1
|
Sun Y, Yang B, Wen T, Guo X, Li D, Shi R, Zhang F, Wang D, Li C, Qu X. ANXA10 sensitizes microsatellite instability-high colorectal cancer to anti-PD-1 immunotherapy via assembly of HLA-DR dimers by regulating CD74. Cell Biol Toxicol 2025; 41:25. [PMID: 39789407 PMCID: PMC11717857 DOI: 10.1007/s10565-024-09982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) patients are the dominant population in immune checkpoint blockade treatments, while more than half of them could not benefit from single-agent immunotherapy. We tried to identify the biomarker of MSI-H CRC and explore its role and mechanism in anti-PD-1 treatments. Tumor-specific MHC-II was linked to a better response to anti-PD-1 in MSI-H CRC and CD74 promoted assembly and transport of HLA-DR dimers. METHODS The characteristic gene was screened by data analysis of single-cell and bulk transcriptome sequencing from public datasets. MSI-H CRC cells co-cultured with peripheral blood mononuclear cells and syngeneic model in C57BL/6 mice were performed to detect the sensitivity to anti-PD-1 treatments respectively. RESULTS ANXA10 was identified as a characteristic gene of MSI-H CRC and its expression was obviously greater in MSI-H than MSS CRC. ANXA10 significantly sensitized MSI-H CRC to anti-PD-1 treatments in vitro and in vivo. Specifically, ANXA10 promoted HLA-DR dimers in and on the surface of MSI-H CRC by increasing CD74 expression. Besides, this work demonstrated that ANXA10 contributed to better clinical benefits with anti-PD-1 therapy in MSI-H CRC patients. CONCLUSIONS Our results provided a novel molecular marker ANXA10 to identify benefit population of MSI-H CRC for improving efficacy of anti-PD-1 and contributed to selection of treatment strategies.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Bowen Yang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Ti Wen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Xiaoyu Guo
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Danni Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Ruichuan Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Fuqiang Zhang
- Department of Anus and Intestine Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dongni Wang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Ce Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China.
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Yan S, Zhang X, Lin Q, Du M, Li Y, He S, Chen J, Li X, Bei J, Chen S, Song M. Deciphering the interplay of HPV infection, MHC-II expression, and CXCL13 + CD4 + T cell activation in oropharyngeal cancer: implications for immunotherapy. Cancer Immunol Immunother 2024; 73:206. [PMID: 39105803 PMCID: PMC11303625 DOI: 10.1007/s00262-024-03789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Human papillomavirus (HPV) infection has become an important etiological driver of oropharyngeal squamous cell carcinoma (OPSCC), leading to unique tumor characteristics. However, the interplay between HPV-associated tumor cells and tumor microenvironment (TME) remains an enigma. METHODS We performed a single-cell RNA-sequencing (scRNA-seq) on HPV-positive (HPV+) and HPV-negative (HPV‒) OPSCC tumors, each for three samples, and one normal tonsil tissue. Ex vivo validation assays including immunofluorescence staining, cell line co-culture, and flow cytometry analysis were used to test specific subtypes of HPV+ tumor cells and their communications with T cells. RESULTS Through a comprehensive single-cell transcriptome analysis, we uncover the distinct transcriptional signatures between HPV+ and HPV‒ OPSCC. Specifically, HPV+ OPSCC tumor cells manifest an enhanced interferon response and elevated expression of the major histocompatibility complex II (MHC-II), potentially bolstering tumor recognition and immune response. Furthermore, we identify a CXCL13+CD4+ T cell subset that exhibits dual features of both follicular and pro-inflammatory helper T cells. Noteworthily, HPV+ OPSCC tumor cells embrace extensive intercellular communications with CXCL13+CD4+ T cells. Interaction with HPV+ OPSCC tumor cells amplifies CXCL13 and IFNγ release in CD4+T cells, fostering a pro-inflammatory TME. Additionally, HPV+ tumor cells expressing high MHC-II and CXCL13+CD4+ T cell prevalence are indicative of favorable overall survival rates in OPSCC patients. CONCLUSIONS Together, our study underscores a synergistic inflammatory immune response orchestrated by highly immunogenic tumor cells and CXCL13+CD4+ T cells in HPV+ OPSCC, offering useful insights into strategy development for patient stratification and effective immunotherapy in OPSCC.
Collapse
Affiliation(s)
- Shida Yan
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xing Zhang
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qiaohong Lin
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Mingyuan Du
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yiqi Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shuai He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jingtao Chen
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiyuan Li
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jinxin Bei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shuwei Chen
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Ming Song
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Wang B, Liu Y, Xiong F, Wang C. Improved Immunotherapy Outcomes via Cuproptosis Upregulation of HLA-DRA Expression: Promoting the Aggregation of CD4 + and CD8 +T Lymphocytes in Clear Cell Renal Cell Carcinoma. Pharmaceuticals (Basel) 2024; 17:678. [PMID: 38931345 PMCID: PMC11206763 DOI: 10.3390/ph17060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Immunotherapy has shown promising clinical results in clear cell renal cell carcinoma (ccRCC), but low clinical target response rates due to dysfunction of the major histocompatibility complex (MHC) and an inhibitory tumor immune microenvironment (TIME) have largely limited the associated clinical benefits. In the present study, we explored the feasibility of enhancing tumor-specific-MHC-II-HLA-DRA expression, counteracting the TIME's suppressive effects, thereby improving the sensitivity of immune checkpoint inhibitor (ICI) therapy from the standpoint of cuproptosis. Immunohistochemical staining and in vitro experiments validated the expression of HLA-DRA in ccRCC and its positive impact on ICI therapy. Subsequently, we observed that cuproptosis upregulated HLA-DRA expression in a dose-dependent manner, further confirming the link between cuproptosis and HLA-DRA. In vivo experiments showed that cuproptosis increased the sensitivity to ICI treatment, and implementing cuproptosis alongside anti-PD-1 treatment curtailed tumor growth. Mechanistically, cuproptosis upregulates HLA-DRA expression at the transcriptional level in a dose-dependent manner by inducing the production of reactive oxygen species; high levels of HLA-DRA promote the expression of chemokines CCL5, CXCL9, and CXCL10 in the TIME, inhibiting the development of a pro-tumor microenvironment by promoting the infiltration of CD4+T and CD8+T cells, thereby synergizing ICI therapy and exerting anti-tumor effects. Taken together, this work highlights the role of cuproptosis in mediating TIME remodeling and synergistic immunotherapy, providing new evidence that cuproptosis can evoke effective anti-tumor immune responses.
Collapse
Affiliation(s)
| | | | | | - Chunyang Wang
- Urology Surgery Department, The First Affiliated Hospital of Harbin Medical University, Youzheng Street #37, Nangang District, Harbin 150001, China
| |
Collapse
|
4
|
Xue D, Zhu T, Lin H, Guo P, Li M, Yu M, Yang F, Yang S, Chen X. Transcriptome dysregulation in hyper-progressive disease samples with immune checkpoint blockade. Chin Med J (Engl) 2023; 136:3019-3021. [PMID: 37649413 PMCID: PMC10752450 DOI: 10.1097/cm9.0000000000002550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Indexed: 09/01/2023] Open
Affiliation(s)
- Dan Xue
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Tengteng Zhu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongguang Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Peilin Guo
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Mengling Li
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Mei'e Yu
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Fan Yang
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Sheng Yang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fuzhou, Fujian 350122, China
| |
Collapse
|
5
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Huang L, Zhang J, Wei B, Chen S, Zhu S, Qi W, Pei X, Li L, Liu W, Wang Y, Xu X, Xie LG, Chen L. Small-molecule MHC-II inducers promote immune detection and anti-cancer immunity via editing cancer metabolism. Cell Chem Biol 2023; 30:1076-1089.e11. [PMID: 37236192 DOI: 10.1016/j.chembiol.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Lack of MHC-II is emerging as a causal factor in cancer immune evasion, and the development of small-molecule MHC-II inducers is an unmet clinical need. Here, we identified three MHC-II inducers, including pristane and its two superior derivatives, that potently induce MHC-II expression in breast cancer cells and effectively inhibit the development of breast cancer. Our data suggest that MHC-II is central in promoting the immune detection of cancer to increase the tumor infiltration of T cells and enhance anti-cancer immunity. By discovering the malonyl/acetyltransferase (MAT) domain in fatty acid synthase (FASN) as the direct binding target of MHC-II inducers, we demonstrate that evasion of immune detection and cancer metabolic reprogramming are directly linked by fatty acid-mediated MHC-II silencing. Collectively, we identified three MHC-II inducers and illustrated that lack of MHC-II caused by hyper-activated fatty acid synthesis to limit immune detection is a potentially widespread mechanism underlying the development of cancer.
Collapse
Affiliation(s)
- Ling Huang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bo Wei
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shuangyang Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Sitong Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210023, China
| | - Weiguan Qi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoying Pei
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lulu Li
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Weiguang Liu
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yuzhi Wang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210023, China.
| | - Lan-Gui Xie
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Liming Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
7
|
Wen M, Li Y, Qin X, Qin B, Wang Q. Insight into Cancer Immunity: MHCs, Immune Cells and Commensal Microbiota. Cells 2023; 12:1882. [PMID: 37508545 PMCID: PMC10378520 DOI: 10.3390/cells12141882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer cells circumvent immune surveillance via diverse strategies. In accordance, a large number of complex studies of the immune system focusing on tumor cell recognition have revealed new insights and strategies developed, largely through major histocompatibility complexes (MHCs). As one of them, tumor-specific MHC-II expression (tsMHC-II) can facilitate immune surveillance to detect tumor antigens, and thereby has been used in immunotherapy, including superior cancer prognosis, clinical sensitivity to immune checkpoint inhibition (ICI) therapy and tumor-bearing rejection in mice. NK cells play a unique role in enhancing innate immune responses, accounting for part of the response including immunosurveillance and immunoregulation. NK cells are also capable of initiating the response of the adaptive immune system to cancer immunotherapy independent of cytotoxic T cells, clearly demonstrating a link between NK cell function and the efficacy of cancer immunotherapies. Eosinophils were shown to feature pleiotropic activities against a variety of solid tumor types, including direct interactions with tumor cells, and accessorily affect immunotherapeutic response through intricating cross-talk with lymphocytes. Additionally, microbial sequencing and reconstitution revealed that commensal microbiota might be involved in the modulation of cancer progression, including positive and negative regulatory bacteria. They may play functional roles in not only mucosal modulation, but also systemic immune responses. Here, we present a panorama of the cancer immune network mediated by MHCI/II molecules, immune cells and commensal microbiota and a discussion of prospective relevant intervening mechanisms involved in cancer immunotherapies.
Collapse
Affiliation(s)
- Minting Wen
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yingjing Li
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Xiaonan Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Bing Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Qiong Wang
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
8
|
Dora D, Rivard C, Yu H, Pickard SL, Laszlo V, Harko T, Megyesfalvi Z, Gerdan C, Dinya E, Hoetzenecker K, Hirsch FR, Lohinai Z, Dome B. Protein Expression of immune checkpoints STING and MHCII in small cell lung cancer. Cancer Immunol Immunother 2023; 72:561-578. [PMID: 35978199 PMCID: PMC10991160 DOI: 10.1007/s00262-022-03270-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/28/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND SCLC is an aggressive malignancy where immunotherapies show limited efficacy. We aimed to characterize the SCLC microenvironment according to the expression patterns of SCLC subtype markers and novel immune checkpoints to identify therapeutic vulnerabilities. METHODS We included SCLC tissue samples from 219 surgically resected, limited-stage patients in this cross-sectional study. We performed immunohistochemistry for STING and MHCII, as well as for the novel subtype markers (ASCL1, NEUROD1, POU2F3, YAP1). Moreover, we assessed CD45 + , CD8 + and CD68 + immune cell infiltration. RESULTS 36% of SCLC tumors showed significant stromal or intraepithelial CD45 + immune cell infiltration. These patients exhibited significantly increased overall survival (OS) (vs. patients with immune-deserted tumors). High CD8 expression was associated with increased median OS. We found STING expression on cancer-associated fibroblasts in the stroma and on T-cells and macrophages in both tumorous and stromal compartments. STING expression positively correlated with immune cell infiltration. Increased STING-positivity in tumor nests was an independent favorable prognosticator for OS. ASCL1 was the most frequently expressed subtype-specific protein. Concomitant expression of three or four subtype-defining markers was seen in 13.8% of the included samples, whereas 24.1% of the cases were classified as quadruple negative tumors. YAP1 expression was associated with increased immune infiltrates. Tumor cell MHCII expression positively correlated with immune cell infiltration and with STING- and YAP1 expressions. CONCLUSIONS STING and MHCII are expressed in SCLC. The majority of immune-infiltrated SCLCs exhibit increased STING expression. Immune infiltration and STING expression are prognostic in limited-stage SCLC, making STING a potential therapeutic target.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Christopher Rivard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hui Yu
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shivaun Lueke Pickard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Viktoria Laszlo
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Tunde Harko
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary
| | - Zsolt Megyesfalvi
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Csongor Gerdan
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Elek Dinya
- Institute of Digital Health Sciences, Faculty of Public Services, Semmelweis University, Budapest, Hungary
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Health System, New York, NY, USA
| | - Zoltan Lohinai
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary.
| | - Balazs Dome
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary.
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
9
|
Cancer-specific T helper shared and neo-epitopes uncovered by expression of the MHC class II master regulator CIITA. Cell Rep 2022; 41:111485. [DOI: 10.1016/j.celrep.2022.111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/13/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
|
10
|
Wang X, Li S, Yan S, Shan Y, Wang X, Jingbo Z, Wang Y, Shan F, Griffin N, Sun X. Methionine enkephalin inhibits colorectal cancer by remodeling the immune status of the tumor microenvironment. Int Immunopharmacol 2022; 111:109125. [PMID: 35988519 DOI: 10.1016/j.intimp.2022.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022]
Abstract
There is evidence that methionine enkephalin (MENK), an opioid peptide, promotes anti-tumor immune responses. In this study, the effect of MENK on colorectal cancer (CRC) and its mechanisms of action were examined in vivo. The intraperitoneal administration of 20 mg/kg MENK effectively inhibited MC38 subcutaneous colorectal tumor growth in mice. MENK inhibited tumor progression by increasing the immunogenicity and recognition of MC38 cells. MENK down-regulated the oncogene Kras and anti-apoptotic Bclxl and Bcl2, suppressed Il1b, Il6, iNOS, and Arg1 (encoding inflammatory cytokines), and increased Il17a and Il10 levels. MENK promoted a tumor suppressive state by decreasing the immune checkpoints Pd-1, Pd-l1, Lag3, Flgl1, and 2b4 in CRC. MENK also altered the immune status of the tumor immune microenvironment (TIME). It increased the infiltration of M1-type macrophages, CD8+T cells, and CD4+T cells and decreased the proportions of G-MDSCs, M-MDSCs, and M2-type macrophages. MENK accelerated CD4+TEM and CD8+TEM cell activation in the TIME and up-regulated IFN-γ, TNF-α, and IL-17A in CD4+T cells and Granzyme B in CD8+T cells. In addition, analyses of PD-1 and PD-L1 expression indicated that MENK promoted the anti-tumor immune response mediated by effector T cells. Finally, OGFr was up-regulated at the protein and mRNA levels by MENK, and the inhibitory effects of MENK on tumor growth were blocked by NTX, a specific blocker of OGFr. These finding indicate that MENK remodels the TIME in CRC to inhibit tumor progression by binding to OGFr. MENK is a potential therapeutic agent for CRC, especially for improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Shunlin Li
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Siqi Yan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yuanye Shan
- Immune Therapeutics Inc., 2431 Aloma Ave #124 Winter Park, FL 32792, USA
| | - Xiao Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Zhai Jingbo
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao 028000, China.
| | - Yuanyuan Wang
- Department of Anesthesiology, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Noreen Griffin
- Immune Therapeutics Inc., 2431 Aloma Ave #124 Winter Park, FL 32792, USA
| | - Xun Sun
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
11
|
Darragh LB, Karam SD. Amateur antigen-presenting cells in the tumor microenvironment. Mol Carcinog 2022; 61:153-164. [PMID: 34570920 PMCID: PMC9899420 DOI: 10.1002/mc.23354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Presentation of tumor antigens is a critical step in producing a robust antitumor immune response. Classically tumor antigens are thought to be presented to both CD8 and CD4 T cells by professional antigen-presenting cells (pAPCs) like dendritic cells using major histocompatibility complexes (MHC) I and II. But recent evidence suggests that in the tumor microenvironment (TME) cells other than pAPCs are capable of presenting tumor antigens on both MHC I and II. The evidence currently available on tumor antigen presentation by epithelial cells, vascular endothelial cells (VECs), fibroblasts, and cancer cells is reviewed herein. We refer to these cell types in the TME as "amateur" APCs (aAPCs). These aAPCs greatly outnumber pAPCs in the TME and could, potentially, play a significant role in priming an antitumor immune response. This new evidence supports a different perspective on antigen presentation and suggests new approaches that can be taken in designing immunotherapies to increase T cell priming.
Collapse
Affiliation(s)
- Laurel B. Darragh
- Department of Immunology, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
12
|
Prampolini C, Almadori G, Bonvissuto D, Barba M, Giraldi L, Boccia S, Paludetti G, Galli J, Parolini O, Settimi S, Cadoni G. Immunohistochemical detection of "ex novo" HLA-DR in tumor cells determines clinical outcome in laryngeal cancer patients. HLA 2021; 98:517-524. [PMID: 34605215 DOI: 10.1111/tan.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/09/2022]
Abstract
There are controversial results about the role of "ex novo" HLA-DR expression by tumor cells and its correlation with the oncological outcomes. Unfortunately, little is known about HLA-DR expression in laryngeal cancer tumor cells. The main purpose of this retrospective study is to strengthen the usefulness of studying "ex novo" HLA-DR expression on tumor cells from primary laryngeal squamous cell carcinoma (LSCC) patients and investigate its correlation with clinical outcome. We analyzed HLA-DR expression by immunohistochemical analysis in 56 patients with LSCC. The "ex novo" HLA-DR expression on laryngeal cancer tumor cells, assessing non-neoplastic LSCC - adjacent tissue, and the association of HLA-DR expression (HLA-DR+) with clinical outcomes were investigated. HLA-DR+ tumor cells were detected in 18/56 LSCC patients (32.1%). All specimens of non-neoplastic laryngeal carcinoma-adjacent tissue resulted HLA-DR negative (HLA-DR-). A statistically significant association was observed between HLA-DR + and well differentiated tumors (G1) (p<0.001). The Kaplan-Meier method showed how HLA-DR+ is significantly associated with both a better disease specific survival (HLA-DR+=100% vs. HLA-DR-=77.4%; p=0.047) and a better relapse free survival (HLA-DR+=100% vs. HLA-DR-=72.3%; p=0.021). Cox regression univariate analysis for death of disease confirmed a higher HR for HLA-DR absence on the surface of epithelial tumor cell [HR:37.489; 95% CI:0.750-18730.776; p=0.253] and for high-grade (G3) tumors [HR:18.601; 95% CI:3.613-95.764; p<0.0001]. Our results confirm that MHC class II HLA-DR expression is activated in a sub-set of LSCC patients. Evaluation of HLA-DR expression in LSCC could be useful for prognosis and future approaches towards personalized therapy.
Collapse
Affiliation(s)
- Chiara Prampolini
- Department of Head-Neck and Sensory Organs, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Almadori
- Department of Head-Neck and Sensory Organs, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Aging, Neurologic, Orthopedic and Head-Neck Sciences, Otorhinolaryngology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Davide Bonvissuto
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marta Barba
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,Biobank for Personalized Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Giraldi
- Department of Life Science and Public Health, Section of Hygiene and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefania Boccia
- Department of Life Science and Public Health, Section of Hygiene and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health and Public Health, Public Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gaetano Paludetti
- Department of Head-Neck and Sensory Organs, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Aging, Neurologic, Orthopedic and Head-Neck Sciences, Otorhinolaryngology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Jacopo Galli
- Department of Head-Neck and Sensory Organs, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Aging, Neurologic, Orthopedic and Head-Neck Sciences, Otorhinolaryngology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,Biobank for Personalized Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Stefano Settimi
- Department of Aging, Neurologic, Orthopedic and Head-Neck Sciences, Otorhinolaryngology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriella Cadoni
- Department of Head-Neck and Sensory Organs, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Aging, Neurologic, Orthopedic and Head-Neck Sciences, Otorhinolaryngology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
13
|
Datar IJ, Hauc SC, Desai S, Gianino N, Henick B, Liu Y, Syrigos K, Rimm DL, Kavathas P, Ferrone S, Schalper KA. Spatial Analysis and Clinical Significance of HLA Class-I and Class-II Subunit Expression in Non-Small Cell Lung Cancer. Clin Cancer Res 2021; 27:2837-2847. [PMID: 33602682 DOI: 10.1158/1078-0432.ccr-20-3655] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To analyze the distribution, associated immune contexture, and clinical significance of human leukocyte antigen (HLA) class-I and HLA class-II subunits in non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN Using spatially resolved and quantitative multiplexed immunofluorescence we studied the tumor/stromal tissue distribution, cancer cell-specific defects, and clinicopathologic/survival associations of β2 microglobulin (β2M), HLA-A, and HLA-B,-C heavy chains, as well as HLA class-II β chain in >700 immunotherapy-naïve NSCLCs from four independent cohorts. Genomic analysis of HLA genes in NSCLC was performed using two publicly available cohorts. RESULTS Cancer cell-specific downregulation of HLA markers was identified in 30.4% of cases. β2M was downregulated in 9.8% (70/714), HLA-A in 9% (65/722), HLA-B,-C in 12.1% (87/719), and HLA class-II in 17.7% (127/717) of evaluable samples. Concurrent downregulation of β2M, HLA-B,-C, and HLA class-II was commonly identified. Deleterious mutations in HLA genes were detected in <5% of lung malignancies. Tumors with cancer cell-specific β2M downregulation displayed reduced T cells and increased natural killer (NK)-cell infiltration. Samples with cancer cell HLA-A downregulation displayed modest increase in CD8+ T cells and NK-cell infiltration. Samples with cancer cell-selective HLA-B,-C or HLA class-II downregulation displayed reduced T cells and NK-cell infiltration. There was limited association of the markers with clinicopathologic variables and KRAS/EGFR mutations. Cancer cell-selective downregulation of the HLA subunits was associated with shorter overall survival. CONCLUSIONS Our results reveal frequent and differential defects in HLA class-I and HLA class-II protein subunit expression in immunotherapy-naïve NSCLCs associated with distinct tumor microenvironment composition and patient survival.
Collapse
Affiliation(s)
- Ila J Datar
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Sacha C Hauc
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Shruti Desai
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Nicole Gianino
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Brian Henick
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
- Medical Oncology, Columbia University Medical Center, New York, New York
| | - Yuting Liu
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Kostas Syrigos
- Oncology Unit, Department of Medicine, Athens University, Athens, Greece
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Paula Kavathas
- Laboratory Medicine and Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Soldano Ferrone
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
14
|
Thibodeau J, Bourgeois-Daigneault MC, Lapointe R. Targeting the MHC Class II antigen presentation pathway in cancer immunotherapy. Oncoimmunology 2021; 1:908-916. [PMID: 23162758 PMCID: PMC3489746 DOI: 10.4161/onci.21205] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The success of immunotherapy relies on the participation of all arms of the immune system and the role of CD4+ T lymphocytes in preventing tumor growth is now well established. Understanding how tumors evade immune responses holds the key to the development of cancer immunotherapies. In this review, we discuss how MHC Class II expression varies in cancer cells and how this influences antitumor immune responses. We also discuss the means that are currently available for harnessing the MHC Class II antigen presentation pathway for the development of efficient vaccines to activate the immune system against cancer.
Collapse
Affiliation(s)
- Jacques Thibodeau
- Laboratoire d'Immunologie Moléculaire; Département de Microbiologie et Immunologie; Université de Montréal; Montréal, QC Canada
| | | | | |
Collapse
|
15
|
van Luijn MM, Chamuleau MED, Ossenkoppele GJ, van de Loosdrecht AA, Marieke van Ham S. Tumor immune escape in acute myeloid leukemia: Class II-associated invariant chain peptide expression as result of deficient antigen presentation. Oncoimmunology 2021; 1:211-213. [PMID: 22720245 PMCID: PMC3376995 DOI: 10.4161/onci.1.2.18100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this overview, we discuss the role of class II-associated invariant chain peptide (CLIP) in acute myeloid leukemia (AML), one of the few tumors expressing HLA class II. The clinical impact, function and regulation of CLIP expression on leukemic cells is addressed, indicating its potential as immunotherapeutic target in AML.
Collapse
Affiliation(s)
- Marvin M van Luijn
- Department of Hematology; Cancer Center Amsterdam; VU Institute for Cancer and Immunology; VU University Medical Center; Amsterdam, The Netherlands ; Department of Immunopathology; Sanquin Research and Landsteiner Laboratory; Academic Medical Center; University of Amsterdam; Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Forlani G, Shallak M, Celesti F, Accolla RS. Unveiling the Hidden Treasury: CIITA-Driven MHC Class II Expression in Tumor Cells to Dig up the Relevant Repertoire of Tumor Antigens for Optimal Stimulation of Tumor Specific CD4+ T Helper Cells. Cancers (Basel) 2020; 12:cancers12113181. [PMID: 33138029 PMCID: PMC7693840 DOI: 10.3390/cancers12113181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the recent enthusiasm generated by novel immunotherapeutic approaches against cancer based on immune checkpoint inhibitors, it becomes increasingly clear that single immune-based strategies are not sufficient to defeat the various forms and types of tumors. Within this frame, novel vaccination strategies that are based on optimal stimulation of the key cell governing adaptive immunity, the CD4+ T helper cell, will certainly help in constructing more efficient treatments. In this review, we will focus on this aspect, mainly describing our past and recent contributions that, starting with a rather unorthodox approach, have ended up with the proposition of a new idea for making available an unprecedented extended repertoire of tumor antigens, both in quantitative and qualitative terms, to tumor-specific CD4+ T helper cells. Our approach is based on rendering the very same tumor cells antigen presenting cells for their own tumor antigens by gene transfer of CIITA, the major transcriptional coordinator of MHC class II expression discovered in our laboratory. CIITA-driven MHC class II-expressing tumor cells optimally stimulate in vivo tumor specific MHC class II-restricted CD4 T cells generating specific and long lasting protective immunity against the tumor. We will discuss the mechanism underlying protection and elaborate not only on the applicability of this approach for novel vaccination strategies amenable to clinical setting, but also on the consequence of our discoveries on sedimented immunological dogmas that are related to antigen presentation.
Collapse
|
17
|
Cano-Mejia J, Shukla A, Ledezma DK, Palmer E, Villagra A, Fernandes R. CpG-coated prussian blue nanoparticles-based photothermal therapy combined with anti-CTLA-4 immune checkpoint blockade triggers a robust abscopal effect against neuroblastoma. Transl Oncol 2020; 13:100823. [PMID: 32652470 PMCID: PMC7348061 DOI: 10.1016/j.tranon.2020.100823] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023] Open
Abstract
High-risk neuroblastoma, which is associated with regional and systemic metastasis, is a leading cause of cancer-related mortality in children. Responding to this need for novel therapies for high-risk patients, we have developed a "nanoimmunotherapy," which combines photothermal therapy (PTT) using CpG oligodeoxynucleotide-coated Prussian blue nanoparticles (CpG-PBNPs) combined with anti-CTLA-4 (aCTLA-4) immunotherapy. Our in vitro studies demonstrate that in addition to causing ablative tumor cell death, our nanoimmunotherapy alters the surface levels of co-stimulatory, antigen-presenting, and co-inhibitory molecules on neuroblastoma tumor cells. When administered in a syngeneic, murine model of neuroblastoma bearing synchronous Neuro2a tumors, the CpG-PBNP-PTT plus aCTLA-4 nanoimmunotherapy elicits complete tumor regression in both primary (CpG-PBNP-PTT-treated) and secondary tumors, and long-term survival in a significantly higher proportion (55.5%) of treated-mice compared with the controls. Furthermore, the surviving, nanoimmunotherapy-treated animals reject Neuro2a rechallenge, suggesting that the therapy generates immunological memory. Additionally, the depletion of CD4+, CD8+, and NK+ populations abrogate the observed therapeutic responses of the nanoimmunotherapy. These findings demonstrate the importance of concurrent PTT-based cytotoxicity and the antitumor immune effects of PTT, CpG, and aCTLA-4 in generating a robust abscopal effect against neuroblastoma.
Collapse
Affiliation(s)
- Juliana Cano-Mejia
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Anshi Shukla
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
| | - Debbie K Ledezma
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA
| | - Erica Palmer
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
| | - Alejandro Villagra
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA; The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA; Department of Medicine, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
18
|
Accolla RS, Ramia E, Tedeschi A, Forlani G. CIITA-Driven MHC Class II Expressing Tumor Cells as Antigen Presenting Cell Performers: Toward the Construction of an Optimal Anti-tumor Vaccine. Front Immunol 2019; 10:1806. [PMID: 31417570 PMCID: PMC6682709 DOI: 10.3389/fimmu.2019.01806] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Construction of an optimal vaccine against tumors relies on the availability of appropriate tumor-specific antigens capable to stimulate CD4+ T helper cells (TH) and CD8+ cytolytic T cells (CTL). CTL are considered the major effectors of the anti-tumor adaptive immune response as they recognize antigens presented on MHC class I (MHC-I) molecules usually expressed in all cells and thus also in tumors. However, attempts to translate in clinics vaccination protocols based only on tumor-specific MHC-I-bound peptides have resulted in very limited, if any, success. We believe failure was mostly due to inadequate triggering of the TH arm of adaptive immunity, as TH cells are necessary to trigger and maintain the proliferation of all the immune effector cells required to eliminate tumor cells. In this review, we focus on a novel strategy of anti-tumor vaccination established in our laboratory and based on the persistent expression of MHC class II (MHC-II) molecules in tumor cells. MHC-II are the restricting elements of TH recognition. They are usually not expressed in solid tumors. By genetically modifying tumor cells of distinct histological origin with the MHC-II transactivator CIITA, the physiological controller of MHC-II gene expression discovered in our laboratory, stable expression of all MHC class II genes was obtained. This resulted in tumor rejection or strong retardation of tumor growth in vivo in mice, mediated primarily by tumor-specific TH cells as assessed by both depletion and adoptive cell transfer experiments. Importantly these findings led us to apply this methodology to human settings for the purification of MHC-II-bound tumor specific peptides directly from tumor cells, specifically from hepatocarcinomas, and the construction of a multi-peptide (MHC-II and MHC-I specific) immunotherapeutic vaccine. Additionally, our approach unveiled a noticeable exception to the dogma that dendritic cells are the sole professional antigen presenting cells (APC) capable to prime naïve TH cells, because CIITA-dependent MHC-II expressing tumor cells could also perform this function. Thus, our approach has served not only to select the most appropriate tumor specific peptides to activate the key lymphocytes triggering the anti-tumor effector functions but also to increase our knowledge of intimate mechanisms governing basic immunological processes.
Collapse
Affiliation(s)
- Roberto S Accolla
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Varese, Italy
| | - Elise Ramia
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Varese, Italy
| | - Alessandra Tedeschi
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Varese, Italy
| | - Greta Forlani
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Varese, Italy
| |
Collapse
|
19
|
Shi M, Su L, Hao S, Guo X, Xiang J. Fusion Hybrid of Dendritic Cells and Engineered Tumor Cells Expressing Interleukin-12 Induces Type 1 Immune Responses against Tumor. TUMORI JOURNAL 2019; 91:531-8. [PMID: 16457153 DOI: 10.1177/030089160509100614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and Background Dendritic cell (DC)-tumor fusion hybrid vaccinees that facilitate antigen presentation represent a novel powerful strategy in cancer immunotherapy. Preclinical studies have demonstrated that IL-12 promotes specific antitumor immunity mediated by T cells in several types of tumors. In the present study, we investigated the antitumor immunity derived from vaccination of fusion hybrids between DCs and engineered J558/IL-12 myeloma cells secreting Th1 cytokine IL-12. Methods The expression vector pcDNA-IL-12 was generated and transfected into J558 myeloma cells and then bone marrow-derived DCs were fused with engineered J558/IL-12 cells. The antitumor immunity derived from vaccination of the fusion hybrid DC/J558/IL-12 was evaluated in vitro and in vivo. Results DC/J558/IL-12 cells secreted recombinant IL-12 (1.6 ng/mL), and inoculation of BALB/c mice with DC/J558/IL-12 hybrid induced a Th1 dominant immune response and resulted in tumor regression. Immunization of mice with engineered DC/J558/IL-12 hybrid elicited stronger J558 tumor-specific cytotoxic T lymphocyte (CTL) responses in vitro as well as more potent protective immunity against J558 tumor challenge in vivo than immunization with the mixture of DCs and J558/IL-12, J558/IL-12 and J558, respectively. Furthermore, the antitumor immunity mediated by DC/J558/1L-12 tumor cell vaccination in vivo appeared to be dependent on CD8+ CTL. Conclusions These results demonstrate that the engineered fusion hybrid vaccines that combine Th1 cytokine gene-modified tumor cells with DCs may be an attractive strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Meiqing Shi
- Research Unit, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
20
|
Axelrod ML, Cook RS, Johnson DB, Balko JM. Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clin Cancer Res 2019; 25:2392-2402. [PMID: 30463850 PMCID: PMC6467754 DOI: 10.1158/1078-0432.ccr-18-3200] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a key pillar of cancer treatment. To build upon the recent successes of immunotherapy, intense research efforts are aimed at a molecular understanding of antitumor immune responses, identification of biomarkers of immunotherapy response and resistance, and novel strategies to circumvent resistance. These studies are revealing new insight into the intricacies of tumor cell recognition by the immune system, in large part through MHCs. Although tumor cells widely express MHC-I, a subset of tumors originating from a variety of tissues also express MHC-II, an antigen-presenting complex traditionally associated with professional antigen-presenting cells. MHC-II is critical for antigen presentation to CD4+ T lymphocytes, whose role in antitumor immunity is becoming increasingly appreciated. Accumulating evidence demonstrates that tumor-specific MHC-II associates with favorable outcomes in patients with cancer, including those treated with immunotherapies, and with tumor rejection in murine models. Herein, we will review current research regarding tumor-enriched MHC-II expression and regulation in a range of human tumors and murine models, and the possible therapeutic applications of tumor-specific MHC-II.
Collapse
Affiliation(s)
- Margaret L Axelrod
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee
- Cancer Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
| | - Rebecca S Cook
- Cancer Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee.
- Cancer Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
21
|
Mensali N, Grenov A, Pati NB, Dillard P, Myhre MR, Gaudernack G, Kvalheim G, Inderberg EM, Bakke O, Wälchli S. Antigen-delivery through invariant chain (CD74) boosts CD8 and CD4 T cell immunity. Oncoimmunology 2019; 8:1558663. [PMID: 30723591 PMCID: PMC6350688 DOI: 10.1080/2162402x.2018.1558663] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/08/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Eradication of tumors by the immune system relies on the efficient activation of a T-cell response. For many years, the main focus of cancer immunotherapy has been on cytotoxic CD8 T-cell. However, stimulation of CD4 helper T cells is critical for the promotion and maintenance of immune memory, thus a good vaccine should evoke a two-dimensional T-cell response. The invariant chain (Ii) is required for the MHC class II heterodimer to be correctly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells (APC). We previously showed that by replacing the Ii CLIP peptide by an MHC-I cancer peptide, we could efficiently load MHC-I. This prompted us to test whether longer cancer peptides could be loaded on both MHC classes and whether such peptides could be accommodated in the CLIP region of Ii. We here present data showing that expanding the CLIP replacement size leads to T-cell activation. We demonstrate by using long peptides that APCs can present peptides from the same Ii molecule on both MHC-I and -II. In addition, we present evidence that antigen presentation after Ii-loading was superior to an ER-targeted minigene construct, suggesting that ER-localization was not sufficient to obtain efficient MHC-II loading. Finally, we verified that Ii-expressing dendritic cells could prime CD4+ and CD8+ T cells from a naïve population. Taken together our study demonstrates that CLIP peptide replaced Ii constructs fulfill some of the major requirements for an efficient vector for cancer vaccination.
Collapse
Affiliation(s)
- Nadia Mensali
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.,Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Amalie Grenov
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Niladri Bhusan Pati
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Pierre Dillard
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Marit Renée Myhre
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Gustav Gaudernack
- Department of Cancer Immunology, Institute for cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Gunnar Kvalheim
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Else Marit Inderberg
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Oddmund Bakke
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Sébastien Wälchli
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| |
Collapse
|
22
|
Luo Q, Yan L, Xu P, Xiong C, Yang Z, Hu P, Hu H, Hong R. Discovery of a polysaccharide from the fruiting bodies of Lepista sordida as potent inhibitors of indoleamine 2, 3-dioxygenase (IDO) in HepG2 cells via blocking of STAT1-mediated JAK-PKC-δ signaling pathways. Carbohydr Polym 2018; 197:540-547. [PMID: 30007645 DOI: 10.1016/j.carbpol.2018.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022]
Abstract
The present study examined the role of a polysaccharide (LSP, 25 and 100 μg/ml) from the fruiting bodies of Lepista sordid on the immunosuppressive enzyme indoleamine 2, 3-dioxygenase (IDO) in HepG2 cells, and the possible mechanism of action. IDO expression and kynurenine production from LSP-treated HepG2 cells following IFN-γ stimulation were dramatically inhibited by LSP treatment. In line with this, the medium of HepG2 cells pretreated with LSP improved the survival rate of primary CD4+ and CD8+ T cells as compared with IFN-γ-treated control cells. Moreover, tyrosine 701 and serine 727 phosphorylation of STAT1 were dramatically reduced by LSP pretreatment in IFN-γ-stimulated HepG2 cells. Furthermore phosphorylation of JAK-1 and JAK-2 was also inhibited by LSP. Additionally, two IDO promoters (GAS and ISRE) were inhibited in cells pretreated with LSP prior to IFN-γ exposure. These findings suggest that LSP exerts antitumor effects on HepG2 cells by inhibiting IDO via JAK-PKC-δ-STAT1 signaling pathway.
Collapse
Affiliation(s)
- Qiang Luo
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Liang Yan
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Pan Xu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China
| | - Zhirong Yang
- Sichuan Province Key Laboratory of Nature Resources Microbiology and Technique, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Peng Hu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Huidong Hu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ren Hong
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
23
|
de Charette M, Marabelle A, Houot R. Turning tumour cells into antigen presenting cells: The next step to improve cancer immunotherapy? Eur J Cancer 2016; 68:134-147. [PMID: 27755997 DOI: 10.1016/j.ejca.2016.09.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022]
Abstract
Downregulation/loss of the antigen presentation is a major immune escape mechanism in cancer. It allows tumour cells to become 'invisible' and avoid immune attack by antitumour T cells. In tumour harbouring properties of professional antigen presenting cells (i.e. tumour B cells in lymphoma), downregulation/loss of the antigen presentation may also prevent direct priming of naïve T cells by tumour cells. Here, we review treatments that may induce/restore antigen presentation by the tumour cells. These treatments may increase the generation of antitumour T cells and/or their capacity to recognise and eliminate tumour cells. By forcing tumour cells to present their antigens, these treatments may sensitise patients to T cell-based immunotherapies, including checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Aurélien Marabelle
- Gustave Roussy, Université Paris-Saclay, Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, F-94805, France; INSERM U1015, Villejuif, F-94805, France
| | - Roch Houot
- CHU Rennes, Service Hématologie Clinique, F-35033, Rennes, France; INSERM, U917, F-35043, Rennes, France.
| |
Collapse
|
24
|
Austin R, Smyth MJ, Lane SW. Harnessing the immune system in acute myeloid leukaemia. Crit Rev Oncol Hematol 2016; 103:62-77. [PMID: 27247119 DOI: 10.1016/j.critrevonc.2016.04.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/13/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
|
25
|
Ovarian cancer and the immune system - The role of targeted therapies. Gynecol Oncol 2016; 142:349-56. [PMID: 27174875 DOI: 10.1016/j.ygyno.2016.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/03/2016] [Accepted: 05/07/2016] [Indexed: 01/21/2023]
Abstract
The majority of patients with epithelial ovarian cancer are diagnosed with advanced disease. While many of these patients will respond initially to chemotherapy, the majority will relapse and die of their disease. Targeted therapies that block or activate specific intracellular signaling pathways have been disappointing. In the past 15years, the role of the immune system in ovarian cancer has been investigated. Patients with a more robust immune response, as documented by the presence of lymphocytes infiltrating within their tumor, have increased survival and better response to chemotherapy. In addition, a strong immunosuppressive environment often accompanies ovarian cancer. Recent research has identified potential therapies that leverage the immune system to identify and destroy tumor cells that previously evaded immunosurveillance mechanisms. In this review, we discuss the role of the immune system in ovarian cancer and focus on specific pathways and molecules that show a potential for targeted therapy. We also review the ongoing clinical trials using targeted immunotherapy in ovarian cancer. The role of targeted immunotherapy in patients with ovarian cancer represents a field of growing research and clinical importance.
Collapse
|
26
|
Forero A, Li Y, Chen D, Grizzle WE, Updike KL, Merz ND, Downs-Kelly E, Burwell TC, Vaklavas C, Buchsbaum DJ, Myers RM, LoBuglio AF, Varley KE. Expression of the MHC Class II Pathway in Triple-Negative Breast Cancer Tumor Cells Is Associated with a Good Prognosis and Infiltrating Lymphocytes. Cancer Immunol Res 2016; 4:390-9. [PMID: 26980599 DOI: 10.1158/2326-6066.cir-15-0243] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/28/2016] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subtype with heterogeneous patient outcomes. Approximately 40% of patients experience rapid relapse, while the remaining patients have long-term disease-free survival. To determine if there are molecular differences between primary tumors that predict prognosis, we performed RNA-seq on 47 macrodissected tumors from newly diagnosed patients with TNBC (n = 47; 22 relapse, 25 no relapse; follow-up median, 8 years; range, 2-11 years). We discovered that expression of the MHC class II (MHC II) antigen presentation pathway in tumor tissue was the most significant pathway associated with progression-free survival (HR, 0.36; log-rank P = 0.0098). The association between MHC II pathway expression and good prognosis was confirmed in a public gene expression database of 199 TNBC cases (HR, 0.28; log-rank P = 4.5 × 10(-8)). Further analysis of immunohistochemistry, laser-capture microdissected tumors, and TNBC cell lines demonstrated that tumor cells, in addition to immune cells, aberrantly express the MHC II pathway. MHC II pathway expression was also associated with B-cell and T-cell infiltration in the tumor. Together, these data support the model that aberrant expression of the MHC II pathway in TNBC tumor cells may trigger an antitumor immune response that reduces the rate of relapse and enhances progression-free survival. Cancer Immunol Res; 4(5); 390-9. ©2016 AACR.
Collapse
Affiliation(s)
- Andres Forero
- Department of Medicine, University of Alabama at Birmingham, Comprehensive Cancer Center, Birmingham, Alabama
| | - Yufeng Li
- Department of Medicine, University of Alabama at Birmingham, Comprehensive Cancer Center, Birmingham, Alabama
| | - Dongquan Chen
- Department of Medicine, University of Alabama at Birmingham, Comprehensive Cancer Center, Birmingham, Alabama
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham, Comprehensive Cancer Center, Birmingham, Alabama
| | - Katherine L Updike
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Natalie D Merz
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Erinn Downs-Kelly
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Todd C Burwell
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Christos Vaklavas
- Department of Medicine, University of Alabama at Birmingham, Comprehensive Cancer Center, Birmingham, Alabama
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Comprehensive Cancer Center, Birmingham, Alabama
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama. Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Albert F LoBuglio
- Department of Medicine, University of Alabama at Birmingham, Comprehensive Cancer Center, Birmingham, Alabama
| | - Katherine E Varley
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| |
Collapse
|
27
|
Boyd NH, Morgan JE, Greer SF. Polycomb recruitment at the Class II transactivator gene. Mol Immunol 2015; 67:482-91. [PMID: 26283540 DOI: 10.1016/j.molimm.2015.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/04/2015] [Indexed: 12/29/2022]
Abstract
The Class II Transactivator (CIITA) is the master regulator of Major Histocompatibility Class II (MHC II) genes. Transcription of CIITA through the IFN-γ inducible CIITA promoter IV (CIITA pIV) during activation is characterized by a decrease in trimethylation of histone H3 lysine 27 (H3K27me3), catalyzed by the histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2). While EZH2 is the known catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) and is present at the inactive CIITA pIV, the mechanism of PRC2 recruitment to mammalian promoters remains unknown. Here we identify two DNA-binding proteins, which interact with and regulate PRC2 recruitment to CIITA pIV. We demonstrate Yin Yang 1 (YY1) and Jumonji domain containing protein 2 (JARID2) are binding partners along with EZH2 in mammalian cells. Upon IFN-γ stimulation, YY1 dissociates from CIITA pIV while JARID2 binding to CIITA pIV increases, suggesting novel roles for these proteins in regulating expression of CIITA pIV. Knockdown of YY1 and JARID2 yields decreased binding of EZH2 and H3K27me3 at CIITA pIV, suggesting important roles for YY1 and JARID2 at CIITA pIV. JARID2 knockdown also results in significantly elevated levels of CIITA mRNA upon IFN-γ stimulation. This study is the first to identify novel roles of YY1 and JARID2 in the epigenetic regulation of the CIITA pIV by recruitment of PRC2. Our observations indicate the importance of JARID2 in CIITA pIV silencing, and also provide a novel YY1-JARID2-PRC2 regulatory complex as a possible explanation of differential PRC2 recruitment at inducible versus permanently silenced genes.
Collapse
Affiliation(s)
- Nathaniel H Boyd
- Division of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30302, United States.
| | - Julie E Morgan
- Division of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30302, United States.
| | - Susanna F Greer
- Department of Biology, Georgia State University, Petit Science Center, 100 Piedmont Avenue, Suite 632, Atlanta, GA 30302-4010, United States.
| |
Collapse
|
28
|
Sharma SK, Chintala NK, Vadrevu SK, Patel J, Karbowniczek M, Markiewski MM. Pulmonary Alveolar Macrophages Contribute to the Premetastatic Niche by Suppressing Antitumor T Cell Responses in the Lungs. THE JOURNAL OF IMMUNOLOGY 2015; 194:5529-38. [DOI: 10.4049/jimmunol.1403215] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/21/2015] [Indexed: 12/17/2022]
|
29
|
Ostrand-Rosenberg S, Horn LA, Alvarez JA. Novel strategies for inhibiting PD-1 pathway-mediated immune suppression while simultaneously delivering activating signals to tumor-reactive T cells. Cancer Immunol Immunother 2015; 64:1287-93. [PMID: 25792524 DOI: 10.1007/s00262-015-1677-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/01/2015] [Indexed: 12/31/2022]
Abstract
We previously developed cell-based vaccines as therapeutics for metastatic cancers. The vaccines were aimed at activating type I CD4(+)T cells and consisted of tumor cells transfected with genes encoding syngeneic MHC class II and CD80 costimulatory molecules, and lacking the MHC II-associated invariant chain. The vaccines showed some efficacy in mice with sarcoma, melanoma, and breast cancer and activated MHC class II syngeneic T cells from breast, lung, and melanoma patients. During the course of the vaccine studies, we observed that CD80 not only costimulated naïve T cells, but also bound to PD-L1 and prevented tumor cell-expressed PD-L1 from binding to its receptor PD-1 on activated T cells. A soluble form of CD80 (CD80-Fc) had the same effect and sustained IFNγ production by both human and murine PD-1(+) activated T cells in the presence of PD-L1(+) human or mouse tumor cells, respectively. In vitro studies with human tumor cells indicated that CD80-Fc was more effective than antibodies to either PD-1 or PD-L1 in sustaining T cell production of IFNγ. Additionally, in vivo studies with a murine tumor demonstrated that CD80-Fc was more effective than antibodies to PD-L1 in extending survival time. Studies with human T cells blocked for CD28 and with T cells from CD28 knockout mice demonstrated that CD80-Fc simultaneously inhibited PD-L1/PD-1-mediated immune suppression and delivered costimulatory signals to activated T cells, thereby amplifying T cell activation. These results suggest that CD80-Fc may be a useful monotherapy that minimizes PD-1 pathway immune suppression while simultaneously activating tumor-reactive T cells.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA,
| | | | | |
Collapse
|
30
|
Accolla RS, Lombardo L, Abdallah R, Raval G, Forlani G, Tosi G. Boosting the MHC Class II-Restricted Tumor Antigen Presentation to CD4+ T Helper Cells: A Critical Issue for Triggering Protective Immunity and Re-Orienting the Tumor Microenvironment Toward an Anti-Tumor State. Front Oncol 2014; 4:32. [PMID: 24600588 PMCID: PMC3927100 DOI: 10.3389/fonc.2014.00032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/04/2014] [Indexed: 01/06/2023] Open
Abstract
Although the existence of an immune response against tumor cells is well documented, the fact that tumors take off in cancer patients indicates that neoplastic cells can circumvent this response. Over the years many investigators have described strategies to rescue the anti-tumor immune response with the aim of creating specific and long-lasting protection against the disease. When exported to human clinical settings, these strategies have revealed in most cases a very limited, if any, positive outcome. We believe that the failure is mostly due to the inadequate triggering of the CD4+ T helper (TH) cell arm of the adaptive immunity, as TH cells are necessary to trigger all the immune effector mechanisms required to eliminate tumor cells. In this review, we focus on novel strategies that by stimulating MHC class II-restricted activation of TH cells generate a specific and persistent adaptive immunity against the tumor. This point is of critical importance for both preventive and therapeutic anti-tumor vaccination protocols, because adaptive immunity with its capacity to produce specific, long-lasting protection and memory responses is indeed the final goal of vaccination. We will discuss data from our as well as other laboratories which strongly suggest that triggering a specific and persistent anti-tumor CD4+ TH cell response stably modify not only the tumor microenvironment but also tumor-dependent extratumor microenvironments by eliminating and/or reducing the blood-derived tumor infiltrating cells that may have a pro-tumor growth function such as regulatory CD4+/CD25+ T cells and myeloid-derived-suppressor cells. Within this frame, therefore, we believe that the establishment of a pro-tumor environment is not the cause but simply the consequence of the tumor strategy to primarily counteract components of the adaptive cellular immunity, particularly TH lymphocytes.
Collapse
Affiliation(s)
- Roberto S Accolla
- Department of Surgical and Morphological Sciences, University of Insubria , Varese , Italy
| | - Letizia Lombardo
- Department of Surgical and Morphological Sciences, University of Insubria , Varese , Italy
| | - Rawan Abdallah
- Department of Surgical and Morphological Sciences, University of Insubria , Varese , Italy
| | - Goutham Raval
- Department of Surgical and Morphological Sciences, University of Insubria , Varese , Italy
| | - Greta Forlani
- Department of Surgical and Morphological Sciences, University of Insubria , Varese , Italy
| | - Giovanna Tosi
- Department of Surgical and Morphological Sciences, University of Insubria , Varese , Italy
| |
Collapse
|
31
|
Näsman A, Andersson E, Marklund L, Tertipis N, Hammarstedt-Nordenvall L, Attner P, Nyberg T, Masucci GV, Munck-Wikland E, Ramqvist T, Dalianis T. HLA class I and II expression in oropharyngeal squamous cell carcinoma in relation to tumor HPV status and clinical outcome. PLoS One 2013; 8:e77025. [PMID: 24130830 PMCID: PMC3794938 DOI: 10.1371/journal.pone.0077025] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/26/2013] [Indexed: 01/01/2023] Open
Abstract
HPV-DNA positive (HPVDNA+) oropharyngeal squamous cell carcinoma (OSCC) has better clinical outcome than HPV-DNA negative (HPVDNA-) OSCC. Current treatment may be unnecessarily extensive for most HPV+ OSCC, but before de-escalation, additional markers are needed together with HPV status to better predict treatment response. Here the influence of HLA class I/HLA class II expression was explored. Pre-treatment biopsies, from 439/484 OSCC patients diagnosed 2000-2009 and treated curatively, were analyzed for HLA I and II expression, p16(INK4a) and HPV DNA. Absent/weak as compared to high HLA class I intensity correlated to a very favorable disease-free survival (DFS), disease-specific survival (DSS) and overall survival (OS) in HPVDNA+ OSCC, both in univariate and multivariate analysis, while HLA class II had no impact. Notably, HPVDNA+ OSCC with absent/weak HLA class I responded equally well when treated with induction-chemo-radiotherapy (CRT) or radiotherapy (RT) alone. In patients with HPVDNA- OSCC, high HLA class I/class II expression correlated in general to a better clinical outcome. p16(INK4a) overexpression correlated to a better clinical outcome in HPVDNA+ OSCC. Absence of HLA class I intensity in HPVDNA+ OSCC suggests a very high survival independent of treatment and could possibly be used clinically to select patients for randomized trials de-escalating therapy.
Collapse
Affiliation(s)
- Anders Näsman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Emilia Andersson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Linda Marklund
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nikolaos Tertipis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lalle Hammarstedt-Nordenvall
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Attner
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy Nyberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Eva Munck-Wikland
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Torbjörn Ramqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
de Carvalho DL, Barbosa CD, de Carvalho AL, Beck ST. Association of HLA antigens and BCR-ABL transcripts in leukemia patients with the Philadelphia chromosome. Rev Bras Hematol Hemoter 2012; 34:280-4. [PMID: 23049441 PMCID: PMC3460407 DOI: 10.5581/1516-8484.20120072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/27/2012] [Indexed: 11/27/2022] Open
Abstract
Objective This study aimed to verify the association between human leukocyte antigens and the bcr-abl fusion protein resulting from t(9;22)(q34;q11) in chronic leukemia myeloid and acute lymphoblastic leukemia patients. Methods Forty-seven bcr-abl positive individuals were evaluated. Typing was performed bymicrolymphocytotoxicity and molecular biological methods (human leukocyte antigens Class I and Class II). A control group was obtained from the data of potential bone marrow donors registered in the Brazilian Bone Marrow Donor Registry (REDOME). Results Positive associations with HLA-A25 and HLA-B18 were found for the b2a2 transcript, as well as a tendency towards a positive association with HLA-B40 and a negative association with HLA-A68. The b3a2 transcript showed positive associations with HLA-B40 and HLA-DRB1*3. Conclusion The negative association between human leukocyte antigens and the BCR-ABL transcript suggests that binding and presentation of peptides derived from the chimeric protein are effective to increase a cytotoxic T lymphocyte response appropriate for the destruction of leukemic cells.
Collapse
|
33
|
Pillai S, Szekeres K, Lawrence NJ, Chellappan SP, Blanck G. Regulation of interlocking gene regulatory network subcircuits by a small molecule inhibitor of retinoblastoma protein (RB) phosphorylation: cancer cell expression of HLA-DR. Gene 2012; 512:403-7. [PMID: 23041127 DOI: 10.1016/j.gene.2012.09.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/28/2012] [Accepted: 09/23/2012] [Indexed: 11/17/2022]
Abstract
The induction of the major histocompatibility (MHC), antigen-presenting class II molecules by interferon-gamma, in solid tumor cells, requires the retinoblastoma tumor suppressor protein (Rb). In the absence of Rb, a repressosome blocks the access of positive-acting, promoter binding proteins to the MHC class II promoter. However, a complete molecular linkage between Rb expression and the disassembly of the MHC class II repressosome has been lacking. By treating A549 lung carcinoma cells with a novel small molecule that prevents phosphorylation-mediated, Rb inactivation, we demonstrate that Rb represses the synthesis of an MHC class II repressosome component, YY1. The reduction in YY1 synthesis correlates with the advent of MHC class II inducibility; with loss of YY1 binding to the promoter of the HLA-DRA gene, the canonical human MHC class II gene; and with increased Rb binding to the YY1 promoter. These results support the concept that the Rb gene regulatory network (GRN) subcircuit that regulates cell proliferation is linked to a GRN subcircuit regulating a tumor cell immune function.
Collapse
Affiliation(s)
- Smitha Pillai
- Drug Discovery Program, Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
34
|
Chornoguz O, Gapeev A, O'Neill MC, Ostrand-Rosenberg S. Major histocompatibility complex class II+ invariant chain negative breast cancer cells present unique peptides that activate tumor-specific T cells from breast cancer patients. Mol Cell Proteomics 2012; 11:1457-67. [PMID: 22942358 DOI: 10.1074/mcp.m112.019232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major histocompatibility complex (MHC) class II-associated Invariant chain (Ii) is present in professional antigen presenting cells where it regulates peptide loading onto MHC class II molecules and the peptidome presented to CD4+ T lymphocytes. Because Ii prevents peptide loading in neutral subcellular compartments, we reasoned that Ii- cells may present peptides not presented by Ii+ cells. Based on the hypothesis that patients are tolerant to MHC II-restricted tumor peptides presented by Ii+ cells, but will not be tolerant to novel peptides presented by Ii- cells, we generated MHC II vaccines to activate cancer patients' T cells. The vaccines are Ii- tumor cells expressing syngeneic HLA-DR and the costimulatory molecule CD80. We used liquid chromatography coupled with mass spectrometry to sequence MHC II-restricted peptides from Ii+ and Ii- MCF10 human breast cancer cells transfected with HLA-DR7 or the MHC Class II transactivator CIITA to determine if Ii- cells present novel peptides. Ii expression was induced in the HLA-DR7 transfectants by transfection of Ii, and inhibited in the CIITA transfectants by RNA interference. Peptides were analyzed and binding affinity predicted by artificial neural net analysis. HLA-DR7-restricted peptides from Ii- and Ii+ cells do not differ in size or in subcellular location of their source proteins; however, a subset of HLA-DR7-restricted peptides of Ii- cells are not presented by Ii+ cells, and are derived from source proteins not used by Ii+ cells. Peptides from Ii- cells with the highest predicted HLA-DR7 binding affinity were synthesized, and activated tumor-specific HLA-DR7+ human T cells from healthy donors and breast cancer patients, demonstrating that the MS-identified peptides are bonafide tumor antigens. These results demonstrate that Ii regulates the repertoire of tumor peptides presented by MHC class II+ breast cancer cells and identify novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.
Collapse
Affiliation(s)
- Olesya Chornoguz
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
35
|
van Luijn MM, van de Loosdrecht AA, Lampen MH, van Veelen PA, Zevenbergen A, Kester MGD, de Ru AH, Ossenkoppele GJ, van Hall T, van Ham SM. Promiscuous binding of invariant chain-derived CLIP peptide to distinct HLA-I molecules revealed in leukemic cells. PLoS One 2012; 7:e34649. [PMID: 22563374 PMCID: PMC3338516 DOI: 10.1371/journal.pone.0034649] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 03/05/2012] [Indexed: 01/20/2023] Open
Abstract
Antigen presentation by HLA class I (HLA-I) and HLA class II (HLA-II) complexes is achieved by proteins that are specific for their respective processing pathway. The invariant chain (Ii)-derived peptide CLIP is required for HLA-II-mediated antigen presentation by stabilizing HLA-II molecules before antigen loading through transient and promiscuous binding to different HLA-II peptide grooves. Here, we demonstrate alternative binding of CLIP to surface HLA-I molecules on leukemic cells. In HLA-II-negative AML cells, we found plasma membrane display of the CLIP peptide. Silencing Ii in AML cells resulted in reduced HLA-I cell surface display, which indicated a direct role of CLIP in the HLA-I antigen presentation pathway. In HLA-I-specific peptide eluates from B-LCLs, five Ii-derived peptides were identified, of which two were from the CLIP region. In vitro peptide binding assays strikingly revealed that the eluted CLIP peptide RMATPLLMQALPM efficiently bound to four distinct HLA-I supertypes (-A2, -B7, -A3, -B40). Furthermore, shorter length variants of this CLIP peptide also bound to these four supertypes, although in silico algorithms only predicted binding to HLA-A2 or -B7. Immunization of HLA-A2 transgenic mice with these peptides did not induce CTL responses. Together these data show a remarkable promiscuity of CLIP for binding to a wide variety of HLA-I molecules. The found participation of CLIP in the HLA-I antigen presentation pathway could reflect an aberrant mechanism in leukemic cells, but might also lead to elucidation of novel processing pathways or immune escape mechanisms.
Collapse
Affiliation(s)
- Marvin M van Luijn
- Department of Hematology, VU Institute for Cancer and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Eisenlohr LC, Luckashenak N, Apcher S, Miller MA, Sinnathamby G. Beyond the classical: influenza virus and the elucidation of alternative MHC class II-restricted antigen processing pathways. Immunol Res 2012; 51:237-48. [PMID: 22101673 DOI: 10.1007/s12026-011-8257-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CD4+ T cells (T(CD4+)) are activated by peptides, generally 13-17 amino acids in length, presented at the cell surface in combination with highly polymorphic MHC class II molecules. According to the classical model, these peptides are generated by endosomal digestion of internalized antigen and loaded onto MHC class II molecules in the late endosome. Historically, this "exogenous" pathway has been defined through the extensive use of purified proteins. However, the relatively recent use of clinically relevant antigens, those of influenza virus in our case, has revealed several additional pathways of peptide production, including some that are truly "endogenous", entailing synthesis of the protein within the infected cell. Indeed, some peptides appear to be created only via endogenous processing. The cell biology that underlies these alternative pathways remains poorly understood as do their relative contributions to defence against infectious agents and cancer, and the triggering of autoimmune diseases.
Collapse
Affiliation(s)
- Laurence C Eisenlohr
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
37
|
Tsuji T, Matsuzaki J, Caballero OL, Jungbluth AA, Ritter G, Odunsi K, Old LJ, Gnjatic S. Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4(+) T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:3851-8. [PMID: 22427632 DOI: 10.4049/jimmunol.1103269] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor Ag-specific CD4(+) T cells play important functions in tumor immunosurveillance, and in certain cases they can directly recognize HLA class II-expressing tumor cells. However, the underlying mechanism of intracellular Ag presentation to CD4(+) T cells by tumor cells has not yet been well characterized. We analyzed two naturally occurring human CD4(+) T cell lines specific for different peptides from cytosolic tumor Ag NY-ESO-1. Whereas both lines had the same HLA restriction and a similar ability to recognize exogenous NY-ESO-1 protein, only one CD4(+) T cell line recognized NY-ESO-1(+) HLA class II-expressing melanoma cells. Modulation of Ag processing in melanoma cells using specific molecular inhibitors and small interfering RNA revealed a previously undescribed peptide-selective Ag-presentation pathway by HLA class II(+) melanoma cells. The presentation required both proteasome and endosomal protease-dependent processing mechanisms, as well as cytosolic heat shock protein 90-mediated chaperoning. Such tumor-specific pathway of endogenous HLA class II Ag presentation is expected to play an important role in immunosurveillance or immunosuppression mediated by various subsets of CD4(+) T cells at the tumor local site. Furthermore, targeted activation of tumor-recognizing CD4(+) T cells by vaccination or adoptive transfer could be a suitable strategy for enhancing the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Takemasa Tsuji
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hettihewa LM. Prolonged expression of MHC class I - peptide expression in bone marrow derived retrovirus transfected matured dendritic cells by continuous centrifugation in the presence of IL-4. Indian J Med Res 2011; 134:672-8. [PMID: 22199107 PMCID: PMC3249966 DOI: 10.4103/0971-5916.90993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background & objectives: Dendritic cells (DCs) are potent antigen presenting cells which proceed from immature to a mature stage during their differentiation. There are several methods of obtaining long lasting mature antigen expressing DCs and different methods show different levels of antigen expressions. We investigated bone marrow derived DCs for the degree of maturation and genetically engineered antigen presentation in the presence of interleukin-4 (IL-4) as a maturity enhancer. Methods: DCs and transfected retrovirus were cultured together in the presence of granulocyte-macrophage colony stimulating factor (GMCSF)-IL4, GMCSF +IL4, lipopolysaccharide (LPS). B 7.1, B7.2 and CD11c were measured by the degree of immune fluorescence using enhanced green fluorescent protein (EGFP) shuttled retrovirus transfected antigen. Degree of MHC class I molecule with antigen presentation of antigen was also evaluated by fluorescence activated cell sorting. The antigen presenting capacity of transfected DCs was investigated. Bone marrow DCs were generated in the presence of GMCSF and IL-4 in vitro. Dividing bone marrow cells were infected with EGFP shuttled retrovirus expressing SSP2 by prolonged centrifugation for three consecutive days from day 5, 6 and 7 and continued to culture in the presence of GMSCF and IL-4 until day 8. Results: IL-4 as a cytokine increased the maturation of retrovirus transfected DCs by high expression of B 7-1 and B 7-2. Also, IL-4 induced DC enhanced by the prolonged centrifugation and it was shown by increased antigen presentation of these dendric cells as antigen presenting cell (APC). Cytolytic effects were significantly higher in cytotoxic T cell response (CTLs) mixed with transfected DCs than CTLs mixed with pulsed DCs. Interpretation & conclusions: There was an enhanced antigen presentation by prolonged expression of antigen loaded MHC class I receptors in DCs in the presence of IL-4 by prolonged centrifugation.
Collapse
Affiliation(s)
- L M Hettihewa
- Department of Pharmacology, Faculty of Medicine, University of Ruhuna, Sri Lanka.
| |
Collapse
|
39
|
Lee YS, Kim SH, Cho JA, Kim CW. Introduction of the CIITA gene into tumor cells produces exosomes with enhanced anti-tumor effects. Exp Mol Med 2011; 43:281-90. [PMID: 21464590 DOI: 10.3858/emm.2011.43.5.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Exosomes are small membrane vesicles secreted from various types of cells. Tumor-derived exosomes contain MHC class I molecules and tumor-specific antigens, receiving attention as a potential cancer vaccine. For induction of efficient anti-tumor immunity, CD4+ helper T cells are required, which recognize appropriate MHC class II-peptide complexes. In this study, we have established an MHC class II molecule-expressing B16F1 murine melanoma cell line (B16F1- CIITA) by transduction of the CIITA (Class II transactivator) gene. Exosomes from B16-CII cells (CIITA- Exo) contained a high amount of MHC class II as well as a tumor antigen TRP2. When loaded on dendritic cells (DCs), CIITA-Exo induced the increased expression of MHC class II molecules and CD86 than the exosomes from the parental cells (Exo). In vitro assays using co-culture of immunized splenocytes and exosome-loaded DCs demonstrated that CIITA-Exo enhanced the splenocyte proliferation and IL-2 secretion. Consistently, compared to B16-Exo, CIITA-Exo induced the increased mRNA levels of inflammatory cytokines such as TNF-α, chemokine receptor CCR7 and the production of Th1-polarizing cytokine IL-12. A tumor preventive model showed that CIITA-Exo significantly inhibited tumor growth in a dose-dependent manner. Ex vivo assays using immunized mice demonstrated that CIITA-Exo induced a higher amount of Th1-polarized immune responses such as Th1-type IgG2a antibodies and IFN-γ cytokine as well as TRP2-specific CD8+ T cells. A tumor therapeutic model delayed effects of tumor growth by CIITA-Exo. These findings indicate that CIITA-Exo are more efficient as compared to parental Exo to induce anti-tumor immune responses, suggesting a potential role of MHC class II-containing tumor exosomes as an efficient cancer vaccine.
Collapse
Affiliation(s)
- Yeong Shin Lee
- Tumor Immunity Medical Research Center, Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
40
|
Accolla RS, Frangione V, De Lerma Barbaro A, Mortara L. New strategies of mammary cancer vaccination. Breast J 2011; 16 Suppl 1:S42-4. [PMID: 21050309 DOI: 10.1111/j.1524-4741.2010.01003.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new strategy of vaccination against mammary tumors, extendible to tumors of distinct histological origin, based on the administration of tumor cells genetically modified to express major histocompatibility complex (MHC) class II gene products, will be described. Expression of MHC class II molecules in solid tumors, generally lacking these molecules, is achieved by transfecting tumor cells with the MHC class II transactivator (CIITA), the major regulator of the entire family of MHC class II genes. CIITA is encoded by the AIR-1 locus, discovered in our laboratory. The rationale underlying this approach consists in making the tumor cells a sort of surrogate antigen presenting cells for MHC-II-restricted CD4 + T helper (TH) cells. Indeed, it is known that an efficient adaptive immune response against cancer cells can only be achieved if tumor-specific TH cells, the key lymphocyte subpopulation required to trigger both humoral and cellular effector mechanisms, are optimally stimulated. Results from our group show that: (a) CIITA-modified tumor cells can be rejected in vivo by syngeneic immunocompetent mice; (b) this rejection is mediated primarily by CD4 + TH lymphocytes that activate cytolytic CD8 + T cell effectors ; (c) tumor-rejecting mice are resistant to challenge with parental unmodified tumor cells and display long term immune memory; (d) anti-tumor vaccination can be reproduced by using inactivated, nonreplicating CIITA-transfected tumor cells; (e) immune effectors and particularly primed CD4 + TH cells can be used successfully in approaches of immunotherapy of established tumors. These results open the way to envisage a possible use of CIITA-modified mammary tumor cells as a vaccine for increasing both the inducing and the effector phase of the anti-tumor immune response in human settings.
Collapse
Affiliation(s)
- Roberto S Accolla
- Department of Experimental Medicine, School of Medicine, University of Insubria, Varese, Italy.
| | | | | | | |
Collapse
|
41
|
van Luijn MM, van den Ancker W, Chamuleau MED, Zevenbergen A, Westers TM, Ossenkoppele GJ, van Ham SM, van de Loosdrecht AA. Absence of class II-associated invariant chain peptide on leukemic blasts of patients promotes activation of autologous leukemia-reactive CD4+ T cells. Cancer Res 2011; 71:2507-17. [PMID: 21310823 DOI: 10.1158/0008-5472.can-10-3689] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immune escape in cancer poses a substantial obstacle to successful cancer immunotherapy. Multiple defects in HLA class I antigen presentation exist in cancer that may contribute to immune escape, but less is known about roles for HLA class II antigen presentation. On class II(+) leukemic blasts, the presence of class II-associated invariant chain peptide (CLIP) is known to be correlated with poor survival in acute myeloid leukemia (AML). In this study, we evaluated the functional significance of CLIP expression on leukemic blasts of AML patients. CD4(+) T cells from patients were cocultured with autologous CLIP(-) and CLIP(+) primary leukemic blasts and analyzed for several functional parameters by flow cytometry. Increased HLA-DR and IFN-γ expression was observed for CD4(+) T cells stimulated with CLIP(-) leukemic blasts, in contrast to CLIP(+) leukemic blasts, which indicated an activation and polarization of the CD4(+) T cells toward T-helper 1 cells. In addition, CLIP(-) leukemic blasts induced greater outgrowth of effector memory CD4(+) T cells (with HLA-DR-restricted T-cell receptor Vβ repertoires) that were associated with better leukemia-specific reactivity than with CLIP(+) leukemic blasts. Our findings offer a clinical rationale to downmodulate CLIP on leukemic blasts as a strategy to degrade immune escape and improve leukemia-specific T-cell immunity in AML patients.
Collapse
Affiliation(s)
- Marvin M van Luijn
- Department of Hematology, Cancer Center Amsterdam and VU Institute for Cancer and Immunology, VU University Medical Center, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gold DV, Stein R, Burton J, Goldenberg DM. Enhanced expression of CD74 in gastrointestinal cancers and benign tissues. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2010; 4:1-12. [PMID: 21228923 PMCID: PMC3016099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 11/21/2010] [Indexed: 05/30/2023]
Abstract
CD74, a transmembrane glycoprotein that associates with MHC II, is an important chaperone that regulates antigen presentation for immune response. In addition, CD74 is the receptor for macrophage migration-inhibitory factor which, when bound to CD74, initiates survival pathways and cell proliferation. Formalin fixed, paraffin embedded clinical specimens were evaluated by immunohistochemical procedures for expression of CD74. Overall, expression of CD74 within gastrointestinal carcinomas showed a statistically greater expression than in the normal tissue counterparts (P<0.001 or better). CD74 expression was observed in 95% of pancreatic carcinomas with the majority of cases presenting a mostly intense, diffuse labeling pattern. The results suggested a trend towards greater expression within the higher grade carcinomas (P=0.06). Colorectal and gastric carcinomas gave similar results with 60% and 86%, respectively, positive for CD74 with an intense, diffuse staining pattern. We hypothesized that precursor lesions would express levels of CD74 as high, or higher, than their respective carcinomas, since activation of survival pathways would be of particular importance at the early stages of neoplastic development. For PanIN lesions there was greater expression of CD74 within higher grade, PanIN-3 lesions, whereas the colonic adenomas showed no such trend, but overall, a higher frequency and intensity of CD74 labeling than was observed within the colon carcinomas. These findings are supportive of a role for CD74 in the development and maintenance of gastrointestinal neo-plasia, and provide a rationale for development of therapeutic agents that are able to block CD74 function, specifically within the tumor cell.
Collapse
Affiliation(s)
- David V Gold
- Garden State Cancer Center, Center for Molecular Medicine and Immunology Belleville, NJ 07109, USA.
| | | | | | | |
Collapse
|
43
|
van Luijn MM, Chamuleau MED, Ressing ME, Wiertz EJ, Ostrand-Rosenberg S, Souwer Y, Zevenbergen A, Ossenkoppele GJ, van de Loosdrecht AA, van Ham SM. Alternative Ii-independent antigen-processing pathway in leukemic blasts involves TAP-dependent peptide loading of HLA class II complexes. Cancer Immunol Immunother 2010; 59:1825-38. [PMID: 20820776 PMCID: PMC2945475 DOI: 10.1007/s00262-010-0908-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 08/14/2010] [Indexed: 01/08/2023]
Abstract
During HLA class II synthesis in antigen-presenting cells, the invariant chain (Ii) not only stabilizes HLA class II complexes in the endoplasmic reticulum, but also mediates their transport to specialized lysosomal antigen-loading compartments termed MIICs. This study explores an alternative HLA class II presentation pathway in leukemic blasts that involves proteasome and transporter associated with antigen processing (TAP)-dependent peptide loading. Although HLA-DR did associate with Ii, Ii silencing in the human class II-associated invariant chain peptide (CLIP)-negative KG-1 myeloid leukemic cell line did not affect total and plasma membrane expression levels of HLA-DR, as determined by western blotting and flow cytometry. Since HLA-DR expression does require peptide binding, we examined the role of endogenous antigen-processing machinery in HLA-DR presentation by CLIP(-) leukemic blasts. The suppression of proteasome and TAP function using various inhibitors resulted in decreased HLA-DR levels in both CLIP(-) KG-1 and ME-1 blasts. Simultaneous inhibition of TAP and Ii completely down-modulated the expression of HLA-DR, demonstrating that together these molecules form the key mediators of HLA class II antigen presentation in leukemic blasts. By the use of a proteasome- and TAP-dependent pathway for HLA class II antigen presentation, CLIP(-) leukemic blasts might be able to present a broad range of endogenous leukemia-associated peptides via HLA class II to activate leukemia-specific CD4(+) T cells.
Collapse
Affiliation(s)
- Marvin M van Luijn
- Department of Hematology, Cancer Center Amsterdam, VU Institute for Cancer and Immunology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pyrz M, Wang B, Wabl M, Pedersen FS. A retroviral mutagenesis screen identifies Cd74 as a common insertion site in murine B-lymphomas and reveals the existence of a novel IFNgamma-inducible Cd74 isoform. Mol Cancer 2010; 9:86. [PMID: 20416035 PMCID: PMC2883540 DOI: 10.1186/1476-4598-9-86] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/23/2010] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Insertional mutagenesis screens in the mouse are an acknowledged approach to identify genes involved in the pathogenesis of cancer. The potential of these screens to identify genes causally involved in tumorigenesis is not only limited to the murine host, but many of these genes have also been proven to be involved in the oncogenic process in man. RESULTS Through an insertional mutagenesis screen applying murine leukemia viruses in mouse, we found that Cd74 was targeted by proviral insertion in tumors of B-cell origin. This locus encodes a protein playing crucial roles in antigen presentation and B-cell homeostasis, and its deregulation is often associated with cancer in man. The distribution of insertions within the Cd74 locus prompted the identification of an alternative transcript initiated in intron 1 of Cd74 encoding an N-terminally truncated Cd74 isoform in tissues from un-infected mice, and transcriptional activation assays revealed a positive effect on the novel intronic promoter by a formerly described intronic enhancer in the Cd74 locus. Furthermore, we show that the new Cd74 isoform is IFNgamma inducible and that its expression is differentially regulated from the canonical Cd74 isoform at the transcriptional level. CONCLUSIONS We here identify Cd74 as a common insertion site in murine B-lymphomas and describe a novel IFNgamma-inducible murine Cd74 isoform differentially regulated from the canonical isoform and expressed under the control of an intronic promoter. The distribution and orientation of proviral insertion sites within the Cd74 locus underscores the causal involvement of the isoforms in the murine B-lymphomagenic process.
Collapse
Affiliation(s)
- Magdalena Pyrz
- Department of Molecular Biology, Aarhus University, Aarhus, DK-8000, Denmark
| | | | | | | |
Collapse
|
45
|
Meissner M, König V, Hrgovic I, Valesky E, Kaufmann R. Human leucocyte antigen class I and class II antigen expression in malignant fibrous histiocytoma, fibrosarcoma and dermatofibrosarcoma protuberans is significantly downregulated. J Eur Acad Dermatol Venereol 2010; 24:1326-32. [DOI: 10.1111/j.1468-3083.2010.03644.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
van Luijn MM, van den Ancker W, Chamuleau MED, Ossenkoppele GJ, van Ham SM, van de Loosdrecht AA. Impaired antigen presentation in neoplasia: basic mechanisms and implications for acute myeloid leukemia. Immunotherapy 2010; 2:85-97. [DOI: 10.2217/imt.09.84] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During onset, treatment and progression of acute myeloid leukemia (AML), inadequate immune responses against certain myeloid leukemic blasts might be associated with the occurrence of minimal residual disease and subsequent relapse. Several studies on this subject have demonstrated that, in general, solid tumor cells are able to avoid CD8+ cytotoxic T-cell recognition by downregulating HLA class I-restricted presentation of tumor-associated antigens. In tumor cells that can express HLA class II molecules, such as myeloid leukemic blasts, abnormalities in the processing pathways of endogenous antigens could also result in impaired HLA class II-restricted tumor-associated antigen presentation to CD4+ T helper cells. More insight into impaired tumor-associated antigen presentation by myeloid leukemic blasts could explain their escape from immune recognition and might be crucial for selecting appropriate strategies to improve whole-cell or dendritic cell-based tumor vaccine efficacy in the treatment of AML patients.
Collapse
Affiliation(s)
- Marvin M van Luijn
- VU Institute for Cancer & Immunology, Cancer Center Amsterdam, VU University Medical Center, Department of Hematology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Immunopathology, Sanquin Research & Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Willemijn van den Ancker
- VU Institute for Cancer & Immunology, Cancer Center Amsterdam, VU University Medical Center, Department of Hematology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Martine ED Chamuleau
- VU Institute for Cancer & Immunology, Cancer Center Amsterdam, VU University Medical Center, Department of Hematology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- VU Institute for Cancer & Immunology, Cancer Center Amsterdam, VU University Medical Center, Department of Hematology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research & Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- VU Institute for Cancer & Immunology, Cancer Center Amsterdam, VU University Medical Center, Department of Hematology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
47
|
van Luijn MM, Chamuleau MED, Thompson JA, Ostrand-Rosenberg S, Westers TM, Souwer Y, Ossenkoppele GJ, van Ham SM, van de Loosdrecht AA. Class II-associated invariant chain peptide down-modulation enhances the immunogenicity of myeloid leukemic blasts resulting in increased CD4+ T-cell responses. Haematologica 2009; 95:485-93. [PMID: 19903675 DOI: 10.3324/haematol.2009.010595] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Disease recurrence in patients with acute myeloid leukemia may be partially explained by the escape of leukemic blasts from CD4(+) T-cell recognition. The current study investigates the role of aberrant HLA class II antigen presentation on leukemic blasts by determining both the clinical and functional impact of the class II-associated invariant chain peptide (CLIP). DESIGN AND METHODS The levels of expression of CLIP and HLA-DR on blood and bone marrow samples from 207 patients with acute myeloid leukemia were correlated with clinical outcome. Irradiated CLIP(-) and CLIP(+) leukemic blasts were compared for their ability to induce CD4(+) T cells during mixed leukocyte reactions. To discriminate between these blasts, we down-modulated CLIP expression on myeloid leukemic cell lines by RNA interference of the invariant chain, a chaperone protein critically involved in HLA-DR processing, and performed flow cytometric sorting for their isolation from primary acute myeloid leukemia samples. RESULTS We found that patients with leukemic blasts characterized by a high amount of HLA-DR occupied by CLIP (relative amount of CLIP) had a significantly shortened disease-free survival. The clear reductions in amount of HLA-DR occupied by CLIP on blasts of the THP-1 and Kasumi-1 myeloid leukemic cell lines after treatment with invariant chain short interfering RNA resulted in enhanced rates of allogeneic CD4(+) T-cell proliferation. Similar findings were obtained in an autologous setting, in which there were strong increases in proliferation of remission CD4(+) T cells stimulated with CLIP(-)-sorted leukemic blasts from HLA-DR(+) acute myeloid leukemia patients, in contrast to CLIP(+)-sorted leukemic blasts from the same patients. CONCLUSIONS These data highlight the relevance of CLIP expression on leukemic blasts and the potential of CLIP as a target for immunomodulatory strategies to enhance HLA class II antigen presentation and CD4(+) T-cell reactivity in acute myeloid leukemia.
Collapse
Affiliation(s)
- Marvin M van Luijn
- Department of Hematology, VU Institute for Cancer and Immunology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S. Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:937-44. [PMID: 19553533 PMCID: PMC2800824 DOI: 10.4049/jimmunol.0804253] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Effective cell-mediated antitumor immunity requires the activation of tumor-reactive T cells and the trafficking of activated T cells to tumor sites. These processes involve the extravasation of lymphocytes from the blood and lymphatics, and their homing to lymph nodes and tumors. L-selectin (CD62L) is an important molecule in these processes. It directs naive lymphocytes to peripheral lymph nodes where they become activated and it traffics naive lymphocytes to inflammatory environments, such as tumors. Individuals with advanced cancer are immune suppressed due to myeloid-derived suppressor cells (MDSC), a population of immature myeloid cells that accumulate to high levels in response to tumor-secreted and proinflammatory factors. We now demonstrate that the reduction in T cell levels of L-selectin that is commonly seen in individuals with cancer inversely correlates with MDSC levels. Three lines of evidence demonstrate that MDSC directly down-regulate L-selectin on naive T cells: 1) naive T cells cocultured with tumor-induced MDSC have reduced L-selectin; 2) T cells in tumor-free aged mice with elevated levels of MDSC have reduced L-selectin, and 3) peritoneal exudate T cells of tumor-free mice treated with plasminogen activator urokinase to elevate MDSC have reduced levels of L-selectin. MDSC are likely to down-regulate L-selectin through their plasma membrane expression of ADAM17 (a disintegrin and metalloproteinase domain 17), an enzyme that cleaves the ectodomain of L-selectin. Therefore, MDSC down-regulate L-selectin levels on naive T cells, decreasing their ability to home to sites where they would be activated. This is another mechanism by which MDSC inhibit antitumor immunity.
Collapse
Affiliation(s)
- Erica M. Hanson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Virginia K. Clements
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Pratima Sinha
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Dan Ilkovitch
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | | |
Collapse
|
49
|
Uveal melanoma cell-based vaccines express MHC II molecules that traffic via the endocytic and secretory pathways and activate CD8+ cytotoxic, tumor-specific T cells. Cancer Immunol Immunother 2009; 59:103-12. [PMID: 19557412 DOI: 10.1007/s00262-009-0729-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 06/02/2009] [Indexed: 01/22/2023]
Abstract
We are exploring cell-based vaccines as a treatment for the 50% of patients with large primary uveal melanomas who develop lethal metastatic disease. MHC II uveal melanoma vaccines are MHC class I(+) uveal melanoma cells transduced with CD80 genes and MHC II genes syngeneic to the recipient. Previous studies demonstrated that the vaccines activate tumor-specific CD4(+) T cells from patients with metastatic uveal melanoma. We have hypothesized that vaccine potency is due to the absence of the MHC II-associated invariant chain (Ii). In the absence of Ii, newly synthesized MHC II molecules traffic intracellularly via a non-traditional pathway where they encounter and bind novel tumor peptides. Using confocal microscopy, we now confirm this hypothesis and demonstrate that MHC II molecules are present in both the endosomal and secretory pathways in vaccine cells. We also demonstrate that uveal melanoma MHC II vaccines activate uveal melanoma-specific, cytolytic CD8(+) T cells that do not lyse normal fibroblasts or other tumor cells. Surprisingly, the CD8(+) T cells are cytolytic for HLA-A syngeneic and MHC I-mismatched uveal melanomas. Collectively, these studies demonstrate that MHC II uveal melanoma vaccines are potent activators of tumor-specific CD4(+) and CD8(+) T cells and suggest that the non-conventional intracellular trafficking pattern of MHC II may contribute to their enhanced immunogenicity. Since MHC I compatibility is unnecessary for the activation of cytolytic CD8(+) T cells, the vaccines could be used in uveal melanoma patients without regard to MHC I genotype.
Collapse
|
50
|
Ostrand-Rosenberg S. CD4+T Lymphocytes: A Critical Component of Antitumor Immunity. Cancer Invest 2009. [DOI: 10.1081/cnv-67428] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|