1
|
Zhang H, Li X, Hui Z, Huang S, Cai M, Shi W, Lin Y, Shen J, Sui M, Lai Q, Shao Z, Dou J, Luo X, Ge Y, Tang X. A Semisynthesis Platform for the Efficient Production and Exploration of Didemnin-Based Drugs. Angew Chem Int Ed Engl 2024; 63:e202318784. [PMID: 38291557 DOI: 10.1002/anie.202318784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Plitidepsin (or dehydrodidemnin B), an approved anticancer drug, belongs to the didemnin family of cyclic depsipeptides, which are found in limited quantities in marine tunicate extracts. Herein, we introduce a new approach that integrates microbial and chemical synthesis to generate plitidepsin and its analogues. We screened a Tistrella strain library to identify a potent didemnin B producer, and then introduced a second copy of the didemnin biosynthetic gene cluster into its genome, resulting in a didemnin B titer of approximately 75 mg/L. Next, we developed two straightforward chemical strategies to convert didemnin B into plitidepsin, one of which involved a one-step synthetic route giving over 90 % overall yield. Furthermore, we synthesized 13 new didemnin derivatives and three didemnin probes, enabling research into structure-activity relationships and interactions between didemnin and proteins. Our study highlights the synergistic potential of biosynthesis and chemical synthesis in overcoming the challenge of producing complex natural products sustainably and at scale.
Collapse
Affiliation(s)
- Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Xuyang Li
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Zhen Hui
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Shipeng Huang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518000, Shenzhen, China
| | - Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Wenguang Shi
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Yang Lin
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Jie Shen
- College of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Minghao Sui
- College of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, 361005, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, 361005, Xiamen, China
| | - Jie Dou
- College of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Yun Ge
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| |
Collapse
|
2
|
Vergoten G, Bailly C. Binding of hydroxychloroquine and chloroquine dimers to palmitoyl-protein thioesterase 1 (PPT1) and its glycosylated forms: a computational approach. J Biomol Struct Dyn 2021; 40:8197-8205. [PMID: 33876698 DOI: 10.1080/07391102.2021.1908167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1) removes thioester-linked fatty acid groups from membrane-bound proteins to facilitate their proteolysis. A lack of PPT1 (due to gene mutations) causes the progressive death of cortical neurons and is responsible for infantile neural ceroid lipofuscinosis (INCL), a severe neurodegenerative disorder in children. Conversely, PPT1 is often over-expressed in cancer, and considered as a valid target to control tumor growth. Potent and selective inhibitors of PPT1 have been designed, in particular 4-amino-7-chloro-quinoline derivatives such as hydroxychloroquine (HCQ) and the dimeric analogues Lys05 and DC661. We have modeled the interaction of these three compounds with the enzyme, taking advantage of the PPT1 crystallographic structure. The molecules can fit into the palmitate site of the protein, with the dimeric compounds forming more stable complexes than the monomer. But the molecular modeling suggests that the most favorable binding sites are located outside the active site. Two sites centered on residues Met112 and Gln144 were identified, offering suitable cavities for drug binding. According to the calculated empirical energies of interaction (ΔE), the dimer DC661 forms the most stable complex at site Met112 of palmitate-bound PPT1. N-glycosylated forms of PPT1 were elaborated. Paucimannosidic glycans (M2FA and M3F) and a bulkier tetra-antennary complex glycan were introduced at asparagine residues N197, N212 and N232. These N-glycans do not impede drug binding, thus suggesting that all glycoforms of PPT1 can be targeted with these compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gérard Vergoten
- Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, Lille, France
| | | |
Collapse
|
3
|
Palanisamy SK, Rajendran NM, Marino A. Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:1-111. [PMID: 28097641 PMCID: PMC5315671 DOI: 10.1007/s13659-016-0115-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
This present study reviewed the chemical diversity of marine ascidians and their pharmacological applications, challenges and recent developments in marine drug discovery reported during 1994-2014, highlighting the structural activity of compounds produced by these specimens. Till date only 5% of living ascidian species were studied from <3000 species, this study represented from family didemnidae (32%), polyclinidae (22%), styelidae and polycitoridae (11-12%) exhibiting the highest number of promising MNPs. Close to 580 compound structures are here discussed in terms of their occurrence, structural type and reported biological activity. Anti-cancer drugs are the main area of interest in the screening of MNPs from ascidians (64%), followed by anti-malarial (6%) and remaining others. FDA approved ascidian compounds mechanism of action along with other compounds status of clinical trials (phase 1 to phase 3) are discussed here in. This review highlights recent developments in the area of natural products chemistry and biotechnological approaches are emphasized.
Collapse
Affiliation(s)
- Satheesh Kumar Palanisamy
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166, Messina, Italy.
| | - N M Rajendran
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166, Messina, Italy
| |
Collapse
|
4
|
Piggott AM, Karuso P. Identifying the cellular targets of natural products using T7 phage display. Nat Prod Rep 2016; 33:626-36. [DOI: 10.1039/c5np00128e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A description of the T7 phage biopanning procedure is provided with tips and advice suitable for setup in a chemistry laboratory.
Collapse
Affiliation(s)
- Andrew M. Piggott
- Department of Chemistry and Biomolecular Sciences
- Macquarie University
- Sydney
- Australia
| | - Peter Karuso
- Department of Chemistry and Biomolecular Sciences
- Macquarie University
- Sydney
- Australia
| |
Collapse
|
5
|
Carelli JD, Sethofer SG, Smith GA, Miller HR, Simard JL, Merrick WC, Jain RK, Ross NT, Taunton J. Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1A ternary complex. eLife 2015; 4. [PMID: 26651998 PMCID: PMC4786417 DOI: 10.7554/elife.10222] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/26/2015] [Indexed: 01/09/2023] Open
Abstract
Cyclic peptide natural products have evolved to exploit diverse protein targets, many of which control essential cellular processes. Inspired by a series of cyclic peptides with partially elucidated structures, we designed synthetic variants of ternatin, a cytotoxic and anti-adipogenic natural product whose molecular mode of action was unknown. The new ternatin variants are cytotoxic toward cancer cells, with up to 500-fold greater potency than ternatin itself. Using a ternatin photo-affinity probe, we identify the translation elongation factor-1A ternary complex (eEF1A·GTP·aminoacyl-tRNA) as a specific target and demonstrate competitive binding by the unrelated natural products, didemnin and cytotrienin. Mutations in domain III of eEF1A prevent ternatin binding and confer resistance to its cytotoxic effects, implicating the adjacent hydrophobic surface as a functional hot spot for eEF1A modulation. We conclude that the eukaryotic elongation factor-1A and its ternary complex with GTP and aminoacyl-tRNA are common targets for the evolution of cytotoxic natural products. DOI:http://dx.doi.org/10.7554/eLife.10222.001 Many plants, fungi, and bacteria have evolved to produce small molecules that have powerful effects on the cells of other living organisms, and can even kill them. These naturally produced compounds are often used as starting points for developing new drugs. One such class of compounds are the cyclic peptides, which can be relatively easily produced in the laboratory and are able to penetrate cells. Some cyclic peptides have also proved to be useful for treating cancer and immune diseases, so researchers are keen to identify others that have similar effects. One promising prospect, called ternatin, is produced by several species of fungi. In high doses, ternatin can kill mammalian cells, but it was not clear how it does so. To learn more, Carelli et al. searched a chemical database for cyclic peptides related to ternatin and identified several similar compounds that were reported to kill cancer cells. Inspired by the structures of these cyclic peptides, Carelli et al. synthesized modified versions of ternatin. One of these was 500 times more potent than ternatin, which means a much lower dose of the compound is still able to kill cancer cells. Further experiments showed that ternatin blocks the production of new proteins in cells. Specifically, ternatin binds to a complex that includes a protein called elongation factor-1A (eEF1A). Mutations in a particular region of eEF1A prevent ternatin from killing cells, suggesting a potential binding site for ternatin. The next challenge is to dissect the mechanism by which compounds binding to this site on eEF1A block protein synthesis and kill cells. A related challenge is to understand why certain cancer cells are hypersensitive to ternatin and other eEF1A inhibitors, while other cancer cells are relatively resistant. These questions are relevant to the development of eEF1A inhibitors as cancer treatments. DOI:http://dx.doi.org/10.7554/eLife.10222.002
Collapse
Affiliation(s)
- Jordan D Carelli
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Steven G Sethofer
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Geoffrey A Smith
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Howard R Miller
- Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Jillian L Simard
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - William C Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Rishi K Jain
- Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Nathan T Ross
- Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
6
|
Potts MB, McMillan EA, Rosales TI, Kim HS, Ou YH, Toombs JE, Brekken RA, Minden MD, MacMillan JB, White MA. Mode of action and pharmacogenomic biomarkers for exceptional responders to didemnin B. Nat Chem Biol 2015; 11:401-8. [PMID: 25867045 PMCID: PMC4433765 DOI: 10.1038/nchembio.1797] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022]
Abstract
Modern cancer treatment employs many effective chemotherapeutic agents originally discovered from natural sources. The cyclic depsipeptide didemnin B has demonstrated impressive anticancer activity in preclinical models. Clinical use has been approved but is limited by sparse patient responses combined with toxicity risk and an unclear mechanism of action. From a broad-scale effort to match antineoplastic natural products to their cellular activities, we found that didemnin B selectively induces rapid and wholesale apoptosis through dual inhibition of PPT1 and EEF1A1. Furthermore, empirical discovery of a small panel of exceptional responders to didemnin B allowed the generation of a regularized regression model to extract a sparse-feature genetic biomarker capable of predicting sensitivity to didemnin B. This may facilitate patient selection in a fashion that could enhance and expand the therapeutic application of didemnin B against neoplastic disease.
Collapse
Affiliation(s)
- Malia B. Potts
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Elizabeth A. McMillan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tracy I. Rosales
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hyun Seok Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yi-Hung Ou
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jason E. Toombs
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rolf A. Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mark D. Minden
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Ontario Cancer Institute and Princess Margaret Hospital, University Health Network, Toronto, Ontario M5T 2M9, Canada
| | - John B. MacMillan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Michael A. White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
7
|
Methot SP, Litzler LC, Trajtenberg F, Zahn A, Robert F, Pelletier J, Buschiazzo A, Magor BG, Di Noia JM. Consecutive interactions with HSP90 and eEF1A underlie a functional maturation and storage pathway of AID in the cytoplasm. ACTA ACUST UNITED AC 2015; 212:581-96. [PMID: 25824822 PMCID: PMC4387293 DOI: 10.1084/jem.20141157] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 03/03/2015] [Indexed: 11/13/2022]
Abstract
Methot et al. identify a mechanism for cytoplasmic retention of activation-induced deaminase (AID) in cells. Interactions of AID with Hsp90 and eEF1A proteins, both of which stabilize AID, promote sequential folding and retention of functional AID in the cytoplasm. Inhibition of the translation elongation factor eEF1A blocks its interaction with AID, which then accumulates in the nucleus, increasing class switch recombination and the generation of chromosomal translocation byproducts. Activation-induced deaminase (AID) initiates mutagenic pathways to diversify the antibody genes during immune responses. The access of AID to the nucleus is limited by CRM1-mediated nuclear export and by an uncharacterized mechanism of cytoplasmic retention. Here, we define a conformational motif in AID that dictates its cytoplasmic retention and demonstrate that the translation elongation factor eukaryotic elongation factor 1 α (eEF1A) is necessary for AID cytoplasmic sequestering. The mechanism is independent of protein synthesis but dependent on a tRNA-free form of eEF1A. Inhibiting eEF1A prevents the interaction with AID, which accumulates in the nucleus and increases class switch recombination as well as chromosomal translocation byproducts. Most AID is associated to unspecified cytoplasmic complexes. We find that the interactions of AID with eEF1A and heat-shock protein 90 kD (HSP90) are inversely correlated. Despite both interactions stabilizing AID, the nature of the AID fractions associated with HSP90 or eEF1A are different, defining two complexes that sequentially produce and store functional AID in the cytoplasm. In addition, nuclear export and cytoplasmic retention cooperate to exclude AID from the nucleus but might not be functionally equivalent. Our results elucidate the molecular basis of AID cytoplasmic retention, define its functional relevance and distinguish it from other mechanisms regulating AID.
Collapse
Affiliation(s)
- Stephen P Methot
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada Department of Medicine, Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Center, and Department of Oncology, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Ludivine C Litzler
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada Department of Biochemistry and Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Felipe Trajtenberg
- Unit of Protein Crystallography, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Francis Robert
- Department of Medicine, Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Center, and Department of Oncology, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Jerry Pelletier
- Department of Medicine, Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Center, and Department of Oncology, McGill University, Montréal, Québec H3A 0G4, Canada Department of Medicine, Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Center, and Department of Oncology, McGill University, Montréal, Québec H3A 0G4, Canada Department of Medicine, Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Center, and Department of Oncology, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Alejandro Buschiazzo
- Unit of Protein Crystallography, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay Department of Structural Biology and Chemistry, Institut Pasteur, 75015 Paris, France
| | - Brad G Magor
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada Department of Medicine, Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Center, and Department of Oncology, McGill University, Montréal, Québec H3A 0G4, Canada Department of Biochemistry and Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada Department of Biochemistry and Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
8
|
Maharani R, Sleebs BE, Hughes AB. Macrocyclic N-Methylated Cyclic Peptides and Depsipeptides. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2015. [DOI: 10.1016/b978-0-444-63460-3.00004-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Lee J, Currano JN, Carroll PJ, Joullié MM. Didemnins, tamandarins and related natural products. Nat Prod Rep 2012; 29:404-24. [PMID: 22270031 DOI: 10.1039/c2np00065b] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the discovery and isolation of the didemnin family of marine depsipeptides in 1981, the synthesis and biological activity of its congeners have been of great interest to the scientific community. The didemnins have demonstrated antitumor, antiviral, and immunosuppressive activity at low nano- and femtomolar levels. Of the congeners, didemnin B was the first marine natural product to reach phase II clinical trials in the United States, stimulating many analogue syntheses to date. About two decades later, tamandarins A and B were isolated, and were found to possess very similar structure and biological activity to that of the didemnin B. These compounds have shown impressive biological activity and some progress has been made in establishing structure-activity relationships. However, their molecular mechanism of action still remains unclear. This review highlights the long-standing study of didemnins and its critical application towards the understanding of the molecular mechanism of action of tamandarins and their potential use as therapeutic agents.
Collapse
Affiliation(s)
- Jisun Lee
- University of Pennsylvania, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | | | | |
Collapse
|
10
|
Lassen KM, Joullié MM. Total synthesis of Lys(3) tamandarin M: a potential affinity ligand. Org Lett 2010; 12:5306-9. [PMID: 21033723 DOI: 10.1021/ol1024212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of Lys(3) tamandarin M is described. This analogue can be used as a protein affinity ligand to probe the mechanism of action of this unique class of molecules.
Collapse
Affiliation(s)
- Kenneth M Lassen
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
11
|
Cheng KW, Wong CC, Wang M, He QY, Chen F. Identification and characterization of molecular targets of natural products by mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:126-155. [PMID: 19319922 DOI: 10.1002/mas.20235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Natural products, and their derivatives and mimics, have contributed to the development of important therapeutics to combat diseases such as infections and cancers over the past decades. The value of natural products to modern drug discovery is still considerable. However, its development is hampered by a lack of a mechanistic understanding of their molecular action, as opposed to the emerging molecule-targeted therapeutics that are tailored to a specific protein target(s). Recent advances in the mass spectrometry-based proteomic approaches have the potential to offer unprecedented insights into the molecular action of natural products. Chemical proteomics is established as an invaluable tool for the identification of protein targets of natural products. Small-molecule affinity selection combined with mass spectrometry is a successful strategy to "fish" cellular targets from the entire proteome. Mass spectrometry-based profiling of protein expression is also routinely employed to elucidate molecular pathways involved in the therapeutic and possible toxicological responses upon treatment with natural products. In addition, mass spectrometry is increasingly utilized to probe structural aspects of natural products-protein interactions. Limited proteolysis, photoaffinity labeling, and hydrogen/deuterium exchange in conjunction with mass spectrometry are sensitive and high-throughput strategies that provide low-resolution structural information of non-covalent natural product-protein complexes. In this review, we provide an overview on the applications of mass spectrometry-based techniques in the identification and characterization of natural product-protein interactions, and we describe how these applications might revolutionize natural product-based drug discovery.
Collapse
Affiliation(s)
- Ka-Wing Cheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
12
|
Piggott AM, Kriegel AM, Willows RD, Karuso P. Rapid isolation of novel FK506 binding proteins from multiple organisms using gDNA and cDNA T7 phage display. Bioorg Med Chem 2009; 17:6841-50. [DOI: 10.1016/j.bmc.2009.08.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/14/2009] [Accepted: 08/16/2009] [Indexed: 01/27/2023]
|
13
|
Abstract
Drug discovery from marine natural products has enjoyed a renaissance in the past few years. Ziconotide (Prialt; Elan Pharmaceuticals), a peptide originally discovered in a tropical cone snail, was the first marine-derived compound to be approved in the United States in December 2004 for the treatment of pain. Then, in October 2007, trabectedin (Yondelis; PharmaMar) became the first marine anticancer drug to be approved in the European Union. Here, we review the history of drug discovery from marine natural products, and by describing selected examples, we examine the factors that contribute to new discoveries and the difficulties associated with translating marine-derived compounds into clinical trials. Providing an outlook into the future, we also examine the advances that may further expand the promise of drugs from the sea.
Collapse
|
14
|
Piggott AM, Karuso P. Rapid Identification of a Protein Binding Partner for the Marine Natural Product Kahalalide F by Using Reverse Chemical Proteomics. Chembiochem 2008; 9:524-30. [DOI: 10.1002/cbic.200700608] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Maroun JA, Belanger K, Seymour L, Matthews S, Roach J, Dionne J, Soulieres D, Stewart D, Goel R, Charpentier D, Goss G, Tomiak E, Yau J, Jimeno J, Chiritescu G. Phase I study of Aplidine in a dailyx5 one-hour infusion every 3 weeks in patients with solid tumors refractory to standard therapy. A National Cancer Institute of Canada Clinical Trials Group study: NCIC CTG IND 115. Ann Oncol 2007; 17:1371-8. [PMID: 16966366 DOI: 10.1093/annonc/mdl165] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Aplidine is a cyclic depsipeptide isolated from the marine tunicate Aplidium albicans. METHODS This phase I study of Aplidine given as a 1-hour i.v. infusion daily for 5 days every 3 weeks was conducted in patients with refractory solid tumors. Objectives were to define the dose limiting toxicities, the maximal tolerated dose, and the recommended phase II dose. RESULTS Thirty-seven patients were accrued on study. Doses ranged from 80 microg/m(2) to 1500 microg/m(2)/day. Eleven patients received more than three cycles of Aplidine. Dose-limiting toxicities occurred at 1500 microg/m(2) and 1350 microg/m(2)/day and consisted of nausea, vomiting, myalgia, fatigue, skin rash and diarrhea. Mild to moderate muscular pain and weakness was noted in patients treated with multiple cycles with no significant drug related neurotoxicity. Bone marrow toxicity was not observed. The recommended dose for phase II studies was 1200 microg/m(2) daily for 5 days, every 3 weeks. Pharmacokinetic studies performed during the first cycle demonstrated that therapeutic plasma levels of Aplidine are reachable well below the recommended dose. Nine patients with progressive disease at study entry had stable disease and two had minor responses, one in non-small cell lung cancer and one in colorectal cancer. CONCLUSIONS Aplidine given at a dose of 1200 microg/m(2) daily for 5 days, every 3 weeks is well tolerated with few severe adverse events. This schedule of Aplidine is under evaluation in phase II studies in hematological malignancies and solid tumors.
Collapse
Affiliation(s)
- J A Maroun
- The Ottawa Hospital Regional Cancer Centre, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Faivre S, Raymond E. Management of neuromuscular dose limiting toxicity at the early stage of drug development. Ann Oncol 2006; 17:1343-6. [PMID: 16966365 DOI: 10.1093/annonc/mdl325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Alexander MD, Burkart MD, Leonard MS, Portonovo P, Liang B, Ding X, Joullié MM, Gulledge BM, Aggen JB, Chamberlin AR, Sandler J, Fenical W, Cui J, Gharpure SJ, Polosukhin A, Zhang HR, Evans PA, Richardson AD, Harper MK, Ireland CM, Vong BG, Brady TP, Theodorakis EA, La Clair JJ. A central strategy for converting natural products into fluorescent probes. Chembiochem 2006; 7:409-16. [PMID: 16432909 DOI: 10.1002/cbic.200500466] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Matthew D Alexander
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Faivre S, Chièze S, Delbaldo C, Ady-Vago N, Guzman C, Lopez-Lazaro L, Lozahic S, Jimeno J, Pico F, Armand JP, Martin JAL, Raymond E. Phase I and Pharmacokinetic Study of Aplidine, a New Marine Cyclodepsipeptide in Patients With Advanced Malignancies. J Clin Oncol 2005; 23:7871-80. [PMID: 16172454 DOI: 10.1200/jco.2005.09.357] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PurposeTo establish the safety, pharmacokinetic parameters, maximum-tolerated dose, and recommended dose of aplidine, a novel marine cyclodepsipeptide, in patients with advanced cancer.Patients and MethodsUsing a modified Fibonacci method, we performed a phase I and pharmacokinetic study of aplidine administered as a 24-hour intravenous infusion every 2 weeks.ResultsSixty-seven patients received aplidine at a dose ranging from 0.2 to 8 mg/m2. Dose-limiting myotoxicity corresponding to grade 2 to 3 creatine phosphokinase elevation and grade 1 to 2 myalgia and muscle weakness occurred in two of six patients at 6 mg/m2. No cardiac toxicity was observed. Electron microscopy analysis showed the disappearance of thick filaments of myosin. Grade 3 muscle toxicity occurred in three of 14 patients at the recommended dose of 5 mg/m2and seemed to be more readily reversible with oral carnitine (1 g/10 kg). Therefore, dose escalation was resumed using carnitine prophylactically, allowing an increase in the recommended dose to 7 mg/m2. Other toxicities were nausea and vomiting, diarrhea, asthenia, and transaminase elevation with mild hematologic toxicity. Aplidine displayed a long half-life (21 to 44 hours), low clearance (45 to 49 L/h), and a high volume of distribution (1,036 to 1,124 L) with high interpatient variability in plasma, whereas in whole blood, clearance ranged from 3.0 to 6.2 L/h. Minor responses and prolonged tumor stabilizations were observed in patients with medullary thyroid carcinoma.ConclusionMuscle toxicity was dose limiting in this study. Recommended doses of aplidine were 5 and 7 mg/m2without and with carnitine, respectively. The role of carnitine will be further explored in phase II studies.
Collapse
Affiliation(s)
- Sandrine Faivre
- Department of Medicine, Institute Gustave-Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Losada A, López-Oliva JM, Sánchez-Puelles JM, García-Fernández LF. Establishment and characterisation of a human carcinoma cell line with acquired resistance to Aplidin. Br J Cancer 2004; 91:1405-13. [PMID: 15365569 PMCID: PMC2409906 DOI: 10.1038/sj.bjc.6602166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Aplidin (APL) is a new antitumoral drug from marine origin currently in phase II clinical trials against a wide multiplicity of cancers. As resistance may be, as with other drugs, an important obstacle to the APL therapeutic efficacy, we have established an acquired resistance cellular model by continuous exposure of HeLa cells to the drug. The stably resistant subline generated (HeLa-APL), possessing more than 1000-fold relative resistance to APL than parental cells, did not show crossresistance to a subset of clinically relevant antitumoral agents. In addition, resistance was not related to overexpression of P-glycoprotein or differences in overall drug accumulation. Comparing to parental cells, HeLa-APL cells did not present either significant differences in the growth rate or apparent alterations in the cell cycle distribution. Aplidin induced rapid and persistent phosphorylation of both JNK and p38 MAPKs, resulting in activation of the mitochondrial apoptotic pathway in parental cells, but, notably, in HeLa-APL-resistant cells MAPKs activation only occurred in a slight and transiently manner, failing to activate the above-mentioned apoptotic machinery. These results suggest that sustained activation of JNK and p38 is essential for triggering the apoptotic programme induced by APL and that HeLa-APL cells bypass this apoptotic response by preventing the specific mechanisms that prime and sustain the long-term activation of these signalling cascades. Although far from human tumour physiology in vivo, HeLa-APL cells represent a potentially useful tool in gaining insights into the mode of action of APL, in selecting non-crossresistant APL structural analogues, as well as in investigating and developing methods to prevent resistance to this drug.
Collapse
Affiliation(s)
- A Losada
- Drug Discovery Department, PharmaMar, S.A., E-28770-Colmenar Viejo, Madrid, Spain
| | - J M López-Oliva
- Drug Discovery Department, PharmaMar, S.A., E-28770-Colmenar Viejo, Madrid, Spain
| | - J M Sánchez-Puelles
- Drug Discovery Department, PharmaMar, S.A., E-28770-Colmenar Viejo, Madrid, Spain
| | - L F García-Fernández
- Drug Discovery Department, PharmaMar, S.A., E-28770-Colmenar Viejo, Madrid, Spain
- PharmaMar, S.A.U. Drug Discovery Department, Avda. de los Reyes 1, P.I. La Mina-Norte, E-28770-Colmenar Viejo, Madrid, Spain. E-mail:
| |
Collapse
|
20
|
Marco E, Martín-Santamaría S, Cuevas C, Gago F. Structural basis for the binding of didemnins to human elongation factor eEF1A and rationale for the potent antitumor activity of these marine natural products. J Med Chem 2004; 47:4439-52. [PMID: 15317456 DOI: 10.1021/jm0306428] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Didemnins and tamandarins are closely related marine natural products with potent inhibitory effects on protein synthesis and cell viability. On the basis of available biochemical and structural evidence and results from molecular dynamics simulations, a model is proposed that accounts for the strong and selective binding of these compounds to human elongation factor eEF1A in the presence of GTP. We suggest that the p-methoxyphenyl ring of these cyclic depsipeptides is inserted into the same pocket in eEF1A that normally lodges either the 3' terminal adenine of aminoacylated tRNA, as inferred from two prokaryotic EF-Tu.GTP.tRNA complexes, or the aromatic side chain of Phe/Tyr-163 from the nucleotide exchange factor eEF1Balpha, as observed in several X-ray crystal structures of a yeast eEF1A:eEF1Balpha complex. This pocket, which has a strong hydrophobic character, is formed by two protruding loops on the surface of eEF1A domain 2. Further stabilization of the bound depsipeptide is brought about by additional crucial interactions involving eEF1A domain 1 in such a way that the molecule fits snugly at the interface between these two domains. In the GDP-bound form of eEF1A, this binding site exists only as two separate halves, which accounts for the much greater affinity of didemnins for the GTP-bound form of this elongation factor. This binding mode is entirely different from those seen in the complexes of the homologous prokaryotic EF-Tu with kirromycin-type antibiotics or the cyclic thiazolyl peptide antibiotic GE2270A. Interestingly, the set of interactions used by didemnins to bind to eEF1A is also distinct from that used by eEF1Balpha or eEF1Bbeta, thus establishing a competition for binding to a common site that goes beyond simple molecular mimicry. The model presented here is consistent with both available biochemical evidence and known structure-activity relationships for these two classes of natural compounds and synthetic analogues and provides fertile ground for future research.
Collapse
Affiliation(s)
- Esther Marco
- Departamento de Farmacología, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Taraboletti G, Poli M, Dossi R, Manenti L, Borsotti P, Faircloth GT, Broggini M, D'Incalci M, Ribatti D, Giavazzi R. Antiangiogenic activity of aplidine, a new agent of marine origin. Br J Cancer 2004; 90:2418-24. [PMID: 15173857 PMCID: PMC2409535 DOI: 10.1038/sj.bjc.6601864] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The antineoplastic compound aplidine, a new marine-derived depsipeptide, has shown preclinical activity in vitro on haematological and solid tumour cell lines. It is currently in early phase clinical trials. The exact mechanism of action of this anticancer agent still needs to be clarified. We have previously reported that aplidine blocks the secretion of the angiogenic factor vascular endothelial growth factor (VEGF) by the human leukaemia cells MOLT-4, suggesting a possible effect on tumour angiogenesis. This study was designed to investigate the antiangiogenic effect of aplidine. In vivo, in the chick embryo allantoic membrane (CAM) assay, aplidine inhibited spontaneous angiogenesis, angiogenesis elicited by exogenous VEGF and FGF-2, and induced by VEGF overexpressing 1A9 ovarian carcinoma cells. In vitro, at concentrations achievable in the plasma of patients, aplidine inhibited endothelial cell functions related to angiogenesis. It affected VEGF- and FGF-2-induced endothelial cell proliferation, inhibited cell migration and invasiveness assessed in the Boyden chamber and blocked the production of matrix metalloproteinases (MMP-2 and MMP-9) by endothelial cells. Finally, aplidine prevented the formation of capillary-like structures by endothelial cells on Matrigel. These findings indicate that aplidine has antiangiogenic activity in vivo and inhibits endothelial cell functional responses to angiogenic stimuli in vitro. This effect might contribute to the antineoplastic activity of aplidine.
Collapse
Affiliation(s)
- G Taraboletti
- Department of Oncology, Mario Negri Institute, Bergamo 24125, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bresters D, Broekhuizen AJF, Kaaijk P, Faircloth GT, Jimeno J, Kaspers GJL. In vitro cytotoxicity of aplidin and crossresistance with other cytotoxic drugs in childhood leukemic and normal bone marrow and blood samples: a rational basis for clinical development. Leukemia 2003; 17:1338-43. [PMID: 12835722 DOI: 10.1038/sj.leu.2402972] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To determine the potential of aplidin as a cytotoxic agent in pediatric leukemia, we tested bone marrow (BM) and peripheral blood (PB) samples (n=72) of children with different types of leukemia and healthy children in the methyl-thiazol-tetrazolium assay. Also, we compared these results with other cytotoxic drugs. Aplidin was cytotoxic in vitro at nanomolar concentrations, in a dose-dependent fashion. L-carnitine, that is applied in clinical studies to prevent myotoxicity caused by aplidin, had no effect on aplidin cytotoxicity in vitro. Aplidin cytotoxicity in vitro was not different when initial and relapsed acute lymphoblastic leukemia (ALL) or initial ALL and initial acute myeloid leukemia were compared. However, normal BM (n=19) and PB (n=13) cells were more resistant to aplidin than leukemic cells (median two- to seven-fold, P=0.001 and median four- to 11-fold, P&<0.0001, respectively). In leukemia samples, no significant crossresistance between aplidin and other cytotoxic drugs was found, except for a trend for correlation with 2',2'-difluorodeoxycytidine (rho=0.71, P=0.02). In normal BM samples, significant crossresistance with the epipodophyllotoxins was found, which is not readily explained by the currently known mechanisms of action of aplidin. In conclusion, we show that aplidin has selective cytotoxicity in vitro towards childhood leukemia cells and generally lacks crossresistance with other known cytotoxic drugs, which warrants clinical studies.
Collapse
Affiliation(s)
- D Bresters
- Department of Pediatric Hematology/Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
García-Fernández LF, Losada A, Alcaide V, Alvarez AM, Cuadrado A, González L, Nakayama K, Nakayama KI, Fernández-Sousa JM, Muñoz A, Sánchez-Puelles JM. Aplidin induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C delta. Oncogene 2002; 21:7533-44. [PMID: 12386816 DOI: 10.1038/sj.onc.1205972] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2002] [Revised: 08/12/2002] [Accepted: 08/13/2002] [Indexed: 11/09/2022]
Abstract
Aplidin, a new antitumoural drug presently in phase II clinical trials, has shown both in vitro and in vivo activity against human cancer cells. Aplidin effectively inhibits cell viability by triggering a canonical apoptotic program resulting in alterations in cell morphology, caspase activation, and chromatin fragmentation. Pro-apoptotic concentrations of Aplidin induce early oxidative stress, which results in a rapid and persistent activation of both JNK and p38 MAPK and a biphasic activation of ERK. Inhibition of JNK and p38 MAPK blocks the apoptotic program induced by Aplidin demonstrating its central role in the integration of the cellular stress induced by the drug. JNK and p38 MAPK activation results in downstream cytochrome c release and activation of caspases -9 and -3 and PARP cleavage, demonstrating the mediation of the mitochondrial apoptotic pathway in this process. We also demonstrate that protein kinase C delta (PKC-delta) mediates the cytotoxic effect of Aplidin and that it is concomitantly processed and activated late in the apoptotic process by a caspase mediated mechanism. Remarkably, cells deficient in PKC-delta show enhanced survival upon drug treatment as compared to its wild type counterpart. PKC-delta thus appears as an important component necessary for full caspase cascade activation and execution of apoptosis, which most probably initiates a positive feedback loop further amplifying the apoptotic process.
Collapse
|
24
|
McPherson M, Yang Y, Hammond PW, Kreider BL. Drug receptor identification from multiple tissues using cellular-derived mRNA display libraries. CHEMISTRY & BIOLOGY 2002; 9:691-8. [PMID: 12079780 DOI: 10.1016/s1074-5521(02)00148-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of display technologies to identify small molecule receptors from proteome libraries would provide a significant advantage in drug discovery. We have used mRNA display to select, based on affinity, proteins that bind to a drug of interest. A library of mRNA-protein fusion molecules was constructed from human liver, kidney, and bone marrow transcripts and selected using an immobilized FK506-biotin conjugate. Three rounds of selection produced full-length FKBP12 (FK506 binding protein 12 kDa) as the dominant clone. An analogous method was also used to map the minimal drug binding domain within FKBP12. Using this approach, it is anticipated that mRNA display could eventually play a key role in the discovery and characterization of new drug receptor interactions.
Collapse
|
25
|
Vera MD, Joullié MM. Natural products as probes of cell biology: 20 years of didemnin research. Med Res Rev 2002; 22:102-45. [PMID: 11857636 DOI: 10.1002/med.10003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The discovery of the didemnin family of marine depsipeptides launched an exciting and intriguing chapter in natural product chemistry. The unusual structure of the didemnin congeners has led to several total syntheses by research groups from around the world. The impressive in vitro and in vivo biological activities of the didemnins resulted in the first human clinical trials in the U.S. of a marine natural product against cancer, and additional clinical trials of a second-generation didemnin, dehydrodidemnin B (aplidine), are underway. As we mark the 20-year anniversary of the discovery of the didemnins, this class of natural products continues to stimulate active research in fields ranging from synthetic and medicinal chemistry to clinical oncology and cell biology. While some progress was made in dissecting the molecular mechanism of action and in establishing structure-activity relationships, there are still more questions than answers. This review covers the recent didemnin literature, highlighting the work directed towards understanding how this group of natural products interact with fundamental processes such as cell proliferation, protein biosynthesis, and apoptosis. The didemnin field illustrates how natural product chemistry may be used as a critical tool for the study of cell biology.
Collapse
Affiliation(s)
- Matthew D Vera
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | |
Collapse
|
26
|
Vera MD, Pfizenmayer AJ, Ding X, Ahuja D, Toogood PL, Joullié MM. Synthesis and biological evaluation of didemnin photoaffinity analogues. Bioorg Med Chem Lett 2001; 11:1871-4. [PMID: 11459650 DOI: 10.1016/s0960-894x(01)00339-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The synthesis of four benzophenone-containing analogues of the antiproliferative natural product didemnin B is presented. In vitro protein biosynthesis inhibition potency and antitumor activity were evaluated. The results indicate that all four analogues are biologically active and could serve as photoaffinity reagents for the study of receptor-binding interactions of didemnins. These analogues could also be useful in studying antitumor effects of didemnins.
Collapse
Affiliation(s)
- M D Vera
- Department of Chemistry, University of Pennsylvania, 19104-6323, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
27
|
Grubb DR, Ly JD, Vaillant F, Johnson KL, Lawen A. Mitochondrial cytochrome c release is caspase-dependent and does not involve mitochondrial permeability transition in didemnin B-induced apoptosis. Oncogene 2001; 20:4085-94. [PMID: 11494136 DOI: 10.1038/sj.onc.1204545] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2001] [Revised: 04/11/2001] [Accepted: 04/11/2001] [Indexed: 11/08/2022]
Abstract
Permeability transition, and a subsequent drop in mitochondrial membrane potential (DeltaPsi(m)), have been suggested to be mechanisms by which cytochrome c is released from the mitochondria into the cytosol during apoptosis. Furthermore, a drop in DeltaPsi(m) has been suggested to be an obligate early step in the apoptotic pathway. Didemnin B, a branched cyclic peptolide described to have immunosuppressive, anti-tumour, and anti-viral properties, induces rapid apoptosis in a range of mammalian cell lines. Induction of apoptosis by didemnin B in cultured human pro-myeloid HL-60 cells is the fastest and most complete ever described with all cells being apoptotic after 3 h of treatment. By utilizing the system of didemnin B-induced apoptosis in HL-60 cells, and the potent inhibitors of mitochondrial permeability transition, cyclosporin A and bongkrekic acid, we show that permeability transition as determined by changes in DeltaPsi(m) and mitochondrial Ca2+ fluxing, is not a requirement for apoptosis or cytochrome c release. In this system, changes in mitochondrial membrane potential and cytochrome c release are shown to be dependent on caspase activation, and to occur concurrently with the release of caspase-9 from mitochondria, genomic DNA fragmentation and apoptotic body formation.
Collapse
Affiliation(s)
- D R Grubb
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Australia, 3800
| | | | | | | | | |
Collapse
|
28
|
Liang B, Richard DJ, Portonovo PS, Joullié MM. Total syntheses and biological investigations of tamandarins A and B and tamandarin A analogs. J Am Chem Soc 2001; 123:4469-74. [PMID: 11457232 DOI: 10.1021/ja010222c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tamandarins A (1) and B (2), two natural products similar in structure to didemnin B (3), were recently isolated from a Brazilian marine ascidian of the family Didemnidae. The cytotoxicity of 1 was reported to be somewhat more potent in vitro than that of 3 against various human cancer cell lines. The present account describes the first total syntheses of 1 and 2, and the syntheses of tamandarin A side chain analogues. The cytotoxicity data for these compounds show that the side chain modifications exhibit a parallel effect for both didemnins and tamandarins. This observation supports tamandarins' role as didemnins' mimic.
Collapse
Affiliation(s)
- B Liang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | |
Collapse
|
29
|
Xiao D, Vera MD, Liang B, Joullié MM. Total synthesis of a conformationally constrained didemnin B analog. J Org Chem 2001; 66:2734-42. [PMID: 11304195 DOI: 10.1021/jo001640n] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The total synthesis of a didemnin B analogue containing a conformationally constrained replacement for the isostatine moiety is reported. Synthetic highlights include an improved preparation of 2-hydroxy-3-cyclohexenecarboxylic acid and a new strategy for accessing the macrocycle.
Collapse
Affiliation(s)
- D Xiao
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | | | | | | |
Collapse
|
30
|
Matthews DJ, Kopczynski J. Using model-system genetics for drug-based target discovery. Drug Discov Today 2001; 6:141-149. [PMID: 11165187 DOI: 10.1016/s1359-6446(00)01612-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The combination of medicinal chemistry and model-organism genetics is emerging as a powerful tool for the discovery and validation of drug targets. Model systems can be used to identify the cognate target for compounds that demonstrate in vivo efficacy but have unknown mechanisms of action. Alternatively, drugs with known cognate targets can be used to probe biochemical pathways in model organisms, revealing new targets and mechanisms within these pathways. In both cases, the availability of human genomic sequence data is opening up new opportunities for accelerating target discovery.
Collapse
Affiliation(s)
- D J. Matthews
- Exelixis, 170 Harbor Way, South San 94083 0511, Francisco, CA, USA
| | | |
Collapse
|
31
|
Vera MD, Pfizenmayer AJ, Ding X, Xiao D, Joullié MM. [Lys3]Didemnins as potential affinity ligands. Bioorg Med Chem Lett 2001; 11:13-6. [PMID: 11140723 DOI: 10.1016/s0960-894x(00)00585-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The synthesis and biological activity of N(epsilon)-Z-[Lys3]didemnin B are reported. This novel analogue retains antiproliferative, cytotoxic, and protein biosynthesis inhibition activities, but at reduced levels. This result suggests the use of [Lys3]didemnin derivatives as potential affinity probes for studying the molecular target(s) of the didemnin class of natural products.
Collapse
Affiliation(s)
- M D Vera
- Department of Chemistry, University of Pennsylvania, Philadelphia 19104-6323, USA
| | | | | | | | | |
Collapse
|
32
|
Cragg GM, Newman DJ. Antineoplastic agents from natural sources: achievements and future directions. Expert Opin Investig Drugs 2000; 9:2783-97. [PMID: 11093353 DOI: 10.1517/13543784.9.12.2783] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The influence of natural products upon anticancer drug discovery and design cannot be overestimated. Approximately 60% of all drugs now in clinical trials for the multiplicity of cancers are either natural products, compounds derived from natural products, contain pharmacophores derived from active natural products or are 'old drugs in new clothes', where (modified) natural products are attached to targeting systems. This review covers those materials that the authors are aware of as being in clinical trials through early 2000 and demonstrates how, even today, in the presence of massive numbers of agents from combinatorial libraries, the compounds produced by 'Mother Nature' are still in the forefront of cancer chemotherapeutics as sources of active chemotypes.
Collapse
Affiliation(s)
- G M Cragg
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute-Frederick, Fairview Center, PO Box B, Frederick, MD 21702-1201, USA.
| | | |
Collapse
|
33
|
Ahuja D, Geiger A, Ramanjulu JM, Vera MD, SirDeshpande B, Pfizenmayer A, Abazeed M, Krosky DJ, Beidler D, Joullié MM, Toogood PL. Inhibition of protein synthesis by didemnins: cell potency and SAR. J Med Chem 2000; 43:4212-8. [PMID: 11063617 DOI: 10.1021/jm000168v] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic and naturally occurring didemnins are potent and specific inhibitors of protein synthesis in vitro. Structure-activity analysis indicates a requirement for the intact macrocycle; however, the smaller ring size represented by the didemnin analogue, tamandarin A, is equipotent to didemnin B. Replacement of the N,O-dimethyltyrosine by a N-methylphenylalanine or N-methylleucine residue is also well-tolerated. The rank order for inhibition of protein synthesis in vitro appears to be retained in MCF-7 cells, albeit at much higher potency. This increase in potency is explained for the first time by data indicating that MCF-7 cells can accumulate didemnin B up to 2-3 orders of magnitude compared to the growth medium.
Collapse
Affiliation(s)
- D Ahuja
- Willard H. Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mittelman A, Chun HG, Puccio C, Coombe N, Lansen T, Ahmed T. Phase II clinical trial of didemnin B in patients with recurrent or refractory anaplastic astrocytoma or glioblastoma multiforme (NSC 325319). Invest New Drugs 2000; 17:179-82. [PMID: 10638489 DOI: 10.1023/a:1006379402114] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The activity of didemnin B, a natural product derived from the Caribbean Tunic was assessed in 16 patients with Glioblastoma multiforme. Didemnin B was administered intravenously by a short infusion at a dose of 4.3 mg/m2 and subsequently escalated to 6.3 mg/m2. No anti-tumor activity was observed. Toxicity consisted of fatigue, weakness, stomatitis, mild blood count changes, nausea and vomiting and occasional fever. Based on these results further studies with didemnin B in patients with Glioblastoma multiforme are not recommended.
Collapse
Affiliation(s)
- A Mittelman
- New York Medical College, Division of Oncology/Hematology, Vallhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
35
|
Liang B, Portonovo P, Vera MD, Xiao D, Joullié MM. The first total synthesis of (-)-tamandarin A. Org Lett 1999; 1:1319-22. [PMID: 10825982 DOI: 10.1021/ol9910058] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[formula: see text] Tamandarin A (1), a newly isolated natural product similar in structure to didemnin B (2), was shown to be somewhat more active in vitro than 2 against pancreatic carcinoma with an ED50 value 1.5 to 2 ng/mL. We report here the first total synthesis of 1. The key steps include a practical stereoselective synthesis of the Hiv-isostatine unit, high-yielding linear precursor formation, a successful macrocyclization, and coupling of the macrocycle with the side chain to afford tamandarin A (1).
Collapse
Affiliation(s)
- B Liang
- Department of Chemistry, University of Pennsylvania, Philadelphia 19104-6323, USA
| | | | | | | | | |
Collapse
|
36
|
Beidler DR, Ahuja D, Wicha MS, Toogood PL. Inhibition of protein synthesis by didemnin B is not sufficient to induce apoptosis in human mammary carcinoma (MCF7) cells. Biochem Pharmacol 1999; 58:1067-74. [PMID: 10509759 DOI: 10.1016/s0006-2952(99)00193-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Didemnin B (DB) is one member of a class of natural cyclic depsipeptides that display potent cytotoxicity in vitro. The detailed mechanism of action of DB is unknown, although it appears to involve the inhibition of protein biosynthesis. Additional activities of DB have established DB as a rapid and potent inducer of apoptosis in HL-60 cells. Our aim was to determine if the induction of apoptosis by DB is mediated through inhibition of protein synthesis in MCF-7 human breast carcinoma cells. Apoptosis was observed only at > or = 100 nM DB, even though inhibition of protein synthesis occurred at much lower DB concentrations (IC50 = 12 nM). DB-induced apoptosis was mediated by caspase activation, since cleavage of the caspase substrate poly(ADPribose) polymerase was observed as early as 6 hr after DB exposure. Two additional protein synthesis inhibitors, cycloheximide (CHX) and emetine (ET), failed to induce apoptosis at concentrations that completely inhibited protein synthesis. Moreover, DB-induced apoptosis was enhanced only slightly by pre- and co-treatment with CHX and ET. Thus, inhibition of protein synthesis alone was not sufficient to induce apoptosis in these cells. As a measure of antiproliferative potential, DB (1-5 nM) inhibited the colony forming ability of MCF7 cells regardless of pretreatment with CHX. In conclusion, additional effects of DB, independent of protein synthesis inhibition, are proposed to account for its ability to induce apoptosis and prevent cell proliferation.
Collapse
Affiliation(s)
- D R Beidler
- Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor 48109-0946, USA.
| | | | | | | |
Collapse
|
37
|
Depenbrock H, Peter R, Faircloth GT, Manzanares I, Jimeno J, Hanauske AR. In vitro activity of aplidine, a new marine-derived anti-cancer compound, on freshly explanted clonogenic human tumour cells and haematopoietic precursor cells. Br J Cancer 1998; 78:739-44. [PMID: 9743292 PMCID: PMC2062976 DOI: 10.1038/bjc.1998.570] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aplidine is a new marine anti-cancer depsipeptide isolated from the Mediterranean tunicate Aplidium albicans. We have evaluated its antiproliferative action against a variety of freshly explanted human tumour specimens. Concentration ranges of 0.01-1.0 microM and 0.0001-1.0 microM were used in short- and long-term exposure schedules respectively. After exposure for 1 h in 49 evaluable specimens, aplidine showed a clear concentration-dependent anti-tumour effect. At 0.05 microM, 85% of the specimens were markedly inhibited. Continuous exposure for 21-28 days in 54 tumour specimens also led to a concentration-dependent activity relationship. Fifty per cent and 100% tumour inhibitions were achieved with 0.001 microM and 0.05 microM respectively. A head to head evaluation assessing short vs continuous exposure was carried out, resulting in evidence of an activity-time of exposure relationship. Breast, melanoma and non-small-cell lung cancer appear to be sensitive to low concentrations of aplidine. In addition the evaluation of the effects of aplidine on haematopoietic cells showed a concentration-dependent toxicity. However, under continuous exposure, active concentrations induced mild bone marrow toxicity, indicating that a therapeutic window at marginally myelotoxic concentrations might exist.
Collapse
Affiliation(s)
- H Depenbrock
- Technische Universität München, Department of Medicine, Munich, Germany
| | | | | | | | | | | |
Collapse
|