1
|
Kim YJ. Xerostomia and Its Cellular Targets. Int J Mol Sci 2023; 24:ijms24065358. [PMID: 36982432 PMCID: PMC10049126 DOI: 10.3390/ijms24065358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Xerostomia, the subjective feeling of a dry mouth associated with dysfunction of the salivary glands, is mainly caused by radiation and chemotherapy, various systemic and autoimmune diseases, and drugs. As saliva plays numerous essential roles in oral and systemic health, xerostomia significantly reduces quality of life, but its prevalence is increasing. Salivation mainly depends on parasympathetic and sympathetic nerves, and the salivary glands responsible for this secretion move fluid unidirectionally through structural features such as the polarity of acinar cells. Saliva secretion is initiated by the binding of released neurotransmitters from nerves to specific G-protein-coupled receptors (GPCRs) on acinar cells. This signal induces two intracellular calcium (Ca2+) pathways (Ca2+ release from the endoplasmic reticulum and Ca2+ influx across the plasma membrane), and this increased intracellular Ca2+ concentration ([Ca2+]i) causes the translocation of the water channel aquaporin 5 (AQP5) to the apical membrane. Consequently, the GPCR-mediated increased [Ca2+]i in acinar cells promotes saliva secretion, and this saliva moves into the oral cavity through the ducts. In this review, we seek to elucidate the potential of GPCRs, the inositol 1,4,5-trisphosphate receptor (IP3R), store-operated Ca2+ entry (SOCE), and AQP5, which are essential for salivation, as cellular targets in the etiology of xerostomia.
Collapse
Affiliation(s)
- Yoon-Jung Kim
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| |
Collapse
|
2
|
Yang Q, Li X, Xing Y, Chen Y. Piezo1, a novel therapeutic target to treat pulmonary arterial hypertension. Front Physiol 2023; 14:1084921. [PMID: 36776977 PMCID: PMC9909334 DOI: 10.3389/fphys.2023.1084921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
|
3
|
Assessing the Potency of the Novel Tocolytics 2-APB, Glycyl-H-1152, and HC-067047 in Pregnant Human Myometrium. Reprod Sci 2022; 30:203-220. [PMID: 35715551 PMCID: PMC9810572 DOI: 10.1007/s43032-022-01000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/02/2022] [Indexed: 01/07/2023]
Abstract
The intracellular signaling pathways that regulate myometrial contractions can be targeted by drugs for tocolysis. The agents, 2-APB, glycyl-H-1152, and HC-067047, have been identified as inhibitors of uterine contractility and may have tocolytic potential. However, the contraction-blocking potency of these novel tocolytics was yet to be comprehensively assessed and compared to agents that have seen greater scrutiny, such as the phosphodiesterase inhibitors, aminophylline and rolipram, or the clinically used tocolytics, nifedipine and indomethacin. We determined the IC50 concentrations (inhibit 50% of baseline contractility) for 2-APB, glycyl-H-1152, HC-067047, aminophylline, rolipram, nifedipine, and indomethacin against spontaneous ex vivo contractions in pregnant human myometrium, and then compared their tocolytic potency. Myometrial strips obtained from term, not-in-labor women, were treated with cumulative concentrations of the contraction-blocking agents. Comprehensive dose-response curves were generated. The IC50 concentrations were 53 µM for 2-APB, 18.2 µM for glycyl-H-1152, 48 µM for HC-067047, 318.5 µM for aminophylline, 4.3 µM for rolipram, 10 nM for nifedipine, and 59.5 µM for indomethacin. A single treatment with each drug at the determined IC50 concentration was confirmed to reduce contraction performance (AUC) by approximately 50%. Of the three novel tocolytics examined, glycyl-H-1152 was the most potent inhibitor. However, of all the drugs examined, the overall order of contraction-blocking potency in decreasing order was nifedipine > rolipram > glycyl-H-1152 > HC-067047 > 2-APB > indomethacin > aminophylline. These data provide greater insight into the contraction-blocking properties of some novel tocolytics, with glycyl-H-1152, in particular, emerging as a potential novel tocolytic for preventing preterm birth.
Collapse
|
4
|
Termination of Ca 2+ puffs during IP 3-evoked global Ca 2+ signals. Cell Calcium 2021; 100:102494. [PMID: 34736161 DOI: 10.1016/j.ceca.2021.102494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022]
Abstract
We previously described that cell-wide cytosolic Ca2+ transients evoked by inositol trisphosphate (IP3) are generated by two modes of Ca2+ liberation from the ER; 'punctate' release via an initial flurry of transient Ca2+ puffs from local clusters of IP3 receptors, succeeded by a spatially and temporally 'diffuse' Ca2+ liberation. Those findings were derived using statistical fluctuation analysis to monitor puff activity which is otherwise masked as global Ca2+ levels rise. Here, we devised imaging approaches to resolve individual puffs during global Ca2+ elevations to better investigate the mechanisms terminating the puff flurry. We find that puffs contribute about 40% (∼90 attomoles) of the total Ca2+ liberation, largely while the global Ca2+ signal rises halfway to its peak. The major factor terminating punctate Ca2+ release is an abrupt decline in puff frequency. Although the amplitudes of large puffs fall during the flurry, the amplitudes of more numerous small puffs remain steady, so overall puff amplitudes decline only modestly (∼30%). The Ca2+ flux through individual IP3 receptor/channels does not measurably decline during the flurry, or when puff activity is depressed by pharmacological lowering of Ca2+ levels in the ER lumen, indicating that the termination of punctate release is not a simple consequence of reduced driving force for Ca2+ liberation. We propose instead that the gating of IP3 receptors at puff sites is modulated such that their openings become suppressed as the bulk [Ca2+] in the ER lumen falls during global Ca2+ signals.
Collapse
|
5
|
Solomon E, Davis-Anderson K, Hovde B, Micheva-Viteva S, Harris JF, Twary S, Iyer R. Global transcriptome profile of the developmental principles of in vitro iPSC-to-motor neuron differentiation. BMC Mol Cell Biol 2021; 22:13. [PMID: 33602141 PMCID: PMC7893891 DOI: 10.1186/s12860-021-00343-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022] Open
Abstract
Background Human induced pluripotent stem cells (iPSC) have opened new avenues for regenerative medicine. Consequently, iPSC-derived motor neurons have emerged as potentially viable therapies for spinal cord injuries and neurodegenerative disorders including Amyotrophic Lateral Sclerosis. However, direct clinical application of iPSC bears in itself the risk of tumorigenesis and other unforeseeable genetic or epigenetic abnormalities. Results Employing RNA-seq technology, we identified and characterized gene regulatory networks triggered by in vitro chemical reprogramming of iPSC into cells with the molecular features of motor neurons (MNs) whose function in vivo is to innervate effector organs. We present meta-transcriptome signatures of 5 cell types: iPSCs, neural stem cells, motor neuron progenitors, early motor neurons, and mature motor neurons. In strict response to the chemical stimuli, along the MN differentiation axis we observed temporal downregulation of tumor growth factor-β signaling pathway and consistent activation of sonic hedgehog, Wnt/β-catenin, and Notch signaling. Together with gene networks defining neuronal differentiation (neurogenin 2, microtubule-associated protein 2, Pax6, and neuropilin-1), we observed steady accumulation of motor neuron-specific regulatory genes, including Islet-1 and homeobox protein HB9. Interestingly, transcriptome profiling of the differentiation process showed that Ca2+ signaling through cAMP and LPC was downregulated during the conversion of the iPSC to neural stem cells and key regulatory gene activity of the pathway remained inhibited until later stages of motor neuron formation. Pathways shaping the neuronal development and function were well-represented in the early motor neuron cells including, neuroactive ligand-receptor interactions, axon guidance, and the cholinergic synapse formation. A notable hallmark of our in vitro motor neuron maturation in monoculture was the activation of genes encoding G-coupled muscarinic acetylcholine receptors and downregulation of the ionotropic nicotinic acetylcholine receptors expression. We observed the formation of functional neuronal networks as spontaneous oscillations in the extracellular action potentials recorded on multi-electrode array chip after 20 days of differentiation. Conclusions Detailed transcriptome profile of each developmental step from iPSC to motor neuron driven by chemical induction provides the guidelines to novel therapeutic approaches in the re-construction efforts of muscle innervation. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00343-z.
Collapse
Affiliation(s)
- Emilia Solomon
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | | | - Blake Hovde
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | | | | | - Scott Twary
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | - Rashi Iyer
- Los Alamos National Laboratory, Analytics, Intelligence, and Technology Division, Los Alamos, NM, USA.
| |
Collapse
|
6
|
Wang X, Wang W, Liu C, Wu XJ. Involvement of TRPC1 and Cyclin D1 in Human Pulmonary Artery Smooth Muscle Cells Proliferation Induced by Cigarette Smoke Extract. Curr Med Sci 2020; 40:1085-1091. [PMID: 33428136 DOI: 10.1007/s11596-020-2290-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 08/03/2020] [Indexed: 10/22/2022]
Abstract
Cigarette smoking contributes to the development of pulmonary artery hypertension (PAH). As the basic pathological change of PAH, pulmonary vascular remodeling is considered to be related to the abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs). However, the molecular mechanism underlying this process remains not exactly clear. The aim of this research was to study the molecular mechanism of PASMCs proliferation induced by smoking. Human PASMCs (HPASMCs) were divided into 6 groups: 0% (control group), cigarette smoking extract (CSE)-treated groups at concentrations of 0.5%, 1%, 2%, 5%, 10% CSE respectively. HPASMCs proliferation was observed after 24 h. HPASMCs were divided into two groups: 0 (control group), 0.5% CSE group. The mRNA and protein expression levels of transient receptor potential channel 1 (TRPC1) and cyclin D1 in HPASMCs after CSE treatment were respectively detected by RT-PCR and Western blotting. The intracellular calcium ion concentration was measured by the calcium probe in each group. In the negative control group and TRPC1-siRNA transfection group, the proliferation of HPASMCs and the expression of cyclin D1 mRNA and protein were detected. Data were compared with one-way ANOVA (for multiple-group comparison) and independent t-test (for two-group comparison) followed by the least significant difference (LSD) test with the computer software SPSS 17.0. It was found that 0.5% and 1% CSE could promote the proliferation of HPASMCs (P<0.05), and the former was more effective than the latter (P<0.05), while 3% and above CSE had inhibitory effect on HPASMCs (P<0.05). The mRNA and protein expression levels of TRPC1 and cyclin D1 in 0.5% and 1% CSE groups were significantly higher than those in the control group (P<0.05), while those in 3% CSE group were significantly decreased (P<0.05). Moreover, the proliferation of HPASMCs and the expression of cyclin D1 mRNA and protein in TRPC1-siRNA transfection group were significantly reduced as compared with those in the negative control group (P<0.05). It was concluded that low concentration of CSE can promote the proliferation of HPASMCs, while high concentrations of CSE inhibit HPASMCs proliferation. These findings suggested that CSE induced proliferation of HPASMCs at least in part via TRPC1-mediated cyclin D1 expression.
Collapse
Affiliation(s)
- Xun Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wen Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chan Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao-Jun Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
7
|
Schaar A, Sun Y, Sukumaran P, Rosenberger TA, Krout D, Roemmich JN, Brinbaumer L, Claycombe-Larson K, Singh BB. Ca 2+ entry via TRPC1 is essential for cellular differentiation and modulates secretion via the SNARE complex. J Cell Sci 2019; 132:jcs.231878. [PMID: 31182642 PMCID: PMC6633397 DOI: 10.1242/jcs.231878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Properties of adipocytes, including differentiation and adipokine secretion, are crucial factors in obesity-associated metabolic syndrome. Here, we provide evidence that Ca2+ influx in primary adipocytes, especially upon Ca2+ store depletion, plays an important role in adipocyte differentiation, functionality and subsequently metabolic regulation. The endogenous Ca2+ entry channel in both subcutaneous and visceral adipocytes was found to be dependent on TRPC1–STIM1, and blocking Ca2+ entry with SKF96365 or using TRPC1−/− knockdown adipocytes inhibited adipocyte differentiation. Additionally, TRPC1−/− mice have decreased organ weight, but increased adipose deposition and reduced serum adiponectin and leptin concentrations, without affecting total adipokine expression. Mechanistically, TRPC1-mediated Ca2+ entry regulated SNARE complex formation, and agonist-mediated secretion of adipokine-loaded vesicles was inhibited in TRPC1−/− adipose. These results suggest an unequivocal role of TRPC1 in adipocyte differentiation and adiponectin secretion, and that loss of TRPC1 disturbs metabolic homeostasis. This article has an associated First Person interview with the first author of the paper. Summary: TRPC1 modulates Ca2+ entry, which is essential in adipocyte differentiation and adiponectin secretion, through facilitating SNARE complex formation, thereby maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Anne Schaar
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Yuyang Sun
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Pramod Sukumaran
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Thad A Rosenberger
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Danielle Krout
- US Department of Agriculture-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - James N Roemmich
- US Department of Agriculture-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Lutz Brinbaumer
- Neurobiology Laboratory, NIHES, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.,Institute of Biomedical Research, (BIOMED) Catholic University of Argentina, Av. Alicia Moreau de Justo 1300, Edificio San Jose Piso 3, Buenos Aires C1107AAZ, Argentina
| | - Kate Claycombe-Larson
- US Department of Agriculture-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Brij B Singh
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
8
|
Xiao X, Liu HX, Shen K, Cao W, Li XQ. Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases. Biomol Ther (Seoul) 2017; 25:471-481. [PMID: 28274093 PMCID: PMC5590790 DOI: 10.4062/biomolther.2016.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/04/2016] [Accepted: 12/27/2016] [Indexed: 12/29/2022] Open
Abstract
The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.
Collapse
Affiliation(s)
- Xiong Xiao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Hui-Xia Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.,Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Shen
- Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cao
- Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Qiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
9
|
Stathopulos PB, Ikura M. Store operated calcium entry: From concept to structural mechanisms. Cell Calcium 2017; 63:3-7. [DOI: 10.1016/j.ceca.2016.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 11/16/2022]
|
10
|
Chen J, Li Z, Hatcher JT, Chen QH, Chen L, Wurster RD, Chan SL, Cheng Z. Deletion of TRPC6 Attenuates NMDA Receptor-Mediated Ca 2+ Entry and Ca 2+-Induced Neurotoxicity Following Cerebral Ischemia and Oxygen-Glucose Deprivation. Front Neurosci 2017; 11:138. [PMID: 28400714 PMCID: PMC5368256 DOI: 10.3389/fnins.2017.00138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential canonical 6 (TRPC6) channels are permeable to Na+ and Ca2+ and are widely expressed in the brain. In this study, the role of TRPC6 was investigated following ischemia/reperfusion (I/R) and oxygen-glucose deprivation (OGD). We found that TRPC6 expression was increased in wild-type (WT) mice cortical neurons following I/R and in primary neurons with OGD, and that deletion of TRPC6 reduced the I/R-induced brain infarct in mice and the OGD- /neurotoxin-induced neuronal death. Using live-cell imaging to examine intracellular Ca2+ levels ([Ca2+]i), we found that OGD induced a significant higher increase in glutamate-evoked Ca2+ influx compared to untreated control and such an increase was reduced by TRPC6 deletion. Enhancement of TRPC6 expression using AdCMV-TRPC6-GFP infection in WT neurons increased [Ca2+]i in response to glutamate application compared to AdCMV-GFP control. Inhibition of N-methyl-d-aspartic acid receptor (NMDAR) with MK801 decreased TRPC6-dependent increase of [Ca2+]i in TRPC6 infected cells, indicating that such a Ca2+ influx was NMDAR dependent. Furthermore, TRPC6-dependent Ca2+ influx was blunted by blockade of Na+ entry in TRPC6 infected cells. Finally, OGD-enhanced Ca2+ influx was reduced, but not completely blocked, in the presence of voltage-dependent Na+ channel blocker tetrodotoxin (TTX) and dl-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) blocker CNQX. Altogether, we concluded that I/R-induced brain damage was, in part, due to upregulation of TRPC6 in cortical neurons. We postulate that overexpression of TRPC6 following I/R may induce neuronal death partially through TRPC6-dependent Na+ entry which activated NMDAR, thus leading to a damaging Ca2+ overload. These findings may provide a potential target for future intervention in stroke-induced brain damage.
Collapse
Affiliation(s)
- Jin Chen
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Zhaozhong Li
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Jeffery T Hatcher
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University Houghton, MI, USA
| | - Li Chen
- Department of Clinical Laboratory, The First Central Hospital of Tianjin Tianjin, China
| | - Robert D Wurster
- Department of Cellular and Molecular Physiology, Stritch School of Medicine, Loyola University Maywood, IL, USA
| | - Sic L Chan
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Zixi Cheng
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlando, FL, USA; Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlando, FL, USA
| |
Collapse
|
11
|
Subedi KP, Ong HL, Ambudkar IS. Assembly of ER-PM Junctions: A Critical Determinant in the Regulation of SOCE and TRPC1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:253-276. [PMID: 29594865 DOI: 10.1007/978-3-319-55858-5_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Store-operated calcium entry (SOCE), a unique plasma membrane Ca2+ entry mechanism, is activated when ER-[Ca2+] is decreased. SOCE is mediated via the primary channel, Orai1, as well as others such as TRPC1. STIM1 and STIM2 are ER-Ca2+ sensor proteins that regulate Orai1 and TRPC1. SOCE requires assembly of STIM proteins with the plasma membrane channels which occurs within distinct regions in the cell that have been termed as endoplasmic reticulum (ER)-plasma membrane (PM) junctions. The PM and ER are in close proximity to each other within this region, which allows STIM1 in the ER to interact with and activate either Orai1 or TRPC1 in the plasma membrane. Activation and regulation of SOCE involves dynamic assembly of various components that are involved in mediating Ca2+ entry as well as those that determine the formation and stabilization of the junctions. These components include proteins in the cytosol, ER and PM, as well as lipids in the PM. Recent studies have also suggested that SOCE and its components are compartmentalized within ER-PM junctions and that this process might require remodeling of the plasma membrane lipids and reorganization of structural and scaffolding proteins. Such compartmentalization leads to the generation of spatially- and temporally-controlled Ca2+signals that are critical for regulating many downstream cellular functions.
Collapse
Affiliation(s)
- Krishna P Subedi
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Hwei Ling Ong
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Indu S Ambudkar
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA.
| |
Collapse
|
12
|
Putney JW, Steinckwich-Besançon N, Numaga-Tomita T, Davis FM, Desai PN, D'Agostin DM, Wu S, Bird GS. The functions of store-operated calcium channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:900-906. [PMID: 27913208 DOI: 10.1016/j.bbamcr.2016.11.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Store-operated calcium channels provide calcium signals to the cytoplasm of a wide variety of cell types. The basic components of this signaling mechanism include a mechanism for discharging Ca2+ stores (commonly but not exclusively phospholipase C and inositol 1,4,5-trisphosphate), a sensor in the endoplasmic reticulum that also serves as an activator of the plasma membrane channel (STIM1 and STIM2), and the store-operated channel (Orai1, 2 or 3). The advent of mice genetically altered to reduce store-operated calcium entry globally or in specific cell types has provided important tools to understand the functions of these widely encountered channels in specific and clinically important physiological systems. This review briefly discusses the history and cellular properties of store-operated calcium channels, and summarizes selected studies of their physiological functions in specific physiological or pathological contexts. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- James W Putney
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Natacha Steinckwich-Besançon
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Takuro Numaga-Tomita
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Felicity M Davis
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Pooja N Desai
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Diane M D'Agostin
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Shilan Wu
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Gary S Bird
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
13
|
Chen X, Lu M, He X, Ma L, Birnbaumer L, Liao Y. TRPC3/6/7 Knockdown Protects the Brain from Cerebral Ischemia Injury via Astrocyte Apoptosis Inhibition and Effects on NF-кB Translocation. Mol Neurobiol 2016; 54:7555-7566. [PMID: 27826749 DOI: 10.1007/s12035-016-0227-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/10/2016] [Indexed: 12/23/2022]
Abstract
Ischemia contributes significantly to morbidity and mortality associated with many common neurological diseases. Calcium overload is an important mechanism of cerebral ischemia and reperfusion (I/R) injury. Despite decades of intense research, an effective beneficial treatment of stroke remains limited; few therapeutic strategies exist to combat the consequences of cerebral ischemia. Traditionally, a "neurocentric" view has dominated research in this field. Evidence is now accumulating that glial cells, especially astrocytes, play an important role in the pathophysiology of cerebral ischemia. Here, we show that transient receptor potential (TRP)C3/6/7 knockout (KO) mice subjected to an I/R procedure demonstrate ameliorated brain injury (infract size), compared to wild-type (WT) control animals. This is accompanied by reduction of NF-кB phosphorylation and an increase in protein kinase B (AKT) phosphorylation in I/R-injured brain tissues in TRPC3/6/7 KO mice. Also, the expression of pro-apoptotic protein Bcl-2 associated X (Bax) is down-regulated and that of anti-apoptotic protein Bcl-2 is upregulated in TRPC3/6/7-/- mice. Astrocytes isolated from TRPC3/6/7 KO mice and subjected to oxygen/glucose deprivation and subsequent reoxygenation (OGD-R, mimicking in vivo I/R injury) also exhibit enhanced Bcl-2 expression, reduced Bax expression, enhanced AKT phosphorylation, and reduced NF-кB phosphorylation. Furthermore, apoptotic rates of TRPC3/6/7 KO astrocytes cultured in OGD-R conditions were reduced significantly compared to WT control. These findings suggest TRPC3/6/7 channels play a detrimental role in brain I/R injury. Deletion of these channels can interfere with the activation of NF-кB (pro-apoptotic), promote activation of AKT (anti-apoptotic), and ultimately, ameliorate brain damage via inhibition of astrocyte apoptosis after cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Lu
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiju He
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Le Ma
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF, Buenos Aires, Argentina
| | - Yanhong Liao
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
14
|
Affiliation(s)
- Barbara M. Sanborn
- Department of Biochemistry and Molecular Biology, University of Texas Houston Medical School, PO Box 20708, Houston, TX 77225
| |
Collapse
|
15
|
Nguyen TMD, Duittoz A, Praud C, Combarnous Y, Blesbois E. Calcium channels in chicken sperm regulate motility and the acrosome reaction. FEBS J 2016; 283:1902-20. [PMID: 26990886 DOI: 10.1111/febs.13710] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
Abstract
Intracellular cytoplasmic calcium ([Ca(2+) ]i ) has an important regulatory role in gamete functions. However, the biochemical components involved in Ca(2+) transport are still unknown in birds, an animal class that has lost functional sperm-specific CatSper channels. Here, we provide evidence for the presence and expression of various Ca(2+) channels in chicken sperm, including high voltage-activated channels (L and R types), the store-operated Ca(2+) channel (SOC) component Orai1, the transient receptor potential channel (TRPC1) and inositol-1,4,5-trisphosphate receptors (IP3 R1). L- and R-type channels were mainly localized in the acrosome and the midpiece, and T-type channels were not detected in chicken sperm. Orai1 was found in all compartments, but with a weak, diffuse signal in the flagellum. TRCP1 was mainly localized in the acrosome and the midpiece, but a weak diffuse signal was also observed in the nucleus and the flagellum. IP3 R1 was mainly detected in the nucleus. The L-type channel inhibitor nifedipine, the R-type channel inhibitor SNX-482 and the SOC inhibitors MRS-1845, 2-APB and YM-58483 decreased [Ca(2+) ]i sperm motility and acrosome reaction capability, with the SOC inhibitors inhibiting these functions most efficiently. Furthermore, we showed that Ca(2+) -mediated induction of AMP-activated protein kinase (AMPK) phosphorylation was blocked by SOC inhibition. Our identification of important regulators of Ca(2+) signaling in avian sperm suggests that SOCs play a predominant role in gamete function, whereas T-type channels may not be involved. In addition, Ca(2+) entry via SOCs appears to be the most likely pathway for AMPK activation and energy-requiring sperm functions such as motility and the acrosome reaction.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- Institut National de la Recherche Agronomique, UMR 85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,Faculty of Biology-Agricultural Engineering, Quy Nhon University, Quy Nhon, Vietnam
| | - Anne Duittoz
- Institut National de la Recherche Agronomique, UMR 85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, France.,Université François Rabelais de Tours, Tours, France
| | - Christophe Praud
- Institut National de la Recherche Agronomique, UR083 Recherches Avicoles, Nouzilly, France
| | - Yves Combarnous
- Institut National de la Recherche Agronomique, UMR 85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, France.,Université François Rabelais de Tours, Tours, France
| | - Elisabeth Blesbois
- Institut National de la Recherche Agronomique, UMR 85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, France.,Université François Rabelais de Tours, Tours, France
| |
Collapse
|
16
|
Vazquez G, Solanki S, Dube P, Smedlund K, Ampem P. On the Roles of the Transient Receptor Potential Canonical 3 (TRPC3) Channel in Endothelium and Macrophages: Implications in Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:185-99. [PMID: 27161230 DOI: 10.1007/978-3-319-26974-0_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the cardiovascular and hematopoietic systems the Transient Receptor Potential Canonical 3 (TRPC3) channel has a well-recognized role in a number of signaling mechanisms that impact the function of diverse cells and tissues in physiology and disease. The latter includes, but is not limited to, molecular and cellular mechanisms associated to the pathogenesis of cardiac hypertrophy, hypertension and endothelial dysfunction. Despite several of these functions being closely related to atherorelevant mechanisms, the potential roles of TRPC3 in atherosclerosis, the major cause of coronary artery disease, have remained largely unexplored. Over recent years, a series of studies from the authors' laboratory revealed novel functions of TRPC3 in mechanisms related to endothelial inflammation, monocyte adhesion to endothelium and survival and apoptosis of macrophages. The relevance of these new TRPC3 functions to atherogenesis has recently began to receive validation through studies in mouse models of atherosclerosis with conditional gain or loss of TRPC3 function. This chapter summarizes these novel findings and provides a discussion of their impact in the context of atherosclerosis, in an attempt to delineate a framework for further exploration of this terra incognita in the TRPC field.
Collapse
Affiliation(s)
- Guillermo Vazquez
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA.
| | - Sumeet Solanki
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA
| | - Prabhatachandra Dube
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA
| | - Kathryn Smedlund
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA
| | - Prince Ampem
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA
| |
Collapse
|
17
|
Myeong J, Kwak M, Jeon JP, Hong C, Jeon JH, So I. Close spatio-association of the transient receptor potential canonical 4 (TRPC4) channel with Gαi in TRPC4 activation process. Am J Physiol Cell Physiol 2015; 308:C879-89. [PMID: 25788576 DOI: 10.1152/ajpcell.00374.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/12/2015] [Indexed: 01/03/2023]
Abstract
TPRC channels are Ca(2+)-permeable, nonselective cation channels that are activated by a wide variety of stimuli, including G protein-coupled receptors (GPCRs). TRPC4 is commonly assumed to be activated by Gq/phospholipase C-coupled receptors. However, the other molecular mechanisms by which Gα proteins regulate TRPC4 remain unclear. Here, we found that Gαi2 regulates TRPC4 activation by direct binding. To investigate this mechanism, we used whole patch clamp and fluorescence resonance energy transfer (FRET). We tagged an isoform of mTRPC4 and G protein with CFP and YFP, respectively, and transiently transfected cells with the FRET pair. The FRET efficiency between TRPC4β-CFP and the constitutively active mutant form of Gαi2 was nearly 15% and was greater than that observed with wild-type Gαi2 (nearly 5%). Gβγ and the TRPC4 channel showed a FRET efficiency lower than 6%. In HEK293 cells transfected with the M2 muscarinic receptor, the application of carbachol increased the FRET efficiency between TRPC4β-CFP and Gαi2(WT)-YFP from 4.7 ± 0.4% (n = 7) to 12.6 ± 1.4% (n = 7). We also found that the TRPC4 channel directly interacts with Gαi2, but not with Gαq, when the channel is open. We analyzed the calcium levels in HEK293 cells expressing the channels and Gαi2 or Gαq using the calcium indicator YC6.1 (Yellow Cameleon 6.1). In response to the muscarinic agonist carbachol, M2-, Gαi2-, and TRPC4-expressing cells showed a prolonged Ca(2+) influx compared with cells expressing only M2. Together, these data suggest that Gαi2 activates the TRPC4 channel by direct binding, which then induces Ca(2+) entry.
Collapse
Affiliation(s)
- JongYun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| | - Misun Kwak
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| | - Jae-Pyo Jeon
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chansik Hong
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| |
Collapse
|
18
|
Chin-Smith EC, Slater DM, Johnson MR, Tribe RM. STIM and Orai isoform expression in pregnant human myometrium: a potential role in calcium signaling during pregnancy. Front Physiol 2014; 5:169. [PMID: 24834055 PMCID: PMC4018559 DOI: 10.3389/fphys.2014.00169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/11/2014] [Indexed: 01/05/2023] Open
Abstract
Store-operated calcium (Ca(2+)) entry (SOCE) can be mediated by two novel proteins, STIM/Orai. We have previously demonstrated that members of the TRPC family, putative basal and store operated calcium entry channels, are present in human myometrium and regulated by labor associated stimuli IL-1β and mechanical stretch. Although STIM and Orai isoforms (1-3) have been reported in other smooth muscle cell types, there is little known about the expression or gestational regulation of STIM and Orai expression in human myometrium. Total RNA was isolated from lower segment human myometrial biopsies obtained at Cesarean section from women at the time of preterm no labor (PTNL), preterm labor (PTL), term non-labor (TNL), and term with labor (TL); primary cultured human uterine smooth muscle cells, and a human myometrial cell line (hTERT-HM). STIM1-2, and Orai1-3 mRNA expression was assessed by quantitative real-time PCR. All five genes were expressed in myometrial tissue and cultured cells. STIM1-2 and Orai2-3 expression was significantly lower in cultured cells compared tissue. This has implications with regard investigation of the contribution of these proteins in cultured cells. Orai2 was the most abundant Orai isoform in human myometrium. Expression of STIM1-2/Orai1-3 did not alter with the onset of labor. Orai1 mRNA expression in cultured cells was enhanced by IL-1β treatment. This novel report of STIM1-2 and Orai1-3 mRNA expression in pregnant human myometrium and Orai1 regulation by IL-1β indicates a potential role for these proteins in calcium signaling in human myometrium during pregnancy.
Collapse
Affiliation(s)
- Evonne C Chin-Smith
- Division of Women's Health, Women's Health Academic Centre, King's College London, King's Health Partners London, UK
| | - Donna M Slater
- Physiology and Pharmacology, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| | - Mark R Johnson
- Academic Department of Obstetrics and Gynecology, Chelsea and Westminster Hospital, Imperial College London London, UK
| | - Rachel M Tribe
- Division of Women's Health, Women's Health Academic Centre, King's College London, King's Health Partners London, UK
| |
Collapse
|
19
|
Agomelatine and Duloxetine Synergistically Modulates Apoptotic Pathway by Inhibiting Oxidative Stress Triggered Intracellular Calcium Entry in Neuronal PC12 Cells: Role of TRPM2 and Voltage-Gated Calcium Channels. J Membr Biol 2014; 247:451-9. [DOI: 10.1007/s00232-014-9652-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022]
|
20
|
Ambudkar IS. Ca²⁺ signaling and regulation of fluid secretion in salivary gland acinar cells. Cell Calcium 2014; 55:297-305. [PMID: 24646566 DOI: 10.1016/j.ceca.2014.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 01/04/2023]
Abstract
Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca(2+) signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca(2+) is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca(2+)] ([Ca(2+)]i) triggered by IP3-induced release of Ca(2+) from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca(2+)]i signal in the cell. However, Ca(2+) entry into the cell is required to sustain the elevation of [Ca(2+)]i and fluid secretion. This Ca(2+) influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca(2+) entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca(2+) signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca(2+) signal can be ascribed to the polarized arrangement of the Ca(2+) channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca(2+) signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca(2+) signals in the regulation of fluid secretion.
Collapse
Affiliation(s)
- Indu S Ambudkar
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
21
|
Putney JW, Bird GS. Calcium signaling in lacrimal glands. Cell Calcium 2014; 55:290-6. [PMID: 24507443 DOI: 10.1016/j.ceca.2014.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 10/25/2022]
Abstract
Lacrimal glands provide the important function of lubricating and protecting the ocular surface. Failure of proper lacrimal gland function results in a number of debilitating dry eye diseases. Lacrimal glands secrete lipids, mucins, proteins, salts and water and these secretions are at least partially regulated by neurotransmitter-mediated cell signaling. The predominant signaling mechanism for lacrimal secretion involves activation of phospholipase C, generation of the Ca(2+)-mobilizing messenger, IP3, and release of Ca(2+) stored in the endoplasmic reticulum. The loss of Ca(2+) from the endoplasmic reticulum then triggers a process known as store-operated Ca(2+) entry, involving a Ca(2+) sensor in the endoplasmic reticulum, STIM1, which activates plasma membrane store-operated channels comprised of Orai subunits. Recent studies with deletions of the channel subunit, Orai1, confirm the important role of SOCE in both fluid and protein secretion in lacrimal glands, both in vivo and in vitro.
Collapse
Affiliation(s)
- James W Putney
- Calcium Regulation Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences - NIH, Department of Health and Human Services, PO Box 12233, Research Triangle Park, NC 27709, USA.
| | - Gary S Bird
- Calcium Regulation Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences - NIH, Department of Health and Human Services, PO Box 12233, Research Triangle Park, NC 27709, USA
| |
Collapse
|
22
|
Abstract
Transient receptor potential (TRP) channels are cellular sensors for a wide spectrum of physical and chemical stimuli. They are involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. TRP channels also play fundamental roles in cell signaling and allow the host cell to respond to benign or harmful environmental changes. As TRP channel activation is controlled by very diverse processes and, in many cases, exhibits complex polymodal properties, understanding how each TRP channel responds to its unique forms of activation energy is both crucial and challenging. The past two decades witnessed significant advances in understanding the molecular mechanisms that underlie TRP channels activation. This review focuses on our current understanding of the molecular determinants for TRP channel activation.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, USA.
| |
Collapse
|
23
|
Van Scott MR, Chandler J, Olmstead S, Brown JM, Mannie M. Airway Anatomy, Physiology, and Inflammation. THE TOXICANT INDUCTION OF IRRITANT ASTHMA, RHINITIS, AND RELATED CONDITIONS 2013. [PMCID: PMC7122617 DOI: 10.1007/978-1-4614-9044-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Smedlund K, Bah M, Vazquez G. On the role of endothelial TRPC3 channels in endothelial dysfunction and cardiovascular disease. Cardiovasc Hematol Agents Med Chem 2012; 10:265-74. [PMID: 22827251 PMCID: PMC3465809 DOI: 10.2174/187152512802651051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 05/05/2023]
Abstract
In endothelium, calcium (Ca(2+)) influx through plasma membrane Ca(2+)-permeable channels plays a fundamental role in several physiological functions and in the pathogenesis of cardiovascular disease. Current knowledge on the influence of Ca(2+) influx in signaling events associated to endothelial dysfunction has grown significantly over recent years, particularly after identification of members of the Transient Receptor Potential Canonical (TRPC) family of channel forming proteins as prominent mediators of Ca(2+) entry in endothelial cells. Among TRPC members TRPC3 has been at the center of many of these physiopathological processes. Progress in elucidating the mechanism/s underlying regulation of endothelial TRPC3 and characterization of signaling events downstream TRPC3 activation are of most importance to fully appreciate the role of this peculiar cation channel in cardiovascular disease and its potential use as a therapeutic target. In this updated review we focus on TRPC3 channels, revising and discussing current knowledge on channel expression and regulation in endothelium and the roles of TRPC3 in cardiovascular disease in relation to endothelial dysfunction.
Collapse
Affiliation(s)
| | | | - G. Vazquez
- Correspondence to: Guillermo Vazquez, PhD, Department of Physiology and Pharmacology, UTHSC Mailstop 1800, Toledo OH 43614 USA. FAX: 419 383 2871;
| |
Collapse
|
25
|
Sullivan MN, Francis M, Pitts NL, Taylor MS, Earley S. Optical recording reveals novel properties of GSK1016790A-induced vanilloid transient receptor potential channel TRPV4 activity in primary human endothelial cells. Mol Pharmacol 2012; 82:464-72. [PMID: 22689561 PMCID: PMC3422704 DOI: 10.1124/mol.112.078584] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/11/2012] [Indexed: 01/01/2023] Open
Abstract
Critical functions of the vascular endothelium are regulated by changes in intracellular [Ca(2+)]. Endothelial dysfunction is tightly associated with cardiovascular disease, and improved understanding of Ca(2+) entry pathways in these cells will have a significant impact on human health. However, much about Ca(2+) influx channels in endothelial cells remains unknown because they are difficult to study using conventional patch-clamp electrophysiology. Here we describe a novel, highly efficient method for recording and analyzing Ca(2+)-permeable channel activity in primary human endothelial cells using a unique combination of total internal reflection fluorescence microscopy (TIRFM), custom software-based detection, and selective pharmacology. Our findings indicate that activity of the vanilloid (V) transient receptor potential (TRP) channel TRPV4 can be rapidly recorded and characterized at the single-channel level using this method, providing novel insight into channel function. Using this method, we show that although TRPV4 protein is evenly distributed throughout the plasma membrane, most channels are silent even during maximal stimulation with the potent TRPV4 agonist N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A). Furthermore, our findings indicate that GSK1016790A acts by recruiting previously inactive channels, rather than through increasing elevation of basal activity.
Collapse
Affiliation(s)
- Michelle N Sullivan
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1680, USA
| | | | | | | | | |
Collapse
|
26
|
Sundivakkam PC, Freichel M, Singh V, Yuan JP, Vogel SM, Flockerzi V, Malik AB, Tiruppathi C. The Ca(2+) sensor stromal interaction molecule 1 (STIM1) is necessary and sufficient for the store-operated Ca(2+) entry function of transient receptor potential canonical (TRPC) 1 and 4 channels in endothelial cells. Mol Pharmacol 2012; 81:510-26. [PMID: 22210847 PMCID: PMC3310414 DOI: 10.1124/mol.111.074658] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 12/30/2011] [Indexed: 12/31/2022] Open
Abstract
We addressed the requirement for stromal interaction molecule 1 (STIM1), the endoplasmic reticulum (ER) Ca(2+)-sensor, and Orai1, a Ca(2+) selective channel, in regulating Ca(2+) entry through the store-operated channels mouse transient receptor potential canonical (TRPC) 4 or human TRPC1. Studies were made using murine and human lung endothelial cells (ECs) challenged with thrombin known to induce Ca(2+) entry via TRPC1/4. Deletion or knockdown of TRPC4 abolished Ca(2+) entry secondary to depletion of ER Ca(2+) stores, preventing the disruption of the endothelial barrier. Knockdown of STIM1 (but not of Orai1or Orai3) or expression of the dominant-negative STIM1(K684E-K685E) mutant in ECs also suppressed Ca(2+) entry secondary to store depletion. Ectopic expression of WT-STIM1 or WT-Orai1 in TRPC4(-/-)-ECs failed to rescue Ca(2+) entry; however, WT-TRPC4 expression in TRPC4(-/-)-ECs restored Ca(2+) entry indicating the requirement for TRPC4 in mediating store-operated Ca(2+) entry. Moreover, expression of the dominant-negative Orai1(R91W) mutant or Orai3(E81W) mutant in WT-ECs failed to prevent thrombin-induced Ca(2+) entry. In contrast, expression of the dominant-negative TRPC4(EE647-648KK) mutant in WT-ECs markedly reduced thrombin-induced Ca(2+) entry. In ECs expressing YFP-STIM1, ER-store Ca(2+) depletion induced formation of fluorescent membrane puncta in WT but not in TRPC4(-/-) cells, indicating that mobilization of STIM1 and engagement of its Ca(2+) sensing function required TRPC4 expression. Coimmunoprecipitation studies showed coupling of TRPC1 and TRPC4 with STIM1 on depletion of ER Ca(2+) stores. Thus, TRPC1 and TRPC4 can interact with STIM1 to form functional store-operated Ca(2+)-entry channels, which are essential for mediating Ca(2+) entry-dependent disruption of the endothelial barrier.
Collapse
Affiliation(s)
- Premanand C Sundivakkam
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Cheung KK, Yeung SS, Au SW, Lam LS, Dai ZQ, Li YH, Yeung EW. Expression and association of TRPC1 with TRPC3 during skeletal myogenesis. Muscle Nerve 2012; 44:358-65. [PMID: 21996795 DOI: 10.1002/mus.22060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
INTRODUCTION TRPC1 and TRPC3 proteins are widely expressed in skeletal muscles in forming calcium-permeable channels. Herein we characterize the expression pattern of TRPC transcripts during skeletal myogenesis in C2C12 myoblasts. METHODS We used polymerase chain reaction and Western blotting to detect expression levels, immunohistochemistry for subcellular localization, and co-immunoprecipitation techniques to assess interaction. RESULTS TRPC1 localizes to the cytoplasm and is enriched in the perinuclear region in undifferentiated myoblasts. Expression of TRPC1 increases significantly during myogenesis and resides mainly in differentiated myocytes and myotubes. TRPC3 is absent in undifferentiated myoblasts, is dramatically upregulated in differentiated culture, and is preferentially expressed in myotubes. Physical interaction of TRPC1-TRPC3 was observed, suggesting the possible existence of heteromers. CONCLUSIONS Expression of TRPC1 and TRPC3 is tightly regulated during myogensis. Evidence of TRPC1-TRPC3 interaction was first demonstrated in a muscle cell line. The functional consequences of this interaction remain to be established.
Collapse
Affiliation(s)
- Kwok-Kuen Cheung
- Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
29
|
Boland RL. VDR activation of intracellular signaling pathways in skeletal muscle. Mol Cell Endocrinol 2011; 347:11-6. [PMID: 21664245 DOI: 10.1016/j.mce.2011.05.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/08/2011] [Accepted: 05/08/2011] [Indexed: 12/14/2022]
Abstract
The purpose of this article is to review the activation of signal transduction pathways in skeletal muscle cells by the hormone 1α,25(OH)(2)-vitamin D(3) [1α,25(OH)(2)D(3)], focusing on the role of the vitamin D receptor (VDR). The hormone induces fast, non transcriptional responses, involving stimulation of the transmembrane second messenger systems adenylyl cyclase/cAMP/PKA, PLC/DAG+IP(3)/PKC, Ca(2+) messenger system and MAPK cascades. Short treatment with 1α,25(OH)(2)D(3) induces reverse translocation of the VDR from the nucleus to plasma membranes. Accordingly, a complex is formed in the caveolae between the VDR and TRCP3, integral protein of capacitative Ca(2+) entry (CCE), suggesting an association between both proteins and a functional role of the VDR in 1α,25(OH)(2)D(3) activation of CCE. Stimulation of tyrosine phosphorylation cascades by 1α,25(OH)(2)D(3) have demonstrated the formation of complexes between Src and the VDR. Through these mechanisms, 1α,25(OH)(2)D(3) plays an important function in contractility and myogenesis.
Collapse
Affiliation(s)
- Ricardo L Boland
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahia Blanca, Argentina.
| |
Collapse
|
30
|
Rosker C, Salvarani N, Schmutz S, Grand T, Rohr S. Abolishing myofibroblast arrhythmogeneicity by pharmacological ablation of α-smooth muscle actin containing stress fibers. Circ Res 2011; 109:1120-31. [PMID: 21921266 DOI: 10.1161/circresaha.111.244798] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Myofibroblasts typically appear in the myocardium after insults to the heart like mechanical overload and infarction. Apart from contributing to fibrotic remodeling, myofibroblasts induce arrhythmogenic slow conduction and ectopic activity in cardiomyocytes after establishment of heterocellular electrotonic coupling in vitro. So far, it is not known whether α-smooth muscle actin (α-SMA) containing stress fibers, the cytoskeletal components that set myofibroblasts apart from resident fibroblasts, are essential for myofibroblasts to develop arrhythmogenic interactions with cardiomyocytes. OBJECTIVE We investigated whether pharmacological ablation of α-SMA containing stress fibers by actin-targeting drugs affects arrhythmogenic myofibroblast-cardiomyocyte cross-talk. METHODS AND RESULTS Experiments were performed with patterned growth cell cultures of neonatal rat ventricular cardiomyocytes coated with cardiac myofibroblasts. The preparations exhibited slow conduction and ectopic activity under control conditions. Exposure to actin-targeting drugs (Cytochalasin D, Latrunculin B, Jasplakinolide) for 24 hours led to disruption of α-SMA containing stress fibers. In parallel, conduction velocities increased dose-dependently to values indistinguishable from cardiomyocyte-only preparations and ectopic activity measured continuously over 24 hours was completely suppressed. Mechanistically, antiarrhythmic effects were due to myofibroblast hyperpolarization (Cytochalasin D, Latrunculin B) and disruption of heterocellular gap junctional coupling (Jasplakinolide), which caused normalization of membrane polarization of adjacent cardiomyocytes. CONCLUSIONS The results suggest that α-SMA containing stress fibers importantly contribute to myofibroblast arrhythmogeneicity. After ablation of this cytoskeletal component, cells lose their arrhythmic effects on cardiomyocytes, even if heterocellular electrotonic coupling is sustained. The findings identify α-SMA containing stress fibers as a potential future target of antiarrhythmic therapy in hearts undergoing structural remodeling.
Collapse
Affiliation(s)
- Christian Rosker
- Dept. of Physiology, University of Bern, Bühlplatz 5, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Putney JW. Origins of the concept of store-operated calcium entry. Front Biosci (Schol Ed) 2011; 3:980-4. [PMID: 21622247 DOI: 10.2741/202] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The concept of capacitative or store-operated calcium entry, a process by which the release of stored calcium signals the opening of plasma membrane calcium channels, has its roots in the late 1970's, and was formalized in 1986. This short introduction to the current volume of Frontiers in Bioscience briefly summarizes the early experimental work that led to the idea of store-operated calcium entry, and provided the initial proofs for it.
Collapse
Affiliation(s)
- James W Putney
- National Institute of Environmental Health Sciences-NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
32
|
Abstract
The secretion of fluid and electrolytes by salivary gland acinar cells requires the coordinated regulation of multiple ion channel and transporter proteins, signaling components, and water transport. Importantly, neurotransmitter stimulated increase in the cytosolic free [Ca(2+)] ([Ca(2+)](i)) is critical for the regulation of salivary gland secretion as it regulates several major ion fluxes that together establish the sustained osmotic gradient to drive fluid secretion. The mechanisms that act to modulate these increases in [Ca(2+)](i) are therefore central to the process of salivary fluid secretion. Such modulation involves membrane receptors for neurotransmitters, as well as mechanisms that mediate intracellular Ca(2+) release, and Ca(2+) entry, as well as those that maintain cellular Ca(2+) homeostasis. Together, these mechanisms determine the spatial and temporal aspects of the [Ca(2+)](i) signals that regulate fluid secretion. Molecular cloning of these transporters and channels as well as development of mice lacking these proteins has established the physiological significance of key components that are involved in regulating [Ca(2+)](i) in salivary glands. This review will discuss these important studies and the findings which have led to resolution of the Ca(2+) signaling mechanisms that determine salivary gland fluid secretion.
Collapse
Affiliation(s)
- Indu S Ambudkar
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Kanda S, Harita Y, Shibagaki Y, Sekine T, Igarashi T, Inoue T, Hattori S. Tyrosine phosphorylation-dependent activation of TRPC6 regulated by PLC-γ1 and nephrin: effect of mutations associated with focal segmental glomerulosclerosis. Mol Biol Cell 2011; 22:1824-35. [PMID: 21471003 PMCID: PMC3103399 DOI: 10.1091/mbc.e10-12-0929] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The surface expression and channel activation of transient receptor potential canonical 6 (TRPC6) were regulated by tyrosine phosphorylation and resultant binding with stimulatory PLC-γ1 and inhibitory nephrin. Disease-causing mutations made the TRPC6s insensitive to nephrin suppression, suggesting that the cell-type–specific regulation of TRPC6 might be involved in the pathogenesis. Transient receptor potential canonicals (TRPCs) play important roles in the regulation of intracellular calcium concentration. Mutations in the TRPC6 gene are found in patients with focal segmental glomerulosclerosis (FSGS), a proteinuric disease characterized by dysregulated function of renal glomerular epithelial cells (podocytes). There is as yet no clear picture for the activation mechanism of TRPC6 at the molecular basis, however, and the association between its channel activity and pathogenesis remains unclear. We demonstrate here that tyrosine phosphorylation of TRPC6 induces a complex formation with phospholipase C (PLC)-γ1, which is prerequisite for TRPC6 surface expression. Furthermore, nephrin, an adhesion protein between the foot processes of podocytes, binds to phosphorylated TRPC6 via its cytoplasmic domain, competitively inhibiting TRPC6–PLC-γ1 complex formation, TRPC6 surface localization, and TRPC6 activation. Importantly, FSGS-associated mutations render the mutated TRPC6s insensitive to nephrin suppression, thereby promoting their surface expression and channel activation. These results delineate the mechanism of TRPC6 activation regulated by tyrosine phosphorylation, and imply the cell type–specific regulation, which correlates the FSGS mutations with deregulated TRPC6 channel activity.
Collapse
Affiliation(s)
- Shoichiro Kanda
- Division of Cellular Proteomics (BML), Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Salido GM, Jardín I, Rosado JA. The TRPC ion channels: association with Orai1 and STIM1 proteins and participation in capacitative and non-capacitative calcium entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:413-33. [PMID: 21290309 DOI: 10.1007/978-94-007-0265-3_23] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transient receptor potential (TRP) proteins are involved in a large number of non-selective cation channels that are permeable to both monovalent and divalent cations. Two general classes of receptor-mediated Ca(2+) entry has been proposed: one of then is conduced by receptor-operated Ca(2+) channels (ROC), the second is mediated by channels activated by the emptying of intracellular Ca(2+) stores (store-operated channels or SOC). TRP channels have been presented as subunits of both ROC and SOC, although the precise mechanism that regulates the participation of TRP proteins in these Ca(2+) entry mechanisms remains unclear. Recently, TRPC proteins have been shown to associate with Orai1 and STIM1 in a dynamic ternary complex regulated by the occupation of membrane receptors in several cell models, which might play an important role in the function of TRPC proteins. The present review summarizes the current knowledge concerning the association of TRP proteins with Orai and STIM proteins and how this affects the participation of TRP proteins in store-operated or receptor-operated Ca(2+) entry.
Collapse
Affiliation(s)
- Gines M Salido
- Cell Physiology Group, Department of Physiology, University of Extremadura, Cáceres, Spain.
| | | | | |
Collapse
|
35
|
Abstract
Store-operated calcium entry is a process by which the depletion of calcium from the endoplasmic reticulum activates calcium influx across the plasma membrane. In the past few years, the major players in this pathway have been identified. STIM1 and STIM2 function as calcium sensors in the endoplasmic reticulum and can interact with and activate plasma membrane channels comprised of Orai1, Orai2, or Orai3 subunits. This review discusses recent advances in our understanding of this widespread signaling mechanism as well as the mechanisms by which a number of interesting pharmacological agents modify it.
Collapse
Affiliation(s)
- James W Putney
- Calcium Regulation Section, National Institute of Environmental Health Sciences - NIH, Department of Health and Human Services, PO Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
36
|
Shin HY, Hong YH, Jang SS, Chae HG, Paek SL, Moon HE, Kim DG, Kim J, Paek SH, Kim SJ. A role of canonical transient receptor potential 5 channel in neuronal differentiation from A2B5 neural progenitor cells. PLoS One 2010; 5:e10359. [PMID: 20479868 PMCID: PMC2866321 DOI: 10.1371/journal.pone.0010359] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 03/31/2010] [Indexed: 11/19/2022] Open
Abstract
Store-operated Ca(2+) entry (SOCE) channels are the main pathway of Ca(2+) entry in non-excitable cells such as neural progenitor cells (NPCs). However, the role of SOCE channels has not been defined in the neuronal differentiation from NPCs. Here, we show that canonical transient receptor potential channel (TRPC) as SOCE channel influences the induction of the neuronal differentiation of A2B5(+) NPCs isolated from postnatal-12-day rat cerebrums. The amplitudes of SOCE were significantly higher in neural cells differentiated from proliferating A2B5(+) NPCs and applications of SOCE blockers, 2-aminoethoxy-diphenylborane (2-APB), and ruthenium red (RR), inhibited their rise of SOCE. Among TRPC subtypes (TRPC1-7), marked expression of TRPC5 and TRPC6 with turned-off TRPC1 expression was observed in neuronal cells differentiated from proliferating A2B5(+) NPCs. TRPC5 small interfering RNA (siRNA) blocked the neuronal differentiation from A2B5(+) NPCs and reduced the rise of SOCE. In contrast, TRPC6 siRNA had no significant effect on the neuronal differentiation from A2B5(+) NPCs. These results indicate that calcium regulation by TRPC5 would play a key role as a switch between proliferation and neuronal differentiation from NPCs.
Collapse
Affiliation(s)
- Hye Young Shin
- Department of Neurosurgery, Cancer Research Institute, Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
- Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yun Hwa Hong
- Department of Physiology, Department of Brain and Cognitive Sciences, Neuroscience Research Institute Medical Research Center, College of Medicine, Seoul National University, Seoul, Korea
| | - Sung Soo Jang
- Department of Physiology, Department of Brain and Cognitive Sciences, Neuroscience Research Institute Medical Research Center, College of Medicine, Seoul National University, Seoul, Korea
| | - Hong Gu Chae
- Department of Physiology, Department of Brain and Cognitive Sciences, Neuroscience Research Institute Medical Research Center, College of Medicine, Seoul National University, Seoul, Korea
| | - Seung Leal Paek
- Department of Neurosurgery, Cancer Research Institute, Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
- Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hyo Eun Moon
- Department of Neurosurgery, Cancer Research Institute, Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
- Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Dong Gyu Kim
- Department of Neurosurgery, Cancer Research Institute, Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
- Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jun Kim
- Department of Physiology, Department of Brain and Cognitive Sciences, Neuroscience Research Institute Medical Research Center, College of Medicine, Seoul National University, Seoul, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Cancer Research Institute, Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
- Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
- * E-mail: (SHP); (SJK)
| | - Sang Jeong Kim
- Department of Physiology, Department of Brain and Cognitive Sciences, Neuroscience Research Institute Medical Research Center, College of Medicine, Seoul National University, Seoul, Korea
- * E-mail: (SHP); (SJK)
| |
Collapse
|
37
|
Dadon D, Minke B. Cellular functions of transient receptor potential channels. Int J Biochem Cell Biol 2010; 42:1430-45. [PMID: 20399884 DOI: 10.1016/j.biocel.2010.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/08/2010] [Accepted: 04/08/2010] [Indexed: 11/26/2022]
Abstract
Transient Receptor Potential channels are polymodal cellular sensors involved in a wide variety of cellular processes, mainly by increasing cellular Ca(2+). In this review we focus on the roles of these channels in: (i) cell death (ii) proliferation and differentiation and (iii) transmitter release. Cell death: Ca(2+) influx participates in apoptotic and necrotic cell death. The Ca(2+) permeability and high sensitivity of part of these channels to oxidative/metabolic stress make them important participants in cell death. Several examples are given. Transient Receptor Potential Melastatin 2 is activated by H(2)O(2), inducing cell death through an increase in cellular Ca(2+) and activation of Poly ADP-Ribose Polymerase. Exposure of cultured cortical neurons to oxygen-glucose deprivation, in vitro, causes cell death via cation influx, mediated by Transient Receptor Potential Melastatin 7. Metabolic stress constitutively activates the Ca(2+) permeable Transient Receptor Potential channels of Drosophila photoreceptor in the dark, potentially leading to retinal degeneration. Similar sensitivity to metabolic stress characterizes several mammalian Transient Receptor Potential Canonical channels. Proliferation and differentiation: The rise in cytosolic Ca(2+) induces cell growth, differentiation and proliferation via activation of several transcription factors. Activating a variety of store operated and Transient Receptor Potential channels cause a rise in cytosolic Ca(2+), making these channels components involved in proliferation and differentiation. Transmitter release: Transient Receptor Potential Melastatin 7 channels reside in synaptic vesicles and regulate neurotransmitter release by a mechanism that is not entirely clear. All the above features of Transient Receptor Potential channels make them crucial components in important, sometimes conflicting, cellular processes that still need to be explored.
Collapse
Affiliation(s)
- Daniela Dadon
- Department of Medical Neurobiology, The Institute of Medical Research Israel-Canada and the Kühne Minerva Center, for Studies of Visual Transduction, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | | |
Collapse
|
38
|
Kyriazis GA, Belal C, Madan M, Taylor DG, Wang J, Wei Z, Pattisapu JV, Chan SL. Stress-induced switch in Numb isoforms enhances Notch-dependent expression of subtype-specific transient receptor potential channel. J Biol Chem 2010; 285:6811-25. [PMID: 20038578 PMCID: PMC2825475 DOI: 10.1074/jbc.m109.074690] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/16/2009] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway plays an essential role in the regulation of cell specification by controlling differentiation, proliferation, and apoptosis. Numb is an intrinsic regulator of the Notch pathway and exists in four alternative splice variants that differ in the length of their phosphotyrosine-binding domain (PTB) and proline-rich region domains. The physiological relevance of the existence of the Numb splice variants and their exact regulation are still poorly understood. We previously reported that Numb switches from isoforms containing the insertion in PTB to isoforms lacking this insertion in neuronal cells subjected to trophic factor withdrawal (TFW). The functional relevance of the TFW-induced switch in Numb isoforms is not known. Here we provide evidence that the TFW-induced switch in Numb isoforms regulates Notch signaling strength and Notch target gene expression. PC12 cells stably overexpressing Numb isoforms lacking the PTB insertion exhibited higher basal Notch activity and Notch-dependent transcription of the transient receptor potential channel 6 (TRPC6) when compared with those overexpressing Numb isoforms with the PTB insertion. The differential regulation of TRPC6 expression is correlated with perturbed calcium signaling and increased neuronal vulnerability to TFW-induced death. Pharmacological inhibition of the Notch pathway or knockdown of TRPC6 function ameliorates the adverse effects caused by the TFW-induced switch in Numb isoforms. Taken together, our results indicate that Notch and Numb interaction may influence the sensitivity of neuronal cells to injurious stimuli by modulating calcium-dependent apoptotic signaling cascades.
Collapse
Affiliation(s)
- George A. Kyriazis
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816 and
| | - Cherine Belal
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816 and
| | - Meenu Madan
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816 and
| | - David G. Taylor
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816 and
| | - Jang Wang
- the Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland 21224
| | - Zelan Wei
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816 and
| | - Jogi V. Pattisapu
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816 and
| | - Sic L. Chan
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816 and
| |
Collapse
|
39
|
Fuchs B, Dietrich A, Gudermann T, Kalwa H, Grimminger F, Weissmann N. The role of classical transient receptor potential channels in the regulation of hypoxic pulmonary vasoconstriction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:187-200. [PMID: 20204731 DOI: 10.1007/978-1-60761-500-2_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is an essential mechanism of the lung matching blood perfusion to ventilation during local alveolar hypoxia. HPV thus optimizes pulmonary gas exchange. In contrast chronic and generalized hypoxia leads to pulmonary vascular remodeling with subsequent pulmonary hypertension and right heart hypertrophy. Among other non-selective cation channels, the family of classical transient receptor potential channels (TRPC) has been shown to be expressed in pulmonary arterial smooth muscle cells. Among this family, TRPC6 is essential for the regulation of acute HPV in mice. Against this background, in this chapter we give an overview about the TRPC family and their role in HPV.
Collapse
Affiliation(s)
- B Fuchs
- University of Giessen Lung Center (UGLC), Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Store-operated calcium entry channels in pulmonary endothelium: the emerging story of TRPCS and Orai1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:137-54. [PMID: 20204728 DOI: 10.1007/978-1-60761-500-2_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells of diverse origin utilize shifts in cytosolic calcium concentrations as intracellular signals to elicit physiological responses. In endothelium, inflammatory first messengers increase cytosolic calcium as a signal to disrupt cell-cell borders and produce inter-cellular gaps. Calcium influx across the plasma membrane is required to initiate barrier disruption, although the calcium entry mechanism responsible for this effect remains poorly understood. This chapter highlights recent efforts to define the molecular anatomy of the ion channel responsible for triggering endothelial cell gap formation. Resolving the identity and function of this calcium channel will pave the way for new anti-inflammatory therapeutic targets.
Collapse
|
41
|
Yang LX, Guo RW, Liu B, Wang XM, Qi F, Guo CM, Shi YK, Wang H. Role of TRPC1 and NF-kappaB in mediating angiotensin II-induced Ca2+ entry and endothelial hyperpermeability. Peptides 2009; 30:1368-73. [PMID: 19394384 DOI: 10.1016/j.peptides.2009.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/15/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
Endothelial dysfunction is associated with cardiovascular diseases. The Ca(2+) influx occurring via activation of plasmalemma Ca(2+) channels was shown to be critical in signaling the increase in endothelial permeability in response to a variety of permeability-increasing mediators. It has been reported that angiotensin II (AngII) could induce Ca(2+) signaling in some cells, and transient receptor potential canonical 1 (TRPC1) had an important role in this process. The objective of this study was to examine the mechanism of AngII-induced Ca(2+) entry and vascular endothelial hyperpermeability. Human umbilical vein endothelial cells (HUVECs) exposed to AngII exhibited dose-dependent increase in [Ca(2+)]i and endothelial permeability. Quantitative real-time RT-PCR and Western blotting showed that the level of TRPC1 expression had increased significantly at 12h and at 24h after treatment of HUEVCs with AngII. The expression of p65 was suppressed using an RNAi strategy. The results showed that the NF-kappaB signaling pathway and type-1 receptor of AngII was involved in AngII-induced TRPC1 upregulation. Moreover, knockdown of TRPC1 and NF-kappaB expression attenuates AngII-induced [Ca(2+)]i and endothelial permeability. NF-kappaB and TRPC1 have critical roles in AngII-induced Ca(2+) entry and endothelial permeability.
Collapse
Affiliation(s)
- Li-xia Yang
- Department of Cardiology, Kunming General Hospital of Chengdu Military Area, Yunnan 650032, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Costello S, Michelangeli F, Nash K, Lefievre L, Morris J, Machado-Oliveira G, Barratt C, Kirkman-Brown J, Publicover S. Ca2+-stores in sperm: their identities and functions. Reproduction 2009; 138:425-37. [PMID: 19542252 DOI: 10.1530/rep-09-0134] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intracellular Ca2+ stores play a central role in the regulation of cellular [Ca2+](i) and the generation of complex [Ca2+] signals such as oscillations and waves. Ca2+ signalling is of particular significance in sperm cells, where it is a central regulator in many key activities (including capacitation, hyperactivation, chemotaxis and acrosome reaction) yet mature sperm lack endoplasmic reticulum and several other organelles that serve as Ca2+ stores in somatic cells. Here, we review i) the evidence for the expression in sperm of the molecular components (pumps and channels) which are functionally significant in the activity of Ca2+ stores of somatic cells and ii) the evidence for the existence of functional Ca2+ stores in sperm. This evidence supports the existence of at least two storage organelles in mammalian sperm, one in the acrosomal region and another in the region of the sperm neck and midpiece. We then go on to discuss the probable identity of these organelles and their discrete functions: regulation by the acrosome of its own secretion and regulation by membranous organelles at the sperm neck (and possibly by the mitochondria) of flagellar activity and hyperactivation. Finally, we consider the ability of the sperm discretely to control mobilisation of these stores and the functional interaction of stored Ca2+ at the sperm neck/midpiece with CatSper channels in the principal piece in regulation of the activities of mammalian sperm.
Collapse
Affiliation(s)
- Sarah Costello
- School of Biosciences, University of Birmingham, Birmingham B152TT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Birnbaumer L. The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca(2+) concentrations. Annu Rev Pharmacol Toxicol 2009; 49:395-426. [PMID: 19281310 DOI: 10.1146/annurev.pharmtox.48.113006.094928] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The realization that there exists a multimembered family of cation channels with structural similarity to Drosophila's Trp channel emerged during the second half of the 1990s. In mammals, depending on the species, the TRP family counts 29 or 30 members which has been subdivided into 6 subfamilies on the basis of sequence similarity. TRP channels are nonselective monovalent cation channels, most of which also allow passage of Ca(2+). Many members of each of these families, but not all, are involved in sensory signal transduction. The C-type (for canonical or classical) subfamily, differs from the other TRP subfamilies in that it fulfills two different types of function: membrane depolarization, resembling sensory transduction TRPs, and mediation of sustained increases in intracellular Ca(2+). The mechanism(s) by which the C-class of TRP channels-the TRPCs-are activated is poorly understood and their role in mediating intracellular Ca(2+) increases is being questioned. Both of these questions-mechanism of activation and participation in Ca(2+) entry-are the topics of this review.
Collapse
Affiliation(s)
- Lutz Birnbaumer
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
| |
Collapse
|
44
|
Lepage PK, Lussier MP, McDuff FO, Lavigne P, Boulay G. The self-association of two N-terminal interaction domains plays an important role in the tetramerization of TRPC4. Cell Calcium 2009; 45:251-9. [DOI: 10.1016/j.ceca.2008.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/30/2008] [Accepted: 11/03/2008] [Indexed: 11/28/2022]
|
45
|
Abramowitz J, Birnbaumer L. Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 2009; 23:297-328. [PMID: 18940894 PMCID: PMC2630793 DOI: 10.1096/fj.08-119495] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/25/2008] [Indexed: 11/11/2022]
Abstract
The existence of a mammalian family of TRPC ion channels, direct homologues of TRP, the visual transduction channel of flies, was discovered during 1995-1996 as a consequence of research into the mechanism by which the stimulation of the receptor-Gq-phospholipase Cbeta signaling pathway leads to sustained increases in intracellular calcium. Mammalian TRPs, TRPCs, turned out to be nonselective, calcium-permeable cation channels, which cause both a collapse of the cell's membrane potential and entry of calcium. The family comprises 7 members and is widely expressed. Many cells and tissues express between 3 and 4 of the 7 TRPCs. Despite their recent discovery, a wealth of information has accumulated, showing that TRPCs have widespread roles in almost all cells studied, including cells from excitable and nonexcitable tissues, such as the nervous and cardiovascular systems, the kidney and the liver, and cells from endothelia, epithelia, and the bone marrow compartment. Disruption of TRPC function is at the root of some familial diseases. More often, TRPCs are contributing risk factors in complex diseases. The present article reviews what has been uncovered about physiological roles of mammalian TRPC channels since the time of their discovery. This analysis reveals TRPCs as major and unsuspected gates of Ca(2+) entry that contribute, depending on context, to activation of transcription factors, apoptosis, vascular contractility, platelet activation, and cardiac hypertrophy, as well as to normal and abnormal cell proliferation. TRPCs emerge as targets for a thus far nonexistent field of pharmacological intervention that may ameliorate complex diseases.
Collapse
Affiliation(s)
- Joel Abramowitz
- Transmembrane Signaling Group, Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
46
|
INOUE A, MATSUMOTO I, IWANAMI K, TANAKA Y, SUMIDA T. The role of TNF.ALPHA.-induced adipose-related protein (TIARP) in TNF.ALPHA. dependent arthritic model-GPI-induced arthritis. ACTA ACUST UNITED AC 2009; 32:15-9. [DOI: 10.2177/jsci.32.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Asuka INOUE
- Division of Clinical Immunology, Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Isao MATSUMOTO
- Division of Clinical Immunology, Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Keiichi IWANAMI
- Division of Clinical Immunology, Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Yoko TANAKA
- Division of Clinical Immunology, Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Takayuki SUMIDA
- Division of Clinical Immunology, Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| |
Collapse
|
47
|
Trebak M, Lemonnier L, DeHaven WI, Wedel BJ, Bird GS, Putney JW. Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. Pflugers Arch 2008; 457:757-69. [PMID: 18665391 DOI: 10.1007/s00424-008-0550-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/19/2008] [Accepted: 06/24/2008] [Indexed: 11/27/2022]
Abstract
The canonical transient receptor potential (TRPC) proteins have been recognized as key players in calcium entry pathways activated through phospholipase-C-coupled receptors. While it is clearly demonstrated that members of the TRPC3/6/7 subfamily are activated by diacylglycerol, the mechanism by which phospholipase C activates members of the TRPC1/4/5 subfamily remains a mystery. In this paper, we provide evidence for both negative and positive modulatory roles for membrane polyphosphoinositides in the regulation of TRPC5 channels. Depletion of polyphosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate (PIP2) through inhibition of phosphatidylinositol 4-kinase activates calcium entry and membrane currents in TRPC5-expressing but not in TRPC3- or TRPC7-expressing cells. Inclusion of polyphosphatidylinositol 4-phosphate or PIP2, but not phosphatidylinositol 3,4,5-trisphosphate, in the patch pipette inhibited TRPC5 currents. Paradoxically, depletion of PIP2 with a directed 5-phosphatase strategy inhibited TRPC5. Furthermore, when the activity of single TRPC5 channels was examined in excised patches, the channels were robustly activated by PIP2. These findings indicate complex functions for regulation of TRPC5 by PIP2, and we propose that membrane polyphosphoinositides may have at least two distinct functions in regulating TRPC5 channel activity.
Collapse
Affiliation(s)
- Mohamed Trebak
- Department of Health and Human Services, Laboratory of Signal Transduction, NIEHS/NIH, P.O.Box 12233, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | |
Collapse
|
48
|
TRPC channels and diacylglycerol dependent calcium signaling in rat sensory neurons. Histochem Cell Biol 2008; 130:655-67. [DOI: 10.1007/s00418-008-0477-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
|
49
|
Yang M, Ding X, Murray PA. Differential effects of intravenous anesthetics on capacitative calcium entry in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1007-12. [DOI: 10.1152/ajplung.00171.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed the roles of the protein kinase C (PKC) and the tyrosine kinase (TK) signaling pathways in regulating capacitative calcium entry (CCE) in human pulmonary artery smooth muscle cells (PASMCs) and investigated the effects of intravenous anesthetics (midazolam, propofol, thiopental, ketamine, etomidate, morphine, and fentanyl) on CCE in human PASMCs. Fura-2-loaded human PASMCs were placed in a dish (37°C) on an inverted fluorescence microscope. Intracellular Ca2+concentration ([Ca2+]i) was measured as the 340/380 fluorescence ratio in individual PASMCs. Thapsigargin, a sarcoplasmic reticulum Ca2+-adenosine triphosphatase inhibitor, was used to deplete intracellular Ca2+stores after removing extracellular Ca2+. CCE was then activated by restoring extracellular Ca2+(2.2 mM). The effects of PKC activation and inhibition, TK inhibition, and the intravenous anesthetics on CCE were assessed. Thapsigargin caused a transient increase in [Ca2+]i. Restoring extracellular Ca2+caused a rapid peak increase in [Ca2+]i, followed by a sustained increase in [Ca2+]i; i.e., CCE was stimulated in human PASMCs. PKC activation attenuated ( P < 0.05), whereas PKC inhibition potentiated ( P < 0.05), both peak and sustained CCE. TK inhibition attenuated ( P < 0.05) both peak and sustained CCE. Midazolam, propofol, and thiopental each attenuated ( P < 0.05) both peak and sustained CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE. Our results suggest that CCE in human PASMCs is influenced by both the TK and PKC signaling pathways. Midazolam, propofol, and thiopental each attenuated CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE.
Collapse
|
50
|
Marasa BS, Xiao L, Rao JN, Zou T, Liu L, Wang J, Bellavance E, Turner DJ, Wang JY. Induced TRPC1 expression increases protein phosphatase 2A sensitizing intestinal epithelial cells to apoptosis through inhibition of NF-kappaB activation. Am J Physiol Cell Physiol 2008; 294:C1277-87. [PMID: 18322138 DOI: 10.1152/ajpcell.90635.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient receptor potential canonical-1 (TRPC1) functions as a store-operated Ca2+ channel in intestinal epithelial cells (IECs), and induced TRPC1 expression sensitizes IECs to apoptosis by inhibiting NF-kappaB activation. However, the exact mechanism by which increased TRPC1 results in NF-kappaB inactivation remains elusive. Protein phosphatase 2A (PP2A) is a widely conserved protein serine/threonine phosphatase that is implicated in the regulation of a wide array of cellular functions including apoptosis. The present study tests the hypothesis that induced TRPC1 expression inhibits NF-kappaB activation by increasing PP2A activity through Ca2+ influx in IECs. The expression of TRPC1 induced by stable transfection with the wild-type TRPC1 gene increased PP2A activity as indicated by increases in levels of PP2A proteins and their phosphatase activity. Increased levels of PP2A activity in stable TRPC1-transfected IEC-6 cells (IEC-TRPC1) were associated with decreased nuclear levels of NF-kappaB proteins and a reduction in NF-kappaB-dependent transcriptional activity, although there were no changes in total NF-kappaB protein levels. Inhibition of PP2A activity by treatment with okadaic acid or PP2A silencing with small interfering RNA not only enhanced NF-kappaB transactivation but also prevented the increased susceptibility of IEC-TRPC1 cells to apoptosis induced by treatment with tumor necrosis factor-alpha (TNF-alpha)/cycloheximide (CHX). Decreasing Ca2+ influx by exposure to the Ca2+-free medium reduced PP2A mRNA levels, destabilized PP2A proteins, and induced NF-kappaB activation, thus blocking the increased sensitivity of IEC-TRPC1 cells to TNF-alpha/CHX-induced apoptosis. These results indicate that induced TRPC1 expression increases PP2A activity through Ca2+ influx and that increased PP2A sensitizes IECs to apoptosis as a result of NF-kappaB inactivation.
Collapse
Affiliation(s)
- Bernard S Marasa
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|