic antibody vasculitis. The aim of the current study was to explore the role of the lectin pathway in the nephrotoxic nephritis model, which is another model of crescentic glomerulonephritis. METHODS Nephrotoxic nephritis was induced in wild type and mannan-binding lectin-associated serine protease-2 deficient mice. Diseases were assessed by quantifying glomerular crescents and macrophages, in addition to albuminuria and serum creatinine. RESULTS There was no difference between wild type and MASP-2 deficient mice in any of the histological or biochemical parameters of disease assessed. In addition, there was no difference in the humoral immune response to sheep IgG. CONCLUSION These data show that the lectin pathway of complement activation is not required for the development of crescentic glomerulonephritis in the nephrotoxic nephritis model, reinforcing previous findings in the anti-myeloperoxidase model.
Collapse
Affiliation(s)
- Simon J Freeley
- Life Sciences and Medicine, King's College London, London, UK
| | - El Li Tham
- Life Sciences and Medicine, King's College London, London, UK
| | | |
Collapse
|
19
|
Cantarelli C, Leventhal J, Cravedi P. Complement in Lupus: Biomarker, Therapeutic Target, or a Little Bit of Both? Kidney Int Rep 2021; 6:2031-2032. [PMID: 34386652 PMCID: PMC8344109 DOI: 10.1016/j.ekir.2021.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Chiara Cantarelli
- UO Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Jeremy Leventhal
- Division of Nephrology, White Plains Hospital, White Plains, New York, USA
| | - Paolo Cravedi
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
20
|
Portilla D, Xavier S. Role of intracellular complement activation in kidney fibrosis. Br J Pharmacol 2021; 178:2880-2891. [PMID: 33555070 DOI: 10.1111/bph.15408] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Increased expression of complement C1r, C1s and C3 in kidney cells plays an important role in the pathogenesis of kidney fibrosis. Our studies suggest that activation of complement in kidney cells with increased generation of C3 and its fragments occurs by activation of classical and alternative pathways. Single nuclei RNA sequencing studies in kidney tissue from unilateral ureteral obstruction mice show that increased synthesis of complement C3 and C5 occurs primarily in renal tubular epithelial cells (proximal and distal), while increased expression of complement receptors C3ar1 and C5ar1 occurs in interstitial cells including immune cells like monocytes/macrophages suggesting compartmentalization of complement components during kidney injury. Although global deletion of C3 and macrophage ablation prevent inflammation and reduced kidney tissue scarring, the development of mice with cell-specific deletion of complement components and their regulators could bring further insights into the mechanisms by which intracellular complement activation leads to fibrosis and progressive kidney disease. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Didier Portilla
- Department of Medicine and Center for Immunity and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Sandhya Xavier
- Department of Medicine and Center for Immunity and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
21
|
Expanding the Role of Complement Therapies: The Case for Lupus Nephritis. J Clin Med 2021; 10:jcm10040626. [PMID: 33562189 PMCID: PMC7915321 DOI: 10.3390/jcm10040626] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
The complement system is an innate immune surveillance network that provides defense against microorganisms and clearance of immune complexes and cellular debris and bridges innate and adaptive immunity. In the context of autoimmune disease, activation and dysregulation of complement can lead to uncontrolled inflammation and organ damage, especially to the kidney. Systemic lupus erythematosus (SLE) is characterized by loss of tolerance, autoantibody production, and immune complex deposition in tissues including the kidney, with inflammatory consequences. Effective clearance of immune complexes and cellular waste by early complement components protects against the development of lupus nephritis, while uncontrolled activation of complement, especially the alternative pathway, promotes kidney damage in SLE. Therefore, complement plays a dual role in the pathogenesis of lupus nephritis. Improved understanding of the contribution of the various complement pathways to the development of kidney disease in SLE has created an opportunity to target the complement system with novel therapies to improve outcomes in lupus nephritis. In this review, we explore the interactions between complement and the kidney in SLE and their implications for the treatment of lupus nephritis.
Collapse
|
22
|
Gupta S, Kaplan MJ. Bite of the wolf: innate immune responses propagate autoimmunity in lupus. J Clin Invest 2021; 131:144918. [PMID: 33529160 PMCID: PMC7843222 DOI: 10.1172/jci144918] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The etiopathogenesis of systemic lupus erythematosus (SLE), a clinically heterogeneous multisystemic syndrome that derives its name from the initial characterization of facial lesions that resemble the bite of a wolf, is considered a complex, multifactorial interplay between underlying genetic susceptibility factors and the environment. Prominent pathogenic factors include the induction of aberrant cell death pathways coupled with defective cell death clearance mechanisms that promote excessive externalization of modified cellular and nuclear debris with subsequent loss of tolerance to a wide variety of autoantigens and innate and adaptive immune dysregulation. While abnormalities in adaptive immunity are well recognized and are key to the pathogenesis of SLE, recent findings have emphasized fundamental roles of the innate immune system in the initiation and propagation of autoimmunity and the development of organ damage in this disease. This Review focuses on recent discoveries regarding the role of components of the innate immune system, specifically neutrophils and interferons, in promoting various aspects of lupus pathogenesis, with potential implications for novel therapeutic strategies.
Collapse
|
23
|
Galindo-Izquierdo M, Pablos Alvarez JL. Complement as a Therapeutic Target in Systemic Autoimmune Diseases. Cells 2021; 10:cells10010148. [PMID: 33451011 PMCID: PMC7828564 DOI: 10.3390/cells10010148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
The complement system (CS) includes more than 50 proteins and its main function is to recognize and protect against foreign or damaged molecular components. Other homeostatic functions of CS are the elimination of apoptotic debris, neurological development, and the control of adaptive immune responses. Pathological activation plays prominent roles in the pathogenesis of most autoimmune diseases such as systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, dermatomyositis, and ANCA-associated vasculitis. In this review, we will review the main rheumatologic autoimmune processes in which complement plays a pathogenic role and its potential relevance as a therapeutic target.
Collapse
|
24
|
Chighizola CB, Lonati PA, Trespidi L, Meroni PL, Tedesco F. The Complement System in the Pathophysiology of Pregnancy and in Systemic Autoimmune Rheumatic Diseases During Pregnancy. Front Immunol 2020; 11:2084. [PMID: 32973817 PMCID: PMC7481445 DOI: 10.3389/fimmu.2020.02084] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
The complement system plays a double role in pregnancy exerting both protective and damaging effects at placental level. Complement activation at fetal-maternal interface participates in protection against infectious agents and helps remove apoptotic and necrotic cells. Locally synthesized C1q contributes to the physiologic vascular remodeling of spiral arteries characterized by loss of smooth muscle cells and transformation into large dilated vessels. Complement activation triggered by the inflammatory process induced by embryo implantation can damage trophoblast and other decidual cells that may lead to pregnancy complications if the cells are not protected by the complement regulators CD55, CD46, and CD59 expressed on cell surface. However, uncontrolled complement activation induces placental alterations resulting in adverse pregnancy outcomes. This may occur in pathological conditions characterized by placental localization of complement fixing antibodies directed against beta2-glycoprotein 1, as in patients with anti-phospholipid syndrome, or circulating immune complexes deposited in placenta, as in patients with systemic lupus erythematosus. In other diseases, such as preeclampsia, the mechanism of complement activation responsible for complement deposits in placenta is unclear. Conflicting results have been reported on the relevance of complement assays as diagnostic and prognostic tools to assess complement involvement in pregnant patients with these disorders.
Collapse
Affiliation(s)
- Cecilia Beatrice Chighizola
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Paola Adele Lonati
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Laura Trespidi
- Department of Obstetrics and Gynaecology, Fondazione Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Francesco Tedesco
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| |
Collapse
|
25
|
Yung S, Yap DYH, Chan TM. A review of advances in the understanding of lupus nephritis pathogenesis as a basis for emerging therapies. F1000Res 2020; 9:F1000 Faculty Rev-905. [PMID: 32789005 PMCID: PMC7405261 DOI: 10.12688/f1000research.22438.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2020] [Indexed: 01/30/2023] Open
Abstract
Lupus nephritis is an important cause of both acute kidney injury and chronic kidney disease that can result in end-stage renal disease. Its pathogenic mechanisms are characterized by aberrant activation of both innate and adaptive immune responses, dysregulation of inflammatory signaling pathways, and increased cytokine production. Treatment of lupus nephritis remains a challenging issue in the management of systemic lupus erythematosus since the clinical presentation, response to treatment, and prognosis all vary considerably between patients and are influenced by ethnicity, gender, the degree of chronic kidney damage, pharmacogenomics, and non-immunological modulating factors. Elucidation of the various immunopathogenic pathways in lupus nephritis has resulted in the development of novel therapies, including biologics that target specific antigens on B lymphocytes to achieve B cell depletion, agents that modulate B cell proliferation and development, drugs that block co-stimulatory pathways, drugs that target T lymphocytes primarily, and therapies that target complement activation, signaling pathways, pro-inflammatory cytokines, and neutrophil extracellular traps. This review will discuss recent advances in the understanding of disease pathogenesis in lupus nephritis in the context of potential emerging therapies.
Collapse
Affiliation(s)
- Susan Yung
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Desmond YH Yap
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
26
|
Seo Y, Mun CH, Park SH, Jeon D, Kim SJ, Yoon T, Ko E, Jo S, Park YB, Namkung W, Lee SW. Punicalagin Ameliorates Lupus Nephritis via Inhibition of PAR2. Int J Mol Sci 2020; 21:ijms21144975. [PMID: 32674502 PMCID: PMC7404282 DOI: 10.3390/ijms21144975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/26/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
Lupus nephritis (LN) is the most frequent phenotype in patients with systemic lupus erythematosus (SLE) and has a high rate of progression to end-stage renal disease, in spite of intensive treatment and maintenance therapies. Recent evidence suggests that protease-activated receptor-2 (PAR2) is a therapeutic target for glomerulonephritis. In this study, we performed a cell-based high-throughput screening and identified a novel potent PAR2 antagonist, punicalagin (PCG, a major polyphenol enriched in pomegranate), and evaluated the effects of PCG on LN. The effect of PCG on PAR2 inhibition was observed in the human podocyte cell line and its effect on LN was evaluated in NZB/W F1 mice. In the human podocyte cell line, PCG potently inhibited PAR2 (IC50 = 1.5 ± 0.03 µM) and significantly reduced the PAR2-mediated activation of ERK1/2 and NF-κB signaling pathway. In addition, PCG significantly decreased PAR2-induced increases in ICAM-1 and VCAM-1 as well as in IL-8, IFN-γ, and TNF-α expression. Notably, the intraperitoneal administration of PCG significantly alleviated kidney injury and splenomegaly and reduced proteinuria and renal ICAM-1 and VCAM-1 expression in NZB/W F1 mice. Our results suggest that PCG has beneficial effects on LN via inhibition of PAR2, and PCG is a potential therapeutic agent for LN.
Collapse
Affiliation(s)
- Yohan Seo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.S.); (D.J.); (S.J.)
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Chin Hee Mun
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
| | - So-Hyeon Park
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Korea;
| | - Dongkyu Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.S.); (D.J.); (S.J.)
| | - Su Jeong Kim
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Taejun Yoon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eunhee Ko
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sungwoo Jo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.S.); (D.J.); (S.J.)
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03772, Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.S.); (D.J.); (S.J.)
- Interdisciplinary Program of Integrated OMICS for Biomedical Science Graduate School, Yonsei University, Seoul 03772, Korea
- Correspondence: (W.N.); (S.-W.L.); Tel.: +82-32-749-4519 (W.N.); +82-2-2228-1987 (S.-W.L.)
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03772, Korea
- Correspondence: (W.N.); (S.-W.L.); Tel.: +82-32-749-4519 (W.N.); +82-2-2228-1987 (S.-W.L.)
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Complement system dysfunction in terms of upregulation, downregulation, or dysregulation can create an imbalance of both host defense and inflammatory response leading to autoimmunity. In this review, we aimed at describing the role of complement system in host defense to inflection and in autoimmunity starting from the evidence from primary and secondary complement system deficiencies. RECENT FINDINGS Complement system has a determinant role in defense against infections: deficiencies of complement components are associated with increased susceptibility to infections. Primary complement system deficiencies are rare disorders that predispose to both infections and autoimmune diseases. Secondary complement system deficiencies are the result of the complement system activation with consumption. Complement system role in enhancing risk of infective diseases in secondary deficiencies has been demonstrated in patients affected by systemic autoimmune disorders, mainly systemic lupus erythematosus and vasculitis. SUMMARY The relationship between the complement system and autoimmunity appears paradoxical as both the deficiency and the activation contribute to inducing autoimmune diseases. In these conditions, the presence of complement deposition in affected tissues, decreased levels of complement proteins, and high levels of complement activation fragments in the blood and vessels have been documented.
Collapse
|
28
|
Sharma M, Vignesh P, Tiewsoh K, Rawat A. Revisiting the complement system in systemic lupus erythematosus. Expert Rev Clin Immunol 2020; 16:397-408. [PMID: 32228236 DOI: 10.1080/1744666x.2020.1745063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease, characterized by the production of autoantibodies. Numerous mechanisms contribute to the pathogenesis and autoimmunity in SLE. One of the most important mechanisms is the defective function of the early complement components that are involved in clearing the immune-complexes and apoptotic debris. Major evidence supporting this hypothesis is the development of severe lupus in individuals with monogenic defects in any one of the early complement components such as C1q, C1 s, C1 r, C2, or C4.Areas covered: In this review, we discuss hereditary defects in classical complement components and their clinical manifestations, acquired defects of complements in lupus, the role of complements in the pathogenesis of antiphospholipid antibody syndrome and lupus nephritis, and laboratory assessment of complement components and their functions. Articles from the last 20 years were retrieved from PubMed for this purpose.Expert opinion: Complements have a dual role in the pathogenesis of SLE. On one hand, deficiency of complement components predisposes to lupus, while, on the other, excess complement activation plays a role in the organ damage. Understanding the intricacies of the role of complements in SLE can pave way for the development of targeted therapies.
Collapse
Affiliation(s)
- Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Karalanglin Tiewsoh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
29
|
Andrighetto S, Leventhal J, Zaza G, Cravedi P. Complement and Complement Targeting Therapies in Glomerular Diseases. Int J Mol Sci 2019; 20:ijms20246336. [PMID: 31888179 PMCID: PMC6940904 DOI: 10.3390/ijms20246336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023] Open
Abstract
The complement cascade is part of the innate immune system whose actions protect hosts from pathogens. Recent research shows complement involvement in a wide spectrum of renal disease pathogenesis including antibody-related glomerulopathies and non-antibody-mediated kidney diseases, such as C3 glomerular disease, atypical hemolytic uremic syndrome, and focal segmental glomerulosclerosis. A pivotal role in renal pathogenesis makes targeting complement activation an attractive therapeutic strategy. Over the last decade, a growing number of anti-complement agents have been developed; some are approved for clinical use and many others are in the pipeline. Herein, we review the pathways of complement activation and regulation, illustrate its role instigating or amplifying glomerular injury, and discuss the most promising novel complement-targeting therapies.
Collapse
Affiliation(s)
- Sofia Andrighetto
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, 1 Levy Place, New York, NY 10029, USA; (S.A.); (J.L.)
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy;
| | - Jeremy Leventhal
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, 1 Levy Place, New York, NY 10029, USA; (S.A.); (J.L.)
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy;
| | - Paolo Cravedi
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, 1 Levy Place, New York, NY 10029, USA; (S.A.); (J.L.)
- Correspondence: ; Tel.: +1-212-241-3349; Fax: +1-212-987-0389
| |
Collapse
|
30
|
Shi Y, Yao W, Sun L, Li G, Liu H, Ding P, Hu W, Xu H. The new complement inhibitor CRIg/FH ameliorates lupus nephritis in lupus-prone MRL/lpr mice. BMC Nephrol 2019; 20:424. [PMID: 31752725 PMCID: PMC6873683 DOI: 10.1186/s12882-019-1599-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/23/2019] [Indexed: 01/24/2023] Open
Abstract
Backgrounds The aberrant activation of complement system is critically involved in lupus nephropathy. Recent study showed complement C3 inhibitor was effective in the treatment of lupus nephropathy. In this study, we investigate the effect of a novel complement C3 inhibitor, CRIg/FH, in the treatment of lupus nephropathy in MRL/lpr lupus mice. Methods We treated MRL/lpr female mice with a dose escalation of CRIg/FH (10, 5 and 2 mg/kg) by intraperitoneal injection twice weekly since 12 weeks age. In addition, MRL/lpr mice treated with intraperitoneal injection of normal saline or oral prednisone, along with C57BL/6 J healthy mice were maintained to serve as controls. We started 8-h urine collection weekly to screen proteinuria by measuring the levels of urine urea/creatinine. Serum samples was collected at week 16 and 20 to measure levels of urea nitrogen, creatinine, and immunological markers (C3, C4, A-ds-DNA) before the mice were sacrificed at 20 weeks age to collect kidneys for histopathological examinations. Results Overt skin lesions were observed in MRL/lpr mice treated with normal saline, while skin lesion was not observed in CRIg/FH treated MRL/lpr mice. There was no overt proteinuria observed in MRL/lpr mice treated with CRIg/FH. Serum creatinine and BUN levels in MRL/lpr mice was maintained in highest CRIg/FH dose (10 mg/kg twice a week) to be significantly lower than that in prednisone treated MRL/lpr mice at 20 weeks age. In addition, CRIg/FH treatment in MRL/lpr mice results in a significantly elevated serum C3 and C4 levels when compared to prednisone treatment at both 16 and 20 weeks. Furthermore, our study identified that serum level of A-ds-DNA was also significantly lower in CRIg/FH treatment than that in predisone treated MRL/lpr mice. Renal pathology confirmed that kidneys from CRIg/FH treated MRL/lpr mice suffered less from nephritis and complement disposition. Conclusion Our results showed that the complement inhibitor CRIg/FH can protect MRL/lpr mice from lupus nephropathy by preserving renal function and glomerulus complement activation. Our findings support the positive effect of complement inhibitors in the treatment of lupus nephropathy.
Collapse
Affiliation(s)
- Yu Shi
- Division of Rheumatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Wen Yao
- Division of Rheumatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Li Sun
- Division of Rheumatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Guomin Li
- Division of Rheumatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Haimei Liu
- Division of Rheumatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hong Xu
- Division of Rheumatology, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
31
|
Noncanonical immunomodulatory activity of complement regulator C4BP(β-) limits the development of lupus nephritis. Kidney Int 2019; 97:551-566. [PMID: 31982108 DOI: 10.1016/j.kint.2019.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 01/02/2023]
Abstract
Lupus nephritis is a chronic autoimmune-inflammatory condition that can lead to end-stage kidney disease. Presently available immunosuppressive treatments for lupus nephritis are suboptimal and can induce significant side effects. Recently, we characterized a novel immunomodulatory activity of the minor isoform of the classical pathway complement inhibitor, C4BP(β-). We show here that C4BP(β-) treatment prevented the development of proteinuria and albuminuria, decreased significantly the formation of anti-dsDNA antibodies and, locally, mitigated renal glomerular IgG and C3 deposition and generation of apoptotic cells. There was a consequent histological improvement and increased survival in lupus-prone mice. The therapeutic efficacy of C4BP(β-) was analogous to that of the broad-acting immunosuppressant cyclophosphamide. Remarkably, a comparative transcriptional profiling analysis revealed that the kidney gene expression signature resulting from C4BP(β-) treatment turned out to be 10 times smaller than that induced by cyclophosphamide treatment. C4BP(β-) immunomodulation induced significant downregulation of transcripts relevant to lupus nephritis indicating immunopathogenic cell infiltration, including activated T cells (Lat), B cells (Cd19, Ms4a1, Tnfrsf13c), inflammatory phagocytes (Irf7) and neutrophils (Prtn3, S100a8, S100a9). Furthermore, cytokine profiling and immunohistochemistry confirmed that C4BP(β-), through systemic and local CXCL13 downregulation, was able to prevent ectopic lymphoid structures neogenesis in aged mice with lupus nephritis. Thus, due to its anti-inflammatory and immunomodulatory activities and high specificity, C4BP(β-) could be considered for further clinical development in patients with systemic lupus erythematosus.
Collapse
|
32
|
Yiu WH, Li RX, Wong DWL, Wu HJ, Chan KW, Chan LYY, Leung JCK, Lai KN, Sacks SH, Zhou W, Tang SCW. Complement C5a inhibition moderates lipid metabolism and reduces tubulointerstitial fibrosis in diabetic nephropathy. Nephrol Dial Transplant 2019; 33:1323-1332. [PMID: 29294056 DOI: 10.1093/ndt/gfx336] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
Background Complement C5 mediates pro-inflammatory responses in many immune-related renal diseases. Given that the C5a level is elevated in diabetes, we investigated whether activation of C5a/C5aR signalling plays a pathogenic role in diabetic nephropathy (DN) and the therapeutic potential of C5a inhibition for renal fibrosis. Methods Human renal biopsies from patients with DN and control subjects were used for immunohistochemical staining of complement C5 components. Renal function and tubulointerstitial injury were compared between db/m mice, vehicle-treated mice and C5a inhibitor-treated db/db mice. A cell culture model of tubule epithelial cells (HK-2) was used to demonstrate the effect of C5a on the renal fibrotic pathway. Results Increased levels of C5a, but not of its receptor C5aR, were detected in renal tubules from patients with DN. The intensity of C5a staining was positively correlated with the progression of the disease. In db/db mice, administration of a novel C5a inhibitor, NOX-D21, reduced the serum triglyceride level and attenuated the upregulation of diacylglycerolacyltransferase-1 and sterol-regulatory element binding protein-1 expression and lipid accumulation in diabetic kidney. NOX-D21-treated diabetic mice also had reduced serum blood urea nitrogen and creatinine levels with less glomerular and tubulointerstitial damage. Renal transforming growth factor beta 1 (TGF-β1), fibronectin and collagen type I expressions were reduced by NOX-D21. In HK-2 cells, C5a stimulated TGF-β production through the activation of the PI3K/Akt signalling pathway. Conclusions Blockade of C5a signalling by NOX-D21 moderates altered lipid metabolism in diabetes and improved tubulointerstitial fibrosis by reduction of lipid accumulation and TGF-β-driven fibrosis in diabetic kidney.
Collapse
Affiliation(s)
- Wai Han Yiu
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Rui Xi Li
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Dickson W L Wong
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Hao Jia Wu
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Kam Wa Chan
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Loretta Y Y Chan
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Joseph C K Leung
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Steven H Sacks
- Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Wuding Zhou
- Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
33
|
Complement Activation in Progression of Chronic Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:423-441. [PMID: 31399977 DOI: 10.1007/978-981-13-8871-2_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) is a public health problem worldwide, with increasing incidence and prevalence. The mechanisms underlying the progression to end-stage renal disease (ESRD) is not fully understood. The complement system was traditionally regarded as an important part of innate immunity required for host protection against infection and for maintaining host hemostasis. However, compelling evidence from both clinical and experimental studies has strongly incriminated complement activation as a pivotal pathogenic mediator of the development of multiple renal diseases and progressive replacement of functioning nephrons by fibrosis. Both anaphylatoxins, i.e., C3a and C5a, and membrane attack complex (MAC) contribute to the damage that occurs during chronic renal progression through various mechanisms including direct proinflammatory and fibrogenic activity, chemotactic effect, activation of the renal renin-angiotensin system, and enhancement of T-cell immunity. Evolving understanding of the mechanisms of complement-mediated renal injury has led to the emergence of complement-targeting therapeutics. A variety of specific antibodies and inhibitors targeting complement components have shown efficacy in reducing disease in animal models. Moreover, building on these advances, targeting complement has gained encouraging success in treating patients with renal diseases such as atypical hemolytic uremic syndrome (aHUS). Nevertheless, it still requires a great deal of effort to develop inhibitors that can be applied to treat more patients effectively in routine clinical practice.
Collapse
|
34
|
Extracellular DNA traps in inflammation, injury and healing. Nat Rev Nephrol 2019; 15:559-575. [PMID: 31213698 DOI: 10.1038/s41581-019-0163-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Following strong activation signals, several types of immune cells reportedly release chromatin and granular proteins into the extracellular space, forming DNA traps. This process is especially prominent in neutrophils but also occurs in other innate immune cells such as macrophages, eosinophils, basophils and mast cells. Initial reports demonstrated that extracellular traps belong to the bactericidal and anti-fungal armamentarium of leukocytes, but subsequent studies also linked trap formation to a variety of human diseases. These pathological roles of extracellular DNA traps are now the focus of intensive biomedical research. The type of pathology associated with the release of extracellular DNA traps is mainly determined by the site of trap formation and the way in which these traps are further processed. Targeting the formation of aberrant extracellular DNA traps or promoting their efficient clearance are attractive goals for future therapeutic interventions, but the manifold actions of extracellular DNA traps complicate these approaches.
Collapse
|
35
|
Thurman JM, Yapa R. Complement Therapeutics in Autoimmune Disease. Front Immunol 2019; 10:672. [PMID: 31001274 PMCID: PMC6456694 DOI: 10.3389/fimmu.2019.00672] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/12/2019] [Indexed: 12/17/2022] Open
Abstract
Many autoimmune diseases are characterized by generation of autoantibodies that bind to host proteins or deposit within tissues as a component of immune complexes. The autoantibodies can activate the complement system, which can mediate tissue damage and trigger systemic inflammation. Complement inhibitory drugs may, therefore, be beneficial across a large number of different autoimmune diseases. Many new anti-complement drugs that target specific activation mechanisms or downstream activation fragments are in development. Based on the shared pathophysiology of autoimmune diseases, some of these complement inhibitory drugs may provide benefit across multiple different diseases. In some antibody-mediated autoimmune diseases, however, unique features of the autoantibodies, the target antigens, or the affected tissues may make it advantageous to block individual components or pathways of the complement system. This paper reviews the evidence that complement is involved in various autoimmune diseases, as well as the studies that have examined whether or not complement inhibitors are effective for treating these diseases.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Roshini Yapa
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
36
|
He S, Liu X, Lin Z, Liu Y, Gu L, Zhou H, Tang W, Zuo J. Reversible SAHH inhibitor protects against glomerulonephritis in lupus-prone mice by downregulating renal α-actinin-4 expression and stabilizing integrin-cytoskeleton linkage. Arthritis Res Ther 2019; 21:40. [PMID: 30696480 PMCID: PMC6352376 DOI: 10.1186/s13075-019-1820-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glomerulonephritis is one of the major complications and causes of death in systemic lupus erythematosus (SLE) and is characterized by glomerulosclerosis, interstitial fibrosis, and tubular atrophy, along with severe persistent proteinuria. DZ2002 is a reversible S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor with potent therapeutic activity against lupus nephritis in mice. However, the molecular events underlying the renal protective effects of DZ2002 remained unclear. This study is designed to uncover the molecular mechanisms of DZ2002 on glomerulonephritis of lupus-prone mice. METHODS We conducted a twice-daily treatment of DZ2002 on the lupus-prone NZB/WF1 mice, and the progression of lupus nephritis and alteration of renal function were monitored. The LC-MS-based label-free quantitative (LFQ) proteomic approach was applied to analyze the kidney tissue samples from the normal C57BL/6 mice and the NZB/WF1 mice treated with DZ2002 or vehicle. KEGG pathway enrichment and direct protein-protein interaction (PPI) network analyses were used to map the pathways in which the significantly changed proteins (SCPs) are involved. The selected proteins from proteomic analysis were validated by Western blot analysis and immunohistochemistry in the kidney tissues. RESULTS The twice-daily regimen of DZ2002 administration significantly ameliorated the lupus nephritis and improved the renal function in NZB/WF1 mice. A total of 3275 proteins were quantified, of which 253 proteins were significantly changed across normal C57BL/6 mice and the NZB/WF1 mice treated with DZ2002 or vehicle. Pathway analysis revealed that 13 SCPs were involved in tight junction and focal adhesion process. Further protein expression validation demonstrated that DZ2002-treated NZB/WF1 mice exhibited downregulation of α-actinin-4 and integrin-linked kinase (ILK), as well as the restoration of β1-integrin activation in the kidney tissues compared with the vehicle-treated ones. CONCLUSIONS Our study demonstrated the first evidence for the molecular mechanism of SAHH inhibitor on glomerulonephritis in SLE via the modulation of α-actinin-4 expression and focal adhesion-associated signaling proteins in the kidney.
Collapse
Affiliation(s)
- Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zemin Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuting Liu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Lei Gu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China. .,Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wei Tang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
37
|
Wilson HR, Medjeral-Thomas NR, Gilmore AC, Trivedi P, Seyb K, Farzaneh-Far R, Gunnarsson I, Zickert A, Cairns TD, Lightstone L, Cook HT, Pickering MC. Glomerular membrane attack complex is not a reliable marker of ongoing C5 activation in lupus nephritis. Kidney Int 2019; 95:655-665. [PMID: 30655025 PMCID: PMC6389546 DOI: 10.1016/j.kint.2018.09.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 02/08/2023]
Abstract
Complement plays an important role in the pathogenesis of lupus nephritis (LN). With the emergence of therapeutic complement inhibition, there is a need to identify patients in whom complement-driven inflammation is a major cause of kidney injury in LN. Clinical and histopathological data were obtained retrospectively from 57 biopsies with class III, IV, and V LN. Biopsies were stained for complement components C9, C5b-9, C3c, and C3d and for the macrophage marker CD68. C9 and C5b-9 staining were highly correlated (r = 0.92 in the capillary wall). C5b-9 staining was detected in the mesangium and/or capillary wall of both active and chronic proliferative LN in all but one biopsy and in the capillary wall of class V LN in all biopsies. C5b-9 staining intensity in the tubular basement membrane correlated with markers of tubulointerstitial damage, and more intense capillary wall C5b-9 staining was significantly associated with nonresponse to conventional treatment. Glomerular C5b-9 staining intensity did not differ between active and chronic disease; in contrast, C3c and CD68 staining were associated with active disease. Evaluation of serial biopsies and comparison of staining in active and chronic LN demonstrated that C5b-9 staining persisted for months to years. These results suggest that C5b-9 staining is almost always present in LN, resolves slowly, and is not a reliable marker of ongoing glomerular C5 activation. This limits the utility of C5b-9 staining to identify patients who are most likely to benefit from C5 inhibition.
Collapse
Affiliation(s)
- Hannah R Wilson
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | | | - Alyssa C Gilmore
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Pritesh Trivedi
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Kathleen Seyb
- Ra Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | | | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Zickert
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas D Cairns
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Liz Lightstone
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - H Terence Cook
- Centre for Inflammatory Disease, Imperial College London, London, UK.
| | | |
Collapse
|
38
|
Hahn BH, Kono DH. Animal Models in Lupus. DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2019:164-215. [DOI: 10.1016/b978-0-323-47927-1.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Abstract
Autoimmunity is a leading cause of chronic kidney disease and loss of native and transplanted kidneys. Conventional immunosuppressive therapies can be effective but are non-specific, noncurative, and risk serious side effects such as life-threatening infection and cancer. Novel therapies and targeted interventions are urgently needed. In this brief review we explore diverse strategies currently in development and under consideration to interrupt underlying disease mechanisms in immune-mediated renal injury. Because autoantibodies are prominent in diagnosis and pathogenesis in multiple human glomerulopathies, we highlight several promising therapies that interfere with functions of early mediators (IgG and complement) of the effector arm and with an epicenter (the germinal center) for induction of humoral immunity.
Collapse
Affiliation(s)
- Mary Helen Foster
- a Department of Medicine , Duke University Medical Center , Durham , NC , USA.,b Medical and Research Services , Durham VA Medical Center , Durham , NC , USA
| | | |
Collapse
|
40
|
Kello N, Khoury LE, Marder G, Furie R, Zapantis E, Horowitz DL. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab: Case series and review of literature. Semin Arthritis Rheum 2018; 49:74-83. [PMID: 30598332 DOI: 10.1016/j.semarthrit.2018.11.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/25/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Thrombotic microangiopathy (TMA) is a life-threatening, albeit infrequent, complication of systemic lupus erythematosus (SLE) and anti-phospholipid syndrome (APS). Recommendations for the treatment of SLE- and APS-related secondary TMA are currently based solely on case reports and expert opinion. Unfortunately, interventions may not yield timely results or effectively halt the progression of TMA. Since complement activation plays a key role in the pathogenesis of secondary TMA due to SLE, APS, a therapy that targets the complement pathway is an attractive intervention. Eculizumab, a recombinant, fully humanized IgG2/IgG4 monoclonal antibody inhibits C5 activation and is FDA-approved for PNH and atypical HUS (aHUS). However, limited case reports are available on its use in treatment of secondary TMA. CASE PRESENTATION AND RESULTS We present the largest case series to date that includes 9 patients with SLE and/or APS who were successfully treated with eculizumab for refractory secondary TMA. In this case series, we report significant responses in hematology values, renal function and other organs following treatment with eculizumab. At 4 weeks, 75% improvement in platelet counts was observed in 78% of patients. Two-thirds of patients demonstrated >75% improvement of haptoglobin and LDH at four weeks. At 4 weeks, eGFR improved by 25% in half of the patients, and 43% had reductions in proteinuria. Two of 3 patients that required hemodialysis were able to be taken off hemodialysis. CONCLUSION Based on these observations, we suggest that eculizumab may be a potential treatment option for acutely ill patients with secondary TMA due to SLE and/or APS who have failed standard of care. A collective approach is needed to better elucidate the role and optimal timing of eculizumab use in the management of TMA complicating SLE and/or APS.
Collapse
Affiliation(s)
- Nina Kello
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Suite 302, Great Neck, NY 11021, USA.
| | - Lara El Khoury
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Suite 302, Great Neck, NY 11021, USA
| | - Galina Marder
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Suite 302, Great Neck, NY 11021, USA
| | - Richard Furie
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Suite 302, Great Neck, NY 11021, USA
| | - Ekaterini Zapantis
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Suite 302, Great Neck, NY 11021, USA
| | - Diane Lewis Horowitz
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Suite 302, Great Neck, NY 11021, USA
| |
Collapse
|
41
|
CKD-506, a novel HDAC6-selective inhibitor, improves renal outcomes and survival in a mouse model of systemic lupus erythematosus. Sci Rep 2018; 8:17297. [PMID: 30470828 PMCID: PMC6251916 DOI: 10.1038/s41598-018-35602-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/08/2018] [Indexed: 01/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic multisystemic autoimmune disease with an unknown etiology. Recently, it has been elucidated that dysregulated histone deacetylase (HDAC) activity is related to the pathogenesis of inflammatory and autoimmune diseases. Broad-spectrum HDAC inhibitors are effective for the treatment of allergy, cancer, and autoimmune diseases, but they have several adverse side effects. Thus, the purpose of this study was to evaluate the effects of a novel HDAC 6-specific inhibitor, CKD-506, in a murine SLE model. CKD-506 significantly improved survival rate and significantly decreased the incidence of severe proteinuria, blood urea nitrogen, kidney inflammation, and glomerular infiltration of IgG and C3. In addition, CKD 506 reduced the proportions of CD138+ plasma cells, CD4−CD8− T cells, and CD25+ cells and the Th1/Th2 ratio in the spleen. CKD-506 significantly reduced inflammatory cytokines such as IL-10, IL-15, IL-17, TNF-α, and IFN-inducible protein (IP-10) and significantly increased TGF-β in serum. CKD-506 also significantly reduced IFN-γ, IL-1β, IL-4, IL-6, IP-10, MCP-1, and CCL4 levels in kidney. CKD-506 decreased the production of various pro-inflammatory cytokines and chemokines in the serum and kidneys, resulting in inhibition of cell migration and suppression of lupus nephritis without adverse effects.
Collapse
|
42
|
van Dam LS, Rabelink TJ, van Kooten C, Teng YKO. Clinical Implications of Excessive Neutrophil Extracellular Trap Formation in Renal Autoimmune Diseases. Kidney Int Rep 2018; 4:196-211. [PMID: 30775617 PMCID: PMC6365354 DOI: 10.1016/j.ekir.2018.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular DNA structures covered with antimicrobial peptides, danger molecules, and autoantigens that can be released by neutrophils. NETs are an important first-line defense mechanism against bacterial, viral, fungal, and parasitic infections, but they can also play a role in autoimmune diseases. NETs are immunogenic and toxic structures that are recognized by the autoantibodies of patients with antineutrophil cytoplasmic antibodies−associated vasculitis (AAV) (i.e., against myeloperoxidase or proteinase-3) and systemic lupus erythematosus (SLE) (i.e., against double-stranded DNA, histones, or nucleosomes). There is cumulating preclinical and clinical evidence that both excessive formation and impaired degradation of NETs are involved in the pathophysiology of AAV and SLE. These autoimmune diseases give rise to 2 clinically and pathologically distinct forms of glomerulonephritis (GN), respectively, crescentic pauci-immune GN and immune complex−mediated GN. Therefore, it is relevant to understand the different roles NET formation can play in the pathophysiology of these most prevalent renal autoimmune diseases. This review summarizes the current concepts on the role of NET formation in the pathophysiology of AAV and SLE, and provides a translational perspective on the clinical implications of NETs, such as potential therapeutic approaches that target NET formation in these renal autoimmune diseases.
Collapse
Affiliation(s)
- Laura S van Dam
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Y K Onno Teng
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
43
|
Caster DJ, Merchant ML, Klein JB, Powell DW. Precision medicine in lupus nephritis: can biomarkers get us there? Transl Res 2018; 201:26-39. [PMID: 30179587 PMCID: PMC6415919 DOI: 10.1016/j.trsl.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 01/08/2023]
Abstract
Patients with systemic lupus erythematosus frequently develop lupus nephritis (LN), a condition that can lead to end-stage kidney disease. Multiple serum and urine biomarkers for LN have been proposed in recent years, yet none have become incorporated into clinical use. The majority of studies have been single center with significant variability in cohorts, assays, and sample storage, leading to inconclusive results. It has become clear that no single biomarker is likely to be sufficient to diagnose LN, identify flares, and define the response to therapy and prognosis. A more likely scenario is a panel of urine, serum, tissue, and genetic biomarkers. In this review, we summarize traditional and novel biomarkers and discuss how they may be utilized in order to bring precision medicine to clinical practice in LN.
Collapse
Affiliation(s)
- Dawn J Caster
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky.
| | - Michael L Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Jon B Klein
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| | - David W Powell
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
44
|
Harris CL, Pouw RB, Kavanagh D, Sun R, Ricklin D. Developments in anti-complement therapy; from disease to clinical trial. Mol Immunol 2018; 102:89-119. [PMID: 30121124 DOI: 10.1016/j.molimm.2018.06.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Abstract
The complement system is well known for its role in innate immunity and in maintenance of tissue homeostasis, providing a first line of defence against infection and playing a key role in flagging apoptotic cells and debris for disposal. Unfortunately complement also contributes to pathogenesis of a number of diseases; in some cases driving pathology, and in others amplifying or exacerbating the inflammatory and damaging impact of non-complement disease triggers. The role of complement in pathogenesis of an expanding number of diseases has driven industry and academia alike to develop an impressive arsenal of anti-complement drugs which target different proteins and functions of the complement cascade. Evidence from genetic and biochemical analyses, combined with improved identification of complement biomarkers and supportive data from sophisticated animal models of disease, has driven a drug development landscape in which the indications selected for clinical trial cluster in three 'target' tissues: the kidney, eye and vasculature. While the disease triggers may differ, complement activation and amplification is a common feature in many diseases which affect these three tissues. An abundance of drugs are in clinical development, some show favourable progression whereas others experience significant challenges. However, these hurdles in themselves drive an ever-evolving portfolio of 'next-generation' drugs with improved pharmacokinetic and pharmacodynamics properties. In this review we discuss the indications which are in the drug development 'spotlight' and review the relevant indication validation criteria. We present current progress in clinical trials, highlighting successes and difficulties, and look forward to approval of a wide selection of drugs for use in man which give clinicians choice in mechanistic target, modality and route of delivery.
Collapse
Affiliation(s)
- Claire L Harris
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056, Basel, Switzerland
| | - David Kavanagh
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Ruyue Sun
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056, Basel, Switzerland.
| |
Collapse
|
45
|
Ma H, Liu C, Shi B, Zhang Z, Feng R, Guo M, Lu L, Shi S, Gao X, Chen W, Sun L. Mesenchymal Stem Cells Control Complement C5 Activation by Factor H in Lupus Nephritis. EBioMedicine 2018; 32:21-30. [PMID: 29885865 PMCID: PMC6020800 DOI: 10.1016/j.ebiom.2018.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/19/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Lupus nephritis (LN) is one of the most severe complications of systemic lupus erythematosus (SLE) caused by uncontrolled activation of the complement system. Mesenchymal stem cells (MSCs) exhibit clinical efficacy for severe LN in our previous studies, but the underlying mechanisms of MSCs regulating complement activation remain largely unknown. Here we show that significantly elevated C5a and C5b-9 were found in patients with LN, which were notably correlated with proteinuria and different renal pathological indexes of LN. MSCs suppressed systemic and intrarenal activation of C5, increased the plasma levels of factor H (FH), and ameliorated renal disease in lupus mice. Importantly, MSCs transplantation up-regulated the decreased FH in patients with LN. Mechanistically, interferon-α enhanced the secretion of FH by MSCs. These data demonstrate that MSCs inhibit the activation of pathogenic C5 via up-regulation of FH, which improves our understanding of the immunomodulatory mechanisms of MSCs in the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Haijun Ma
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chang Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bingyu Shi
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhuoya Zhang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ruihai Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Minghao Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Xiang Gao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Wanjun Chen
- Mucosal Immunology Section, NIDCR, US National Institutes of Health, Bethesda, MD, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
46
|
Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nat Rev Gastroenterol Hepatol 2018; 15:206-221. [PMID: 29382950 DOI: 10.1038/nrgastro.2017.183] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neutrophil extracellular traps (NETs) have an important role during infection by helping neutrophils to capture and kill pathogens. However, evidence is accumulating that uncontrolled or excessive production of NETs is related to the exacerbation of inflammation and the development of autoimmunity, cancer metastasis and inappropriate thrombosis. In this Review, we focus on the role of NETs in the liver and gastrointestinal system, outlining their protective and pathological effects. The latest mechanistic insights in NET formation, interactions between microorganisms and NETs and the relationship between neutrophil subtypes and their functions are also discussed. Additionally, we describe the potential importance of NET-related molecules, including cell-free DNA and hypercitrullinated histones, as biomarkers and targets for therapeutic intervention in gastrointestinal diseases.
Collapse
|
47
|
Syed SN, Rau E, Ziegelmann M, Sogkas G, Brüne B, Schmidt RE. C5aR activation in the absence of C5a: A new disease mechanism of autoimmune hemolytic anemia in mice. Eur J Immunol 2018; 48:696-704. [PMID: 29277896 DOI: 10.1002/eji.201747238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/17/2017] [Accepted: 12/19/2017] [Indexed: 01/19/2023]
Abstract
IgG Fc receptors (FcγRs) and the C5a anaphylatoxin receptor (C5aR) were identified as key regulators of type II autoimmune injury in mice. However, and with respect to C5aR, the relative importance of C5a for IgG autoantibody-induced cellular destruction remained unclear. Using an experimental model of autoimmune hemolytic anemia (AIHA), we here report marked differences in the development of AIHA between mice lacking C5aR and C5-deficient (Hc0 ) strain, indicating a limited role of C5 in this type of C5aR-regulated disease. Ex-vivo-analyses of liver homogenates from anemic Hc0 mice demonstrate C5a-independent C5aR activation, upregulation of FcγR expression and amplification of erythrophagocytosis by macrophages. As assessed by pharmacological inhibition studies, targeting of C5aR, but not of C5, is effective in treating experimental AIHA. Collectively, these results define a previously unrecognized disease mechanism of C5aR activation in AIHA that does not necessarily involve C5 and C5a.
Collapse
Affiliation(s)
- Shahzad N Syed
- Molecular Immunology Research Unit, Division of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany.,Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Eduard Rau
- Molecular Immunology Research Unit, Division of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Mareen Ziegelmann
- Molecular Immunology Research Unit, Division of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Georgios Sogkas
- Molecular Immunology Research Unit, Division of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Reinhold E Schmidt
- Molecular Immunology Research Unit, Division of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
48
|
Membrane attack complex (mac) deposition in lupus nephritis is associated with hypertension and poor clinical response to treatment. Semin Arthritis Rheum 2018; 48:256-262. [PMID: 29395256 DOI: 10.1016/j.semarthrit.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/30/2017] [Accepted: 01/04/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To study membrane attack complex in lupus nephritis as a potential biomarker for disease intensity and prognostic indicator for response to treatment. METHODS Immunohistochemistry was performed using unconjugated, murine anti-human complement C9 on kidney biopsies from 30 SLE patients who fulfilled 4 ACR or SLICC criteria. Clinical parameters were assessed at time of biopsy, 6 and 12 months. RESULTS 30 renal biopsies were obtained from patients with Class II (2), III (5), IV (8), V (5), III+V (8) and IV+V (2). 13/30 (43.3%) biopsies stained positive for glomerular C9. Patients with positive C9 had significantly higher blood pressure, trend towards lower C3, and male gender. There was no significant difference for ISN/RPN class, activity or chronicity indices between C9 positive and negative groups. 5/11 (45.5%) patients positive for C9 did not respond to therapy at 6 months compared with 2/15 (13.3%) patients negative for C9. C9 positive patients were more likely to be a non-responder at 6 months (OR = 5.4, 95% CI: 0.8, 36.4) compared to C9 negative patients. After adjusting for systolic blood pressure, compliance to treatment and proteinuria in a multivariate logistic model, C9 positive patients remained more likely to be non-responders (OR = 4.6, 95% CI: 0.3, 70.9). CONCLUSION This study suggests that MAC deposition measured as C9 staining may be a biomarker for more intense disease and poor response to treatment in lupus nephritis. MAC staining may be useful in routine studies of lupus biopsies and identify patients at risk for aggressive disease who may be candidates for novel therapies targeting terminal complement pathway.
Collapse
|
49
|
Tseng MH, Lin SH, Wu CY, Chien HP, Yang HY, Chen YC, Chou YC, Huang JL. Serum complement factor I is associated with disease activity of systemic lupus erythematosus. Oncotarget 2018; 9:8502-8511. [PMID: 29492211 PMCID: PMC5823600 DOI: 10.18632/oncotarget.23907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022] Open
Abstract
Although aberrant complement activation is involved in the pathogenesis of systemic lupus erythematosus (SLE), the role of complement regulatory proteins in disease activity of SLE remains limited. We enrolled the pediatric-onset SLE patients from our cohort study over 10 years. The clinical and laboratory data including SLEDAI disease activity score, and serum complement factor H (CFH), CFI, CD46, C5a, and C5b-9 in the active and remission phases were determined. Glomerular C5b-9 deposition as a complement activity marker was also examined. Forty patients (35 female and 5 male, aged 13.9 ± 3.8 years) met the criteria of investigation were assessed. Fever and kidney were the most common symptom and organ involved, respectively. Mean SLEDAI in the active and remission phases were 12.6 vs 1.7, respectively. All patients exhibited lower serum C3, C4, CFH and CFI and higher serum anti-dsDNA and CD46 in the active pahse. There was a significant difference in serum CFH, CFI and CD46 between active and remissive phases. Serum CFI but not CFH and CD46 level was negatively correlated with SLEDAI score in active phase. Compared to classical activity markers, serum CFI was superior to C4 and anti-dsDNA in reflecting disease activity and also significantly correlated with white blood count and hemoglobin. Glomerular C5b-9 depositions were detected in patients with nephritis during active phase but not in disease controls. Serum CFI level may not only be a promising biomarker for disease activity of SLE, but also reflects the hematological features of SLE.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Hui-Ping Chien
- Department of Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Huang-Yu Yang
- Department of Nephrology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Yung-Chang Chen
- Department of Nephrology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Jing-Long Huang
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
50
|
Brocklebank V, Kavanagh D. Complement C5-inhibiting therapy for the thrombotic microangiopathies: accumulating evidence, but not a panacea. Clin Kidney J 2017; 10:600-624. [PMID: 28980670 PMCID: PMC5622895 DOI: 10.1093/ckj/sfx081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Thrombotic microangiopathy (TMA), characterized by organ injury occurring consequent to severe endothelial damage, can manifest in a diverse range of diseases. In complement-mediated atypical haemolytic uraemic syndrome (aHUS) a primary defect in complement, such as a mutation or autoantibody leading to over activation of the alternative pathway, predisposes to the development of disease, usually following exposure to an environmental trigger. The elucidation of the pathogenesis of aHUS resulted in the successful introduction of the complement inhibitor eculizumab into clinical practice. In other TMAs, although complement activation may be seen, its role in the pathogenesis remains to be confirmed by an interventional trial. Although many case reports in TMAs other than complement-mediated aHUS hint at efficacy, publication bias, concurrent therapies and in some cases the self-limiting nature of disease make broader interpretation difficult. In this article, we will review the evidence for the role of complement inhibition in complement-mediated aHUS and other TMAs.
Collapse
Affiliation(s)
- Vicky Brocklebank
- The National Renal Complement Therapeutics Centre (NRCTC), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - David Kavanagh
- The National Renal Complement Therapeutics Centre (NRCTC), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|