1
|
Eiers AK, Vettorazzi S, Tuckermann JP. Journey through discovery of 75 years glucocorticoids: evolution of our knowledge of glucocorticoid receptor mechanisms in rheumatic diseases. Ann Rheum Dis 2024:ard-2023-225371. [PMID: 39107081 DOI: 10.1136/ard-2023-225371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/20/2024] [Indexed: 08/09/2024]
Abstract
For three-quarters of a century, glucocorticoids (GCs) have been used to treat rheumatic and autoimmune diseases. Over these 75 years, our understanding of GCs binding to nuclear receptors, mainly the glucocorticoid receptor (GR) and their molecular mechanisms has changed dramatically. Initially, in the late 1950s, GCs were considered important regulators of energy metabolism. By the 1970s/1980s, they were characterised as ligands for hormone-inducible transcription factors that regulate many aspects of cell biology and physiology. More recently, their impact on cellular metabolism has been rediscovered. Our understanding of cell-type-specific GC actions and the crosstalk between various immune and stromal cells in arthritis models has evolved by investigating conditional GR mutant mice using the Cre/LoxP system. A major achievement in studying the complex, cell-type-specific interplay is the recent advent of omics technologies at single-cell resolution, which will provide further unprecedented insights into the cell types and factors mediating GC responses. Alongside gene-encoded factors, anti-inflammatory metabolites that participate in resolving inflammation by GCs during arthritis are just being uncovered. The translation of this knowledge into therapeutic concepts will help tackle inflammatory diseases and reduce side effects. In this review, we describe major milestones in preclinical research that led to our current understanding of GC and GR action 75 years after the first use of GCs in arthritis.
Collapse
Affiliation(s)
- Ann-Kathrin Eiers
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
2
|
Papadakos SP, Chatzikalil E, Vakadaris G, Reppas L, Arvanitakis K, Koufakis T, Siakavellas SI, Manolakopoulos S, Germanidis G, Theocharis S. Exploring the Role of GITR/GITRL Signaling: From Liver Disease to Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2609. [PMID: 39061246 PMCID: PMC11275207 DOI: 10.3390/cancers16142609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and presents a continuously growing incidence and high mortality rates worldwide. Besides advances in diagnosis and promising results of pre-clinical studies, established curative therapeutic options for HCC are not currently available. Recent progress in understanding the tumor microenvironment (TME) interactions has turned the scientific interest to immunotherapy, revolutionizing the treatment of patients with advanced HCC. However, the limited number of HCC patients who benefit from current immunotherapeutic options creates the need to explore novel targets associated with improved patient response rates and potentially establish them as a part of novel combinatorial treatment options. Glucocorticoid-induced TNFR-related protein (GITR) belongs to the TNFR superfamily (TNFRSF) and promotes CD8+ and CD4+ effector T-cell function with simultaneous inhibition of Tregs function, when activated by its ligand, GITRL. GITR is currently considered a potential immunotherapy target in various kinds of neoplasms, especially with the concomitant use of programmed cell-death protein-1 (PD-1) blockade. Regarding liver disease, a high GITR expression in liver progenitor cells has been observed, associated with impaired hepatocyte differentiation, and decreased progenitor cell-mediated liver regeneration. Considering real-world data proving its anti-tumor effect and recently published evidence in pre-clinical models proving its involvement in pre-cancerous liver disease, the idea of its inclusion in HCC therapeutic options theoretically arises. In this review, we aim to summarize the current evidence supporting targeting GITR/GITRL signaling as a potential treatment strategy for advanced HCC.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Georgios Vakadaris
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Lampros Reppas
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Spyros I. Siakavellas
- 2nd Academic Department of Internal Medicine, Liver-GI Unit, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 114 Vas. Sofias str, 11527 Athens, Greece; (S.I.S.); (S.M.)
| | - Spilios Manolakopoulos
- 2nd Academic Department of Internal Medicine, Liver-GI Unit, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 114 Vas. Sofias str, 11527 Athens, Greece; (S.I.S.); (S.M.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
3
|
Theune WC, Chen J, Theune EV, Ye X, Ménoret A, Vella AT, Wang K. Interleukin-17 directly stimulates tumor infiltrating Tregs to prevent cancer development. Front Immunol 2024; 15:1408710. [PMID: 38947320 PMCID: PMC11211274 DOI: 10.3389/fimmu.2024.1408710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Background Interleukin-17 (IL-17) family cytokines promote protective inflammation for pathogen resistance, but also facilitate autoimmunity and tumor development. A direct signal of IL-17 to regulatory T cells (Tregs) has not been reported and may help explain these dichotomous responses. Methods We generated a conditional knockout of Il17ra in Tregs by crossing Foxp3-YFP-Cre mice to Il17ra-flox mice (Il17ra ΔTreg mice). Subsequently, we adoptively transferred bone marrow cells from Il17ra ΔTreg mice to a mouse model of sporadic colorectal cancer (Cdx2-Cre +/Apc F/+), to selectively ablate IL-17 direct signaling on Tregs in colorectal cancer. Single cell RNA sequencing and bulk RNA sequencing were performed on purified Tregs from mouse colorectal tumors, and compared to those of human tumor infiltrating Treg cells. Results IL-17 Receptor A (IL-17RA) is expressed in Tregs that reside in mouse mesenteric lymph nodes and colon tumors. Ablation of IL-17RA, specifically in Tregs, resulted in increased Th17 cells, and exacerbated tumor development. Mechanistically, tumor-infiltrating Tregs exhibit a unique gene signature that is linked to their activation, maturation, and suppression function, and this signature is in part supported by the direct signaling of IL-17 to Tregs. To study pathways of Treg programming, we found that loss of IL-17RA in tumor Tregs resulted in reduced RNA splicing, and downregulation of several RNA binding proteins that are known to regulate alternative splicing and promote Treg function. Conclusion IL-17 directly signals to Tregs and promotes their maturation and function. This signaling pathway constitutes a negative feedback loop that controls cancer-promoting inflammation in CRC.
Collapse
Affiliation(s)
- William C. Theune
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Ju Chen
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Eileen Victoria Theune
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xiaoyang Ye
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
4
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining Human Regulatory T Cells beyond FOXP3: The Need to Combine Phenotype with Function. Cells 2024; 13:941. [PMID: 38891073 PMCID: PMC11172350 DOI: 10.3390/cells13110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3). While the discovery of FOXP3 was seminal to understanding the origin and biology of nTregs, there is evidence in humans that not all T cells expressing FOXP3 are regulatory, and that not all Tregs express FOXP3. Namely, the activation of human T cells induces the transient expression of FOXP3, irrespective of whether they are regulatory or inflammatory effectors, while some induced T cells that may be broadly defined as Tregs (e.g., Tr1 cells) typically lack demethylation and do not express FOXP3. Furthermore, it is unknown whether and how many nTregs exist without FOXP3 expression. Several other candidate regulatory molecules, such as GITR, Lag-3, GARP, GPA33, Helios, and Neuropilin, have been identified but subsequently discarded as Treg-specific markers. Multiparametric analyses have uncovered a plethora of Treg phenotypes, and neither single markers nor combinations thereof can define all and only Tregs. To date, only the functional capacity to inhibit immune responses defines a Treg and distinguishes Tregs from inflammatory T cells (Teffs) in humans. This review revisits current knowledge of the Treg universe with respect to their heterogeneity in phenotype and function. We propose that it is unavoidable to characterize human Tregs by their phenotype in combination with their function, since phenotype alone does not unambiguously define Tregs. There is an unmet need to align the expression of specific markers or combinations thereof with a particular suppressive function to coin functional Treg entities and categorize Treg diversity.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.J.Z.); (T.N.)
| | | | | | | |
Collapse
|
5
|
Huynh DC, Nguyen MP, Ngo DT, Nguyen XH, Nguyen DT, Mai TH, Le TH, Hoang MD, Le KL, Nguyen KQ, Nguyen VH, Kelley KW. A comprehensive analysis of the immune system in healthy Vietnamese people. Heliyon 2024; 10:e30647. [PMID: 38765090 PMCID: PMC11101793 DOI: 10.1016/j.heliyon.2024.e30647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Lifestyle, diet, socioeconomic status and genetics all contribute to heterogeneity in immune responses. Vietnam is plagued with a variety of health problems, but there are no available data on immune system values in the Vietnamese population. This study aimed to establish reference intervals for immune cell parameters specific to the healthy Vietnamese population by utilizing multi-color flow cytometry (MCFC). We provide a comprehensive analysis of total leukocyte count, quantitative and qualitative shifts within lymphocyte subsets, serum and cytokine and chemokine levels and functional attributes of key immune cells including B cells, T cells, natural killer (NK) cells and their respective subpopulations. By establishing these reference values for the Vietnamese population, these data contribute significantly to our understanding of the human immune system variations across diverse populations. These data will be of substantial comparative value and be instrumental in developing personalized medical approaches and optimizing diagnostic strategies for individuals based on their unique immune profiles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Keith W Kelley
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Benne N, Ter Braake D, Porenta D, Lau CYJ, Mastrobattista E, Broere F. Autoantigen-Dexamethasone Conjugate-Loaded Liposomes Halt Arthritis Development in Mice. Adv Healthc Mater 2024; 13:e2304238. [PMID: 38295848 DOI: 10.1002/adhm.202304238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Indexed: 02/13/2024]
Abstract
There is no curative treatment for chronic auto-inflammatory diseases including rheumatoid arthritis, and current treatments can induce off-target side effects due to systemic immune suppression. This work has previously shown that dexamethasone-pulsed tolerogenic dendritic cells loaded with the arthritis-specific antigen human proteoglycan can suppress arthritis development in a proteoglycan-induced arthritis mouse model. To circumvent ex vivo dendritic cell culture, and enhance antigen-specific effects, drug delivery vehicles, such as liposomes, provide an interesting approach. Here, this work uses anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol liposomes with enhanced loading of human proteoglycan-dexamethasone conjugates by cationic lysine tetramer addition. Antigen-pulsed tolerogenic dendritic cells induced by liposomal dexamethasone in vitro enhanced antigen-specific regulatory T cells to a similar extent as dexamethasone-induced tolerogenic dendritic cells. In an inflammatory adoptive transfer model, mice injected with antigen-dexamethasone liposomes have significantly higher antigen-specific type 1 regulatory T cells than mice injected with antigen only. The liposomes significantly inhibit the progression of arthritis compared to controls in preventative and therapeutic proteoglycan-induced arthritis mouse models. This coincides with systemic tolerance induction and an increase in IL10 expression in the paws of mice. In conclusion, a single administration of autoantigen and dexamethasone-loaded liposomes seems to be a promising antigen-specific treatment strategy for arthritis in mice.
Collapse
Affiliation(s)
- Naomi Benne
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Daniëlle Ter Braake
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Deja Porenta
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Chun Yin Jerry Lau
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Enrico Mastrobattista
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| |
Collapse
|
7
|
Moussa P, Kurzrock R, Nishizaki D, Miyashita H, Lee S, Nikanjam M, Pabla S, Nesline MK, Ko H, Conroy JM, DePietro P, Sicklick JK, Kato S. Transcriptomic analysis of GITR and GITR ligand reveals cancer immune heterogeneity with implications for GITR targeting. Am J Cancer Res 2024; 14:1634-1648. [PMID: 38726288 PMCID: PMC11076267 DOI: 10.62347/eced5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
Glucocorticoid-induced tumor necrosis factor related protein (GITR) is a transmembrane protein expressed mostly on CD25+CD4+ regulatory T-cells (Tregs) and upregulated on all T-cells upon activation. It is a T-cell co-stimulatory receptor and has demonstrated promising anti-tumor activity in pre-clinical studies. To date, however, the efficacy of GITR agonism has been discouraging in clinical trials. This study explores GITR and GITR ligand (GITR-L) ribonucleic acid (RNA) expression in solid tumors in an attempt to delineate causes for variable responses to GITR agonists. RNA expression levels of 514 patients with a variety of cancer types were normalized to internal housekeeping gene profiles and ranked as percentiles. 99/514 patients (19.3%) had high GITR expression (defined as ≥ 75th percentile). Breast and lung cancer had the highest proportion of patients with high GITR expression (39% and 35%, respectively). The expression of concomitant high GITR and low-moderate GITR-L expression (defined as <75th percentile) was present in 31% and 30% of patients with breast and lung cancer respectively. High GITR expression also showed a significant independent association with high RNA expression of other immune modulator proteins, namely, PD-L1 immunohistochemistry (IHC) ≥1 (odds ratio (OR) 2.15, P=0.008), CTLA4 (OR=2.17, P=0.05) and OX40 high RNA expression (OR=2.64, P=0.001). Overall, these results suggest that breast and lung cancer have a high proportion of patients with a GITR and GITR-L RNA expression profile that merits further investigation in GITR agonism studies. The association of high GITR expression with high CTLA4 and OX40 RNA expression, as well as positive PD-L1 IHC, provides a rationale for a combination approach targeting these specific immune modulator proteins in patients whose tumors show such co-expression.
Collapse
Affiliation(s)
- Peter Moussa
- Department of Medicine, Division of Hematology-Oncology, Moores Cancer Center, UC San DiegoLa Jolla, CA, The United States
| | - Razelle Kurzrock
- Department of Medicine, Division of Hematology-Oncology, MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of WisconsinMilwaukee, WI, The United States
| | - Daisuke Nishizaki
- Department of Medicine, Division of Hematology-Oncology, Moores Cancer Center, UC San DiegoLa Jolla, CA, The United States
| | - Hirotaka Miyashita
- Department of Medicine, Division of Hematology-Oncology, Dartmouth Cancer CenterLebanon, NH, The United States
| | - Suzanna Lee
- Department of Medicine, Division of Hematology-Oncology, Moores Cancer Center, UC San DiegoLa Jolla, CA, The United States
| | - Mina Nikanjam
- Department of Medicine, Division of Hematology-Oncology, Moores Cancer Center, UC San DiegoLa Jolla, CA, The United States
| | | | | | - Heidi Ko
- Labcorp OncologyDurham, NC, The United States
| | | | | | - Jason K Sicklick
- Department of Surgery, Division of Surgical Oncology, UC San DiegoSan Diego, CA, The United States
- Department of Pharmacology, UC San DiegoSan Diego, CA, The United States
- Structural and Functional Genomics Program, Moores Cancer Center, UC San DiegoLa Jolla, CA, The United States
| | - Shumei Kato
- Department of Medicine, Division of Hematology-Oncology, Moores Cancer Center, UC San DiegoLa Jolla, CA, The United States
| |
Collapse
|
8
|
Yu X, Li W, Li Z, Wu Q, Sun S. Influence of Microbiota on Tumor Immunotherapy. Int J Biol Sci 2024; 20:2264-2294. [PMID: 38617537 PMCID: PMC11008264 DOI: 10.7150/ijbs.91771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
The role of the microbiome in immunotherapy has recently garnered substantial attention, with molecular studies and clinical trials providing emerging evidence on the pivotal influence of the microbiota in enhancing therapeutic outcomes via immune response modulation. However, the impact of microbial communities can considerably vary across individuals and different immunotherapeutic approaches, posing prominent challenges in harnessing their potential. In this comprehensive review, we outline the current research applications in tumor immunotherapy and delve into the possible mechanisms through which immune function is influenced by microbial communities in various body sites, encompassing those in the gut, extraintestinal barrier, and intratumoral environment. Furthermore, we discuss the effects of diverse microbiome-based strategies, including probiotics, prebiotics, fecal microbiota transplantation, and the targeted modulation of specific microbial taxa, and antibiotic treatments on cancer immunotherapy. All these strategies potentially have a profound impact on immunotherapy and pave the way for personalized therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Wenge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, P. R. China
| | - Zhi Li
- Department of Orthopedics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
9
|
Chen Z, Zhang Y, Kwak-Kim J, Wang W. Memory regulatory T cells in pregnancy. Front Immunol 2023; 14:1209706. [PMID: 37954599 PMCID: PMC10637476 DOI: 10.3389/fimmu.2023.1209706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Pregnancy requires the process of maternal immune tolerance to semi-allogeneic embryos. In contrast, an overreactive maternal immune system to embryo-specific antigens is likely to result in the rejection of embryos while damaging the invading placenta, such that the likelihood of adverse pregnancy outcomes can be increased. Regulatory T cells (Tregs) are capable of suppressing excessive immune responses and regulating immune homeostasis. When stimulating Tregs, specific antigens will differentiate into memory Tregs with long-term survival and rapid and powerful immune regulatory ability. Immunomodulatory effects mediated by memory Tregs at the maternal-fetal interface take on critical significance in a successful pregnancy. The impaired function of memory Tregs shows a correlation with various pregnancy complications (e.g., preeclampsia, gestational diabetes mellitus, and recurrent pregnancy losses). However, the differentiation process and characteristics of memory Tregs, especially their role in pregnancy, remain unclear. In this study, a review is presented in terms of memory Tregs differentiation and activation, the characteristics of memory Tregs and their role in pregnancy, and the correlation between memory Tregs and pregnancy complications. Furthermore, several potential therapeutic methods are investigated to restore the function of memory Tregs in accordance with immunopathologies arising from memory Tregs abnormalities and provide novel targets for diagnosing and treating pregnancy-associated diseases.
Collapse
Affiliation(s)
- Zeyang Chen
- School of Medicine, Qingdao University, Qingdao, China
- Reproduction Medical Center, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanan Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Wenjuan Wang
- Reproduction Medical Center, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Ruiz C, Alborelli I, Manzo M, Calgua B, Keller E, Vuaroqueaux V, Quagliata L, Rentsch CA, Spagnoli GC, Diener PA, Bubendorf L, Morant R, Eppenberger-Castori S. Critical Evaluation of Transcripts and Long Noncoding RNA Expression Levels in Prostate Cancer Following Radical Prostatectomy. Pathobiology 2023; 90:400-408. [PMID: 37463569 PMCID: PMC10733933 DOI: 10.1159/000531175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/18/2023] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION The clinical course of prostate cancer (PCa) is highly variable, ranging from indolent behavior to rapid metastatic progression. The Gleason score is widely accepted as the primary histologic assessment tool with significant prognostic value. However, additional biomarkers are required to better stratify patients, particularly those at intermediate risk. METHODS In this study, we analyzed the expression of 86 cancer hallmark genes in 171 patients with PCa who underwent radical prostatectomy and focused on the outcome of the 137 patients with postoperative R0-PSA0 status. RESULTS Low expression of the IGF1 and SRD52A, and high expression of TIMP2, PLAUR, S100A2, and CANX genes were associated with biochemical recurrence (BR), defined as an increase of prostate-specific antigen above 0.2 ng/mL. Furthermore, the analysis of the expression of 462 noncoding RNAs (ncRNA) in a sub-cohort of 39 patients with Gleason score 7 tumors revealed that high levels of expression of the ncRNAs LINC00624, LINC00593, LINC00482, and cd27-AS1 were significantly associated with BR. Our findings provide further evidence for tumor-promoting roles of ncRNAs in PCa patients at intermediate risk. The strong correlation between expression of LINC00624 and KRT8 gene, encoding a well-known cell surface protein present in PCa, further supports a potential contribution of this ncRNA to PCa progression. CONCLUSION While larger and further studies are needed to define the role of these genes/ncRNA in PCa, our findings pave the way toward the identification of a subgroup of patients at intermediate risk who may benefit from adjuvant treatments and new therapeutic agents.
Collapse
Affiliation(s)
- Christian Ruiz
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ilaria Alborelli
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Massimiliano Manzo
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Byron Calgua
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Eveline Keller
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Luca Quagliata
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Medical Affairs Team, Genetic Sciences Group, Thermo Fisher Scientific, Monza, Italy
| | - Cyrill A. Rentsch
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Giulio C. Spagnoli
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | | | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Rudolf Morant
- Tumor-und Brustzentrum ZeTuP, St. Gallen, Switzerland
| | - on behalf of the former members of the Urology Team in St. Gallen**
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- 4HF Biotec, Freiburg, Germany
- Medical Affairs Team, Genetic Sciences Group, Thermo Fisher Scientific, Monza, Italy
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
- Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Tumor-und Brustzentrum ZeTuP, St. Gallen, Switzerland
| | | |
Collapse
|
11
|
Steele H, Cheng J, Willicut A, Dell G, Breckenridge J, Culberson E, Ghastine A, Tardif V, Herro R. TNF superfamily control of tissue remodeling and fibrosis. Front Immunol 2023; 14:1219907. [PMID: 37465675 PMCID: PMC10351606 DOI: 10.3389/fimmu.2023.1219907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Fibrosis is the result of extracellular matrix protein deposition and remains a leading cause of death in USA. Despite major advances in recent years, there remains an unmet need to develop therapeutic options that can effectively degrade or reverse fibrosis. The tumor necrosis super family (TNFSF) members, previously studied for their roles in inflammation and cell death, now represent attractive therapeutic targets for fibrotic diseases. In this review, we will summarize select TNFSF and their involvement in fibrosis of the lungs, the heart, the skin, the gastrointestinal tract, the kidney, and the liver. We will emphasize their direct activity on epithelial cells, fibroblasts, and smooth muscle cells. We will further report on major clinical trials targeting these ligands. Whether in isolation or in combination with other anti-TNFSF member or treatment, targeting this superfamily remains key to improve efficacy and selectivity of currently available therapies for fibrosis.
Collapse
Affiliation(s)
- Hope Steele
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Jason Cheng
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ashley Willicut
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Garrison Dell
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Joey Breckenridge
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Erica Culberson
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew Ghastine
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Virginie Tardif
- Normandy University, UniRouen, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1096 (EnVI Laboratory), Rouen, France
| | - Rana Herro
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
12
|
Nagai H, Azuma M, Sato A, Shibui N, Ogawara S, Tsutsui Y, Suzuki A, Wakaizumi T, Ito A, Matsuyama S, Morita M, Hikosaka Kuniishi M, Ishii N, So T. Fundamental Characterization of Antibody Fusion-Single-Chain TNF Recombinant Proteins Directed against Costimulatory TNF Receptors Expressed by T-Lymphocytes. Cells 2023; 12:1596. [PMID: 37371066 DOI: 10.3390/cells12121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The costimulatory signal regulated by the members of the tumor necrosis factor receptor (TNFR) superfamily expressed by T cells plays essential roles for T cell responses and has emerged as a promising target for cancer immunotherapy. However, it is unclear how the difference in TNFR costimulation contributes to T cell responses. In this study, to clarify the functional significance of four different TNFRs, OX40, 4-1BB, CD27 and GITR, we prepared corresponding single-chain TNF ligand proteins (scTNFLs) connected to IgG Fc domain with beneficial characteristics, i.e., Fc-scOX40L, Fc-sc4-1BBL, Fc-scCD27L (CD70) and Fc-scGITRL. Without intentional cross-linking, these soluble Fc-scTNFL proteins bound to corresponding TNFRs induced NF-kB signaling and promoted proliferative and cytokine responses in CD4+ and CD8+ T cells with different dose-dependencies in vitro. Mice injected with one of the Fc-scTNFL proteins displayed significantly augmented delayed-type hypersensitivity responses, showing in vivo activity. The results demonstrate that each individual Fc-scTNFL protein provides a critical costimulatory signal and exhibits quantitatively distinct activity toward T cells. Our findings provide important insights into the TNFR costimulation that would be valuable for investigators conducting basic research in cancer immunology and also have implications for T cell-mediated immune regulation by designer TNFL proteins.
Collapse
Affiliation(s)
- Hodaka Nagai
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Mitsuki Azuma
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Ayaka Sato
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Nagito Shibui
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Sayaka Ogawara
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yuta Tsutsui
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Ayano Suzuki
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Tomomi Wakaizumi
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Aya Ito
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Shimpei Matsuyama
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Masashi Morita
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Mari Hikosaka Kuniishi
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
13
|
Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov 2023; 22:213-234. [PMID: 36509911 DOI: 10.1038/s41573-022-00615-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Over the past two decades, elucidation of the genetic defects that underlie cancer has resulted in a plethora of novel targeted cancer drugs. Although these agents can initially be highly effective, resistance to single-agent therapies remains a major challenge. Combining drugs can help avoid resistance, but the number of possible drug combinations vastly exceeds what can be tested clinically, both financially and in terms of patient availability. Rational drug combinations based on a deep understanding of the underlying molecular mechanisms associated with therapy resistance are potentially powerful in the treatment of cancer. Here, we discuss the mechanisms of resistance to targeted therapies and how effective drug combinations can be identified to combat resistance. The challenges in clinically developing these combinations and future perspectives are considered.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - René Bernards
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Hornick EL, Bishop GA. TRAF3: Guardian of T lymphocyte functions. Front Immunol 2023; 14:1129251. [PMID: 36814922 PMCID: PMC9940752 DOI: 10.3389/fimmu.2023.1129251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) is an adapter protein with many context-specific functions. Early studies of lymphocyte TRAF3 hinted at TRAF3's importance for T cell function, but elucidation of specific mechanisms was delayed by early lethality of globally TRAF3-/- mice. Development of a conditional TRAF3-deficient mouse enabled important descriptive and mechanistic insights into how TRAF3 promotes optimal T cell function. Signaling through the T cell antigen receptor (TCR) fails to induce normal proliferation and survival in TRAF3 -/- T cells, and TCR-activated cells in vitro and in vivo have deficient cytokine production. These defects can be traced to incorrect localization and function of negative regulatory phosphatases acting at different parts of the signaling cascade, as can dysregulated effector responses and memory T cell homeostasis in vivo and an enlarged regulatory T cell (Treg) compartment. The important regulatory activity of TRAF3 is also evident at members of the TNFR superfamily and cytokine receptors. Here, we review significant advances in mechanistic understanding of how TRAF3 regulates T cell differentiation and function, through modulation of signaling through the TCR, costimulatory receptors, and cytokine receptors. Finally, we briefly discuss the recent identification of families carrying single allele loss-of-function mutations in TRAF3, and compare the findings in their T cells with the T cell defects identified in mice whose T cells completely lack T cell TRAF3. Together, the body of work describing TRAF3-mediated regulation of T cell effector function and differentiation frame TRAF3 as an important modulator of T cell signal integration.
Collapse
Affiliation(s)
- Emma L Hornick
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Gail A Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, The University of Iowa, Iowa City, IA, United States.,Research, Iowa City Veterans Affairs Medical Center, Iowa City, IA, United States
| |
Collapse
|
15
|
Abdeladhim M, Karnell JL, Rieder SA. In or out of control: Modulating regulatory T cell homeostasis and function with immune checkpoint pathways. Front Immunol 2022; 13:1033705. [PMID: 36591244 PMCID: PMC9799097 DOI: 10.3389/fimmu.2022.1033705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/16/2022] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are the master regulators of immunity and they have been implicated in different disease states such as infection, autoimmunity and cancer. Since their discovery, many studies have focused on understanding Treg development, differentiation, and function. While there are many players in the generation and function of truly suppressive Tregs, the role of checkpoint pathways in these processes have been studied extensively. In this paper, we systematically review the role of different checkpoint pathways in Treg homeostasis and function. We describe how co-stimulatory and co-inhibitory pathways modulate Treg homeostasis and function and highlight data from mouse and human studies. Multiple checkpoint pathways are being targeted in cancer and autoimmunity; therefore, we share insights from the clinic and discuss the effect of experimental and approved therapeutics on Treg biology.
Collapse
|
16
|
Que W, Ma K, Hu X, Guo WZ, Li XK. Combinations of anti-GITR antibody and CD28 superagonist induce permanent allograft acceptance by generating type 1 regulatory T cells. SCIENCE ADVANCES 2022; 8:eabo4413. [PMID: 35921418 PMCID: PMC9348800 DOI: 10.1126/sciadv.abo4413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Type 1 regulatory T (Tr1) cells represent a subset of IL-10-producing CD4+Foxp3- T cells and play key roles in promoting transplant tolerance. However, no effective pharmacological approaches have been able to induce Tr1 cells in vivo. We herein report the combined use of a CD28 superagonist (D665) and anti-glucocorticoid-induced tumor necrosis factor receptor-related protein monoclonal antibody (G3c) to induce Tr1 cells in vivo. Large amounts of IL-10/interferon-γ-co-producing CD4+Foxp3- Tr1 cells were generated by D665-G3c sequential treatment in mice. Mechanistic studies suggested that D665-G3c induced Tr1 cells via transcription factors Prdm1 and Maf. G3c contributed to Tr1 cell generation via the activation of mitogen-activated protein kinase-signal transducer and activator of transcription 3 signaling. Tr1 cells suppressed dendritic cell maturation and T cell responses and mediated permanent allograft acceptance in fully major histocompatibility complex-mismatched mice in an IL-10-dependent manner. In vivo Tr1 cell induction is a promising strategy for achieving transplant tolerance.
Collapse
Affiliation(s)
- Weitao Que
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kuai Ma
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xin Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
17
|
Wiles KN, Tsikretsis LE, Alioto C, de Viveiros PH, Villaflor VM, Tétreault MP. GITR agonistic stimulation enhances the anti-tumor immune response in a mouse model of ESCC. Carcinogenesis 2022; 43:908-918. [PMID: 35880612 PMCID: PMC9587681 DOI: 10.1093/carcin/bgac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/12/2022] Open
Abstract
Esophageal cancer is a significant health burden in the United States and worldwide and is the 8 th leading cause of cancer-related death. Over 90% of esophageal cancers are squamous cell cancers (ESCC). Despite the development of new therapies, the overall 5-year survival rate remains lower than 20%. Recent clinical trials of immunotherapy approaches in ESCC have shown that blocking PD-1/PD-L1 interactions can reduce tumor burden and increase survival, but this only occurs in a fraction of patients. This emphasizes the need for additional therapeutic options to improve overall response rates, duration of response, and overall survival. Glucocorticoid-induced TNFR-related protein (GITR) stimulation has emerged as a promising immunotherapy target, as its stimulation appears to promote tumor regression. In this study, we evaluated the consequences of GITR agonistic stimulation with the DTA-1 antibody (anti-GITR agonist) on esophageal squamous cell carcinoma (ESCC) progression. Increased expression of GITR was observed in esophageal tumors from ESCC patients in comparison to normal adjacent tissue and in a mouse model of ESCC. 100% of mice treated with 4-NQO/IgG control antibody developed invasive squamous cell carcinoma. Less advanced esophageal tumors were seen in mice treated with 4-NQO/anti-GITR agonist compared to 4-NQO/IgG treatment. 4-NQO/anti-GITR agonist-treated mice demonstrated a significant increase in mucosal CTL/Treg ratios as well as decreased gene expression profiles of pathways related to esophageal squamous cell carcinogenesis. Thus, GITR agonism merits further study as a treatment strategy for ESCC patients.
Collapse
Affiliation(s)
- Kelsey Nicole Wiles
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611-3010, USA
| | - Lia Elyse Tsikretsis
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611-3010, USA
| | - Cara Alioto
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611-3010, USA
| | - Pedro Hermida de Viveiros
- Department of Medicine, Hematology and Oncology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611-3010, USA
| | - Victoria M Villaflor
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Marie-Pier Tétreault
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611-3010, USA
| |
Collapse
|
18
|
Hernandez-Guerrero T, Moreno V. GITR antibodies in cancer: not ready for prime time. Clin Cancer Res 2022; 28:3905-3907. [PMID: 35834593 DOI: 10.1158/1078-0432.ccr-22-1489] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
GITR agonistic antibodies are expected to increase the antitumor response mainly by reducing the effect of Foxp3+ T regulatory cells. TRX-518 is a novel GITR agonist that has shown good pharmacodynamic activity by depleting T regs in preclinical models, with limited clinical activity demonstrated in patients with advanced solid tumors.
Collapse
Affiliation(s)
| | - Victor Moreno
- START Madrid-FJD, Hospital Universitario Fundacion Jimenez Diaz, Madrid, Spain
| |
Collapse
|
19
|
Tong Q, Liu H, Qi Q, Dai C, Yang T, Qian F. Development of a fully human anti-GITR antibody with potent antitumor activity using H2L2 mice. FEBS Open Bio 2022; 12:1542-1557. [PMID: 35674216 PMCID: PMC9340783 DOI: 10.1002/2211-5463.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Glucocorticoid‐induced TNF receptor‐related (GITR) can act as a co‐stimulatory receptor, representing a potential target for safely enhancing immunotherapy efficacy. GITR is triggered by a GITR ligand or an agonist antibody and activates CD8+ and CD4+ effector T cells, reducing tumor‐infiltrating Treg numbers and resulting in activation of immune responses and tumor cell destruction by effector T cells. GITR is an attractive target for immunotherapy, especially in combination therapy with immune checkpoint inhibitors, as is being explored in clinical trials. Using H2L2 transgenic mice encoding the human immunoglobulin variable region and hybridoma technology, we generated a panel of fully human antibodies that showed excellent specific affinity and strong activation of human T cells. After conversion to fully human antibodies and engineering modification, we obtained an anti‐GITR antibody hab019e2 with enhanced antitumor activity in a B‐hGITR MC38 mouse model compared to Tab9H6V3, an anti‐GITR antibody that activates T cells and inhibits Treg suppression from XenoMouse. As a fully human antibody with its posttranslational modification hot spot removed, the hab019e2 antibody exerted more potent therapeutic effects, and may have potential as a novel and developable antibody targeting GITR for follow‐up drug studies.
Collapse
Affiliation(s)
- Qiuli Tong
- Shanghai Public Health Clinical Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Chempartner Co., Ltd, China
| | - Hu Liu
- Shanghai Chempartner Co., Ltd, China
| | | | | | | | - Feng Qian
- Shanghai Public Health Clinical Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Jiang Z, Zhu H, Wang P, Que W, Zhong L, Li X, Du F. Different subpopulations of regulatory T cells in human autoimmune disease, transplantation, and tumor immunity. MedComm (Beijing) 2022; 3:e137. [PMID: 35474948 PMCID: PMC9023873 DOI: 10.1002/mco2.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
CD4+CD25+ regulatory T cells (Tregs), a subpopulation of naturally CD4+ T cells that characteristically express transcription factor Forkhead box P3 (FOXP3), play a pivotal role in the maintenance of immune homeostasis and the prevention of autoimmunity. With the development of biological technology, the understanding of plasticity and stability of Tregs has been further developed. Recent studies have suggested that human Tregs are functionally and phenotypically diverse. The functions and mechanisms of different phenotypes of Tregs in different disease settings, such as tumor microenvironment, autoimmune diseases, and transplantation, have gradually become hot spots of immunology research that arouse extensive attention. Among the complex functions, CD4+CD25+FOXP3+ Tregs possess a potent immunosuppressive capacity and can produce various cytokines, such as IL‐2, IL‐10, and TGF‐β, to regulate immune homeostasis. They can alleviate the progression of diseases by resisting inflammatory immune responses, whereas promoting the poor prognosis of diseases by helping cells evade immune surveillance or suppressing effector T cells activity. Therefore, methods for targeting Tregs to regulate their functions in the immune microenvironment, such as depleting them to strengthen tumor immunity or expanding them to treat immunological diseases, need to be developed. Here, we discuss that different subpopulations of Tregs are essential for the development of immunotherapeutic strategies involving Tregs in human diseases.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Haitao Zhu
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guizhou P. R. China
| | - Pusen Wang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Weitao Que
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Lin Zhong
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Xiao‐Kang Li
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
- Division of Transplantation Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Futian Du
- Department of Hepatobiliary Surgery Weifang People's Hospital Shandong P. R. China
| |
Collapse
|
21
|
He C, Maniyar RR, Avraham Y, Zappasodi R, Rusinova R, Newman W, Heath H, Wolchok JD, Dahan R, Merghoub T, Meyerson JR. Therapeutic antibody activation of the glucocorticoid-induced TNF receptor by a clustering mechanism. SCIENCE ADVANCES 2022; 8:eabm4552. [PMID: 35213218 PMCID: PMC8880771 DOI: 10.1126/sciadv.abm4552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/12/2022] [Indexed: 05/11/2023]
Abstract
GITR is a TNF receptor, and its activation promotes immune responses and drives antitumor activity. The receptor is activated by the GITR ligand (GITRL), which is believed to cluster receptors into a high-order array. Immunotherapeutic agonist antibodies also activate the receptor, but their mechanisms are not well characterized. We solved the structure of full-length mouse GITR bound to Fabs from the antibody DTA-1. The receptor is a dimer, and each subunit binds one Fab in an orientation suggesting that the antibody clusters receptors. Binding experiments with purified proteins show that DTA-1 IgG and GITRL both drive extensive clustering of GITR. Functional data reveal that DTA-1 and the anti-human GITR antibody TRX518 activate GITR in their IgG forms but not as Fabs. Thus, the divalent character of the IgG agonists confers an ability to mimic GITRL and cluster and activate GITR. These findings will inform the clinical development of this class of antibodies for immuno-oncology.
Collapse
Affiliation(s)
- Changhao He
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Rachana R. Maniyar
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yahel Avraham
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | | | | | - Jedd D. Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rony Dahan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joel R. Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
22
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
23
|
Stirling ER, Bronson SM, Mackert JD, Cook KL, Triozzi PL, Soto-Pantoja DR. Metabolic Implications of Immune Checkpoint Proteins in Cancer. Cells 2022; 11:179. [PMID: 35011741 PMCID: PMC8750774 DOI: 10.3390/cells11010179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/29/2022] Open
Abstract
Expression of immune checkpoint proteins restrict immunosurveillance in the tumor microenvironment; thus, FDA-approved checkpoint inhibitor drugs, specifically PD-1/PD-L1 and CTLA-4 inhibitors, promote a cytotoxic antitumor immune response. Aside from inflammatory signaling, immune checkpoint proteins invoke metabolic reprogramming that affects immune cell function, autonomous cancer cell bioenergetics, and patient response. Therefore, this review will focus on the metabolic alterations in immune and cancer cells regulated by currently approved immune checkpoint target proteins and the effect of costimulatory receptor signaling on immunometabolism. Additionally, we explore how diet and the microbiome impact immune checkpoint blockade therapy response. The metabolic reprogramming caused by targeting these proteins is essential in understanding immune-related adverse events and therapeutic resistance. This can provide valuable information for potential biomarkers or combination therapy strategies targeting metabolic pathways with immune checkpoint blockade to enhance patient response.
Collapse
Affiliation(s)
- Elizabeth R. Stirling
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
| | - Steven M. Bronson
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jessica D. Mackert
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Katherine L. Cook
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Pierre L. Triozzi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Department of Hematology and Oncology, Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - David R. Soto-Pantoja
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
24
|
Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol 2022; 19:37-50. [PMID: 34580473 DOI: 10.1038/s41571-021-00552-7] [Citation(s) in RCA: 384] [Impact Index Per Article: 192.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
The discovery and clinical implementation of immune-checkpoint inhibitors (ICIs) targeting CTLA4, PD-1 and PD-L1 has revolutionized the treatment of cancer, as recognized by the 2018 Nobel Prize for Medicine and Physiology. This groundbreaking new approach has improved the outcomes of patients with various forms of advanced-stage cancer; however, the majority of patients receiving these therapies, even in combination, do not derive clinical benefit. Further development of agents targeting additional immune checkpoints, co-stimulatory receptors and/or co-inhibitory receptors that control T cell function is therefore critical. In this Review, we discuss the translational potential and clinical development of agents targeting both co-stimulatory and co-inhibitory T cell receptors. Specifically, we describe their mechanisms of action, and provide an overview of ongoing clinical trials involving novel ICIs including those targeting LAG3, TIM3, TIGIT and BTLA as well as agonists of the co-stimulatory receptors GITR, OX40, 41BB and ICOS. We also discuss several additional approaches, such as harnessing T cell metabolism, in particular via adenosine signalling, inhibition of IDO1, and targeting changes in glucose and fatty acid metabolism. We conclude that further efforts are needed to optimize the timing of combination ICI approaches and, most importantly, to individualize immunotherapy based on both patient-specific and tumour-specific characteristics.
Collapse
|
25
|
Xie Y, Xie F, Zhang L, Zhou X, Huang J, Wang F, Jin J, Zhang L, Zeng L, Zhou F. Targeted Anti-Tumor Immunotherapy Using Tumor Infiltrating Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101672. [PMID: 34658167 PMCID: PMC8596143 DOI: 10.1002/advs.202101672] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/21/2021] [Indexed: 05/08/2023]
Abstract
In the tumor microenvironment, T cells, B cells, and many other cells play important and distinct roles in anti-tumor immunotherapy. Although the immune checkpoint blockade and adoptive cell transfer can elicit durable clinical responses, only a few patients benefit from these therapies. Increased understanding of tumor-infiltrating immune cells can provide novel therapies and drugs that induce a highly specific anti-tumor immune response to certain groups of patients. Herein, the recent research progress on tumor-infiltrating B cells and T cells, including CD8+ T cells, CD4+ T cells, and exhausted T cells and their role in anti-tumor immunity, is summarized. Moreover, several anti-tumor therapy approaches are discussed based on different immune cells and their prospects for future applications in cancer treatment.
Collapse
Affiliation(s)
- Yifan Xie
- School of MedicineZhejiang University City CollegeHangzhou310015China
- College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Lei Zhang
- Department of Orthopaedic SurgeryThe Third Affiliated Hospital of Wenzhou Medical UniversityRui'an325200China
| | - Xiaoxue Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Jun Huang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Fangwei Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Jin Jin
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Long Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Linghui Zeng
- School of MedicineZhejiang University City CollegeHangzhou310015China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
26
|
Zhao M, Fu L, Chai Y, Sun M, Li Y, Wang S, Qi J, Zeng B, Kang L, Gao GF, Tan S. Atypical TNF-TNFR superfamily binding interface in the GITR-GITRL complex for T cell activation. Cell Rep 2021; 36:109734. [PMID: 34551288 DOI: 10.1016/j.celrep.2021.109734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022] Open
Abstract
Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR) is a critical regulatory molecule in modulation of T cell immune responses. Here we report the mouse GITR (mGITR) and mGITR ligand (mGITRL) complex structure and find that the binding interface of mGITR and mGITRL is distinct from the typical tumor necrosis factor superfamily (TNFSF)/TNF receptor superfamily (TNFRSF) members. mGITR binds to its ligand with a single domain, whereas the binding interface on mGITRL is located on the side, which is distal from conserved binding sites of TNFSF molecules. Mutational analysis reveals that the binding interface of GITR/GITRL in humans is conserved with that in the mouse. Substitution of key interacting D93-I94-V95 (DIV) in mGITR with the corresponding K93-F94-S95 (KFS) in human GITR enables cross-recognition with human GITRL and cross-activation of receptor signaling. The findings of this study substantially expand our understanding of the interaction of TNFSF/TNFRSF superfamily molecules and can benefit the future design of biologics by targeting GITR/GITRL.
Collapse
Affiliation(s)
- Min Zhao
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Fu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yan Chai
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuo Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Zeng
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shuguang Tan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
27
|
Diverse functions and mechanisms of regulatory T cell in ischemic stroke. Exp Neurol 2021; 343:113782. [PMID: 34116055 DOI: 10.1016/j.expneurol.2021.113782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 12/28/2022]
Abstract
The inflammatory and immune processes are key pathophysiological processes in the ischemic stroke, including leukocyte infiltration and destruction of the blood-brain-barrier (BBB), which further lead to increased post-ischemic inflammation. Regulatory T cells (Tregs) are a specific subset of T lymphocytes that play a pivotal role in suppressing the activation of immune system, maintaining immune homeostasis, and regulating inflammation induced by pathogens and environmental toxins. We would like to discuss the paradox function of Tregs in ischemic stroke. The accumulating data indicate that Tregs are involved in the immune regulation and self-tolerance after ischemic stroke, contributing the outcome of ischemic stroke. Tregs could resist immune response overactivation, and were supposed to be the endogenous regulatory factors to control the immune response of ischemic brain. Although, there are still some controversies and unresolved issues about the functions and mechanisms of Tregs in ischemic stroke. More and more attention has been paid to Tregs in the pathogenesis of ischemic stroke and it might be a potential therapeutic target in the future. In this review, we will summarize the recent findings on the specific functions and mechanisms of Tregs and discuss its potential therapeutic role in ischemic stroke.
Collapse
|
28
|
Bosmans LA, Shami A, Atzler D, Weber C, Gonçalves I, Lutgens E. Glucocorticoid induced TNF receptor family-related protein (GITR) - A novel driver of atherosclerosis. Vascul Pharmacol 2021; 139:106884. [PMID: 34102305 DOI: 10.1016/j.vph.2021.106884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a lipid-driven, chronic inflammatory disease. In spite of efficient lipid lowering treatments, such as statins and PCSK9 inhibitors, patients, especially those with elevated inflammatory biomarkers, still have a significant residual cardiovascular disease risk. Novel drugs targeting inflammatory mediators are needed to further reduce this residual risk. Agonistic immune checkpoint proteins, including CD86, CD40L and CD40, have been shown to be drivers of atherosclerosis. Recently, glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR), a co-stimulatory immune checkpoint protein, was identified to be pivotal in cardiovascular disease. Cardiovascular patients have elevated soluble GITR plasma levels compared to healthy controls. Furthermore, in human carotid endarterectomy plaques, GITR expression was higher in plaques from symptomatic compared to asymptomatic patients and correlated with features of plaque vulnerability. Moreover, depleting GITR reduced atherosclerotic plaque development in mice. GITR-deficient monocytes and macrophages exhibited less inflammatory potential and reduced migratory capacity. In this review, we discuss GITR's effects on various immune cells, mechanisms, signalling pathways and finally GITR's potential as a novel drug target in atherosclerosis.
Collapse
Affiliation(s)
- Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
| | - Annelie Shami
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Dorothee Atzler
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität (LMU Munich), Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität (LMU Munich), Munich, Germany
| | - Christian Weber
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität (LMU Munich), Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, Malmö, Sweden; Department of Cardiology, Skåne University Hospital, Sweden
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands; Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität (LMU Munich), Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
29
|
Shami A, Atzler D, Bosmans LA, Winkels H, Meiler S, Lacy M, van Tiel C, Ta Megens R, Nitz K, Baardman J, Kusters P, Seijkens T, Buerger C, Janjic A, Riccardi C, Edsfeldt A, Monaco C, Daemen M, de Winther MPJ, Nilsson J, Weber C, Gerdes N, Gonçalves I, Lutgens E. Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans. Eur Heart J 2021; 41:2938-2948. [PMID: 32728688 DOI: 10.1093/eurheartj/ehaa484] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/21/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS GITR-a co-stimulatory immune checkpoint protein-is known for both its activating and regulating effects on T-cells. As atherosclerosis bears features of chronic inflammation and autoimmunity, we investigated the relevance of GITR in cardiovascular disease (CVD). METHODS AND RESULTS GITR expression was elevated in carotid endarterectomy specimens obtained from patients with cerebrovascular events (n = 100) compared to asymptomatic patients (n = 93) and correlated with parameters of plaque vulnerability, including plaque macrophage, lipid and glycophorin A content, and levels of interleukin (IL)-6, IL-12, and C-C-chemokine ligand 2. Soluble GITR levels were elevated in plasma from subjects with CVD compared to healthy controls. Plaque area in 28-week-old Gitr-/-Apoe-/- mice was reduced, and plaques had a favourable phenotype with less macrophages, a smaller necrotic core and a thicker fibrous cap. GITR deficiency did not affect the lymphoid population. RNA sequencing of Gitr-/-Apoe-/- and Apoe-/- monocytes and macrophages revealed altered pathways of cell migration, activation, and mitochondrial function. Indeed, Gitr-/-Apoe-/- monocytes displayed decreased integrin levels, reduced recruitment to endothelium, and produced less reactive oxygen species. Likewise, GITR-deficient macrophages produced less cytokines and had a reduced migratory capacity. CONCLUSION Our data reveal a novel role for the immune checkpoint GITR in driving myeloid cell recruitment and activation in atherosclerosis, thereby inducing plaque growth and vulnerability. In humans, elevated GITR expression in carotid plaques is associated with a vulnerable plaque phenotype and adverse cerebrovascular events. GITR has the potential to become a novel therapeutic target in atherosclerosis as it reduces myeloid cell recruitment to the arterial wall and impedes atherosclerosis progression.
Collapse
Affiliation(s)
- Annelie Shami
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Laura A Bosmans
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Holger Winkels
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Svenja Meiler
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Michael Lacy
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Claudia van Tiel
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Remco Ta Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Katrin Nitz
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Jeroen Baardman
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Pascal Kusters
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Tom Seijkens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christina Buerger
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Aleksandar Janjic
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-Universität, München, Martinsried, Germany
| | - Carlo Riccardi
- Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Lund University, Sweden
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Mat Daemen
- Department of Pathology, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Menno P J de Winther
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Lund University, Sweden
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
30
|
Papadopoulos KP, Autio K, Golan T, Dobrenkov K, Chartash E, Chen Q, Wnek R, Long GV. Phase I Study of MK-4166, an Anti-human Glucocorticoid-Induced TNF Receptor Antibody, Alone or with Pembrolizumab in Advanced Solid Tumors. Clin Cancer Res 2021; 27:1904-1911. [PMID: 33355238 PMCID: PMC9094061 DOI: 10.1158/1078-0432.ccr-20-2886] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/16/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE In this first-in-human phase I study (NCT02132754), we explored MK-4166 [humanized IgG1 agonist mAb targeting glucocorticoid-induced TNF receptor (GITR)] with and without pembrolizumab in advanced solid tumors. PATIENTS AND METHODS MK-4166 was tested alone (0.0015-900 mg i.v. every 3 weeks for four doses) or with pembrolizumab (200 mg i.v. every 3 weeks for ≤35 doses) in patients with metastatic solid tumors (dose escalation/confirmation) and advanced melanoma (expansion). Primary objectives were to evaluate the safety and tolerability and establish the MTD of MK-4166. Exploratory endpoints were objective response rate (ORR) and T cell-inflamed gene expression profile (GEP) analysis using RNA from baseline tumor samples. RESULTS A total of 113 patients were enrolled [monotherapy, n = 48; combination therapy, n = 65 (20 in the expansion)]. Forty-six patients (40.7%) had grade ≥3 adverse events, 9 (8.0%) of which were treatment related. No treatment-related deaths were observed. One dose-limiting toxicity event with monotherapy (bladder perforation in patient with neobladder) was considered related to study drug. MTD was not reached. MK-4166 pharmacodynamics showed decreased GITR availability on circulating T cells with increasing doses. One objective response (ORR, 2.2%) was achieved with combination therapy in the dose escalation/confirmation (n = 45). In the expansion, 8 of 13 patients with immune checkpoint inhibitor (ICI)-naïve melanoma achieved a response (ORR, 62%; 95% confidence interval, 32-86; 5 complete responses and 3 partial responses). None of the ICI-pretreated patients (n = 7) responded. High response rates were observed in ICI-naïve patients irrespective of GEP status. CONCLUSIONS MK-4166 900 mg i.v. every 3 weeks as monotherapy and with pembrolizumab was tolerable. Responses were observed with combination therapy, mostly in patients with ICI-naïve melanoma.
Collapse
Affiliation(s)
| | - Karen Autio
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Talia Golan
- Department of Gastrointestinal Clinic, Cancer Center, Sheba Medical Center, Ramat Gan, and Tel Aviv University, Tel Aviv, Israel
| | | | - Elliot Chartash
- Department of Medical Oncology, Merck & Co., Inc., Kenilworth, New Jersey
| | - Qiusheng Chen
- Department of Medical Oncology, Merck & Co., Inc., Kenilworth, New Jersey
| | - Richard Wnek
- Department of Medical Oncology, Merck & Co., Inc., Kenilworth, New Jersey
| | - Georgina V Long
- Department of Oncology, Melanoma Institute of Australia, The University of Sydney, Royal North Shore Hospital, and Mater Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Wang Y, Liao K, Liu B, Niu C, Zou W, Yang L, Wang T, Tian D, Luo Z, Dai J, Li Q, Liu E, Gong C, Fu Z, Li Y, Ding F. GITRL on dendritic cells aggravates house dust mite-induced airway inflammation and airway hyperresponsiveness by modulating CD4 + T cell differentiation. Respir Res 2021; 22:46. [PMID: 33557842 PMCID: PMC7869253 DOI: 10.1186/s12931-020-01583-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/22/2020] [Indexed: 01/01/2023] Open
Abstract
Background Glucocorticoid-induced tumor necrosis factor receptor family-related protein ligand (GITRL) plays an important role in tumors, autoimmunity and inflammation. However, GITRL is not known to modulate the pathogenesis of allergic asthma. In this study, we investigated whether regulating GITRL expressed on dendritic cells (DCs) can prevent asthma and to elucidate its mechanism of action. Methods In vivo, the role of GITRL in modulating house dust mite (HDM)-induced asthma was assessed in adeno-associated virus (AAV)-shGITRL mice. In vitro, the role of GITRL expression by DCs was evaluated in LV-shGITRL bone marrow dendritic cells (BMDCs) under HDM stimulation. And the direct effect of GITRL was observed by stimulating splenocytes with GITRL protein. The effect of regulating GITRL on CD4+ T cell differentiation was detected. Further, GITRL mRNA in the peripheral blood of asthmatic children was tested. Results GITRL was significantly increased in HDM-challenged mice. In GITRL knockdown mice, allergen-induced airway inflammation, serum total IgE levels and airway hyperresponsiveness (AHR) were reduced. In vitro, GITRL expression on BMDCs was increased after HDM stimulation. Further, knocking down GITRL on DCs partially restored the balance of Th1/Th2 and Th17/Treg cells. Moreover, GITRL stimulation in vitro inhibited Treg cell differentiation and promoted Th2 and Th17 cell differentiation. Similarly, GITRL mRNA expression was increased in the peripheral blood from asthmatic children. Conclusions This study identified a novel role for GITRL expressed by DCs as a positive regulator of CD4+ T cells responses in asthma, which implicates that GITRL inhibitors may be a potential immunotherapy for asthma.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Kou Liao
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bo Liu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Chao Niu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenjing Zou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Lili Yang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ting Wang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Daiyin Tian
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jihong Dai
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qubei Li
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Caihui Gong
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying Li
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China. .,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| | - Fengxia Ding
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China. .,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
32
|
Dadey RE, Workman CJ, Vignali DAA. Regulatory T Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:105-134. [PMID: 33119878 DOI: 10.1007/978-3-030-49270-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subpopulation of CD4+ T cells that are endowed with potent suppressive activity and function to limit immune activation and maintain homeostasis. These cells are identified by the hallmark transcription factor FOXP3 and the high-affinity interleukin-2 (IL-2) receptor chain CD25. Tregs can be recruited to and persist within the tumor microenvironment (TME), acting as a potent barrier to effective antitumor immunity. This chapter will discuss [i] the history and hallmarks of Tregs; [ii] the recruitment, development, and persistence of Tregs within the TME; [iii] Treg function within TME; asnd [iv] the therapeutic targeting of Tregs in the clinic. This chapter will conclude with a discussion of likely trends and future directions.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Sectm1a Facilitates Protection against Inflammation-Induced Organ Damage through Promoting TRM Self-Renewal. Mol Ther 2020; 29:1294-1311. [PMID: 33279722 DOI: 10.1016/j.ymthe.2020.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022] Open
Abstract
Tissue-resident macrophages (TRMs) are sentinel cells for maintaining tissue homeostasis and organ function. In this study, we discovered that lipopolysaccharide (LPS) administration dramatically reduced TRM populations and suppressed their self-renewal capacities in multiple organs. Using loss- and gain-of-function approaches, we define Sectm1a as a novel regulator of TRM self-renewal. Specifically, at the earlier stage of endotoxemia, Sectm1a deficiency exaggerated acute inflammation-induced reduction of TRM numbers in multiple organs by suppressing their proliferation, which was associated with more infiltrations of inflammatory monocytes/neutrophils and more serious organ damage. By contrast, administration of recombinant Sectm1a enhanced TRM populations and improved animal survival upon endotoxin challenge. Mechanistically, we identified that Sectm1a-induced upregulation in the self-renewal capacity of TRM is dependent on GITR-activated T helper cell expansion and cytokine production. Meanwhile, we found that TRMs may play an important role in protecting local vascular integrity during endotoxemia. Our study demonstrates that Sectm1a contributes to stabling TRM populations through maintaining their self-renewal capacities, which benefits the host immune response to acute inflammation. Therefore, Sectm1a may serve as a new therapeutic agent for the treatment of inflammatory diseases.
Collapse
|
34
|
Kazakova OB, Giniyatullina GV, Mustafin AG, Babkov DA, Sokolova EV, Spasov AA. Evaluation of Cytotoxicity and α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids. Molecules 2020; 25:E4833. [PMID: 33092246 PMCID: PMC7587962 DOI: 10.3390/molecules25204833] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
A series of two new and twenty earlier synthesized branched extra-amino-triterpenoids obtained by the direct coupling of betulinic/betulonic acids with polymethylenpolyamines, or by the cyanoethylation of lupane type alcohols, oximes, amines, and amides with the following reduction were evaluated for cytotoxicity toward the NCI-60 cancer cell line panel, α-glucosidase inhibitory, and antimicrobial activities. Lupane carboxamides, conjugates with diaminopropane, triethylenetetramine, and branched C3-cyanoethylated polyamine methyl betulonate showed high cytotoxic activity against most of the tested cancer cell lines with GI50 that ranged from 1.09 to 54.40 µM. Betulonic acid C28-conjugate with triethylenetetramine and C3,C28-bis-aminopropoxy-betulin were found to be potent micromolar inhibitors of yeast α-glucosidase and to simultaneously inhibit the endosomal reticulum α-glucosidase, rendering them as potentially capable to suppress tumor invasiveness and neovascularization, in addition to the direct cytotoxicity. Plausible mechanisms of cytotoxic action and underlying disrupted molecular pathways were elucidated with CellMinner pattern analysis and Gene Ontology enrichment analysis, according to which the lead compounds exert multi-target antiproliferative activity associated with oxidative stress induction and chromatin structure alteration. The betulonic acid diethylentriamine conjugate showed partial activity against methicillin-resistant S. aureus and the fungi C. neoformans. These results show that triterpenic polyamines, being analogs of steroidal squalamine and trodusquemine, are important substances for the search of new drugs with anticancer, antidiabetic, and antimicrobial activities.
Collapse
Affiliation(s)
- Oxana B. Kazakova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 pr. Oktyabrya, 450054 Ufa, Russia; (G.V.G.); (A.G.M.)
| | - Gul’nara V. Giniyatullina
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 pr. Oktyabrya, 450054 Ufa, Russia; (G.V.G.); (A.G.M.)
| | - Akhat G. Mustafin
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 pr. Oktyabrya, 450054 Ufa, Russia; (G.V.G.); (A.G.M.)
| | - Denis A. Babkov
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, 400087 Volgograd, Russia; (D.A.B.); (E.V.S.)
| | - Elena V. Sokolova
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, 400087 Volgograd, Russia; (D.A.B.); (E.V.S.)
| | - Alexander A. Spasov
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, 400087 Volgograd, Russia; (D.A.B.); (E.V.S.)
| |
Collapse
|
35
|
Tian J, Zhang B, Rui K, Wang S. The Role of GITR/GITRL Interaction in Autoimmune Diseases. Front Immunol 2020; 11:588682. [PMID: 33163004 PMCID: PMC7581784 DOI: 10.3389/fimmu.2020.588682] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
Glucocorticoid-induced TNFR-related protein (GITR) is a member of the TNFR superfamily which is expressed in various cells, including T cells, natural killer cells and some myeloid cells. GITR is activated by its ligand, GITRL, mainly expressed on antigen presenting cells and endothelial cells. It has been acknowledged that the engagement of GITR can modulate both innate and adaptive immune responses. Accumulated evidence suggests GITR/GITRL interaction is involved in the pathogenesis of tumor, inflammation and autoimmune diseases. In this review, we describe the effects of GITR/GITRL activation on effector T cells, regulatory T cells (Tregs) and myeloid cells; summarize its role and the underlying mechanisms in modulating autoimmune diseases.
Collapse
Affiliation(s)
- Jie Tian
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Beibei Zhang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
36
|
Choi Y, Shi Y, Haymaker CL, Naing A, Ciliberto G, Hajjar J. T-cell agonists in cancer immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-000966. [PMID: 33020242 PMCID: PMC7537335 DOI: 10.1136/jitc-2020-000966] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 01/05/2023] Open
Abstract
Cancer cells can evade immune surveillance in the body. However, immune checkpoint inhibitors can interrupt this evasion and enhance the antitumor activity of T cells. Other mechanisms for promoting antitumor T-cell function are the targeting of costimulatory molecules expressed on the surface of T cells, such as 4-1BB, OX40, inducible T-cell costimulator and glucocorticoid-induced tumor necrosis factor receptor. In addition, CD40 targets the modulation of the activation of antigen-presenting cells, which ultimately leads to T-cell activation. Agonists of these costimulatory molecules have demonstrated promising results in preclinical and early-phase trials and are now being tested in ongoing clinical trials. In addition, researchers are conducting trials of combinations of such immune modulators with checkpoint blockade, radiotherapy and cytotoxic chemotherapeutic drugs in patients with advanced tumors. This review gives a comprehensive picture of the current knowledge of T-cell agonists based on their use in recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Yeonjoo Choi
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yaoyao Shi
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cara L Haymaker
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aung Naing
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Joud Hajjar
- Section of Immunology, Department of Allergy & Rheumatology, Baylor College of Medicine, Texas and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
37
|
Geva R, Voskoboynik M, Dobrenkov K, Mayawala K, Gwo J, Wnek R, Chartash E, Long GV. First-in-human phase 1 study of MK-1248, an anti-glucocorticoid-induced tumor necrosis factor receptor agonist monoclonal antibody, as monotherapy or with pembrolizumab in patients with advanced solid tumors. Cancer 2020; 126:4926-4935. [PMID: 32809217 DOI: 10.1002/cncr.33133] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Ligation of glucocorticoid-induced tumor necrosis factor receptor (GITR) decreases regulatory T cell-mediated suppression and enhances T-cell proliferation, effector function, and survival. MK-1248 is a humanized immunoglobulin G4 anti-GITR monoclonal antibody agonist. METHODS In patients with advanced solid tumors, MK-1248 (starting dose, 0.12 mg) was tested alone and with pembrolizumab (200 mg) according to a 3 + 3 dose escalation design (ClinicalTrials.gov identifier NCT02553499); both treatments were administered intravenously every 3 weeks for ≤4 and ≤35 cycles, respectively. The safety and tolerability, maximum tolerated dose, and pharmacokinetics/pharmacodynamics were explored. RESULTS Twenty patients received MK-1248 monotherapy; 17 received combination therapy. The most frequent tumor types were colorectal cancer (n = 8), melanoma (n = 6), and renal cell carcinoma (n = 4). MK-1248 was generally well tolerated at the maximum tested doses of 170 (monotherapy) and 60 mg (combination). No dose-limiting toxicities (DLTs) or treatment-related deaths occurred. Adverse events (AEs) occurred in 36 of the 37 patients (97%); the most common were vomiting (n = 13 [35%]), anemia (n = 10 [27%]), and decreased appetite (n = 10 [27%]). Grade 3 to 5 AEs occurred in 19 of the 37 patients (51%). Treatment-related AEs occurred in 18 of the 37 patients (49%): 9 of the 20 patients (45%) on monotherapy and 9 of the 17 patients (53%) on combination therapy. Among the 17 patients receiving combination therapy, 1 achieved a complete response and 2 achieved a partial response, for an objective response rate of 18%; no patients achieved an objective response with monotherapy. The disease control rate (stable disease or better) was 15% with monotherapy and 41% with combination therapy. CONCLUSIONS MK-1248 was generally well tolerated at doses up to 170 (monotherapy) and 60 mg (combination), with no DLTs or treatment-related deaths. Combination therapy provided limited antitumor responses.
Collapse
Affiliation(s)
- Ravit Geva
- Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Mark Voskoboynik
- Nucleus Network, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | | | | | | | | | | | - Georgina V Long
- Royal North Shore Hospital, St. Leonards, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
38
|
Platania CBM, Ronchetti S, Riccardi C, Migliorati G, Marchetti MC, Di Paola L, Lazzara F, Drago F, Salomone S, Bucolo C. Effects of protein-protein interface disruptors at the ligand of the glucocorticoid-induced tumor necrosis factor receptor-related gene (GITR). Biochem Pharmacol 2020; 178:114110. [DOI: 10.1016/j.bcp.2020.114110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/10/2023]
|
39
|
Immune Checkpoints Contribute Corneal Immune Privilege: Implications for Dry Eye Associated with Checkpoint Inhibitors. Int J Mol Sci 2020; 21:ijms21113962. [PMID: 32486493 PMCID: PMC7312178 DOI: 10.3390/ijms21113962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 12/22/2022] Open
Abstract
The eye is provided with immune protection against pathogens in a manner that greatly reduces the threat of inflammation-induced vision loss. Immune-mediated inflammation and allograft rejection are greatly reduced in the eye, a phenomenon called 'immune privilege'. Corneal tissue has inherent immune privilege properties with underlying three mechanisms: (1) anatomical, cellular, and molecular barriers in the cornea; (2) an immunosuppressive microenvironment; and (3) tolerance related to regulatory T cells and anterior chamber-associated immune deviation. This review describes the molecular mechanisms of the immunosuppressive microenvironment and regulatory T cells in the cornea that have been elucidated from animal models of ocular inflammation, especially those involving corneal transplantation, it also provides an update on immune checkpoint molecules in corneal and systemic immune regulation, and its relevance for dry eye associated with checkpoint inhibitor therapy.
Collapse
|
40
|
Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, Barakat K. Targeting B7‐1 in immunotherapy. Med Res Rev 2020; 40:654-682. [DOI: 10.1002/med.21632] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Chen
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
| | - Aravindhan Ganesan
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
| | - Isobel Okoye
- Department of Dentistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Elena Arutyunova
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Shokrollah Elahi
- Department of Dentistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmonton Alberta Canada
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - M. Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmonton Alberta Canada
| |
Collapse
|
41
|
Kunishige T, Taniguchi H, Ohno T, Azuma M, Hori J. VISTA Is Crucial for Corneal Allograft Survival and Maintenance of Immune Privilege. Invest Ophthalmol Vis Sci 2020; 60:4958-4965. [PMID: 31790558 DOI: 10.1167/iovs.19-27322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose V-domain immunoglobulin suppressor of T cell activation (VISTA) is a novel immune checkpoint receptor and ligand for regulating T cell proliferation and cytokine production. The purpose of the present study was to determine the role of VISTA in the immune privilege of corneal allografts. Methods Expression of VISTA mRNA in mouse eyes was assessed with reverse-transcription PCR. Corneas of C57BL/6 mice were orthotopically transplanted into the eyes of BALB/c wild-type recipients treated with anti-VISTA mAb, and graft survival was assessed. A separate set of BALB/c mice treated with anti-VISTA mAb or rat IgG received injection of C57BL/6 splenocytes into the anterior chamber, and induction of allospecific anterior chamber-associated immune deviation (ACAID) was assessed. CD4+ and CD8+ T cells in the spleen were assessed with flow cytometry. Results VISTA mRNA was constitutively expressed in the cornea, and the expression of VISTA was localized to CD11b+ cells on the corneal stroma. Survival of allografts treated with anti-VISTA mAb was less than that of the control. ACAID was induced less efficiently in BALB/c mice treated with VISTA mAb. The proportions of CD8+ T cells and CD8+ CD103+ T cells (CD8+ T regulatory cells) in the spleen of BALB/c mice treated with anti-VISTA mAb were significantly lower than those of the control. Conclusions VISTA may play an essential role in the acceptance of corneal allografts via involvement with allospecific ACAID, which suppresses T cell infiltration into the cornea.
Collapse
Affiliation(s)
| | - Hiroko Taniguchi
- Department of Ophthalmology, Nippon Medical School, Tokyo, Japan
| | - Tatsukuni Ohno
- Department of Molecular Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miyuki Azuma
- Department of Molecular Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Hori
- Department of Ophthalmology, Nippon Medical School, Tokyo, Japan.,Department of Ophthalmology, Nippon Medical School Tama Nagayama Hospital, Tokyo, Japan
| |
Collapse
|
42
|
Wang Y, Wang P, Xu J. Phosphorylation: A Fast Switch For Checkpoint Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:347-398. [PMID: 32185718 DOI: 10.1007/978-981-15-3266-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Checkpoint signaling involves a variety of upstream and downstream factors that participate in the regulation of checkpoint expression, activation, and degradation. During the process, phosphorylation plays a critical role. Phosphorylation is one of the most well-documented post-translational modifications of proteins. Of note, the importance of phosphorylation has been emphasized in aspects of cell activities, including proliferation, metabolism, and differentiation. Here we summarize how phosphorylation of specific molecules affects the immune activities with preference in tumor immunity. Of course, immune checkpoints are given extra attention in this book. There are many common pathways that are involved in signaling of different checkpoints. Some of them are integrated and presented as common activities in the early part of this chapter, especially those associated with PD-1/PD-L1 and CTLA-4, because investigations concerning them are particularly abundant and variant. Their distinct regulation is supplementarily discussed in their respective section. As for checkpoints that are so far not well explored, their related phosphorylation modulations are listed separately in the later part. We hope to provide a clear and systematic view of the phosphorylation-modulated immune signaling.
Collapse
Affiliation(s)
- Yiting Wang
- School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Wang
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine, School of Life Sciences and Technology, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
43
|
Verma A, Mathur R, Farooque A, Kaul V, Gupta S, Dwarakanath BS. T-Regulatory Cells In Tumor Progression And Therapy. Cancer Manag Res 2019; 11:10731-10747. [PMID: 31920383 PMCID: PMC6935360 DOI: 10.2147/cmar.s228887] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
Regulatory T cells (Tregs) are important members of the immune system regulating the host responses to infection and neoplasms. Tregs prevent autoimmune disorders by protecting the host-cells from an immune response, related to the peripheral tolerance. However, tumor cells use Tregs as a shield to protect themselves against anti-tumor immune response. Thus, Tregs are a hurdle in achieving the complete potential of anti-cancer therapies including immunotherapy. This has prompted the development of novel adjuvant therapies that obviate their negative effects thereby enhancing the therapeutic efficacy. Our earlier studies have shown the efficacy of the glycolytic inhibitor, 2-deoxy-D-glucose (2-DG) by reducing the induced Tregs pool and enhance immune stimulation as well as local tumor control. These findings have suggested its potential for enhancing the efficacy of immunotherapy, besides radiotherapy and chemotherapy. This review provides a brief account of the current status of Tregs as a component of the immune-biology of tumors and various preclinical and clinical strategies pursued to obviate the limitations imposed by them in achieving therapeutic efficacy.
Collapse
Affiliation(s)
- Amit Verma
- Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - Rohit Mathur
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Vandana Kaul
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Seema Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | |
Collapse
|
44
|
Current Perspectives in Cancer Immunotherapy. Cancers (Basel) 2019; 11:cancers11101472. [PMID: 31575023 PMCID: PMC6826426 DOI: 10.3390/cancers11101472] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Different immunotherapeutic approaches have proved to be of significant clinical value to many patients with different types of advanced cancer. However, we need more precise immunotherapies and predictive biomarkers to increase the successful response rates. The advent of next generation sequencing technologies and their applications in immuno-oncology has helped us tremendously towards this aim. We are now moving towards the realization of personalized medicine, thus, significantly increasing our expectations for a more successful management of the disease. Here, we discuss the current immunotherapeutic approaches against cancer, including immune checkpoint blockade with an emphasis on anti-PD-L1 and anti-CTLA-4 monoclonal antibodies. We also analyze a growing list of other co-inhibitory and co-stimulatory markers and emphasize the mechanism of action of the principal pathway for each of these, as well as on drugs that either have been FDA-approved or are under clinical investigation. We further discuss recent advances in other immunotherapies, including cytokine therapy, adoptive cell transfer therapy and therapeutic vaccines. We finally discuss the modulation of gut microbiota composition and response to immunotherapy, as well as how tumor-intrinsic factors and immunological processes influence the mutational and epigenetic landscape of progressing tumors and response to immunotherapy but also how immunotherapeutic intervention influences the landscape of cancer neoepitopes and tumor immunoediting.
Collapse
|
45
|
Burrows K, Ngai L, Wong F, Won D, Mortha A. ILC2 Activation by Protozoan Commensal Microbes. Int J Mol Sci 2019; 20:ijms20194865. [PMID: 31574995 PMCID: PMC6801642 DOI: 10.3390/ijms20194865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are a member of the ILC family and are involved in protective and pathogenic type 2 responses. Recent research has highlighted their involvement in modulating tissue and immune homeostasis during health and disease and has uncovered critical signaling circuits. While interactions of ILC2s with the bacterial microbiome are rather sparse, other microbial members of our microbiome, including helminths and protozoans, reveal new and exciting mechanisms of tissue regulation by ILC2s. Here we summarize the current field on ILC2 activation by the tissue and immune environment and highlight particularly new intriguing pathways of ILC2 regulation by protozoan commensals in the intestinal tract.
Collapse
Affiliation(s)
- Kyle Burrows
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
| | - Louis Ngai
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
| | - Flora Wong
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
- Ranomics, Inc. Toronto, ON M5G 1X5, Canada.
| | - David Won
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
| | - Arthur Mortha
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
46
|
Vence L, Bucktrout SL, Fernandez Curbelo I, Blando J, Smith BM, Mahne AE, Lin JC, Park T, Pascua E, Sai T, Chaparro-Riggers J, Subudhi SK, Scutti JB, Higa MG, Zhao H, Yadav SS, Maitra A, Wistuba II, Allison JP, Sharma P. Characterization and Comparison of GITR Expression in Solid Tumors. Clin Cancer Res 2019; 25:6501-6510. [PMID: 31358539 DOI: 10.1158/1078-0432.ccr-19-0289] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/16/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Determine the differential effect of a FcγR-binding, mIgG2a anti-GITR antibody in mouse tumor models, and characterize the tumor microenvironment for the frequency of GITR expression in T-cell subsets from seven different human solid tumors.Experimental Design: For mouse experiments, wild-type C57BL/6 mice were subcutaneously injected with MC38 cells or B16 cells, and BALB/c mice were injected with CT26 cells. Mice were treated with the anti-mouse GITR agonist antibody 21B6, and tumor burden and survival were monitored. GITR expression was evaluated at the single-cell level using flow cytometry (FC). A total of 213 samples were evaluated for GITR expression by IHC, 63 by FC, and 170 by both in seven human solid tumors: advanced hepatocellular carcinoma, non-small cell lung cancer (NSCLC), renal cell carcinoma, pancreatic carcinoma, head and neck carcinoma, melanoma, and ovarian carcinoma. RESULTS The therapeutic benefit of 21B6 was greatest in CT26 followed by MC38, and was least in the B16 tumor model. The frequency of CD8 T cells and effector CD4 T cells within the immune infiltrate correlated with response to treatment with GITR antibody. Analysis of clinical tumor samples showed that NSCLC, renal cell carcinoma, and melanoma had the highest proportions of GITR-expressing cells and highest per-cell density of GITR expression on CD4+ Foxp3+ T regulatory cells. IHC and FC data showed similar trends with a good correlation between both techniques. CONCLUSIONS Human tumor data suggest that NSCLC, renal cell carcinoma, and melanoma should be the tumor subtypes prioritized for anti-GITR therapy development.
Collapse
Affiliation(s)
- Luis Vence
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samantha L Bucktrout
- Cancer Immunology Discovery Unit, South San Francisco, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Irina Fernandez Curbelo
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jorge Blando
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bevin M Smith
- Cancer Immunology Discovery Unit, South San Francisco, California
| | - Ashley E Mahne
- Cancer Immunology Discovery Unit, South San Francisco, California
| | - John C Lin
- Cancer Immunology Discovery Unit, South San Francisco, California.,Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Terrence Park
- Cancer Immunology Discovery Unit, South San Francisco, California
| | - Edward Pascua
- Cancer Immunology Discovery Unit, South San Francisco, California
| | - Tao Sai
- Cancer Immunology Discovery Unit, South San Francisco, California
| | | | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jorge B Scutti
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria G Higa
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hao Zhao
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shalini S Yadav
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James P Allison
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Padmanee Sharma
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
47
|
Richards DM, Marschall V, Billian-Frey K, Heinonen K, Merz C, Redondo Müller M, Sefrin JP, Schröder M, Sykora J, Fricke H, Hill O, Gieffers C, Thiemann M. HERA-GITRL activates T cells and promotes anti-tumor efficacy independent of FcγR-binding functionality. J Immunother Cancer 2019; 7:191. [PMID: 31324216 PMCID: PMC6642547 DOI: 10.1186/s40425-019-0671-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022] Open
Abstract
Background Glucocorticoid-induced TNFR-related protein (TNFRSF18, GITR, CD357), expressed by T cells, and its ligand (TNFSF18, GITRL), expressed by myeloid populations, provide co-stimulatory signals that boost T cell activity. Due to the important role that GITR plays in regulating immune functions, agonistic stimulation of GITR is a promising therapeutic concept. Multiple strategies to induce GITR signaling have been investigated. The limited clinical efficacy of antibody-based GITR agonists results from structural and functional characteristics of antibodies that are unsuitable for stimulating the well-defined trimeric members of the TNFRSF. Methods To overcome limitations of antibody-based TNFRSF agonists, we have developed HERA-GITRL, a fully human hexavalent TNF receptor agonist (HERA) targeting GITR and mimicking the natural signaling concept. HERA-GITRL is composed of a trivalent but single-chain GITRL-receptor-binding-domain (scGITRL-RBD) unit fused to an IgG1 derived silenced Fc-domain serving as dimerization scaffold. A specific mouse surrogate, mmHERA-GITRL, was also generated to examine in vivo activity in respective mouse tumor models. Results For functional characterization of HERA-GITRL in vitro, human immune cells were isolated from healthy-donor blood and stimulated with anti-CD3 antibody in the presence of HERA-GITRL. Consistently, HERA-GITRL increased the activity of T cells, including proliferation and differentiation, even in the presence of regulatory T cells. In line with these findings, mmHERA-GITRL enhanced antigen-specific clonal expansion of both CD4+ (OT-II) and CD8+ (OT-I) T cells in vivo while having no effect on non-specific T cells. In addition, mmHERA-GITRL showed single-agent anti-tumor activity in two subcutaneous syngeneic colon cancer models (CT26wt and MC38-CEA). Importantly, this activity is independent of its FcγR-binding functionality, as both mmHERA-GITRL with a functional Fc- and a silenced Fc-domain showed similar tumor growth inhibition. Finally, in a direct in vitro comparison to a bivalent clinical benchmark anti-GITR antibody and a trivalent GITRL, only the hexavalent HERA-GITRL showed full biological activity independent of additional crosslinking. Conclusion In this manuscript, we describe the development of HERA-GITRL, a true GITR agonist with a clearly defined mechanism of action. By clustering six receptor chains in a spatially well-defined manner, HERA-GITRL induces potent agonistic activity without being dependent on additional FcγR-mediated crosslinking. Electronic supplementary material The online version of this article (10.1186/s40425-019-0671-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David M Richards
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | | | - Katharina Billian-Frey
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Karl Heinonen
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Christian Merz
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | | | - Julian P Sefrin
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Matthias Schröder
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Jaromir Sykora
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | | | - Oliver Hill
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Christian Gieffers
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Meinolf Thiemann
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany.
| |
Collapse
|
48
|
Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019; 11:E628. [PMID: 31060337 PMCID: PMC6562626 DOI: 10.3390/cancers11050628] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has altered the management of human malignancies, improving outcomes in an expanding list of diseases. Breast cancer - presumably due to its perceived low immunogenicity - is a late addition to this list. Furthermore, most of the focus has been on the triple negative subtype because of its higher tumor mutational load and lymphocyte-enriched stroma, although emerging data show promise on the other breast cancer subtypes as well. To this point the clinical use of immunotherapy is limited to the inhibition of two immune checkpoints, Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4). Consistent with the complexity of the regulation of the tumor - host interactions and their lack of reliance on a single regulatory pathway, combinatory approaches have shown improved efficacy albeit at the cost of increased toxicity. Beyond those two checkpoints though, a large number of co-stimulatory or co-inhibitory molecules play major roles on tumor evasion from immunosurveillance. These molecules likely represent future targets of immunotherapy provided that the promise shown in early data is translated into improved patient survival in randomized trials. The biological role, prognostic and predictive implications regarding breast cancer and early clinical efforts on exploiting these immune-related therapeutic targets are herein reviewed.
Collapse
Affiliation(s)
- Sebastian Chrétien
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Ioannis Zerdes
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Jonas Bergh
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Alexios Matikas
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Theodoros Foukakis
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| |
Collapse
|
49
|
Hori J, Yamaguchi T, Keino H, Hamrah P, Maruyama K. Immune privilege in corneal transplantation. Prog Retin Eye Res 2019; 72:100758. [PMID: 31014973 DOI: 10.1016/j.preteyeres.2019.04.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Corneal transplantation is the most successful solid organ transplantation performed in humans. The extraordinary success of orthotopic corneal allografts, in both humans and experimental animals, is related to the phenomenon of "immune privilege". Inflammation is self-regulated to preserve ocular functions because the eye has immune privilege. At present, three major mechanisms are considered to provide immune privilege in corneal transplantation: 1) anatomical, cellular, and molecular barriers in the cornea; 2) tolerance related to anterior chamber-associated immune deviation and regulatory T cells; and 3) an immunosuppressive intraocular microenvironment. This review describes the mechanisms of immune privilege that have been elucidated from animal models of ocular inflammation, especially those involving corneal transplantation, and its relevance for the clinic. An update on molecular, cellular, and neural interactions in local and systemic immune regulation is provided. Therapeutic strategies for restoring immune privilege are also discussed.
Collapse
Affiliation(s)
- Junko Hori
- Department of Ophthalmology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan; Department of Ophthalmology, Nippon Medical School, Tama-Nagayama Hospital, 1-7-1 Nagayama, Tama, Tokyo, 206-8512, Japan.
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa-shi, Chiba, 272-8513, Japan; Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Keino
- Department of Ophthalmology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, 800 Washington St, Boston, MA, 02111, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, 800 Washington St, Boston, MA, 02111, USA
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
50
|
Narumi K, Miyakawa R, Shibasaki C, Henmi M, Mizoguchi Y, Ueda R, Hashimoto H, Hiraoka N, Yoshida T, Aoki K. Local Administration of GITR Agonistic Antibody Induces a Stronger Antitumor Immunity than Systemic Delivery. Sci Rep 2019; 9:5562. [PMID: 30944344 PMCID: PMC6447616 DOI: 10.1038/s41598-019-41724-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
An anti-glucocorticoid induced TNF receptor (GITR) agonistic antibody (Ab) induces an antitumor immunity with both stimulation of effector T cells and inhibition of regulatory T cell activity. To enhance GITR Ab-mediated tumor immunity, we focused on the intratumoral route, since a tumor-localized high concentration of Ab would confer activation of only tumor-infiltrating T cells. First, in a murine colon cancer model, we showed that the intratumoral delivery of Ab significantly increased the number of effector T cells infiltrated into tumors, and suppressed tumor growth more effectively than the intraperitoneal and intravenous injections did. Then, we found that the injection of Ab into the peritumoral area induced a systemic antitumor immunity at a similar level to the intratumoral injection. Therefore, we hypothesized that the transfer of locally administrated Ab into tumor-draining lymph nodes (TDLNs) plays an important role in inducing an effective immunity. In fact, intratumorally or peritumorally injected Ab was detected in TDLNs, and resection of Ab-injected TDLNs significantly reduced GITR Ab-mediated systemic tumor immunity. Intratumoral injection showed less number of auto-reactive T cells in the spleen than the intraperitoneal injection did. Intratumoral delivery of GITR Ab is a promising approach to induce an effective immunity compared to the systemic delivery.
Collapse
Affiliation(s)
- Kenta Narumi
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Reina Miyakawa
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Chihiro Shibasaki
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Marina Henmi
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukihiro Mizoguchi
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryosuke Ueda
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hisayoshi Hashimoto
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Nobuyoshi Hiraoka
- Department of Molecular Pathology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazunori Aoki
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|