1
|
Zhang C, Feng Y, Calderin JD, Balutowski A, Ahmed R, Knapp C, Fratti RA. Lysophospholipid headgroup size, and acyl chain length and saturation differentially affect vacuole acidification, Ca 2+ transport, and fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615487. [PMID: 39386589 PMCID: PMC11463366 DOI: 10.1101/2024.09.27.615487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
SNARE-mediated membrane fusion is regulated by the lipid composition of the engaged bilayers. Lipid composition impacts fusion through direct protein lipid interactions or through modulating the physical properties of membranes at the site of contact, including the induction of positive curvature by lysophospholipids (LPLs). The degree of positive curvature induced is due to the length and saturation of the single acyl chain in addition to the size of the head group. Here we examined how yeast vacuole fusion and ion transport were differentially affected by changes in lysolipid properties. We found that lysophosphatidylcholine (LPC) with acyl chains containing 14-18 carbons all inhibited fusion with IC 50 values ranging from ∼40-120 µM. The monounsaturation of LPC-18:1 had no effect when compared to its saturated counterpart LPC-18:0. On the other hand, head group size played a more significant role in blocking fusion as lysophosphatidic acid (LPA)-18:1 failed to fully inhibit fusion. We also show that both Ca 2+ uptake and SNARE-dependent Ca 2+ efflux was sensitive to changes in the acyl chain length and saturation of LPCs, while LPA only affected Ca 2+ efflux. Finally, we tested these LPLs on vacuole acidification by the V-ATPase. This showed that LPC-18:0 could fully inhibit acidification whereas other LPCs had moderate effects. Again, LPA had no effect. Together these data suggest that the effects of LPLs were due to a combination of head group size and acyl chain length leading to a range in degree of positive curvature.
Collapse
|
2
|
Zhang C, Calderin JD, Hurst LR, Gokbayrak ZD, Hrabak MR, Balutowski A, Rivera-Kohr DA, Kazmirchuk TDD, Brett CL, Fratti RA. Sphingolipids containing very long-chain fatty acids regulate Ypt7 function during the tethering stage of vacuole fusion. J Biol Chem 2024; 300:107808. [PMID: 39307308 PMCID: PMC11530833 DOI: 10.1016/j.jbc.2024.107808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 09/15/2024] [Indexed: 10/20/2024] Open
Abstract
Sphingolipids are essential in membrane trafficking and cellular homeostasis. Here, we show that sphingolipids containing very long-chain fatty acids (VLCFAs) promote homotypic vacuolar fusion in Saccharomyces cerevisiae. The elongase Elo3 adds the last two carbons to VLCFAs that are incorporated into sphingolipids. Cells lacking Elo3 have fragmented vacuoles, which is also seen when WT cells are treated with the sphingolipid synthesis inhibitor Aureobasidin-A. Isolated elo3Δ vacuoles show acidification defects and increased membrane fluidity, and this correlates with deficient fusion. Fusion arrest occurs at the tethering stage as elo3Δ vacuoles fail to cluster efficiently in vitro. Unlike HOPS and fusogenic lipids, GFP-Ypt7 does not enrich at elo3Δ vertex microdomains, a hallmark of vacuole docking prior to fusion. Pulldown assays using bacterially expressed GST-Ypt7 showed that HOPS from elo3Δ vacuole extracts failed to bind GST-Ypt7 while HOPS from WT extracts interacted strongly with GST-Ypt7. Treatment of WT vacuoles with the fluidizing anesthetic dibucaine recapitulates the elo3Δ phenotype and shows increased membrane fluidity, mislocalized GFP-Ypt7, inhibited fusion, and attenuated acidification. Together these data suggest that sphingolipids contribute to Rab-mediated tethering and docking required for vacuole fusion.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | | | - Michael R Hrabak
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | | | | | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics & Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
3
|
Zhang C, Feng Y, Balutowski A, Miner GE, Rivera-Kohr DA, Hrabak MR, Sullivan KD, Guo A, Calderin JD, Fratti RA. The interdependent transport of yeast vacuole Ca 2+ and H + and the role of phosphatidylinositol 3,5-bisphosphate. J Biol Chem 2022; 298:102672. [PMID: 36334632 PMCID: PMC9706634 DOI: 10.1016/j.jbc.2022.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Yeast vacuoles are acidified by the v-type H+-ATPase (V-ATPase) that is comprised of the membrane embedded VO complex and the soluble cytoplasmic V1 complex. The assembly of the V1-VO holoenzyme on the vacuole is stabilized in part through interactions between the VO a-subunit ortholog Vph1 and the lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). PI(3,5)P2 also affects vacuolar Ca2+ release through the channel Yvc1 and uptake through the Ca2+ pump Pmc1. Here, we asked if H+ and Ca2+ transport activities were connected through PI(3,5)P2. We found that overproduction of PI(3,5)P2 by the hyperactive fab1T2250A mutant augmented vacuole acidification, whereas the kinase-inactive fab1EEE mutant attenuated the formation of a H+ gradient. Separately, we tested the effects of excess Ca2+ on vacuole acidification. Adding micromolar Ca2+ blocked vacuole acidification, whereas chelating Ca2+ accelerated acidification. The effect of adding Ca2+ on acidification was eliminated when the Ca2+/H+ antiporter Vcx1 was absent, indicating that the vacuolar H+ gradient can collapse during Ca2+ stress through Vcx1 activity. This, however, was independent of PI(3,5)P2, suggesting that PI(3,5)P2 plays a role in submicromolar Ca2+ flux but not under Ca2+ shock. To see if the link between Ca2+ and H+ transport was bidirectional, we examined Ca2+ transport when vacuole acidification was inhibited. We found that Ca2+ transport was inhibited by halting V-ATPase activity with Bafilomycin or neutralizing vacuolar pH with chloroquine. Together, these data show that Ca2+ transport and V-ATPase efficacy are connected but not necessarily through PI(3,5)P2.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yilin Feng
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Gregory E Miner
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael R Hrabak
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Katherine D Sullivan
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Annie Guo
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics & Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
4
|
Juárez-Montiel M, Clark-Flores D, Tesillo-Moreno P, de la Vega-Camarillo E, Andrade-Pavón D, Hernández-García JA, Hernández-Rodríguez C, Villa-Tanaca L. Vacuolar proteases and autophagy in phytopathogenic fungi: A review. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:948477. [PMID: 37746183 PMCID: PMC10512327 DOI: 10.3389/ffunb.2022.948477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/11/2022] [Indexed: 09/26/2023]
Abstract
Autophagy (macroautophagy) is a survival and virulence mechanism of different eukaryotic pathogens. Autophagosomes sequester cytosolic material and organelles, then fuse with or enter into the vacuole or lysosome (the lytic compartment of most fungal/plant cells and many animal cells, respectively). Subsequent degradation of cargoes delivered to the vacuole via autophagy and endocytosis maintains cellular homeostasis and survival in conditions of stress, cellular differentiation, and development. PrA and PrB are vacuolar aspartyl and serine endoproteases, respectively, that participate in the autophagy of fungi and contribute to the pathogenicity of phytopathogens. Whereas the levels of vacuolar proteases are regulated by the expression of the genes encoding them (e.g., PEP4 for PrA and PRB1 for PrB), their activity is governed by endogenous inhibitors. The aim of the current contribution is to review the main characteristics, regulation, and role of vacuolar soluble endoproteases and Atg proteins in the process of autophagy and the pathogenesis of three fungal phytopathogens: Ustilago maydis, Magnaporthe oryzae, and Alternaria alternata. Aspartyl and serine proteases are known to participate in autophagy in these fungi by degrading autophagic bodies. However, the gene responsible for encoding the vacuolar serine protease of U. maydis has yet to be identified. Based on in silico analysis, this U. maydis gene is proposed to be orthologous to the Saccharomyces cerevisiae genes PRB1 and PBI2, known to encode the principal protease involved in the degradation of autophagic bodies and its inhibitor, respectively. In fungi that interact with plants, whether phytopathogenic or mycorrhizal, autophagy is a conserved cellular degradation process regulated through the TOR, PKA, and SNF1 pathways by ATG proteins and vacuolar proteases. Autophagy plays a preponderant role in the recycling of cell components as well as in the fungus-plant interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| |
Collapse
|
5
|
Zhang C, Balutowski A, Feng Y, Calderin JD, Fratti RA. High throughput analysis of vacuolar acidification. Anal Biochem 2022; 658:114927. [PMID: 36167157 DOI: 10.1016/j.ab.2022.114927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022]
Abstract
Eukaryotic cells are compartmentalized into membrane-bound organelles, allowing each organelle to maintain the specialized conditions needed for their specific functions. One of the features that change between organelles is lumenal pH. In the endocytic and secretory pathways, lumenal pH is controlled by isoforms and concentration of the vacuolar-type H+-ATPase (V-ATPase). In the endolysosomal pathway, copies of complete V-ATPase complexes accumulate as membranes mature from early endosomes to late endosomes and lysosomes. Thus, each compartment becomes more acidic as maturation proceeds. Lysosome acidification is essential for the breakdown of macromolecules delivered from endosomes as well as cargo from different autophagic pathways, and dysregulation of this process is linked to various diseases. Thus, it is important to understand the regulation of the V-ATPase. Here we describe a high-throughput method for screening inhibitors/activators of V-ATPase activity using Acridine Orange (AO) as a fluorescent reporter for acidified yeast vacuolar lysosomes. Through this method, the acidification of purified vacuoles can be measured in real-time in half-volume 96-well plates or a larger 384-well format. This not only reduces the cost of expensive low abundance reagents, but it drastically reduces the time needed to measure individual conditions in large volume cuvettes.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yilin Feng
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Miner GE, Sullivan KD, Zhang C, Rivera-Kohr D, Guo A, Hurst LR, Ellis EC, Starr ML, Jones BC, Fratti RA. Phosphatidylinositol 3,5-bisphosphate regulates Ca 2+ transport during yeast vacuolar fusion through the Ca 2+ ATPase Pmc1. Traffic 2021; 21:503-517. [PMID: 32388897 DOI: 10.1111/tra.12736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
The transport of Ca2+ across membranes precedes the fusion and fission of various lipid bilayers. Yeast vacuoles under hyperosmotic stress become fragmented through fission events that requires the release of Ca2+ stores through the TRP channel Yvc1. This requires the phosphorylation of phosphatidylinositol-3-phosphate (PI3P) by the PI3P-5-kinase Fab1 to produce transient PI(3,5)P2 pools. Ca2+ is also released during vacuole fusion upon trans-SNARE complex assembly, however, its role remains unclear. The effect of PI(3,5)P2 on Ca2+ flux during fusion was independent of Yvc1. Here, we show that while low levels of PI(3,5)P2 were required for Ca2+ uptake into the vacuole, increased concentrations abolished Ca2+ efflux. This was as shown by the addition of exogenous dioctanoyl PI(3,5)P2 or increased endogenous production of by the hyperactive fab1T2250A mutant. In contrast, the lack of PI(3,5)P2 on vacuoles from the kinase dead fab1EEE mutant showed delayed and decreased Ca2+ uptake. The effects of PI(3,5)P2 were linked to the Ca2+ pump Pmc1, as its deletion rendered vacuoles resistant to the effects of excess PI(3,5)P2 . Experiments with Verapamil inhibited Ca2+ uptake when added at the start of the assay, while adding it after Ca2+ had been taken up resulted in the rapid expulsion of Ca2+ . Vacuoles lacking both Pmc1 and the H+ /Ca2+ exchanger Vcx1 lacked the ability to take up Ca2+ and instead expelled it upon the addition of ATP. Together these data suggest that a balance of efflux and uptake compete during the fusion pathway and that the levels of PI(3,5)P2 can modulate which path predominates.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Katherine D Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chi Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - David Rivera-Kohr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Annie Guo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ez C Ellis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Matthew L Starr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Brandon C Jones
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Miner GE, Sullivan KD, Zhang C, Hurst LR, Starr ML, Rivera-Kohr DA, Jones BC, Guo A, Fratti RA. Copper blocks V-ATPase activity and SNARE complex formation to inhibit yeast vacuole fusion. Traffic 2019; 20:841-850. [PMID: 31368617 DOI: 10.1111/tra.12683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/23/2022]
Abstract
The accumulation of copper in organisms can lead to altered functions of various pathways and become cytotoxic through the generation of reactive oxygen species. In yeast, cytotoxic metals such as Hg+ , Cd2+ and Cu2+ are transported into the lumen of the vacuole through various pumps. Copper ions are initially transported into the cell by the copper transporter Ctr1 at the plasma membrane and sequestered by chaperones and other factors to prevent cellular damage by free cations. Excess copper ions can subsequently be transported into the vacuole lumen by an unknown mechanism. Transport across membranes requires the reduction of Cu2+ to Cu+ . Labile copper ions can interact with membranes to alter fluidity, lateral phase separation and fusion. Here we found that CuCl2 potently inhibited vacuole fusion by blocking SNARE pairing. This was accompanied by the inhibition of V-ATPase H+ pumping. Deletion of the vacuolar reductase Fre6 had no effect on the inhibition of fusion by copper. This suggests that Cu2+ is responsible for the inhibition of vacuole fusion and V-ATPase function. This notion is supported by the differential effects of chelators. The Cu2+ -specific chelator triethylenetetramine rescued fusion, whereas the Cu+ -specific chelator bathocuproine disulfonate had no effect on the inhibited fusion.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Katherine D Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Chi Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Matthew L Starr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Brandon C Jones
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Annie Guo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
8
|
Jun Y. An In Vitro Assay of Trans-SNARE Complex Formation During Yeast Vacuole Fusion Using Epitope Tag-Free SNAREs. Methods Mol Biol 2019; 1860:277-288. [PMID: 30317512 DOI: 10.1007/978-1-4939-8760-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
SNARE complexes assembled between fusing membranes (in trans) are the core machinery driving lipid bilayer merger. Thus, an assay monitoring the formation of these trans-SNARE complexes is essential for SNARE-mediated membrane fusion studies. Homotypic yeast vacuole fusion is an important model system for such studies. Although several assays measuring trans-SNARE complex formation are available to study yeast vacuole fusion, most use SNAREs conjugated with epitope tags, which may affect the function of SNAREs or even the formation of trans-SNARE complexes. Here, I describe an assay for trans-SNARE complex formation during yeast vacuole fusion that does not require epitope-tagged SNAREs.
Collapse
Affiliation(s)
- Youngsoo Jun
- School of Life Sciences, Cell Logistics Research Center, and Silver Health Bio Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| |
Collapse
|
9
|
Abstract
During in vitro homotypic yeast vacuole fusion Ca2+ is transported into and out of the organelle lumen. In vitro, Ca2+ is taken up from the medium by vacuoles upon the addition of ATP. During the docking stage of vacuole fusion Ca2+ is effluxed from the lumen upon the formation of trans-SNARE complexes between vesicles. Here we describe a real-time fluorescence-based assay to monitor the transport of this cation using purified organelles. Extraluminal Ca2+ is detected when the cation binds the low-affinity fluorescent dye Fluo-4 dextran. This allows for the use of a 96-well microtiter plate to be read in a fluorescence plate reader. Thus, in addition to a curve of calibrated Ca2+ standards, up to 91 experimental conditions can be monitored in a single microplate using this method.
Collapse
|
10
|
Miner GE, Sullivan KD, Guo A, Jones BC, Hurst LR, Ellis EC, Starr ML, Fratti RA. Phosphatidylinositol 3,5-bisphosphate regulates the transition between trans-SNARE complex formation and vacuole membrane fusion. Mol Biol Cell 2018; 30:201-208. [PMID: 30427760 PMCID: PMC6589561 DOI: 10.1091/mbc.e18-08-0505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Phosphoinositides (PIs) regulate a myriad of cellular functions including membrane fusion, as exemplified by the yeast vacuole, which uses various PIs at different stages of fusion. In light of this, the effect of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) on vacuole fusion remains unknown. PI(3,5)P2 is made by the PI3P 5-kinase Fab1 and has been characterized as a regulator of vacuole fission during hyperosmotic shock, where it interacts with the TRP Ca2+ channel Yvc1. Here we demonstrate that exogenously added dioctanoyl (C8) PI(3,5)P2 abolishes homotypic vacuole fusion. This effect was not linked to Yvc1, as fusion was equally affected using yvc1Δ vacuoles. Thus, the effects of C8-PI(3,5)P2 on fusion and fission operate through distinct mechanisms. Further testing showed that C8-PI(3,5)P2 inhibited vacuole fusion after trans-SNARE pairing. Although SNARE complex formation was unaffected, we found that C8-PI(3,5)P2 blocked outer leaflet lipid mixing. Overproduction of endogenous PI(3,5)P2 by the fab1T2250A hyperactive kinase mutant also inhibited the lipid mixing stage, bolstering the model in which PI(3,5)P2 inhibits fusion when present at elevated levels. Taken together, this work identifies a novel function for PI(3,5)P2 as a regulator of vacuolar fusion. Moreover, it suggests that this lipid acts as a molecular switch between fission and fusion.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Katherine D Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Annie Guo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brandon C Jones
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Ez C Ellis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Matthew L Starr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
11
|
Miner GE, Starr ML, Hurst LR, Fratti RA. Deleting the DAG kinase Dgk1 augments yeast vacuole fusion through increased Ypt7 activity and altered membrane fluidity. Traffic 2017; 18:315-329. [PMID: 28276191 DOI: 10.1111/tra.12479] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Abstract
Diacylglycerol (DAG) is a fusogenic lipid that can be produced through phospholipase C activity on phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2 ], or through phosphatidic acid (PA) phosphatase activity. The fusion of Saccharomyces cerevisiae vacuoles requires DAG, PA and PI(4,5)P2 , and the production of these lipids is thought to provide temporally specific stoichiometries that are critical for each stage of fusion. Furthermore, DAG and PA can be interconverted by the DAG kinase Dgk1 and the PA phosphatase Pah1. Previously we found that pah1 Δ vacuoles were fragmented, blocked in SNARE priming and showed arrested endosomal maturation. In other pathways the effects of deleting PAH1 can be compensated for by additionally deleting DGK1 ; however, deleting both genes did not rescue the pah1 Δ vacuolar defects. Deleting DGK1 alone caused a marked increase in vacuole fusion that was attributed to elevated DAG levels. This was accompanied by a gain in resistance to the inhibitory effects of PA as well as inhibitors of Ypt7 activity. Together these data show that Dgk1 function can act as a negative regulator of vacuole fusion through the production of PA at the cost of depleting DAG and reducing Ypt7 activity.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Matthew L Starr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
12
|
Hohl M, Stintzi A, Schaller A. A novel subtilase inhibitor in plants shows structural and functional similarities to protease propeptides. J Biol Chem 2017; 292:6389-6401. [PMID: 28223360 DOI: 10.1074/jbc.m117.775445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/13/2017] [Indexed: 12/24/2022] Open
Abstract
The propeptides of subtilisin-like serine proteinases (subtilases, SBTs) serve dual functions as intramolecular chaperones that are required for enzyme folding and as inhibitors of the mature proteases. SBT propeptides are homologous to the I9 family of protease inhibitors that have only been described in fungi. Here we report the identification and characterization of subtilisin propeptide-like inhibitor 1 (SPI-1) from Arabidopsis thaliana Sequence similarity and the shared β-α-β-β-α-β core structure identified SPI-1 as a member of the I9 inhibitor family and as the first independent I9 inhibitor in higher eukaryotes. SPI-1 was characterized as a high-affinity, tight-binding inhibitor of Arabidopsis subtilase SBT4.13 with Kd and Ki values in the picomolar range. SPI-1 acted as a stable inhibitor of SBT4.13 over the physiologically relevant range of pH, and its inhibitory profile included many other SBTs from plants but not bovine chymotrypsin or bacterial subtilisin A. Upon binding to SBT4.13, the C-terminal extension of SPI-1 was proteolytically cleaved. The last four amino acids at the newly formed C terminus of SPI-1 matched both the cleavage specificity of SBT4.13 and the consensus sequence of Arabidopsis SBTs at the junction of the propeptide with the catalytic domain. The data suggest that the C terminus of SPI-1 acts as a competitive inhibitor of target proteases as it remains bound to the active site in a product-like manner. SPI-1 thus resembles SBT propeptides with respect to its mode of protease inhibition. However, in contrast to SBT propeptides, SPI-1 could not substitute as a folding assistant for SBT4.13.
Collapse
Affiliation(s)
- Mathias Hohl
- From the Institute of Plant Physiology and Biotechnology, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Annick Stintzi
- From the Institute of Plant Physiology and Biotechnology, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Andreas Schaller
- From the Institute of Plant Physiology and Biotechnology, University of Hohenheim, D-70593 Stuttgart, Germany
| |
Collapse
|
13
|
Miner GE, Starr ML, Hurst LR, Sparks RP, Padolina M, Fratti RA. The Central Polybasic Region of the Soluble SNARE (Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor) Vam7 Affects Binding to Phosphatidylinositol 3-Phosphate by the PX (Phox Homology) Domain. J Biol Chem 2016; 291:17651-63. [PMID: 27365394 DOI: 10.1074/jbc.m116.725366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
The yeast vacuole requires four SNAREs to trigger membrane fusion including the soluble Qc-SNARE Vam7. The N-terminal PX domain of Vam7 binds to the lipid phosphatidylinositol 3-phosphate (PI3P) and the tethering complex HOPS (homotypic fusion and vacuole protein sorting complex), whereas the C-terminal SNARE motif forms SNARE complexes. Vam7 also contains an uncharacterized middle domain that is predicted to be a coiled-coil domain with multiple helices. One helix contains a polybasic region (PBR) composed of Arg-164, Arg-168, Lys-172, Lys-175, Arg-179, and Lys-186. Polybasic regions are often associated with nonspecific binding to acidic phospholipids including phosphoinositides. Although the PX (phox homology) domain alone binds PI3P, we theorized that the Vam7 PBR could bind to additional acidic phospholipids enriched at fusion sites. Mutating each of the basic residues in the PBR to an alanine (Vam7-6A) led to attenuated vacuole fusion. The defective fusion of Vam7-6A was due in part to inefficient association with its cognate SNAREs and HOPS, yet the overall vacuole association of Vam7-6A was similar to wild type. Experiments testing the binding of Vam7 to specific signaling lipids showed that mutating the PBR to alanines augmented binding to PI3P. The increased binding to PI3P by Vam7-6A likely contributed to the observed wild type levels of vacuole association, whereas protein-protein interactions were diminished. PI3P binding was inhibited when the PX domain mutant Y42A was introduced into Vam7-6A to make Vam7-7A. Thus the Vam7 PBR affects PI3P binding by the PX domain and in turn affects binding to SNAREs and HOPS to support efficient fusion.
Collapse
Affiliation(s)
- Gregory E Miner
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Matthew L Starr
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Logan R Hurst
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Robert P Sparks
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Mark Padolina
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Rutilio A Fratti
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
14
|
Dunaevsky YE, Popova VV, Semenova TA, Beliakova GA, Belozersky MA. Fungal inhibitors of proteolytic enzymes: classification, properties, possible biological roles, and perspectives for practical use. Biochimie 2013; 101:10-20. [PMID: 24355205 DOI: 10.1016/j.biochi.2013.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/06/2013] [Indexed: 01/10/2023]
Abstract
Peptidase inhibitors are ubiquitous regulatory proteins controlling catalytic activity of proteolytic enzymes. Interest in these proteins increased substantially after it became clear that they can be used for therapy of various important diseases including cancer, malaria, and autoimmune and neurodegenerative diseases. In this review we summarize available data on peptidase inhibitors from fungi, emphasizing their properties, biological role, and possible practical applications of these proteins in the future. A number of fungal peptidase inhibitors with unique structure and specificity of action have no sequence homology with other classes of peptidase inhibitors, thus representing new and specific candidates for therapeutic use. The main classifications of inhibitors in current use are considered. Available data on structure, mechanisms and conditions of action, and diversity of functions of peptidase inhibitors of fungi are analyzed. It is mentioned that on one side the unique properties of some inhibitors can be used for selective inhibition of peptidases responsible for initiation and development of pathogenic processes. On the other side, general inhibitory activity of other inhibitors towards peptidases of various catalytic classes might be able to provide efficient defense of transgenic plants against insect pests by overcoming compensatory synthesis of new peptidases by these pests in response to introduction of a fungal inhibitor. Together, the data analyzed in this review reveal that fungal inhibitors extend the spectrum of known peptidase inhibitors potentially suitable for use in medicine and agriculture.
Collapse
Affiliation(s)
- Y E Dunaevsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia.
| | - V V Popova
- Faculty of Biology, Moscow State University, Moscow 119992, Russia
| | - T A Semenova
- Faculty of Biology, Moscow State University, Moscow 119992, Russia
| | - G A Beliakova
- Faculty of Biology, Moscow State University, Moscow 119992, Russia
| | - M A Belozersky
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| |
Collapse
|
15
|
Zhang Y, Kweon HK, Shively C, Kumar A, Andrews PC. Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data. PLoS Comput Biol 2013; 9:e1003077. [PMID: 23825934 PMCID: PMC3694812 DOI: 10.1371/journal.pcbi.1003077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 04/17/2013] [Indexed: 11/19/2022] Open
Abstract
Reversible phosphorylation is one of the major mechanisms of signal transduction, and signaling networks are critical regulators of cell growth and development. However, few of these networks have been delineated completely. Towards this end, quantitative phosphoproteomics is emerging as a useful tool enabling large-scale determination of relative phosphorylation levels. However, phosphoproteomics differs from classical proteomics by a more extensive sampling limitation due to the limited number of detectable sites per protein. Here, we propose a comprehensive quantitative analysis pipeline customized for phosphoproteome data from interventional experiments for identifying key proteins in specific pathways, discovering the protein-protein interactions and inferring the signaling network. We also made an effort to partially compensate for the missing value problem, a chronic issue for proteomics studies. The dataset used for this study was generated using SILAC (Stable Isotope Labeling with Amino acids in Cell culture) technique with interventional experiments (kinase-dead mutations). The major components of the pipeline include phosphopeptide meta-analysis, correlation network analysis and causal relationship discovery. We have successfully applied our pipeline to interventional experiments identifying phosphorylation events underlying the transition to a filamentous growth form in Saccharomyces cerevisiae. We identified 5 high-confidence proteins from meta-analysis, and 19 hub proteins from correlation analysis (Pbi2p and Hsp42p were identified by both analyses). All these proteins are involved in stress responses. Nine of them have direct or indirect evidence of involvement in filamentous growth. In addition, we tested four of our predicted proteins, Nth1p, Pbi2p, Pdr12p and Rcn2p, by interventional phenotypic experiments and all of them present differential invasive growth, providing prospective validation of our approach. This comprehensive pipeline presents a systematic way for discovering signaling networks using interventional phosphoproteome data and can suggest candidate proteins for further investigation. We anticipate the methodology to be applicable as well to other interventional studies via different experimental platforms.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hye Kyong Kweon
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Christian Shively
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Philip C. Andrews
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
16
|
LegC3, an effector protein from Legionella pneumophila, inhibits homotypic yeast vacuole fusion in vivo and in vitro. PLoS One 2013; 8:e56798. [PMID: 23437241 PMCID: PMC3577674 DOI: 10.1371/journal.pone.0056798] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/15/2013] [Indexed: 12/12/2022] Open
Abstract
During infection, the intracellular pathogenic bacterium Legionella pneumophila causes an extensive remodeling of host membrane trafficking pathways, both in the construction of a replication-competent vacuole comprised of ER-derived vesicles and plasma membrane components, and in the inhibition of normal phagosome:endosome/lysosome fusion pathways. Here, we identify the LegC3 secreted effector protein from L. pneumophila as able to inhibit a SNARE- and Rab GTPase-dependent membrane fusion pathway in vitro, the homotypic fusion of yeast vacuoles (lysosomes). This vacuole fusion inhibition appeared to be specific, as similar secreted coiled-coiled domain containing proteins from L. pneumophila, LegC7/YlfA and LegC2/YlfB, did not inhibit vacuole fusion. The LegC3-mediated fusion inhibition was reversible by a yeast cytosolic extract, as well as by a purified soluble SNARE, Vam7p. LegC3 blocked the formation of trans-SNARE complexes during vacuole fusion, although we did not detect a direct interaction of LegC3 with the vacuolar SNARE protein complexes required for fusion. Additionally, LegC3 was incapable of inhibiting a defined synthetic model of vacuolar SNARE-driven membrane fusion, further suggesting that LegC3 does not directly inhibit the activity of vacuolar SNAREs, HOPS complex, or Sec17p/18p during membrane fusion. LegC3 is likely utilized by Legionella to modulate eukaryotic membrane fusion events during pathogenesis.
Collapse
|
17
|
The yeast vacuolar Rab GTPase Ypt7p has an activity beyond membrane recruitment of the homotypic fusion and protein sorting-Class C Vps complex. Biochem J 2012; 443:205-11. [PMID: 22417749 DOI: 10.1042/bj20110687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A previous report described lipid mixing of reconstituted proteoliposomes made using lipid mixtures that mimic the composition of yeast vacuoles. This lipid mixing required SNARE {SNAP [soluble NSF (N-ethylmaleimide-sensitive factor)-attachment protein] receptor} proteins, Sec18p and Sec17p (yeast NSF and α-SNAP) and the HOPS (homotypic fusion and protein sorting)-Class C Vps (vacuole protein sorting) complex, but not the vacuolar Rab GTPase Ypt7p. The present study investigates the activity of Ypt7p in proteoliposome lipid mixing. Ypt7p is required for the lipid mixing of proteoliposomes lacking cardiolipin [1,3-bis-(sn-3'-phosphatidyl)-sn-glycerol]. Omission of other lipids with negatively charged and/or small head groups does not cause Ypt7p dependence for lipid mixing. Yeast vacuoles made from strains disrupted for CRD1 (cardiolipin synthase) fuse to the same extent as vacuoles from strains with functional CRD1. Disruption of CRD1 does not alter dependence on Rab GTPases for vacuole fusion. It has been proposed that the recruitment of the HOPS complex to membranes is the main function of Ypt7p. However, Ypt7p is still required for lipid mixing even when the concentration of HOPS complex in lipid-mixing reactions is adjusted such that cardiolipin-free proteoliposomes with or without Ypt7p bind to equal amounts of HOPS. Ypt7p therefore must stimulate membrane fusion by a mechanism that is in addition to recruitment of HOPS to the membrane. This is the first demonstration of such a stimulatory activity--that is, beyond bulk effector recruitment--for a Rab GTPase.
Collapse
|
18
|
HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion. EMBO J 2010; 29:1948-60. [PMID: 20473271 DOI: 10.1038/emboj.2010.97] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 04/20/2010] [Indexed: 01/16/2023] Open
Abstract
SNARE-dependent membrane fusion requires the disassembly of cis-SNARE complexes (formed by SNAREs anchored to one membrane) followed by the assembly of trans-SNARE complexes (SNAREs anchored to two apposed membranes). Although SNARE complex disassembly and assembly might be thought to be opposing reactions, the proteins promoting disassembly (Sec17p/Sec18p) and assembly (the HOPS complex) work synergistically to support fusion. We now report that trans-SNARE complexes formed during vacuole fusion are largely associated with Sec17p. Using a reconstituted proteoliposome fusion system, we show that trans-SNARE complex, like cis-SNARE complex, is sensitive to Sec17p/Sec18p mediated disassembly. Strikingly, HOPS inhibits the disassembly of SNARE complexes in the trans-, but not in the cis-, configuration. This selective HOPS preservation of trans-SNARE complexes requires HOPS:SNARE recognition and is lost when the apposed bilayers are dissolved in Triton X-100; it is also observed during fusion of isolated vacuoles. HOPS thus directs the Sec17p/Sec18p chaperone system to maximize functional trans-SNARE complex for membrane fusion, a new role of tethering factors during membrane traffic.
Collapse
|
19
|
Felberbaum-Corti M, Morel E, Cavalli V, Vilbois F, Gruenberg J. The redox sensor TXNL1 plays a regulatory role in fluid phase endocytosis. PLoS One 2007; 2:e1144. [PMID: 17987124 PMCID: PMC2043495 DOI: 10.1371/journal.pone.0001144] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 10/18/2007] [Indexed: 02/04/2023] Open
Abstract
Background Small GTPases of the Rab family can cycle between a GTP- and a GDP-bound state and also between membrane and cytosol. The latter cycle is mediated by the Guanine Nucleotide Dissociation Inhibitor GDI, which can selectively extract GDP-bound Rab proteins from donor membranes, and then reload them on target membranes. In previous studies, we found that capture of the small GTPase Rab5, a key regulator of endocytic membrane traffic, by GDI is stimulated by oxidative stress via p38MAPK, resulting in increased fluid phase endocytosis. Methodology/Principal Findings When purifying the GDI stimulating activity we found that that it copurified with a high MW protein complex, which included p38MAPK. Here we report the identification and characterization of another component of this complex as the thioredoxin-like protein TXNL1. Our observations indicate that TXNL1 play a selective role in the regulation of fluid phase endocytosis, by controlling GDI capacity to capture Rab5. Conclusions/Significance Oxidants, which are known to cause cellular damage, can also trigger signaling pathways, in particular via members of the thioredoxin family. We propose that TXNL1 acts as an effector of oxidants or a redox sensor by converting redox changes into changes of GDI capacity to capture Rab5, which in turn modulates fluid phase endocytosis.
Collapse
Affiliation(s)
| | - Etienne Morel
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Valeria Cavalli
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Francis Vilbois
- Serono Pharmaceutical Research Institute, Plan-les-Ouates, Geneva, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Fratti RA, Collins KM, Hickey CM, Wickner W. Stringent 3Q.1R composition of the SNARE 0-layer can be bypassed for fusion by compensatory SNARE mutation or by lipid bilayer modification. J Biol Chem 2007; 282:14861-7. [PMID: 17400548 DOI: 10.1074/jbc.m700971200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SNARE proteins form bundles of four alpha-helical SNARE domains with conserved polar amino acids, 3Q and 1R, at the "0-layer" of the bundle. Previous studies have confirmed the importance of 3Q.1R for fusion but have not shown whether it regulates SNARE complex assembly or the downstream functions of assembled SNAREs. Yeast vacuole fusion requires regulatory lipids (ergosterol, phosphoinositides, and diacylglycerol), the Rab Ypt7p, the Rab-effector complex HOPS, and 4 SNAREs: the Q-SNAREs Vti1p, Vam3p, and Vam7p and the R-SNARE Nyv1p. We now report that alterations in the 0-layer Gln or Arg residues of Vam7p or Nyv1p, respectively, strongly inhibit fusion. Vacuoles with wild-type Nyv1p show exquisite discrimination for the wild-type Vam7p over Vam7(Q283R), yet Vam7(Q283R) is preferred by vacuoles with Nyv1(R191Q). Rotation of the position of the arginine in the 0-layer increases the K(m) for Vam7p but does not affect the maximal rate of fusion. Vam7(Q283R) forms stable 2Q.2R complexes that do not promote fusion. However, fusion is restored by the lipophilic amphiphile chlorpromazine or by the phospholipase C inhibitor U73122, perturbants of the lipid phase of the membrane. Thus, SNARE function as regulated by the 0-layer is intimately coupled to the lipids, which must rearrange for fusion.
Collapse
Affiliation(s)
- Rutilio A Fratti
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
21
|
Fratti RA, Wickner W. Distinct targeting and fusion functions of the PX and SNARE domains of yeast vacuolar Vam7p. J Biol Chem 2007; 282:13133-8. [PMID: 17347148 DOI: 10.1074/jbc.m700584200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Regulated membrane fusion requires organelle tethering, enrichment of selected proteins and lipids at the fusion site, bilayer distortion, and lipid rearrangement. Yeast vacuole homotypic fusion requires regulatory lipids (ergosterol, diacylglycerol, and phosphoinositides), the Rab family GTPase Ypt7p, the multisubunit Ypt7p-effector complex HOPS (homotypic fusion and vacuole protein sorting), and four SNAREs. One SNARE, Vam7p, has an N-terminal PX domain which binds to phosphatidylinositol 3-phosphate (PI(3)P) and to HOPS and a C-terminal SNARE domain but no apolar membrane anchor. We have exploited an in vitro reaction of vacuole fusion to analyze the functions of each domain, removing the PX domain or mutating it to abolish its PI(3)P affinity. Lowering the PI(3)P affinity of the PX domain, or even deleting the PX domain, affects the fusion K(m) for Vam7p but not the maximal fusion rate. Fusion driven by the SNARE domain alone is strikingly enhanced by the PLC inhibitor U73122 through enhanced binding of Vam7p SNARE domain to vacuoles, and the further addition of Plc1p blocks this U73122 effect. The PX domain, through its affinities for phosphoinositides and HOPS, is thus exclusively required for enhancing the targeting of Vam7p rather than for execution of the Vam7p functions in HOPS.SNARE complex assembly and fusion.
Collapse
Affiliation(s)
- Rutilio A Fratti
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
22
|
White MA, Clark KM, Grayhack EJ, Dumont ME. Characteristics affecting expression and solubilization of yeast membrane proteins. J Mol Biol 2007; 365:621-36. [PMID: 17078969 PMCID: PMC1839945 DOI: 10.1016/j.jmb.2006.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/27/2006] [Accepted: 10/03/2006] [Indexed: 11/26/2022]
Abstract
Biochemical and structural analysis of membrane proteins often critically depends on the ability to overexpress and solubilize them. To identify properties of eukaryotic membrane proteins that may be predictive of successful overexpression, we analyzed expression levels of the genomic complement of over 1000 predicted membrane proteins in a recently completed Saccharomyces cerevisiae protein expression library. We detected statistically significant positive and negative correlations between high membrane protein expression and protein properties such as size, overall hydrophobicity, number of transmembrane helices, and amino acid composition of transmembrane segments. Although expression levels of membrane and soluble proteins exhibited similar negative correlations with overall hydrophobicity, high-level membrane protein expression was positively correlated with the hydrophobicity of predicted transmembrane segments. To further characterize yeast membrane proteins as potential targets for structure determination, we tested the solubility of 122 of the highest expressed yeast membrane proteins in six commonly used detergents. Almost all the proteins tested could be solubilized using a small number of detergents. Solubility in some detergents depended on protein size, number of transmembrane segments, and hydrophobicity of predicted transmembrane segments. These results suggest that bioinformatic approaches may be capable of identifying membrane proteins that are most amenable to overexpression and detergent solubilization for structural and biochemical analyses. Bioinformatic approaches could also be used in the redesign of proteins that are not intrinsically well-adapted to such studies.
Collapse
Affiliation(s)
- Michael A. White
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642
| | - Kathleen M. Clark
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642
| | - Elizabeth J. Grayhack
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642
| | - Mark E. Dumont
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
23
|
Decker BL, Wickner WT. Enolase Activates Homotypic Vacuole Fusion and Protein Transport to the Vacuole in Yeast. J Biol Chem 2006; 281:14523-8. [PMID: 16565073 DOI: 10.1074/jbc.m600911200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane fusion and protein trafficking to the vacuole are complex processes involving many proteins and lipids. Cytosol from Saccharomyces cerevisiae contains a high Mr activity, which stimulates the in vitro homotypic fusion of isolated yeast vacuoles. Here we purify this activity and identify it as enolase (Eno1p and Eno2p). Enolase is a cytosolic glycolytic enzyme, but a small portion of enolase is bound to vacuoles. Recombinant Eno1p or Eno2p stimulates in vitro vacuole fusion, as does a catalytically inactive mutant enolase, suggesting a role for enolase in fusion that is separate from its glycolytic function. Either deletion of the non-essential ENO1 gene or diminished expression of the essential ENO2 gene causes vacuole fragmentation in vivo, reflecting reduced fusion. Combining an ENO1 deletion with ENO2-deficient expression causes a more severe fragmentation phenotype. Vacuoles from enolase 1 and 2-deficient cells are unable to fuse in vitro. Immunoblots of vacuoles from wild type and mutant strains reveal that enolase deficiency also prevents normal protein sorting to the vacuole, exacerbating the fusion defect. Band 3 has been shown to bind glycolytic enzymes to membranes of mammalian erythrocytes. Bor1p, the yeast band 3 homolog, localizes to the vacuole. Its loss results in the mislocalization of enolase and other vacuole fusion proteins. These studies show that enolase stimulates vacuole fusion and that enolase and Bor1p regulate selective protein trafficking to the vacuole.
Collapse
Affiliation(s)
- Bridget L Decker
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844, USA
| | | |
Collapse
|
24
|
Stroupe C, Collins KM, Fratti RA, Wickner W. Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. EMBO J 2006; 25:1579-89. [PMID: 16601699 PMCID: PMC1440844 DOI: 10.1038/sj.emboj.7601051] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 02/27/2006] [Indexed: 12/24/2022] Open
Abstract
Coupling of Rab GTPase activation and SNARE complex assembly during membrane fusion is poorly understood. The homotypic fusion and vacuole protein sorting (HOPS) complex links these two processes: it is an effector for the vacuolar Rab GTPase Ypt7p and is required for vacuolar SNARE complex assembly. We now report that pure, active HOPS complex binds phosphoinositides and the PX domain of the vacuolar SNARE protein Vam7p. These binding interactions support HOPS complex association with the vacuole and explain its enrichment at the same microdomains on docked vacuoles as phosphoinositides, Ypt7p, Vam7p, and the other SNARE proteins. Concentration of the HOPS complex at these microdomains may be a key factor for coupling Rab GTPase activation to SNARE complex assembly.
Collapse
Affiliation(s)
| | - Kevin M Collins
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Rutilio A Fratti
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - William Wickner
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Room 425 Remsen, Hanover, NH 03755-3844, USA. Tel.: +1 603 650 1701; Fax: +1 603 650 1353; E-mail: , URL: http://www.dartmouth.edu/~wickner
| |
Collapse
|
25
|
Starai VJ, Thorngren N, Fratti RA, Wickner W. Ion regulation of homotypic vacuole fusion in Saccharomyces cerevisiae. J Biol Chem 2005; 280:16754-62. [PMID: 15737991 DOI: 10.1074/jbc.m500421200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biological membrane fusion employs divalent cations as protein cofactors or as signaling ligands. For example, Mg2+ is a cofactor for the N-ethylmaleimide-sensitive factor (NSF) ATPase, and the Ca2+ signal from neuronal membrane depolarization is required for synaptotagmin activation. Divalent cations also regulate liposome fusion, but the role of such ion interactions with lipid bilayers in Rab- and soluble NSF attachment protein receptor (SNARE)-dependent biological membrane fusion is less clear. Yeast vacuole fusion requires Mg2+ for Sec18p ATPase activity, and vacuole docking triggers an efflux of luminal Ca2+. We now report distinct reaction conditions where divalent or monovalent ions interchangeably regulate Rab- and SNARE-dependent vacuole fusion. In reactions with 5 mm Mg2+, other free divalent ions are not needed. Reactions containing low Mg2+ concentrations are strongly inhibited by the rapid Ca2+ chelator BAPTA. However, addition of the soluble SNARE Vam7p relieves BAPTA inhibition as effectively as Ca2+ or Mg2+, suggesting that Ca2+ does not perform a unique signaling function. When the need for Mg2+, ATP, and Sec18p for fusion is bypassed through the addition of Vam7p, vacuole fusion does not require any appreciable free divalent cations and can even be stimulated by their chelators. The similarity of these findings to those with liposomes, and the higher ion specificity of the regulation of proteins, suggests a working model in which ion interactions with bilayer lipids permit Rab- and SNARE-dependent membrane fusion.
Collapse
Affiliation(s)
- Vincent J Starai
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844, USA
| | | | | | | |
Collapse
|
26
|
Fratti RA, Jun Y, Merz AJ, Margolis N, Wickner W. Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. ACTA ACUST UNITED AC 2005; 167:1087-98. [PMID: 15611334 PMCID: PMC2172599 DOI: 10.1083/jcb.200409068] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Membrane microdomains are assembled by lipid partitioning (e.g., rafts) or by protein–protein interactions (e.g., coated vesicles). During docking, yeast vacuoles assemble “vertex” ring-shaped microdomains around the periphery of their apposed membranes. Vertices are selectively enriched in the Rab GTPase Ypt7p, the homotypic fusion and vacuole protein sorting complex (HOPS)–VpsC Rab effector complex, SNAREs, and actin. Membrane fusion initiates at vertex microdomains. We now find that the “regulatory lipids” ergosterol, diacylglycerol and 3- and 4-phosphoinositides accumulate at vertices in a mutually interdependent manner. Regulatory lipids are also required for the vertex enrichment of SNAREs, Ypt7p, and HOPS. Conversely, SNAREs and actin regulate phosphatidylinositol 3-phosphate vertex enrichment. Though the PX domain of the SNARE Vam7p has direct affinity for only 3-phosphoinositides, all the regulatory lipids which are needed for vertex assembly affect Vam7p association with vacuoles. Thus, the assembly of the vacuole vertex ring microdomain arises from interdependent lipid and protein partitioning and binding rather than either lipid partitioning or protein interactions alone.
Collapse
Affiliation(s)
- Rutilio A Fratti
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | |
Collapse
|
27
|
Jun Y, Fratti RA, Wickner W. Diacylglycerol and its formation by phospholipase C regulate Rab- and SNARE-dependent yeast vacuole fusion. J Biol Chem 2004; 279:53186-95. [PMID: 15485855 DOI: 10.1074/jbc.m411363200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although diacylglycerol (DAG) can trigger liposome fusion, biological membrane fusion requires Rab and SNARE proteins. We have investigated whether DAG and phosphoinositide-specific phospholipase C (PLC) have a role in the Rab- and SNARE-dependent homo-typic vacuole fusion in Saccharomyces cerevisiae. Vacuole fusion was blocked when DAG was sequestered by a recombinant C1b domain. DAG underwent ATP-dependent turnover during vacuole fusion, but was replenished by the hydrolysis of phosphatidylinositol 4,5-bisphosphate to DAG by PLC. The PLC inhibitors 3-nitrocoumarin and U73122 blocked vacuole fusion in vitro, whereas their inactive homologues did not. Plc1p is the only known PLC in yeast. Yeast cells lacking the PLC1 gene have many small vacuoles, indicating defects in protein trafficking to the vacuole or vacuole fusion, and purified Plc1p stimulates vacuole fusion. Docking-dependent Ca(2+) efflux is absent in plc1Delta vacuoles and was restored only upon the addition of both Plc1p and the Vam7p SNARE. However, vacuoles purified from plc1Delta strains still retain PLC activity and significant 3-nitrocoumarin- and U73122-sensitive fusion, suggesting that there is another PLC in S. cerevisiae with an important role in vacuole fusion.
Collapse
Affiliation(s)
- Youngsoo Jun
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755-3844, USA
| | | | | |
Collapse
|
28
|
Thorngren N, Collins KM, Fratti RA, Wickner W, Merz AJ. A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion. EMBO J 2004; 23:2765-76. [PMID: 15241469 PMCID: PMC514947 DOI: 10.1038/sj.emboj.7600286] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/02/2004] [Indexed: 11/09/2022] Open
Abstract
Membrane fusion requires priming, the disassembly of cis-SNARE complexes by the ATP-driven chaperones Sec18/17p. Yeast vacuole priming releases Vam7p, a soluble SNARE. Vam7p reassociation during docking allows trans-SNARE pairing and fusion. We now report that recombinant Vam7p (rVam7p) enters into complex with other SNAREs in vitro and bypasses the need for Sec17p, Sec18p, and ATP. Thus, the sole essential function of vacuole priming in vitro is the release of Vam7p from cis-SNARE complexes. In 'bypass fusion', without ATP but with added rVam7p, there are sufficient unpaired vacuolar SNAREs Vam3p, Vti1p, and Nyv1p to interact with Vam7p and support fusion. However, active SNARE proteins are not sufficient for bypass fusion. rVam7p does not bypass requirements for Rho GTPases,Vps33p, Vps39p, Vps41p, calmodulin, specific lipids, or Vph1p, a subunit of the V-ATPase. With excess rVam7p, reduced levels of PI(3)P or functional Ypt7p suffice for bypass fusion. High concentrations of rVam7p allow the R-SNARE Ykt6p to substitute for Nyv1p for fusion; this functional redundancy among vacuole SNAREs may explain why nyv1delta strains lack the vacuole fragmentation seen with mutants in other fusion catalysts.
Collapse
Affiliation(s)
- Naomi Thorngren
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Kevin M Collins
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Rutilio A Fratti
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - William Wickner
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
- Department of Biochemistry, 7200 Vail Building, Room 425 Remsen, Dartmouth Medical School, Hanover, NH 03755-3844, USA. Tel.: +1 603 650 1701; Fax: +1 603 650 1353; E-mail: ; Lab website: http://www.dartmouth.edu/~wickner
| | - Alexey J Merz
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| |
Collapse
|
29
|
Bayer MJ, Reese C, Buhler S, Peters C, Mayer A. Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel. J Cell Biol 2003; 162:211-22. [PMID: 12876274 PMCID: PMC2172786 DOI: 10.1083/jcb.200212004] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pore models of membrane fusion postulate that cylinders of integral membrane proteins can initiate a fusion pore after conformational rearrangement of pore subunits. In the fusion of yeast vacuoles, V-ATPase V0 sectors, which contain a central cylinder of membrane integral proteolipid subunits, associate to form a transcomplex that might resemble an intermediate postulated in some pore models. We tested the role of V0 sectors in vacuole fusion. V0 functions in fusion and proton translocation could be experimentally separated via the differential effects of mutations and inhibitory antibodies. Inactivation of the V0 subunit Vph1p blocked fusion in the terminal reaction stage that is independent of a proton gradient. Deltavph1 mutants were capable of docking and trans-SNARE pairing and of subsequent release of lumenal Ca2+, but they did not fuse. The Ca2+-releasing channel appears to be tightly coupled to V0 because inactivation of Vph1p by antibodies blocked Ca2+ release. Vph1 deletion on only one fusion partner sufficed to severely reduce fusion activity. The functional requirement for Vph1p correlates to V0 transcomplex formation in that both occur after docking and Ca2+ release. These observations establish V0 as a crucial factor in vacuole fusion acting downstream of trans-SNARE pairing.
Collapse
Affiliation(s)
- Martin J Bayer
- Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
30
|
Eitzen G, Wang L, Thorngren N, Wickner W. Remodeling of organelle-bound actin is required for yeast vacuole fusion. J Cell Biol 2002; 158:669-79. [PMID: 12177043 PMCID: PMC2174018 DOI: 10.1083/jcb.200204089] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Actin participates in several intracellular trafficking pathways. We now find that actin, bound to the surface of purified yeast vacuoles in the absence of cytosol or cytoskeleton, regulates the last compartment mixing stage of homotypic vacuole fusion. The Cdc42p GTPase is known to be required for vacuole fusion. We now show that proteins of the Cdc42p-regulated actin remodeling cascade (Cdc42p --> Cla4p --> Las17p/Vrp1p --> Arp2/3 complex --> actin) are enriched on isolated vacuoles. Vacuole fusion is dramatically altered by perturbation of the vacuole-bound actin, either by mutation of the ACT1 gene, addition of specific actin ligands such as latrunculin B or jasplakinolide, antibody to the actin regulatory proteins Las17p (yeast Wiskott-Aldrich syndrome protein) or Arp2/3, or deletion of actin regulatory genes. On docked vacuoles, actin is enriched at the "vertex ring" membrane microdomain where fusion occurs and is required for the terminal steps leading to membrane fusion. This role for actin may extend to other trafficking systems.
Collapse
Affiliation(s)
- Gary Eitzen
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755-3844, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Homotypic (self) fusion of yeast vacuoles, which is essential for the low copy number of this organelle, uses catalytic elements similar to those used in heterotypic vesicular trafficking reactions between different organelles throughout nature. The study of vacuole inheritance has benefited from the ease of vacuole isolation, the availability of the yeast genome sequence and numerous mutants, and from a rapid, quantitative in vitro assay of fusion. The soluble proteins and small molecules that support fusion are being defined, conserved membrane proteins that catalyze the reaction have been identified, and the vacuole membrane has been solubilized and reconstituted into fusion-competent proteoliposomes, allowing the eventual purification of all needed factors. Studies of homotypic vacuole fusion have suggested a modified paradigm of membrane fusion in which integral membrane proteins termed "SNAREs" can form stable complexes in cis (when on the same membrane) as well as in trans (when anchored to opposing membranes). Chaperones (NSF/Sec18p, LMA1, and -SNAP/Sec17p) disassemble cis-SNARE complexes to prepare for the docking of organelles rather than to drive fusion. The specificity of organelle docking resides in a cascade of trans-interactions (involving Rab-like GTPases), "tethering factors," and trans-SNARE pairing. Fusion itself, the mixing of the membrane bilayers and the organelle contents, is triggered by calcium signaling.
Collapse
Affiliation(s)
- W Wickner
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, New Hampshire 03755-3844, USA
| | | |
Collapse
|
32
|
Abstract
This review summarizes evidence that most of cell protein degradation is maintained by pathways transferring energy from glucose to reduction of enzymic and nonenzymic proteins (redox-responsive). In contrast, a major subcomponent of proteolysis is simultaneously independent of the cell redox network (redox-unresponsive). Thus far, direct and indirect redox-responsive proteolytic effector mechanisms characterized by various investigators include: several classes of proteases, some peptide protease inhibitors, substrate conjugation systems, substrate redox and folding status, cytoskeletal-membrane kinesis, metal homeostasis, and others. The present focus involves redox control of sulfhydryl proteases and proteolytic pathways of mammalian muscle; however, other mechanisms, cell types, and species are also surveyed. The diversity of redox-responsive catabolic mechanisms reveals that the machinery of protein turnover evolved with fundamental dependencies upon the cell redox network, as observed in many species. The net redox status of a reversible proteolytic effector mechanism represents the balance between combined oxidative inactivating influences versus reductive activating influences. Similar to other proteins, redox-responsive proteolytic effectors appear to be oxidized by mixed disulfide formation, nitrosation, reactive oxygen species, and associations or reactions with metal ions and various pro-oxidative metabolites. Systems reducing the proteolytic machinery include major redox enzyme chains, such as thioredoxins or glutaredoxins, and perhaps various reductive metabolites, including glutathione and dihydrolipoic acid. Much of mammalian intracellular protein degradation is reversibly responsive to noninjurious experimental intervention in the reductive energy supply-demand balance. Proteolysis is reversibly inhibited by diamide or dehydroascorbic acid; and such antiproteolytic actions are strongly dependent on the cell glucose supply. However, gross redox-responsive proteolysis is not accompanied by ATP depletion or vice versa. Redox-responsive proteolysis includes Golgi-endoplasmic reticulum degradation, lysosomal degradation, and some amount of extravesicular degradation, all comprising more than half of total cell proteolysis. Speculatively, redox-dependent proteolysis exhibits features expected of a controlling influence coordinating distinct proteolytic processes under some intracellular conditions.
Collapse
Affiliation(s)
- T D Lockwood
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
33
|
Odani S, Tominaga K, Kondou S, Hori H, Koide T, Hara S, Isemura M, Tsunasawa S. The inhibitory properties and primary structure of a novel serine proteinase inhibitor from the fruiting body of the basidiomycete, Lentinus edodes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:915-23. [PMID: 10411656 DOI: 10.1046/j.1432-1327.1999.00463.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel proteinase inhibitor, Lentinus proteinase inhibitor, has been purified from the fruiting bodies of the edible mushroom, Lentinus edodes, by buffer extraction and affinity chromatography on immobilized anhydrotrypsin. The protein simultaneously inhibits bovine beta-trypsin and alpha-chymotrypsin at independent sites, with apparent dissociation constants of 3.5 x 10(-10) M and 4 x 10(-8) M, respectively. The purified protein is eluted as two well-separated peaks on reversed-phase HPLC, one of which is inhibitory-active and the other inactive, and they are interconvertible under folding/unfolding conditions. Among the mammalian and microbial serine proteinases examined, including human enzymes of blood coagulation and fibrinolysis, activated factor XI was inhibited by the Lentinus proteinase inhibitor. Chemical modification studies suggest involvement of one or more arginine residues in the inhibition of trypsin. The complete primary structure composed of 142 amino acids with an acetylated N-terminus was determined by protein analysis. The theoretical molecular mass (15999.2) from the sequence is close to the experimental value of 15999.61 +/- 0.61 determined by mass spectrometry. Although there are no apparently homologous proteinase inhibitors in the protein database, there is a rather striking similarity to the propeptide segment of a microbial serine proteinase, as well as to the N-terminal region of the mature enzyme.
Collapse
Affiliation(s)
- S Odani
- Department of Biology, Faculty of Science, Niigata University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Xu Z, Sato K, Wickner W. LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Cell 1998; 93:1125-34. [PMID: 9657146 DOI: 10.1016/s0092-8674(00)81457-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vacuole fusion requires Sec18p (NSF), Sec17p (alpha-SNAP), Ypt7p (GTP binding protein), Vam3p (t-SNARE), Nyv1p (v-SNARE), and LMA1 (low Mr activity 1, a heterodimer of thioredoxin and I(B)2). LMA1 requires Sec18p for saturable, high-affinity binding to vacuoles, and Sec18p "priming" ATPase requires both Sec17p and LMA1. Either the sec18-1 mutation and deletion of I(B)2, or deletion of both I(B)2 and p13 (an I(B)2 homolog) causes a striking synthetic vacuole fragmentation phenotype. Upon Sec18p ATP hydrolysis, LMA1 transfers to (and stabilizes) a Vam3p complex. LMA1 is released from vacuoles in a phosphatase-regulated reaction. This LMA1 cycle explains how priming by Sec18p is coupled to t-SNARE stabilization and to fusion.
Collapse
Affiliation(s)
- Z Xu
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
35
|
Ungermann C, Nichols BJ, Pelham HR, Wickner W. A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. J Cell Biol 1998; 140:61-9. [PMID: 9425154 PMCID: PMC2132603 DOI: 10.1083/jcb.140.1.61] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Homotypic vacuole fusion in yeast requires Sec18p (N-ethylmaleimide-sensitive fusion protein [NSF]), Sec17p (soluble NSF attachment protein [alpha-SNAP]), and typical vesicle (v) and target membrane (t) SNAP receptors (SNAREs). We now report that vacuolar v- and t-SNAREs are mainly found with Sec17p as v-t-SNARE complexes in vivo and on purified vacuoles rather than only transiently forming such complexes during docking, and disrupting them upon fusion. In the priming reaction, Sec18p and ATP dissociate this v-t-SNARE complex, accompanied by the release of Sec17p. SNARE complex structure governs each functional aspect of priming, as the v-SNARE regulates the rate of Sec17p release and, in turn, Sec17p-dependent SNARE complex disassembly is required for independent function of the two SNAREs. Sec17p physically and functionally interacts largely with the t-SNARE. (a) Antibodies to the t-SNARE, but not the v-SNARE, block Sec17p release. (b) Sec17p is associated with the t-SNARE in the absence of v-SNARE, but is not bound to the v-SNARE without t-SNARE. (c) Vacuoles with t-SNARE but no v-SNARE still require Sec17p/Sec18p priming, whereas their fusion partners with v-SNARE but no t-SNARE do not. Sec18p thus acts, upon ATP hydrolysis, to disassemble the v-t-SNARE complex, prime the t-SNARE, and release the Sec17p to allow SNARE participation in docking and fusion. These studies suggest that the analogous ATP-dependent disassembly of the 20-S complex of NSF, alpha-SNAP, and v- and t-SNAREs, which has been studied in detergent extracts, corresponds to the priming of SNAREs for docking rather than to the fusion of docked membranes.
Collapse
Affiliation(s)
- C Ungermann
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844, USA
| | | | | | | |
Collapse
|