1
|
Jiang M, Dai S, Zheng YC, Li RQ, Tan YY, Pan G, Møller IM, Song SY, Huang JZ, Shu QY. An alanine to valine mutation of glutamyl-tRNA reductase enhances 5-aminolevulinic acid synthesis in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2817-2831. [PMID: 35779128 DOI: 10.1007/s00122-022-04151-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
An alanine to valine mutation of glutamyl-tRNA reductase's 510th amino acid improves 5-aminolevulinic acid synthesis in rice. 5-aminolevulinic acid (ALA) is the common precursor of all tetrapyrroles and plays an important role in plant growth regulation. ALA is synthesized from glutamate, catalyzed by glutamyl-tRNA synthetase (GluRS), glutamyl-tRNA reductase (GluTR), and glutamate-1-semialdehyde aminotransferase (GSAT). In Arabidopsis, ALA synthesis is the rate-limiting step in tetrapyrrole production via GluTR post-translational regulations. In rice, mutations of GluTR and GSAT homologs are known to confer chlorophyll deficiency phenotypes; however, the enzymatic activity of rice GluRS, GluTR, and GSAT and the post-translational regulation of rice GluTR have not been investigated experimentally. We have demonstrated that a suppressor mutation in rice partially reverts the xantha trait. In the present study, we first determine that the suppressor mutation results from a G → A nucleotide substitution of OsGluTR (and an A → V change of its 510th amino acid). Protein homology modeling and molecular docking show that the OsGluTRA510V mutation increases its substrate binding. We then demonstrate that the OsGluTRA510V mutation increases ALA synthesis in Escherichia coli without affecting its interaction with OsFLU. We further explore homologous genes encoding GluTR across 193 plant species and find that the amino acid (A) is 100% conserved at the position, suggesting its critical role in GluTR. Thus, we demonstrate that the gain-of-function OsGluTRA510V mutation underlies suppression of the xantha trait, experimentally proves the enzymatic activity of rice GluRS, GluTR, and GSAT in ALA synthesis, and uncovers conservation of the alanine corresponding to the 510th amino acid of OsGluTR across plant species.
Collapse
Affiliation(s)
- Meng Jiang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, Hainan, China
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shang Dai
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Chao Zheng
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rui-Qing Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yuan-Yuan Tan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gang Pan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, 4200, Slagelse, Denmark
| | - Shi-Yong Song
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Zhong Huang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, Hainan, China.
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qing-Yao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, Hainan, China.
| |
Collapse
|
2
|
Aiguo Z, Meizhi Z. Production of 5-aminolevulinic acid from glutamate by overexpressing HemA1 and pgr7 from Arabidopsis thaliana in Escherichia coli. World J Microbiol Biotechnol 2019; 35:175. [PMID: 31673852 DOI: 10.1007/s11274-019-2750-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
The important metabolic intermediate 5-aminolevulinic acid (ALA) is useful for cancer treatment or plant growth regulation and has consequently received much attention. In this study, we introduced the HemA1 and pgr7 genes from the higher plant Arabidopsis thaliana into recombinant Escherichia coli to overproduce extracellular 5-aminolevulinic acid via the C5 pathway. In the E. coli BL21 (DE3) strain background, the ALA concentration of the strain expressing both HemA1 and pgr7 was the highest and reached 3080.62 mg/L. Among the 7 tested hosts, ALA production was the highest in E. coli Transetta (DE3). In E. coli Transetta GTR/GBP, the expression levels of zwf, gnd, pgl and RhtA were upregulated. Glutamate induced the expression of the GltJ, GltK, GltL and GltS genes that are in involved in glutamate uptake. The recombinant E. coli Transetta GTR/GBP was able to produce 7642 mg/L ALA in modified minimal medium supplemented with 10 g/L glutamate and 15 g/L glucose after 48 h of fermentation at 22 °C. The results provide persuading evidence for the efficient production of ALA from glucose and glutamate in E. coli expressing A. thaliana HemA1 and pgr7. Further optimization of the fermentation process should be done to improve the ALA production to an industrially relevant level.
Collapse
Affiliation(s)
- Zhao Aiguo
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhai Meizhi
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Aiguo Z, Ruiwen D, Meizhi Z. Multi-enzymatic recycling of ATP and NADPH for the synthesis of 5-aminolevulinic acid using a semipermeable reaction system. Biosci Biotechnol Biochem 2019; 83:2213-2219. [PMID: 31362590 DOI: 10.1080/09168451.2019.1648204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
5-Aminolevulinic acid (ALA) is an important cellular metabolic intermediate that has broad agricultural and medical applications. Previously, attempts have been made to synthesize ALA by multiple enzymes in cell free systems. Here we report the development of a semi-permeable system for ALA production using stable enzymes. Glucose, sodium polyphosphate, ATP, tRNA, glutamate and NADPH were used as substrates for ALA synthesis by a total of nine enzymes: adenylate kinase, polyphosphate kinase, glucose-6-phosphate dehydrogenase, phosphogluconolactonase, 6-phosphogluconate dehydrogenase, glutamyl-tRNA synthetase and glutamate-1-semialdehyde aminotransferase from E. coli, hexokinase from yeast, as well as glutamyl-tRNA reductase and its stimulator protein glutamyl-tRNA reductase binding protein (GBP) from Arabidopsis in a semi-permeable system. After reaction for 48 h, the glutamate conversion reached about 95%. This semi-permeable system facilitated the reuse of enzymes, and was helpful for the separation and purification of the product. The ALA production could be further improved by process optimization and enzyme engineering.Abbreviations: PPK: polyphosphate kinase; ADK: adenylate kinase; ALA: 5-Aminolevulinic acid; HK: hexokinase; ZWF: glucose-6-phosphatedehydrogenase; PGL: phosphogluconolactonase; GND: 6-phosphogluconate dehydrogenase; GTS: glutamyl-tRNA synthetase; GTR: glutamyl-tRNA reductase; GBP: GTR binding protein; GSAAT: glutamate-1-semialdehyde aminotransferase.
Collapse
Affiliation(s)
- Zhao Aiguo
- Walnut Research Center, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Ding Ruiwen
- Walnut Research Center, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhai Meizhi
- Walnut Research Center, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Hou Z, Yang Y, Hedtke B, Grimm B. Fluorescence in blue light (FLU) is involved in inactivation and localization of glutamyl-tRNA reductase during light exposure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:517-529. [PMID: 30362619 DOI: 10.1111/tpj.14138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Fluorescent in blue light (FLU) is a negative regulator involved in dark repression of 5-aminolevulinic acid (ALA) synthesis and interacts with glutamyl-tRNA reductase (GluTR), the rate-limiting enzyme of tetrapyrrole biosynthesis. In this study, we investigated FLU's regulatory function in light-exposed FLU-overexpressing (FLUOE) Arabidopsis lines and under fluctuating light intensities in wild-type (WT) and flu seedlings. FLUOE lines suppress ALA synthesis in the light, resulting in reduced chlorophyll content, but more strongly in low and high light than in medium growth light. This situation indicates that FLU's impact on chlorophyll biosynthesis depends on light intensity. FLU overexpressors contain strongly increased amounts of mainly membrane-associated GluTR. These findings correlate with FLU-dependent localization of GluTR to plastidic membranes and concomitant inhibition, such that only the soluble GluTR fraction is active. The overaccumulation of membrane-associated GluTR indicates that FLU binding enhances GluTR stability. Interestingly, under fluctuating light, the leaves of flu mutants contain less chlorophyll compared with WT and become necrotic. We propose that FLU is basically required for fine-tuned ALA synthesis. FLU not only mediates dark repression of ALA synthesis, but functions also to control balanced ALA synthesis under variable light intensities to ensure the adequate supply of chlorophyll.
Collapse
Affiliation(s)
- Zhiwei Hou
- Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany
| | - Yanyu Yang
- Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany
| | - Boris Hedtke
- Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany
| | - Bernhard Grimm
- Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany
| |
Collapse
|
5
|
Zhao A, Han F. Crystal structure of Arabidopsis thaliana glutamyl-tRNA Glu reductase in complex with NADPH and glutamyl-tRNA Glu reductase binding protein. PHOTOSYNTHESIS RESEARCH 2018; 137:443-452. [PMID: 29785497 DOI: 10.1007/s11120-018-0518-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
In higher plants, the tetrapyrrole biosynthesis pathway starts from the reaction catalyzed by the rate-limiting enzyme, glutamyl-tRNAGlu reductase (GTR). In Arabidopsis thaliana, GTR is controlled by post-transcriptional regulators such as GTR binding protein (GBP), which stimulates AtGTR activity. The NADPH-binding domain of AtGTR undergoes a substantial movement upon GBP binding. Here, we report the crystal structure of AtGTR-NADPH-GBP ternary complex. NADPH binding causes slight structural changes compared with the AtGTR-GBP binary complex, and possibly take a part of the space needed by the substrate glutamyl-tRNAGlu. The highly reactive sulfhydryl group of the active-site residue Cys144 shows an obvious rotation, which may facilitate the hydride transfer from NADPH to the thioester intermediate to form glutamate-1-semialdehyde. Furthermore, Lys271, Lys274, Ser275, Asn278, and Gln282 of GBP participate in the interaction between AtGTR and GBP, and the stimulating effect of GBP decreased when all of these residues were mutated to Ala. When the Cys144 of AtGTR was mutated to Ser, AtGTR activity could not be detected even in the presence of GBP.
Collapse
Affiliation(s)
- Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feng Han
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Mahawar L, Shekhawat GS. Haem oxygenase: A functionally diverse enzyme of photosynthetic organisms and its role in phytochrome chromophore biosynthesis, cellular signalling and defence mechanisms. PLANT, CELL & ENVIRONMENT 2018; 41:483-500. [PMID: 29220548 DOI: 10.1111/pce.13116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/26/2017] [Accepted: 11/23/2017] [Indexed: 05/08/2023]
Abstract
Haem oxygenase (HO) is a universal enzyme that catalyses stereospecific cleavage of haem to BV IX α and liberates Fe+2 ion and CO as by-product. Beside haem degradation, it has important functions in plants that include cellular defence, stomatal regulation, iron mobilization, phytochrome chromophore synthesis, and lateral root formation. Phytochromes are an extended family of photoreceptors with a molecular mass of 250 kDa and occur as a dimer made up of 2 equivalent subunits of 125 kDa each. Each subunit is made of two components: the chromophore, a light-capturing pigment molecule and the apoprotein. Biosynthesis of phytochrome (phy) chromophore includes the oxidative splitting of haem to biliverdin IX by an enzyme HO, which is the decisive step in the biosynthesis. In photosynthetic organisms, BVα is reduced to 3Z PΦB by a ferredoxin-dependent PΦB synthase that finally isomerised to PΦB. The synthesized PΦB assembles with the phytochrome apoprotein in the cytoplasm to generate holophytochrome. Thus, necessary for photomorphogenesis in plants, which has confirmed from the genetic studies, conducted on Arabidopsis thaliana and pea. Besides the phytochrome chromophore synthesis, the review also emphasises on the current advances conducted in plant HO implying its developmental and defensive role.
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | | |
Collapse
|
7
|
Evaluation of rice tetraticopeptide domain-containing thioredoxin as a novel solubility-enhancing fusion tag in Escherichia coli. J Biosci Bioeng 2018; 125:160-167. [DOI: 10.1016/j.jbiosc.2017.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023]
|
8
|
Fujii S, Kobayashi K, Nagata N, Masuda T, Wada H. Monogalactosyldiacylglycerol Facilitates Synthesis of Photoactive Protochlorophyllide in Etioplasts. PLANT PHYSIOLOGY 2017; 174:2183-2198. [PMID: 28655777 PMCID: PMC5543945 DOI: 10.1104/pp.17.00304] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/20/2017] [Indexed: 05/23/2023]
Abstract
Cotyledon cells of dark-germinated angiosperms develop etioplasts that are plastids containing unique internal membranes called prolamellar bodies (PLBs). Protochlorophyllide (Pchlide), a precursor of chlorophyll, accumulates in PLBs and forms a ternary complex with NADPH and light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR), which allows for the rapid formation of chlorophyll after illumination while avoiding photodamage. PLBs are 3D lattice structures formed by the lipid bilayer rich in monogalactosyldiacylglycerol (MGDG). Although MGDG was found to be required for the formation and function of the thylakoid membrane in chloroplasts in various plants, the roles of MGDG in PLB formation and etioplast development are largely unknown. To analyze the roles of MGDG in etioplast development, we suppressed MGD1 encoding the major isoform of MGDG synthase by using a dexamethasone-inducible artificial microRNA in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. Strong MGD1 suppression caused a 36% loss of MGDG in etiolated seedlings, together with a 41% decrease in total Pchlide content. The loss of MGDG perturbed etioplast membrane structures and impaired the formation of the photoactive Pchlide-LPOR-NADPH complex and its oligomerization, without affecting LPOR accumulation. The MGD1 suppression also impaired the formation of Pchlide from protoporphyrin IX via multiple enzymatic reactions in etioplast membranes, which suggests that MGDG is required for the membrane-associated processes in the Pchlide biosynthesis pathway. Suppressing MGD1 at several germination stages revealed that MGDG biosynthesis at an early germination stage is particularly important for Pchlide accumulation. MGDG biosynthesis may provide a lipid matrix for Pchlide biosynthesis and the formation of Pchlide-LPOR complexes as an initial step of etioplast development.
Collapse
Affiliation(s)
- Sho Fujii
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Noriko Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Tatsuru Masuda
- Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
9
|
Apitz J, Nishimura K, Schmied J, Wolf A, Hedtke B, van Wijk KJ, Grimm B. Posttranslational Control of ALA Synthesis Includes GluTR Degradation by Clp Protease and Stabilization by GluTR-Binding Protein. PLANT PHYSIOLOGY 2016; 170:2040-51. [PMID: 26884485 PMCID: PMC4825132 DOI: 10.1104/pp.15.01945] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/13/2016] [Indexed: 05/20/2023]
Abstract
5-Aminolevulinic acid (ALA) is the first committed substrate of tetrapyrrole biosynthesis and is formed from glutamyl-tRNA by two enzymatic steps. Glutamyl-tRNA reductase (GluTR) as the first enzyme of ALA synthesis is encoded by HEMA genes and tightly regulated at the transcriptional and posttranslational levels. Here, we show that the caseinolytic protease (Clp) substrate adaptor ClpS1 and the ClpC1 chaperone as well as the GluTR-binding protein (GBP) interact with the N terminus of GluTR Loss-of function mutants of ClpR2 and ClpC1 proteins show increased GluTR stability, whereas absence of GBP results in decreased GluTR stability. Thus, the Clp protease system and GBP contribute to GluTR accumulation levels, and thereby the rate-limiting ALA synthesis. These findings are supported with Arabidopsis (Arabidopsis thaliana) hema1 mutants expressing a truncated GluTR lacking the 29 N-terminal amino acid residues of the mature protein. Accumulation of this truncated GluTR is higher in dark periods, resulting in increased protochlorophyllide content. It is proposed that the proteolytic activity of Clp protease counteracts GBP binding to assure the appropriate content of GluTR and the adequate ALA synthesis for chlorophyll and heme in higher plants.
Collapse
Affiliation(s)
- Janina Apitz
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany (J.A., J.S., A.W., B.H., B.G.); andSchool of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853 (K.N., K.J.v.W.)
| | - Kenji Nishimura
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany (J.A., J.S., A.W., B.H., B.G.); andSchool of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853 (K.N., K.J.v.W.)
| | - Judith Schmied
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany (J.A., J.S., A.W., B.H., B.G.); andSchool of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853 (K.N., K.J.v.W.)
| | - Anja Wolf
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany (J.A., J.S., A.W., B.H., B.G.); andSchool of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853 (K.N., K.J.v.W.)
| | - Boris Hedtke
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany (J.A., J.S., A.W., B.H., B.G.); andSchool of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853 (K.N., K.J.v.W.)
| | - Klaas J van Wijk
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany (J.A., J.S., A.W., B.H., B.G.); andSchool of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853 (K.N., K.J.v.W.)
| | - Bernhard Grimm
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany (J.A., J.S., A.W., B.H., B.G.); andSchool of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853 (K.N., K.J.v.W.)
| |
Collapse
|
10
|
Crystal structure of Arabidopsis glutamyl-tRNA reductase in complex with its stimulator protein. Proc Natl Acad Sci U S A 2014; 111:6630-5. [PMID: 24753615 DOI: 10.1073/pnas.1400166111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tetrapyrrole biosynthesis in plants, algae, and most bacteria starts from the NADPH-dependent reduction of glutamyl-tRNA by glutamyl-tRNA reductase (GluTR). The GluTR-catalyzed reaction is the rate-limiting step, and GluTR is the target of multiple posttranslational regulations, such as heme feedback inhibition, for the tetrapyrrole biosynthetic pathway. A recently identified GluTR regulator, GluTR binding protein (GluBP), has been shown to spatially organize tetrapyrrole synthesis by distributing GluTR into different suborganellar locations. Here we report the complex structure of GluTR-GluBP from Arabidopsis thaliana. The dimeric GluBP binds symmetrically to the catalytic domains of the V-shaped GluTR dimer via its C-terminal domain. A substantial conformational change of the GluTR NADPH-binding domain is observed, confirming the postulated rotation of the NADPH-binding domain for hydride transfer from NADPH to the substrate. Arg146, "guarding the door" for metabolic channeling, adopts alternative conformations, which may represent steps involved in substrate recognition and product release. A coupled enzyme assay shows that GluBP stimulates GluTR catalytic efficiency with an approximate threefold increase of the 5-aminolevulinic acid formation rate. In addition, the GluTR activity can be inhibited by heme in a concentration-dependent way regardless of the presence of GluBP. A structural alignment indicates that GluBP belongs to a heme-binding family involved in heme metabolism. We propose a catalytic mechanism model for GluTR, through which photosynthetic organisms can achieve precise regulation of tetrapyrrole biosynthesis.
Collapse
|
11
|
Aoki R, Hiraide Y, Yamakawa H, Fujita Y. A novel "oxygen-induced" greening process in a cyanobacterial mutant lacking the transcriptional activator ChlR involved in low-oxygen adaptation of tetrapyrrole biosynthesis. J Biol Chem 2014; 289:1841-51. [PMID: 24297184 PMCID: PMC3894359 DOI: 10.1074/jbc.m113.495358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/27/2013] [Indexed: 11/06/2022] Open
Abstract
ChlR activates the transcription of the chlAII-ho2-hemN operon in response to low-oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803. Three genes in the operon encode low-oxygen-type enzymes to bypass three oxygen-dependent reactions in tetrapyrrole biosynthesis. A chlR-lacking mutant, ΔchlR, shows poor photoautotrophic growth due to low chlorophyll (Chl) content under low-oxygen conditions, which is caused by no induction of the operon. Here, we characterized the processes of etiolation of ΔchlR cells in low-oxygen conditions and the subsequent regreening of the etiolated cells upon exposure to oxygen, by HPLC, Western blotting, and low-temperature fluorescence spectra. The Chl content of the etiolated ΔchlR cells incubated under low-oxygen conditions for 7 days was only 10% of that of the wild-type with accumulation of almost all intermediates of the magnesium branch of Chl biosynthesis. Both photosystem I (PSI) and photosystem II (PSII) were significantly decreased, accompanied by a preferential decrease of antenna Chl in PSI. Upon exposure to oxygen, the etiolated ΔchlR cells resumed to produce Chl after a short lag (∼2 h), and the level at 72 h was 80% of that of the wild-type. During this novel "oxygen-induced" greening process, the PSI and PSII contents were largely increased in parallel with the increase in Chl contents. After 72 h, the PSI content reached ∼50% of the wild-type level in contrast to the full recovery of PSII. ΔchlR provides a promising alternative system to investigate the biogenesis of PSI and PSII.
Collapse
Affiliation(s)
- Rina Aoki
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuto Hiraide
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hisanori Yamakawa
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuichi Fujita
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
12
|
Sun Y, Fukamachi T, Saito H, Kobayashi H. Respiration and the F₁Fo-ATPase enhance survival under acidic conditions in Escherichia coli. PLoS One 2012; 7:e52577. [PMID: 23300708 PMCID: PMC3534200 DOI: 10.1371/journal.pone.0052577] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/20/2012] [Indexed: 11/20/2022] Open
Abstract
Besides amino acid decarboxylation, the ADP biosynthetic pathway was reported to
enhance survival under extremely acidic conditions in Escherichia
coli (Sun et al., J. Bacteriol. 193∶
3072–3077, 2011). E. coli has two pathways for ATP synthesis
from ADP: glycolysis and oxidative phosphorylation. We found in this study that the
deletion of the F1Fo-ATPase, which catalyzes the synthesis of ATP from ADP
and inorganic phosphate using the electro-chemical gradient of protons generated by
respiration in E. coli, decreased the survival at pH 2.5. A mutant
deficient in hemA encoding the glutamyl tRNA reductase, which
synthesizes glutamate 1-semialdehyde also showed the decreased survival of E.
coli at pH 2.5. Glutamate 1-semialdehyde is a precursor of heme synthesis
that is an essential component of the respiratory chain. The ATP content decreased
rapidly at pH 2.5 in these mutants as compared with that of their parent strain. The
internal pH was lowered by the deletion of these genes at pH 2.5. These results
suggest that respiration and the F1Fo-ATPase are still working at pH 2.5
to enhance the survival under such extremely acidic conditions.
Collapse
Affiliation(s)
- Yirong Sun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China.
| | | | | | | |
Collapse
|
13
|
Simplifying protein expression with ligation-free, traceless and tag-switching plasmids. Protein Expr Purif 2012; 85:9-17. [DOI: 10.1016/j.pep.2012.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/01/2012] [Accepted: 06/08/2012] [Indexed: 01/30/2023]
|
14
|
Britton ZT, Hanle EI, Robinson AS. An expression and purification system for the biosynthesis of adenosine receptor peptides for biophysical and structural characterization. Protein Expr Purif 2012; 84:224-35. [PMID: 22722102 PMCID: PMC3572917 DOI: 10.1016/j.pep.2012.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/29/2012] [Accepted: 06/08/2012] [Indexed: 11/15/2022]
Abstract
Biophysical and structural characterization of G protein-coupled receptors (GPCRs) has been limited due to difficulties in expression, purification, and vitro stability of the full-length receptors. "Divide and conquer" approaches aimed at the NMR characterization of peptides corresponding to specific regions of the receptor have yielded insights into the structure and dynamics of GPCR activation and signaling. Though significant progress has been made in the generation of peptides that are composed of GPCR transmembrane domains, current methods utilize fusion protein strategies that require chemical cleavage and peptide separation via chromatographic means. We have developed an expression and purification system based on fusion to ketosteroid isomerase, thrombin cleavage, and tandem affinity chromatography that enables the solubilization, cleavage, and characterization in a single detergent system relevant for biophysical and structural characterization. We have applied this expression and purification system to the production and characterization of peptides of the adenosine receptor family of GPCRs in Escherichia coli. Herein, we demonstrate using a model peptide that includes extracellular loop 3, transmembrane domain 7, and a portion of the carboxy-terminus of the adenosine A(2)a receptor that the peptide is sufficiently pure for biophysical characterization, where it adopts α-helical structure. Furthermore, we demonstrate the utility of this system by optimizing the construct for thrombin processing and apply the system to peptides with more complex structures.
Collapse
Affiliation(s)
- Zachary T. Britton
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
| | - Elizabeth I. Hanle
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
| | - Anne S. Robinson
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
- Department of Chemical and Biomolecular Engineering, 300 Lindy Boggs Laboratory, Tulane University, New Orleans, LA 70118, United States
| |
Collapse
|
15
|
Young CL, Britton ZT, Robinson AS. Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications. Biotechnol J 2012; 7:620-34. [DOI: 10.1002/biot.201100155] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 12/27/2022]
|
16
|
Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0145. [PMID: 22303270 PMCID: PMC3268503 DOI: 10.1199/tab.0145] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
The variable detergent sensitivity of proteases that are utilized for recombinant protein affinity tag removal. Protein Expr Purif 2011; 78:139-42. [PMID: 21539919 DOI: 10.1016/j.pep.2011.04.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/22/2011] [Accepted: 04/18/2011] [Indexed: 11/23/2022]
Abstract
Recombinant proteins typically include one or more affinity tags to facilitate purification and/or detection. Expression constructs with affinity tags often include an engineered protease site for tag removal. Like other enzymes, the activities of proteases can be affected by buffer conditions. The buffers used for integral membrane proteins contain detergents, which are required to maintain protein solubility. We examined the detergent sensitivity of six commonly-used proteases (enterokinase, factor Xa, human rhinovirus 3C protease, SUMOstar, tobacco etch virus protease, and thrombin) by use of a panel of 94 individual detergents. Thrombin activity was insensitive to the entire panel of detergents, thus suggesting it as the optimal choice for use with membrane proteins. Enterokinase and factor Xa were only affected by a small number of detergents, making them good choices as well.
Collapse
|
18
|
de Armas-Ricard M, Levicán G, Katz A, Moser J, Jahn D, Orellana O. Cellular levels of heme affect the activity of dimeric glutamyl-tRNA reductase. Biochem Biophys Res Commun 2011; 405:134-9. [PMID: 21219871 DOI: 10.1016/j.bbrc.2011.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/04/2011] [Indexed: 01/25/2023]
Abstract
Glutamyl-tRNA reductase (GluTR) is the first enzyme committed to tetrapyrrole biosynthesis by the C(5)-pathway. This enzyme transforms glutamyl-tRNA into glutamate-1-semi-aldehyde, which is then transformed into 5-amino levulinic acid by the glutamate-1-semi-aldehyde 2,1-aminomutase. Binding of heme to GluTR seems to be relevant to regulate the enzyme function. Recombinant GluTR from Acidithiobacillus ferrooxidans an acidophilic bacterium that participates in bioleaching of minerals was expressed in Escherichia coli and purified as a soluble protein containing type b heme. Upon control of the cellular content of heme in E. coli, GluTR with different levels of bound heme was obtained. An inverse correlation between the activity of the enzyme and the level of bound heme to GluTR suggested a control of the enzyme activity by heme. Heme bound preferentially to dimeric GluTR. An intact dimerization domain was essential for the enzyme to be fully active. We propose that the cellular levels of heme might regulate the activity of GluTR and ultimately its own biosynthesis.
Collapse
Affiliation(s)
- Merly de Armas-Ricard
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
19
|
Jones AM, Elliott T. A purified mutant HemA protein from Salmonella enterica serovar Typhimurium lacks bound heme and is defective for heme-mediated regulation in vivo. FEMS Microbiol Lett 2010; 307:41-7. [PMID: 20412302 DOI: 10.1111/j.1574-6968.2010.01967.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Archaea, plants, and most bacteria synthesize heme using the C5 pathway, in which the first committed step is catalyzed by the enzyme glutamyl-tRNA reductase (GluTR or HemA). In some cases, an overproduced and purified HemA enzyme contains noncovalently bound heme. The enteric bacteria Salmonella enterica and Escherichia coli also synthesize heme by the C5 pathway, and the HemA protein in these bacteria is regulated by proteolysis. The enzyme is unstable during normal growth due to the action of Lon and ClpAP, but becomes stable when heme is limiting for growth. We describe a method for the overproduction of S. enterica HemA that yields a purified enzyme containing bound heme, identified as a b-type heme by spectroscopy. A mutant of HemA (C170A) does not contain heme when similarly purified. The mutant was used to test whether heme is directly involved in HemA regulation. When expressed from the S. enterica chromosome in a wild-type background, the C170A mutant allele of hemA is shown to confer an unregulated phenotype, with high levels of HemA regardless of the heme status. These results strongly suggest that the presence of bound heme targets the HemA enzyme for degradation and is required for normal regulation.
Collapse
Affiliation(s)
- Amy M Jones
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | | |
Collapse
|
20
|
Masuda T, Fujita Y. Regulation and evolution of chlorophyll metabolism. Photochem Photobiol Sci 2008; 7:1131-49. [PMID: 18846277 DOI: 10.1039/b807210h] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorophylls are the most abundant tetrapyrrole molecules essential for photosynthesis in photosynthetic organisms. After many years of intensive research, most of the genes encoding the enzymes for the pathway have been identified, and recently the underlying molecular mechanisms have been elucidated. These studies revealed that the regulation of chlorophyll metabolism includes all levels of control to allow a balanced metabolic flow in response to external and endogenous factors and to ensure adaptation to varying needs of chlorophyll during plant development. Furthermore, identification of biosynthetic genes from various organisms and genetic analysis of functions of identified genes enables us to predict the evolutionary scenario of chlorophyll metabolism. In this review, based on recent findings, we discuss the regulation and evolution of chlorophyll metabolism.
Collapse
Affiliation(s)
- Tatsuru Masuda
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan.
| | | |
Collapse
|
21
|
von Gromoff ED, Alawady A, Meinecke L, Grimm B, Beck CF. Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas. THE PLANT CELL 2008; 20:552-67. [PMID: 18364467 PMCID: PMC2329926 DOI: 10.1105/tpc.107.054650] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 02/15/2008] [Accepted: 02/29/2008] [Indexed: 05/19/2023]
Abstract
To gain insight into the chloroplast-to-nucleus signaling role of tetrapyrroles, Chlamydomonas reinhardtii mutants in the Mg-chelatase that catalyzes the insertion of magnesium into protoporphyrin IX were isolated and characterized. The four mutants lack chlorophyll and show reduced levels of Mg-tetrapyrroles but increased levels of soluble heme. In the mutants, light induction of HSP70A was preserved, although Mg-protoporphyrin IX has been implicated in this induction. In wild-type cells, a shift from dark to light resulted in a transient reduction in heme levels, while the levels of Mg-protoporphyrin IX, its methyl ester, and protoporphyrin IX increased. Hemin feeding to cultures in the dark activated HSP70A. This induction was mediated by the same plastid response element (PRE) in the HSP70A promoter that has been shown to mediate induction by Mg-protoporphyrin IX and light. Other nuclear genes that harbor a PRE in their promoters also were inducible by hemin feeding. Extended incubation with hemin abrogated the competence to induce HSP70A by light or Mg-protoporphyrin IX, indicating that these signals converge on the same pathway. We propose that Mg-protoporphyrin IX and heme may serve as plastid signals that regulate the expression of nuclear genes.
Collapse
Affiliation(s)
- Erika D von Gromoff
- Fakultät für Biologie, Institut für Biologie III, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
22
|
Lüer C, Schauer S, Virus S, Schubert WD, Heinz DW, Moser J, Jahn D. Glutamate recognition and hydride transfer by Escherichia coli glutamyl-tRNA reductase. FEBS J 2007; 274:4609-14. [PMID: 17697121 DOI: 10.1111/j.1742-4658.2007.05989.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The initial step of tetrapyrrole biosynthesis in Escherichia coli involves the NADPH-dependent reduction by glutamyl-tRNA reductase (GluTR) of tRNA-bound glutamate to glutamate-1-semialdehyde. We evaluated the contribution of the glutamate moiety of glutamyl-tRNA to substrate specificity in vitro using a range of substrates and enzyme variants. Unexpectedly, we found that tRNA(Glu) mischarged with glutamine was a substrate for purified recombinant GluTR. Similarly unexpectedly, the substitution of amino acid residues involved in glutamate side chain binding (S109A, T49V, R52K) or in stabilizing the arginine 52 glutamate interaction (glutamate 54 and histidine 99) did not abrogate enzyme activity. Replacing glutamine 116 and glutamate 114, involved in glutamate-enzyme interaction near the aminoacyl bond to tRNA(Glu), by leucine and lysine, respectively, however, did abolish reductase activity. We thus propose that the ester bond between glutamate and tRNA(Glu) represents the crucial determinant for substrate recognition by GluTR, whereas the necessity for product release by a 'back door' exit allows for a degree of structural variability in the recognition of the amino acid moiety. Analyzing the esterase activity, which occured in the absence of NADPH, of GluTR variants using the substrate 4-nitrophenyl acetate confirmed the crucial role of cysteine 50 for thioester formation. Finally, the GluTR variant Q116L was observed to lack reductase activity whereas esterase activity was retained. Structure-based molecular modeling indicated that glutamine 116 may be crucial in positioning the nicotinamide group of NADPH to allow for productive hydride transfer to the substrate. Our data thus provide new information about the distinct function of active site residues of GluTR from E. coli.
Collapse
Affiliation(s)
- Corinna Lüer
- Institute of Microbiology, Technical University Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
This review is concerned specifically with the structures and biosynthesis of hemes in E. coli and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to E. coli and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of H2O. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.
Collapse
|
24
|
Nott A, Jung HS, Koussevitzky S, Chory J. Plastid-to-nucleus retrograde signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:739-59. [PMID: 16669780 DOI: 10.1146/annurev.arplant.57.032905.105310] [Citation(s) in RCA: 363] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant cells store genetic information in the genomes of three organelles: the nucleus, plastid, and mitochondrion. The nucleus controls most aspects of organelle gene expression, development, and function. In return, organelles send signals to the nucleus to control nuclear gene expression, a process called retrograde signaling. This review summarizes our current understanding of plastid-to-nucleus retrograde signaling, which involves multiple, partially redundant signaling pathways. The best studied is a pathway that is triggered by buildup of Mg-ProtoporphyrinIX, the first intermediate in the chlorophyll branch of the tetrapyrrole biosynthetic pathway. In addition, there is evidence for a plastid gene expression-dependent pathway, as well as a third pathway that is dependent on the redox state of photosynthetic electron transport components. Although genetic studies have identified several players involved in signal generation, very little is known of the signaling components or transcription factors that regulate the expression of hundreds of nuclear genes.
Collapse
Affiliation(s)
- Ajit Nott
- Plant Biology Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
25
|
Beck CF. Signaling pathways from the chloroplast to the nucleus. PLANTA 2005; 222:743-56. [PMID: 16231154 DOI: 10.1007/s00425-005-0021-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 05/04/2005] [Indexed: 05/04/2023]
Abstract
Genetic and physiological studies have to-date revealed evidence for five signaling pathways by which the chloroplast exerts retrograde control over nuclear genes. One of these pathways is dependent on product(s) of plastid protein synthesis, for another the signal is singlet oxygen, a third employs chloroplast-generated hydrogen peroxide, a fourth is controlled by the redox state of the photosynthetic electron transport chain, and a fifth involves intermediates and possibly proteins of tetrapyrrole biosynthesis. These five pathways may be part of a complex signaling network that links the functional and physiological state of the chloroplast to the nucleus. Mutants defective in various steps of photosynthesis reveal a surprising diversity in nuclear responses suggesting the existence of a complex signaling network.
Collapse
Affiliation(s)
- Christoph F Beck
- Institute of Biology III, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany.
| |
Collapse
|
26
|
Vasileuskaya Z, Oster U, Beck CF. Mg-protoporphyrin IX and heme control HEMA, the gene encoding the first specific step of tetrapyrrole biosynthesis, in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2005; 4:1620-8. [PMID: 16215169 PMCID: PMC1265898 DOI: 10.1128/ec.4.10.1620-1628.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 07/28/2005] [Indexed: 11/20/2022]
Abstract
HEMA encodes glutamyl-tRNA reductase (GluTR), which catalyzes the first step specific for tetrapyrrole biosynthesis in plants, archaea, and most eubacteria. In higher plants, GluTR is feedback inhibited by heme and intermediates of chlorophyll biosynthesis. It plays a key role in controlling flux through the tetrapyrrole biosynthetic pathway. This enzyme, which in Chlamydomonas reinhardtii is encoded by a single gene (HEMA), exhibits homology to GluTRs of higher plants and cyanobacteria. HEMA mRNA accumulation was inducible not only by light but also by treatment of dark-adapted cells with Mg-protoporphyrin IX (MgProto) or hemin. The specificity of these tetrapyrroles as inducers was demonstrated by the absence of induction observed upon the feeding of protoporphyrin IX, the precursor of both heme and MgProto, or chlorophyllide. The HEMA mRNA accumulation following treatment of cells with light and hemin was accompanied by increased amounts of GluTR. However, the feeding of MgProto did not suggest a role for Mg-tetrapyrroles in posttranscriptional regulation. The induction by light but not that by the tetrapyrroles was prevented by inhibition of cytoplasmic protein synthesis. Since MgProto is synthesized exclusively in plastids and heme is synthesized in plastids and mitochondria, the data suggest a role of these compounds as organellar signals that control expression of the nuclear HEMA gene.
Collapse
Affiliation(s)
- Zinaida Vasileuskaya
- University of Freiburg, Institute of Biology III, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
27
|
Nogaj LA, Srivastava A, van Lis R, Beale SI. Cellular levels of glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase do not control chlorophyll synthesis in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2005; 139:389-96. [PMID: 16126849 PMCID: PMC1203387 DOI: 10.1104/pp.105.067009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
5-Aminolevulinic acid (ALA) is the first committed universal precursor in the tetrapyrrole biosynthesis pathway. In plants, algae, and most bacteria, ALA is generated from glutamate. First, glutamyl-tRNA synthetase activates glutamate by ligating it to tRNA(Glu). Activated glutamate is then converted to glutamate 1-semialdehyde (GSA) by glutamyl-tRNA reductase (GTR). Finally, GSA is rearranged to ALA by GSA aminotransferase (GSAT). In the unicellular green alga Chlamydomonas reinhardtii, GTR and GSAT were found in the chloroplasts and were not detected in the mitochondria by immunoblotting. The levels of both proteins (assayed by immunoblotting) and their mRNAs (assayed by RNA blotting) were approximately equally abundant in cells growing in continuous dark or continuous light (fluorescent tubes, 80 micromol photons s(-1) m(-2)), consistent with the ability of the cells to form chlorophyll under both conditions. In cells synchronized to a 12-h-light/12-h-dark cycle, chlorophyll accumulated only during the light phase. However, GTR and GSAT were present at all phases of the cycle. The GTR mRNA level increased in the light and peaked about 2-fold at 2 h into the light phase, and GTR protein levels also increased and peaked 2-fold at 4 to 6 h into the light phase. In contrast, although the GSAT mRNA level increased severalfold at 2 h into the light phase, the level of GSAT protein remained approximately constant in the light and dark phases. Under all growth conditions, the cells contained significantly more GSAT than GTR on a molar basis. Our results indicate that the rate of chlorophyll synthesis in C. reinhardtii is not directly controlled by the expression levels of the mRNAs for GTR or GSAT, or by the cellular abundance of these enzyme proteins.
Collapse
Affiliation(s)
- Luiza A Nogaj
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
28
|
Srivastava A, Beale SI. Glutamyl-tRNA reductase of Chlorobium vibrioforme is a dissociable homodimer that contains one tightly bound heme per subunit. J Bacteriol 2005; 187:4444-50. [PMID: 15968053 PMCID: PMC1151790 DOI: 10.1128/jb.187.13.4444-4450.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Accepted: 03/10/2005] [Indexed: 11/20/2022] Open
Abstract
delta-Aminolevulinic acid, the biosynthetic precursor of tetrapyrroles, is synthesized from glutamate via the tRNA-dependent five-carbon pathway in the green sulfur bacterium Chlorobium vibrioforme. The enzyme glutamyl-tRNA reductase (GTR), encoded by the hemA gene, catalyzes the first committed step in this pathway, which is the reduction of tRNA-bound glutamate to produce glutamate 1-semialdehyde. To characterize the GTR protein, the hemA gene from C. vibrioforme was cloned into expression plasmids that added an N-terminal His(6) tag to the expressed protein. The His-tagged GTR protein was purified using Ni affinity column chromatography. GTR was observable as a 49-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels. The native molecular mass, as determined by gel filtration chromatography, appeared to be approximately 40 kDa, indicating that native GTR is a monomer. However, when the protein was mixed with 5% (vol/vol) glycerol, the product had an apparent molecular mass of 95 kDa, indicating that the protein is a dimer under these conditions. Purified His(6)-GTR was catalytically active in vitro when it was incubated with Escherichia coli glutamyl-tRNA(Glu) and purified recombinant Chlamydomonas reinhardtii glutamate-1-semialdehyde aminotransferase. The expressed GTR contained 1 mol of tightly bound heme per mol of pep tide subunit. The heme remained bound to the protein throughout purification and was not removed by anion- or cation-exchange column chromatography. However, the bound heme was released during SDS-PAGE if the protein was denatured in the presence of beta-mercaptoethanol. Added heme did not inhibit the activity of purified expressed GTR in vitro. However, when the GTR was expressed in the presence of 3-amino-2,3- dihydrobenzoic acid (gabaculine), an inhibitor of heme synthesis, the purified GTR had 60 to 70% less bound heme than control GTR, and it was inhibited by hemin in vitro.
Collapse
Affiliation(s)
- Alaka Srivastava
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
29
|
Srivastava A, Lake V, Nogaj LA, Mayer SM, Willows RD, Beale SI. The Chlamydomonas reinhardtii gtr gene encoding the tetrapyrrole biosynthetic enzyme glutamyl-trna reductase: structure of the gene and properties of the expressed enzyme. PLANT MOLECULAR BIOLOGY 2005; 58:643-58. [PMID: 16158240 DOI: 10.1007/s11103-005-6803-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 04/29/2005] [Indexed: 05/04/2023]
Abstract
Plants, algae, cyanobacteria and many other bacteria synthesize the tetrapyrrole precursor, delta-aminolevulinic acid (ALA), from glutamate by means of a tRNAGlu-mediated pathway. The enzyme glutamyl-tRNA reductase (GTR) catalyzes the first committed step in this pathway, which is the reduction of tRNA-bound glutamate to produce glutamate 1-semialdehyde. Chlamydomonas reinhardtii mRNA encoding gtr was sequenced from a cDNA and genomic libraries. The 3179-bp gtr cDNA contains a 1566-bp open reading frame that encodes a 522-amino acid polypeptide. After removal of the predicted transit peptide, the mature 480-residue GTR has a calculated molecular weight of 52,502. The deduced C. reinhardtii mature GTR amino acid sequence has more than 55% identity to a GTR sequence of Arabidopsis thaliana, and significant similarity to GTR proteins of other plants and prokaryotes. Southern blot analysis of C. reinhardtii genomic DNA indicates that C. reinhardtii has only one gtr gene. Genomic DNA sequencing revealed the presence of a small intron near the putative transit peptide cleavage site. Expression constructs for the full-length initial gtr translation product, the mature protein after transit peptide removal, and the coding sequence of the second exon were cloned into expression vector that also introduced a C-terminal His6 tag. All of these constructs were expressed in E. coli, and both the mature protein and the exon 2 translation product complemented a hemA mutation. The expressed proteins were purified by Ni-affinity column chromatography to yield active GTR. Purified mature GTR was not inhibited by heme, but heme inhibition was restored upon addition of C. reinhardtii soluble proteins.
Collapse
Affiliation(s)
- Alaka Srivastava
- Division of Biology and Medicine, Brown University, 02912, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
This review focuses on the biosynthesis of pigments in the unicellular alga Chlamydomonas reinhardtii and their physiological and regulatory functions in the context of information gathered from studies of other photosynthetic organisms. C. reinhardtii is serving as an important model organism for studies of photosynthesis and the pigments associated with the photosynthetic apparatus. Despite extensive information pertaining to the biosynthetic pathways critical for making chlorophylls and carotenoids, we are just beginning to understand the control of these pathways, the coordination between pigment and apoprotein synthesis, and the interactions between the activities of these pathways and those for other important cellular metabolites branching from these pathways. Other exciting areas relating to pigment function are also emerging: the role of intermediates of pigment biosynthesis as messengers that coordinate metabolism in the chloroplast with nuclear gene activity, and the identification of photoreceptors and their participation in critical cellular processes including phototaxis, gametogenesis, and the biogenesis of the photosynthetic machinery. These areas of research have become especially attractive for intensive development with the application of potent molecular and genomic tools currently being applied to studies of C. reinhardtii.
Collapse
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution of Washington, Department of Plant Biology, Stanford, California 94305, USA.
| | | | | |
Collapse
|
31
|
Eckhardt U, Grimm B, Hörtensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. PLANT MOLECULAR BIOLOGY 2004; 56:1-14. [PMID: 15604725 DOI: 10.1007/s11103-004-2331-3] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chlorophyll (Chl) has unique and essential roles in photosynthetic light-harvesting and energy transduction, but its biosynthesis, accumulation and degradation is also associated with chloroplast development, photomorphogenesis and chloroplast-nuclear signaling. Biochemical analyses of the enzymatic steps paved the way to the identification of their encoding genes. Thus, important progress has been made in the recent elucidation of almost all genes involved in Chl biosynthesis and breakdown. In addition, analysis of mutants mainly in Arabidopsis , genetically engineered plants and the application of photo-reactive herbicides contributed to the genetic and regulatory characterization of the formation and breakdown of Chl. This review highlights recent progress in Chl metabolism indicating highly regulated pathways from the synthesis of precursors to Chl and its degradation to intermediates, which are not longer photochemically active.
Collapse
Affiliation(s)
- Ulrich Eckhardt
- Institut für Biologie, Pflanzenphysiologie, Humboldt-Universität zu Berlin, Philippstr 13, Haus 12, Berlin, D-10115, Germany
| | | | | |
Collapse
|
32
|
Schauer S, Lüer C, Moser J. Large scale production of biologically active Escherichia coli glutamyl-tRNA reductase from inclusion bodies. Protein Expr Purif 2004; 31:271-5. [PMID: 14550647 DOI: 10.1016/s1046-5928(03)00184-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glutamyl-tRNA reductase catalyzes the initial step of tetrapyrrole biosynthesis in plants and prokaryotes. Recombinant Escherichia coli glutamyl-tRNA reductase was purified to apparent homogeneity from an overproducing E. coli strain by a two-step procedure yielding 5.6 mg of enzyme per gram of wet cells with a specific activity of 0.47 micromol min(-1)mg(-1). After recombinant production, denatured glutamyl-tRNA reductase from inclusion bodies was renatured by an on-column refolding procedure. Residual protein aggregates were removed using Superdex 200 gel-filtration chromatography. Solubility, specific activity, and long-term storage properties were improved compared to previous protocols. Obtained enzyme amounts of high purity now allow the research on the recognition mechanism of tRNAGlu and high-throughput inhibitor screening.
Collapse
Affiliation(s)
- Stefan Schauer
- Institute of Microbiology, Technical University Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | | | |
Collapse
|
33
|
Vasileuskaya Z, Oster U, Beck CF. Involvement of tetrapyrroles in inter-organellar signaling in plants and algae. PHOTOSYNTHESIS RESEARCH 2004; 82:289-99. [PMID: 16143841 DOI: 10.1007/s11120-004-2160-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 07/21/2004] [Indexed: 05/04/2023]
Abstract
For the assembly of a functional chloroplast, the coordinated expression of genes distributed between nucleus and chloroplasts is a prerequisite. While the nucleus plays an undisputed dominant role in controling biogenesis and functioning of chloroplasts, plastidic signals appear to control the expression of a subset of nuclear genes; the majority of which encodes chloroplast constituents. Tetrapyrrole biosynthesis intermediates are attractive candidates for one type of plastidic signal ever since an involvement of Mg-porphyrins in signaling from chloroplast to nucleus was first demonstrated in Chlamydomonas reinhardtii. Since then, Mg-protoporphyrin IX has been shown to exert a regulatory function on nuclear genes in higher plants as well. Here we review evidence for the role played by tetrapyrroles in inter-organellar communication. We also report on a screening for nuclear genes that may be subject to regulation by tetrapyrroles. This revealed that (i) >HEMA, the gene encoding the first enzyme specific for porphyrin biosynthesis is induced by Mg-protoporphyrin IX, (ii) several nuclear HSP70 genes are regulated by tetrapyrroles. Members of the gene family induced by the feeding of Mg-rotoporphyrin IX encode chaperones located in either the chloroplast or the cytosol. These results point to an important role of Mg-tetrapyrroles as plastidic signal in controling the initial step of porphyrin biosynthesis, and the synthesis of chaperones involved in protein folding in cytosol/stroma, protein transport into organelles, and the stress response.
Collapse
Affiliation(s)
- Zinaida Vasileuskaya
- Institut fuer Biologie III, Albert-Ludwigs-Universitaet, Schaenzlestrasse 1, 79104, Freiburg, Germany,
| | | | | |
Collapse
|
34
|
Mohanty AK, Simmons CR, Wiener MC. Inhibition of tobacco etch virus protease activity by detergents. Protein Expr Purif 2003; 27:109-14. [PMID: 12509992 DOI: 10.1016/s1046-5928(02)00589-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Affinity tags such as polyhistidine greatly facilitate recombinant protein production. The solubility of integral membrane proteins is maintained by the formation of protein-detergent complexes (PDCs), with detergent present at concentration above its critical micelle concentration (CMC). Removal of the affinity tag necessitates inclusion of an engineered protease cleavage site. A commonly utilized protease for tag removal is tobacco etch virus (TEV) protease. TEV is available in a recombinant form (rTEV) and frequently contains its own polyhistidine affinity tag for removal after use in enzymatic digestion. Proteolytic cleavage of the tagged domain is carried out by incubation of the protein with rTEV protease. We have observed that the efficiency of rTEV digestion decreases significantly in the presence of a variety of detergents utilized in purification, crystallization, and other biochemical studies of integral membrane proteins. This reduction in protease activity is suggestive of detergent-induced inhibition of rTEV. To test this hypothesis, we examined the effects of detergents upon the rTEV proteolytic digestion of a soluble fusion protein, alpha(1) platelet activating factor acetylhydrolase (PAFAHalpha(1)). Removal of a hexahistidine amino-terminal affinity tag has been characterized in the presence of 16 different detergents at concentrations above their respective CMCs. Our data indicate that half of the detergents tested reduce the activity of rTEV and that these detergents should be avoided or otherwise accounted for during rTEV digestion of recombinant integral membrane proteins.
Collapse
Affiliation(s)
- Arun K Mohanty
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0736, USA
| | | | | |
Collapse
|
35
|
Schauer S, Chaturvedi S, Randau L, Moser J, Kitabatake M, Lorenz S, Verkamp E, Schubert WD, Nakayashiki T, Murai M, Wall K, Thomann HU, Heinz DW, Inokuchi H, Söll D, Jahn D. Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. J Biol Chem 2002; 277:48657-63. [PMID: 12370189 DOI: 10.1074/jbc.m206924200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the first step of tetrapyrrole biosynthesis in Escherichia coli, glutamyl-tRNA reductase (GluTR, encoded by hemA) catalyzes the NADPH-dependent reduction of glutamyl-tRNA to glutamate-1-semialdehyde. Soluble homodimeric E. coli GluTR was made by co-expressing the hemA gene and the chaperone genes dnaJK and grpE. During Mg(2+)-stimulated catalysis, the reactive sulfhydryl group of Cys-50 in the E. coli enzyme attacks the alpha-carbonyl group of the tRNA-bound glutamate. The resulting thioester intermediate was trapped and detected by autoradiography. In the presence of NADPH, the end product, glutamate-1-semialdehyde, is formed. In the absence of NADPH, E. coli GluTR exhibited substrate esterase activity. The in vitro synthesized unmodified glutamyl-tRNA was an acceptable substrate for E. coli GluTR. Eight 5-aminolevulinic acid auxotrophic E. coli hemA mutants were genetically selected, and the corresponding mutations were determined. Most of the recombinant purified mutant GluTR enzymes lacked detectable activity. Based on the Methanopyrus kandleri GluTR structure, the positions of the amino acid exchanges are close to the catalytic domain (G7D, E114K, R314C, S22L/S164F, G44C/S105N/A326T, G106N, S145F). Only GluTR G191D (affected in NADPH binding) revealed esterase but no reductase activity.
Collapse
Affiliation(s)
- Stefan Schauer
- Institute of Microbiology, Technical University Braunschweig, Spielmannstrasse 7, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schubert WD, Moser J, Schauer S, Heinz DW, Jahn D. Structure and function of glutamyl-tRNA reductase, the first enzyme of tetrapyrrole biosynthesis in plants and prokaryotes. PHOTOSYNTHESIS RESEARCH 2002; 74:205-15. [PMID: 16228559 DOI: 10.1023/a:1020963711861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Glutamyl-tRNA reductase (GluTR) catalyzes the first step of tetrapyrrole biosynthesis in plants, archaea and most bacteria. The catalytic mechanism of the enzyme was elucidated both by biochemical data and the determination of the high-resolution crystal structure of the enzyme from the archaeon Methanopyrus kandleri in complex with a competitive inhibitor. The dimeric enzyme has an unusual V-shaped architecture where each monomer consists of three domains linked by a long 'spinal' alpha-helix. The central catalytic domain specifically recognizes the glutamate moiety of the substrate. It bears a conserved cysteine poised to nucleophilically attack the activated aminoacyl bond of glutamyl-tRNA. Subsequently, the thioester intermediate is reduced to the product glutamate-1-semialdehyde via hydride transfer from NADPH supplied by the second domain. A structure-based sequence alignment indicates that catalytically essential amino acids are conserved throughout all GluTRs. Thus the catalytic mechanism derived for M. kandleri is common to all including plant GluTRs. Mutations described to influence the catalytic efficiency of the barley enzyme can therefore be explained.
Collapse
Affiliation(s)
- Wolf-Dieter Schubert
- Department of Structural Biology, German Research Center for Biotechnology, Mascheroder Weg 1, 38104, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
37
|
Hefti MH, Van Vugt-Van der Toorn CJ, Dixon R, Vervoort J. A novel purification method for histidine-tagged proteins containing a thrombin cleavage site. Anal Biochem 2001; 295:180-5. [PMID: 11488620 DOI: 10.1006/abio.2001.5214] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A general procedure for the purification of histidine-tagged proteins has been developed using immobilized metal-ion affinity chromatography. This two-step purification method can be used for proteins containing a hexahistidine tag and a thrombin cleavage site, yielding high amounts of purified protein. The advantage of this method is that thrombin is used instead of imidazole in the final purification step. Imidazole can influence NMR experiments, competition studies, or crystallographic trials, and the presence of imidazole often results in protein aggregates. Removal of the His-tag results in a form of the protein of interest in which no additional tags are present, resembling the native form of the protein, with only three additional amino acids at the N-terminal side. Our method is compared with a more conventional method for the purification of the Azotobacter vinelandii NIFL PAS domain, overexpressed in Escherichia coli. It also proves to be successful for three different His-tagged proteins, the Klebsiella pneumoniae NTRC protein, and the A. vinelandii NIFA and NIFL proteins, and therefore it is a general method for the purification of His-tagged proteins.
Collapse
Affiliation(s)
- M H Hefti
- Laboratory of Biochemistry, Wageningen University, Dreyenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | |
Collapse
|
38
|
Loida PJ, Thompson RL, Walker DM, CaJacob CA. Novel inhibitors of glutamyl-tRNA(Glu) reductase identified through cell-based screening of the heme/chlorophyll biosynthetic pathway. Arch Biochem Biophys 1999; 372:230-7. [PMID: 10600160 DOI: 10.1006/abbi.1999.1505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The metabolite 5-aminolevulinic acid (ALA) is an early committed intermediate in the biosynthetic pathway of heme and chlorophyll formation. In plants, 5-aminolevulinic acid is synthesized via a two-step pathway in which glutamyl-tRNA(Glu) is reduced by glutamyl-tRNA(Glu) reductase (GluTR) to glutamate 1-semialdehyde, followed by transformation to 5-aminolevulinic acid catalyzed by glutamate 1-semialdehyde aminotransferase. Using an Escherichia coli cell-based high-throughput assay to screen small molecule libraries, we identified several chemical classes that specifically inhibit heme/chlorophyll biosynthesis at this point by demonstrating that the observed cell growth inhibition is reversed by supplementing the medium with 5-aminolevulinic acid. These compounds were further tested in vitro for inhibition of the purified enzymes GluTR and glutamate 1-semialdehyde aminotransferase as confirmation of the specificity and site of action. Several promising compounds were identified from the high-throughput screen that inhibit GluTR with an I(0.5) of less than 10 microM. Our results demonstrate the efficacy of cell-based high-throughput screening for identifying inhibitors of 5-aminolevulinic acid biosynthesis, thus representing the first report of exogenous inhibitors of this enzyme.
Collapse
Affiliation(s)
- P J Loida
- Monsanto Company, 700 Chesterfield Parkway, Chesterfield, Missouri, 63198, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
The conserved residues of glutamyl tRNA reductase (GTR) from Hordeum vulgare (GTRhorvu) were found from an alignment/pile-up of 24 homologous sequences found using BLAST searches. A multiple alignment of sequences was used to obtain a prediction of the secondary structure of the GTR's. This secondary structure was submitted to the THREADER program to find possible homologous 3D structures. To help select the template for predicting the fold for GTRhorvu, we employed both molecular-biological and biochemical information about GTRhorvu. After fitting the secondary structure of GTRhorvu to the selected template, the MODELLER program was used to determine the fold for GTRhorvu. This model was built using the B subunit of succinyl CoA synthetase, 1scuB, as a template for the 3D structure of GTRhorvu. From the predicted structure, possible regions were identified for the binding of glutamyl-tRNA, NADPH and a heme inhibitor. The predicted structure was used to propose a detailed biochemical mechanism for the GTR, involving Mg catalyzed thioester formation and reduction by NADPH to glutamate-1-semialdehyde. Sites for these reactions are identified. The predicted structure has been deposited in the Brookhaven database as ID 1b61.
Collapse
Affiliation(s)
- S S Brody
- Department of Physiology, Carlsberg Research Center, Copenhagen, Denmark.
| | | | | |
Collapse
|
40
|
Moser J, Lorenz S, Hubschwerlen C, Rompf A, Jahn D. Methanopyrus kandleri glutamyl-tRNA reductase. J Biol Chem 1999; 274:30679-85. [PMID: 10521455 DOI: 10.1074/jbc.274.43.30679] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The initial reaction of tetrapyrrole formation in archaea is catalyzed by a NADPH-dependent glutamyl-tRNA reductase (GluTR). The hemA gene encoding GluTR was cloned from the extremely thermophilic archaeon Methanopyrus kandleri and overexpressed in Escherichia coli. Purified recombinant GluTR is a tetrameric enzyme with a native M(r) = 190,000 +/- 10,000. Using a newly established enzyme assay, a specific activity of 0.75 nmol h(-1) mg(-1) at 56 degrees C with E. coli glutamyl-tRNA as substrate was measured. A temperature optimum of 90 degrees C and a pH optimum of 8.1 were determined. Neither heme cofactor, nor flavin, nor metal ions were required for GluTR catalysis. Heavy metal compounds, Zn(2+), and heme inhibited the enzyme. GluTR inhibition by the newly synthesized inhibitor glutamycin, whose structure is similar to the 3' end of the glutamyl-tRNA substrate, revealed the importance of an intact chemical bond between glutamate and tRNA(Glu) for substrate recognition. The absolute requirement for NADPH in the reaction of GluTR was demonstrated using four NADPH analogues. Chemical modification and site-directed mutagenesis studies indicated that a single cysteinyl residue and a single histidinyl residue were important for catalysis. It was concluded that during GluTR catalysis the highly reactive sulfhydryl group of Cys-48 acts as a nucleophile attacking the alpha-carbonyl group of tRNA-bound glutamate with the formation of an enzyme-localized thioester intermediate and the concomitant release of tRNA(Glu). In the presence of NADPH, direct hydride transfer to enzyme-bound glutamate, possibly facilitated by His-84, leads to glutamate-1-semialdehyde formation. In the absence of NADPH, a newly discovered esterase activity of GluTR hydrolyzes the highly reactive thioester of tRNA(Glu) to release glutamate.
Collapse
Affiliation(s)
- J Moser
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg im Breisgau, Germany
| | | | | | | | | |
Collapse
|
41
|
Wang L, Elliott M, Elliott T. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J Bacteriol 1999; 181:1211-9. [PMID: 9973348 PMCID: PMC93499 DOI: 10.1128/jb.181.4.1211-1219.1999] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many bacteria, including the enteric species Salmonella typhimurium and Escherichia coli, heme is synthesized starting from glutamate by a pathway in which the first committed step is catalyzed by the hemA gene product, glutamyl-tRNA reductase (HemA). We have demonstrated previously that when heme limitation is imposed on cultures of S. typhimurium, HemA enzyme activity is increased 10- to 25-fold. Western (immunoblot) analysis with monoclonal antibodies reactive with HemA revealed that heme limitation results in a corresponding increase in the abundance of the enzyme. Similar regulation was also observed for E. coli. The near absence of regulation of hemA-lac operon fusions suggested a posttranscriptional control. We report here the results of pulse-labeling and immunoprecipitation studies of this regulation. The principal mechanism that contributes to elevated HemA abundance is protein stabilization. The half-life of HemA protein is approximately 20 min in unrestricted cells but increases to >300 min in heme-limited cells. Similar regulation was observed for a HemA-LacZ hybrid protein containing almost all of the HemA protein (416 residues). Sodium azide prevents HemA turnover in vivo, suggesting a role for energy-dependent proteolysis. This was confirmed by the finding that HemA turnover is completely blocked in a lon clpP double mutant of E. coli. Each single mutant shows only a small effect. The ClpA chaperone, but not ClpX, is required for ClpP-dependent HemA turnover. A hybrid HemA-LacZ protein containing just 18 amino acids from HemA is also stabilized in the lon clpP double mutant, but this shorter fusion protein is not correctly regulated by heme limitation. We suggest that the 18 N-terminal amino acids of HemA may constitute a degradation tag, whose function is conditional and modified by the remainder of the protein in a heme-dependent way. Several models are discussed to explain why the turnover of HemA is promoted by Lon-ClpAP proteolysis only when sufficient heme is available.
Collapse
Affiliation(s)
- L Wang
- West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, USA
| | | | | |
Collapse
|
42
|
Terry MJ, Kendrick RE. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. PLANT PHYSIOLOGY 1999; 119:143-52. [PMID: 9880355 PMCID: PMC32213 DOI: 10.1104/pp.119.1.143] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/1998] [Accepted: 09/25/1998] [Indexed: 05/19/2023]
Abstract
The aurea (au) and yellow-green-2 (yg-2) mutants of tomato (Solanum lycopersicum L.) are unable to synthesize the linear tetrapyrrole chromophore of phytochrome, resulting in plants with a yellow-green phenotype. To understand the basis of this phenotype, we investigated the consequences of the au and yg-2 mutations on tetrapyrrole metabolism. Dark-grown seedlings of both mutants have reduced levels of protochlorophyllide (Pchlide) due to an inhibition of Pchlide synthesis. Feeding experiments with the tetrapyrrole precursor 5-aminolevulinic acid (ALA) demonstrate that the pathway between ALA and Pchlide is intact in au and yg-2 and suggest that the reduction in Pchlide is a result of the inhibition of ALA synthesis. This inhibition was independent of any deficiency in seed phytochrome, and experiments using an iron chelator to block heme synthesis demonstrated that both mutations inhibited the degradation of the physiologically active heme pool, suggesting that the reduction in Pchlide synthesis is a consequence of feedback inhibition by heme. We discuss the significance of these results in understanding the chlorophyll-deficient phenotype of the au and yg-2 mutants.
Collapse
Affiliation(s)
- MJ Terry
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, SO16 7PX, United Kingdom (M.J.T.)
| | | |
Collapse
|