1
|
Kulkarni S, Wilkinson IB. Adrenoceptors and Hypertension. Handb Exp Pharmacol 2024; 285:297-332. [PMID: 38890192 DOI: 10.1007/164_2024_719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Hypertension is a very prevalent condition associated with high mortality and morbidity, secondary to changes resulting in blood vessels and resultant end-organ damage. Haemodynamic changes, including an initial rise in cardiac output followed by an increase in total peripheral resistance, denote the early changes associated with borderline or stage 1 hypertension, especially in young men. Increased sodium reabsorption leading to kidney damage is another mechanism proposed as one of the initial triggers for essential hypertension. The underlying pathophysiological mechanisms include catecholamine-induced α1- and ß1-adrenoceptor stimulation, and renin-angiotensin-aldosterone system activation leading to endothelial dysfunction which is believed to lead to persistent blood pressure elevation.α1 blockers, α2 agonists, and ß blockers were among the first oral anti-hypertensives. They are no longer first-line therapy after outcome trials did not demonstrate any benefits over and above other agents, despite similar blood pressure reductions. Angiotensin-converting enzyme inhibitors (or angiotensin receptor blockers), calcium channel blockers, and thiazide-like diuretics are now considered the first line of therapy, although adrenoceptor agents still have a role as second- or third-line therapy. The chapter also highlights hypertension in specific medical conditions such as pregnancy, phaeochromocytoma, hyperthyroidism, portal hypertension, pulmonary arterial hypertension, and ocular hypertension, to provide an overview for clinicians and researchers interested in the role of adrenoceptors in the pathophysiology and management of hypertension.
Collapse
Affiliation(s)
- Spoorthy Kulkarni
- Department of Experimental Medicine and Immunotherapeutics, Vascular Research Clinic, ACCI Level 3, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Ian B Wilkinson
- Department of Experimental Medicine and Immunotherapeutics, Vascular Research Clinic, ACCI Level 3, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Horie H, Hisatome I, Kurata Y, Yamamoto Y, Notsu T, Adachi M, Li P, Kuwabara M, Sakaguchi T, Kinugasa Y, Miake J, Koba S, Tsuneto M, Shirayoshi Y, Ninomiya H, Ito S, Kitakaze M, Yamamoto K, Yoshikawa Y, Nishimura M. α1-Adrenergic receptor mediates adipose-derived stem cell sheet-induced protection against chronic heart failure after myocardial infarction in rats. Hypertens Res 2021; 45:283-291. [PMID: 34853408 DOI: 10.1038/s41440-021-00802-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/08/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
Cell-based therapy using adipose-derived stem cells (ADSCs) has emerged as a novel therapeutic approach to treat heart failure after myocardial infarction (MI). The purpose of this study was to determine whether inhibition of α1-adrenergic receptors (α1-ARs) in ADSCs attenuates ADSC sheet-induced improvements in cardiac functions and inhibition of remodeling after MI. ADSCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ADSCs, we determined the mRNA levels of vascular endothelial growth factor (VEGF)-A and α1-AR under normoxia or hypoxia and the effects of norepinephrine and an α1-blocker, doxazosin, on the mRNA levels of angiogenic factors. Hypoxia increased α1-AR and VEGF mRNA levels in ADSCs. Norepinephrine further increased VEGF mRNA expression under hypoxia; this effect was abolished by doxazosin. Tube formation of human umbilical vein endothelial cells was promoted by conditioned media of ADSCs treated with the α1 stimulant phenylephrine under hypoxia but not by those of ADSCs pretreated with phenylephrine plus doxazosin. In in vivo studies using rats with MI, transplanted ADSC sheets improved cardiac functions, facilitated neovascularization, and suppressed fibrosis after MI. These effects were abolished by doxazosin treatment. Pathway analysis from RNA sequencing data predicted significant upregulation of α1-AR mRNA expression in transplanted ADSC sheets and the involvement of α1-ARs in angiogenesis through VEGF. In conclusion, doxazosin abolished the beneficial effects of ADSC sheets on rat MI hearts as well as the enhancing effect of norepinephrine on VEGF expression in ADSCs, indicating that ADSC sheets promote angiogenesis and prevent cardiac dysfunction and remodeling after MI via their α1-ARs.
Collapse
Affiliation(s)
- Hiromu Horie
- Division of Cardiovascular Surgery, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan.
| | - Yasutaka Yamamoto
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Tomomi Notsu
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Maaya Adachi
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Peili Li
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Masanari Kuwabara
- Intensive Care Unit and Department of Cardiology, Toranomon Hospital, Tokyo, Japan
| | - Takuki Sakaguchi
- Division of Medical Education, Department of Medical Education, Tottori University Faculty of Medicine, Yonago, Japan
| | - Yoshiharu Kinugasa
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Junichiro Miake
- Department of Pharmacology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Satoshi Koba
- Division of Integrative Physiology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Motokazu Tsuneto
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Yasuaki Shirayoshi
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Haruaki Ninomiya
- Department of Biological Regulation, Tottori University Faculty of Medicine, Yonago, Japan
| | - Shin Ito
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yasushi Yoshikawa
- Division of Cardiovascular Surgery, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| | - Motonobu Nishimura
- Division of Cardiovascular Surgery, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
3
|
Götting M, Nikinmaa M. In vitro study on the regulation of cellular mRNA levels by changes in transcription rate and transcript stability in fish red blood cells. Comp Biochem Physiol B Biochem Mol Biol 2017; 213:35-44. [DOI: 10.1016/j.cbpb.2017.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 12/30/2022]
|
4
|
Abstract
Cardiac function is required for blood circulation and systemic oxygen delivery. However, the heart has intrinsic oxygen demands that must be met to maintain effective contractility. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that functions as a master regulator of oxygen homeostasis in all metazoan species. HIF-1 controls oxygen delivery, by regulating angiogenesis and vascular remodeling, and oxygen utilization, by regulating glucose metabolism and redox homeostasis. Analysis of animal models suggests that by activation of these homeostatic mechanisms, HIF-1 plays a critical protective role in the pathophysiology of ischemic heart disease and pressure-overload heart failure.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry; and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
5
|
Vadlapatla RK, Vadlapudi AD, Mitra AK. Hypoxia-inducible factor-1 (HIF-1): a potential target for intervention in ocular neovascular diseases. Curr Drug Targets 2013; 14:919-35. [PMID: 23701276 DOI: 10.2174/13894501113149990015] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/20/2013] [Indexed: 12/29/2022]
Abstract
Constant oxygen supply is essential for proper tissue development, homeostasis and function of all eukaryotic organisms. Cellular response to reduced oxygen levels is mediated by the transcriptional regulator hypoxia-inducible factor-1 (HIF-1). It is a heterodimeric complex protein consisting of an oxygen dependent subunit (HIF-1α) and a constitutively expressed nuclear subunit (HIF-1β). In normoxic conditions, de novo synthesized cytoplasmic HIF-1α is degraded by 26S proteasome. Under hypoxic conditions, HIF-1α is stabilized, binds with HIF-1β and activates transcription of various target genes. These genes play a key role in regulating angiogenesis, cell survival, proliferation, chemotherapy, radiation resistance, invasion, metastasis, genetic instability, immortalization, immune evasion, metabolism and stem cell maintenance. This review highlights the importance of hypoxia signaling in development and progression of various vision threatening pathologies such as diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration and glaucoma. Further, various inhibitors of HIF-1 pathway that may have a viable potential in the treatment of oxygen-dependent ocular diseases are also discussed.
Collapse
Affiliation(s)
- Ramya Krishna Vadlapatla
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA
| | | | | |
Collapse
|
6
|
Lange CA, Bainbridge JW. Oxygen Sensing in Retinal Health and Disease. Ophthalmologica 2012; 227:115-31. [DOI: 10.1159/000331418] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 07/29/2011] [Indexed: 12/24/2022]
|
7
|
Sorriento D, Trimarco B, Iaccarino G. Adrenergic mechanism in the control of endothelial function. Transl Med UniSa 2011; 1:213-28. [PMID: 23905034 PMCID: PMC3728849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
There is considerable evidence that many disease are associated with endothelial dysfunction and reduced nitric oxide production such as hypertension, obesity, dyslipidemias, diabetes, heart failure, atherosclerosis. Notably these conditions are also characterized by alteration in the adrenergic tone. Whether these two mechanisms are just epiphenomenal each other or there is a functional link, it is still to be established. A starting ground to establish this issue is that vascular endothelium plays an important role in the function of cardiovascular system and that adrenergic receptors on endothelial cells contribute to the regulation of vasomotor tone. The aim of this excerpt is to review current knowledge on the physiology of endothelial adrenergic receptors to contribute to the basis for newer and better approaches to endothelial dysfunction in the setup of cardiovascular conditions.
Collapse
Affiliation(s)
- Daniela Sorriento
- Department of Internal Medicine of Federico II University of Naples, Napoli, Italy,Addresses for Correspondence: Corresponding author, Daniela Sorriento, PhD, Università degli Studi di Napoli “Federico II”, Via Pansini 5, 80131 Napoli, Italia, Tel: 0817462220, Fax: 0817462256,
| | - Bruno Trimarco
- Department of Internal Medicine of Federico II University of Naples, Napoli, Italy
| | - Guido Iaccarino
- School of Medicine of University of Salerno, Baronissi (SA), Italy,Senior author, Guido Iaccarino, MD, PhD, Università di Salerno, Via Salvador Allende, 84081 Baronissi (SA), Italia, Tel: 089965021, E-mail:
| |
Collapse
|
8
|
Semenza GL. Oxygen homeostasis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:336-361. [PMID: 20836033 DOI: 10.1002/wsbm.69] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metazoan life is dependent upon the utilization of O(2) for essential metabolic processes and oxygen homeostasis is an organizing principle for understanding metazoan evolution, ontology, physiology, and pathology. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that is expressed by all metazoan species and functions as a master regulator of oxygen homeostasis. Recent studies have elucidated complex mechanisms by which HIF-1 activity is regulated and by which HIF-1 regulates gene expression, with profound consequences for prenatal development, postnatal physiology, and disease pathogenesis.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA.,Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA
| |
Collapse
|
9
|
Ghaderian SMH, Lindsey NJ, Graham AM, Homer-Vanniasinkam S, Akbarzadeh Najar R. Pathogenic mechanisms in varicose vein disease: the role of hypoxia and inflammation. Pathology 2010; 42:446-53. [PMID: 20632821 DOI: 10.3109/00313025.2010.493865] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Although the aetiology of varicose veins remains unknown, recent studies have focused on endothelial cell integrity and function. Among the regulatory factors of vessel tone, synthesises, pro- and anti-inflammatory, adhesion molecules and the transcription factor hypoxia inducible factor-1 alpha (HIF-1alpha), which are responsible for recruiting leukocytes, are very important. METHODS Investigation in this study focused on the expression of ICAM-1, E-selectin and HIF-1alpha on endothelial cells using immunostaining and RT-PCR in varicose vein specimens compared with controls. RESULTS Findings of this study showed alterations of the intima, such as focal intimal discontinuity and denudation of endothelium in varicose veins. Based on data derived from immunostaining and RT-PCR, no major differences were identified between ICAM-1 and E-selectin expression in varicose vein specimens compared with controls. In contrast, immunostaining results identified HIF-1alpha expression in five (5/20) varicose vein specimens, whereas no control saphenous vein specimens expressed HIF-1alpha. CONCLUSIONS These findings could explain other evidence of hypoxia in varicose veins. Finally, results already obtained in this investigation suggest that the process of pathogenesis of varicose veins is not restricted to the role of adhesion molecules.
Collapse
Affiliation(s)
- Sayyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences & Health Services, Tehran, Iran.
| | | | | | | | | |
Collapse
|
10
|
Jiang Y, Cukic B, Adjeroh DA, Skinner HD, Lin J, Shen QJ, Jiang BH. An algorithm for identifying novel targets of transcription factor families: application to hypoxia-inducible factor 1 targets. Cancer Inform 2009; 7:75-89. [PMID: 19352460 PMCID: PMC2664698 DOI: 10.4137/cin.s1054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Efficient and effective analysis of the growing genomic databases requires the development of adequate computational tools. We introduce a fast method based on the suffix tree data structure for predicting novel targets of hypoxia-inducible factor 1 (HIF-1) from huge genome databases. The suffix tree data structure has two powerful applications here: one is to extract unknown patterns from multiple strings/sequences in linear time; the other is to search multiple strings/sequences using multiple patterns in linear time. Using 15 known HIF-1 target gene sequences as a training set, we extracted 105 common patterns that all occur in the 15 training genes using suffix trees. Using these 105 common patterns along with known subsequences surrounding HIF-1 binding sites from the literature, the algorithm searches a genome database that contains 2,078,786 DNA sequences. It reported 258 potentially novel HIF-1 targets including 25 known HIF-1 targets. Based on microarray studies from the literature, 17 putative genes were confirmed to be upregulated by HIF-1 or hypoxia inside these 258 genes. We further studied one of the potential targets, COX-2, in the biological lab; and showed that it was a biologically relevant HIF-1 target. These results demonstrate that our methodology is an effective computational approach for identifying novel HIF-1 targets.
Collapse
Affiliation(s)
- Yue Jiang
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ciccarelli M, Santulli G, Campanile A, Galasso G, Cervèro P, Altobelli GG, Cimini V, Pastore L, Piscione F, Trimarco B, Iaccarino G. Endothelial alpha1-adrenoceptors regulate neo-angiogenesis. Br J Pharmacol 2007; 153:936-46. [PMID: 18084315 DOI: 10.1038/sj.bjp.0707637] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Intact endothelium plays a pivotal role in post-ischaemic angiogenesis. It is a phenomenon finely tuned by activation and inhibition of several endothelial receptors. The presence of alpha(1)-adrenoceptors on the endothelium suggests that these receptors may participate in regenerative phenomena by regulating the responses of endothelial cells involved in neo-angiogenesis. EXPERIMENTAL APPROACH We evaluated the expression of the subtypes of the alpha(1)-adrenoceptor in isolated endothelial cells harvested from Wistar-Kyoto (WKY) rats. We explored the possibility these alpha(1)-adrenoceptors may influence the pro-angiogenic phenotype of endothelial cells in vitro. In vivo, we used a model of hindlimb ischaemia in WKY rats, to assess the effects of alpha(1) adrenoceptor agonist or antagonist on angiogenesis in the ischaemic hindlimb by laser Doppler blood flow measurements, digital angiographies, hindlimb perfusion with dyed beads and histological evaluation. KEY RESULTS In vitro, pharmacological antagonism of alpha(1)-adrenoceptors in endothelial cells from WKY rats by doxazosin enhanced, while stimulation of these adrenoceptors with phenylephrine, inhibited endothelial cell proliferation and DNA synthesis, ERK and retinoblastoma protein (Rb) phosphorylation, cell migration and tubule formation. In vivo, we found increased alpha(1)-adrenoceptor density in the ischaemic hindlimb, compared to non-ischaemic hindlimb, suggesting an enhanced alpha(1)-adrenoceptor tone in the ischaemic tissue. Treatment with doxazosin (0.06 mg kg(-1) day(-1) for 14 days) did not alter systemic blood pressure but enhanced neo-angiogenesis in the ischaemic hindlimb, as measured by all our assays. CONCLUSIONS Our findings support the hypothesis that the alpha(1)-adrenoceptors in endothelial cells provide a negative regulation of angiogenesis.
Collapse
Affiliation(s)
- M Ciccarelli
- Division of Internal Medicine, Department of Clinical Medicine & Cardiovascular Sciences, Federico II University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Semenza GL. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 2007; 405:1-9. [PMID: 17555402 DOI: 10.1042/bj20070389] [Citation(s) in RCA: 392] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The survival of metazoan organisms is dependent upon the utilization of O2 as a substrate for COX (cytochrome c oxidase), which constitutes Complex IV of the mitochondrial respiratory chain. Premature transfer of electrons, either at Complex I or at Complex III, results in the increased generation of ROS (reactive oxygen species). Recent studies have identified two critical adaptations that may function to prevent excessive ROS production in hypoxic cells. First, expression of PDK1 [PDH (pyruvate dehydrogenase) kinase 1] is induced. PDK1 phosphorylates and inactivates PDH, the mitochondrial enzyme that converts pyruvate into acetyl-CoA. In combination with the hypoxia-induced expression of LDHA (lactate dehydrogenase A), which converts pyruvate into lactate, PDK1 reduces the delivery of acetyl-CoA to the tricarboxylic acid cycle, thus reducing the levels of NADH and FADH2 delivered to the electron-transport chain. Secondly, the subunit composition of COX is altered in hypoxic cells by increased expression of the COX4-2 subunit, which optimizes COX activity under hypoxic conditions, and increased degradation of the COX4-1 subunit, which optimizes COX activity under aerobic conditions. Hypoxia-inducible factor 1 controls the metabolic adaptation of mammalian cells to hypoxia by activating transcription of the genes encoding PDK1, LDHA, COX4-2 and LON, a mitochondrial protease that is required for the degradation of COX4-1. COX subunit switching occurs in yeast, but by a completely different regulatory mechanism, suggesting that selection for O2-dependent homoeostatic regulation of mitochondrial respiration is ancient and likely to be shared by all eukaryotic organisms.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Gericke A, Martinka P, Nazarenko I, Persson PB, Patzak A. Impact of alpha1-adrenoceptor expression on contractile properties of vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1215-21. [PMID: 17553850 DOI: 10.1152/ajpregu.00076.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Low-frequency blood pressure oscillations (Mayer waves) are discussed as a marker for sympathetic modulation of vascular tone. However, the factors that determine the frequency response of the vasculature to sympathetic stimuli are not fully understood. Possible mechanisms include functions related to alpha(1)-adrenergic receptors (alpha(1)-AR) and postreceptor processes involved in the vascular contractile response. The purpose of the present study was to examine the hypothesis that expression levels of alpha(1)-AR and their subtype distribution determine velocity and magnitude of alpha(1)-AR-mediated vascular smooth muscle cell (VSMC) contraction. alpha(1A)-, alpha(1B)-, and alpha(1D)-AR subtypes were transfected into VSMCs from rat aorta and characterized immunocytochemically via confocal microscopy. Functional studies in isolated cells were performed using video microscopy. The alpha(1)-AR agonist phenylephrine produced dose-dependent contractions of VSMCs. All transfected groups were more sensitive to phenylephrine compared with controls. Maximal contraction velocity almost doubled in transfected cells. However, no differences in observed parameters were found between the three transfected groups. Contractile properties in response to membrane depolarization with KCl were similar in all groups. In conclusion, alpha(1)-AR density determines velocity and sensitivity of alpha(1)-AR-mediated contraction in VSMCs. alpha(1)-AR subtype distribution does not appear to influence vasoconstriction to sympathetic stimuli.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Antibodies, Blocking/pharmacology
- Cell Separation
- Genetic Vectors
- Immunohistochemistry
- In Vitro Techniques
- Male
- Microscopy, Confocal
- Muscle Contraction/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Phenylephrine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/biosynthesis
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/physiology
- Transfection
Collapse
Affiliation(s)
- Adrian Gericke
- Institute of Vegetative Physiology, Charité University Medicine, Tucholskystr. 2, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
14
|
Faber JE, Szymeczek CL, Cotecchia S, Thomas SA, Tanoue A, Tsujimoto G, Zhang H. α1-Adrenoceptor-dependent vascular hypertrophy and remodeling in murine hypoxic pulmonary hypertension. Am J Physiol Heart Circ Physiol 2007; 292:H2316-23. [PMID: 17220188 DOI: 10.1152/ajpheart.00792.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive proliferation of vascular wall cells underlies the development of elevated vascular resistance in hypoxic pulmonary hypertension (PH), but the responsible mechanisms remain unclear. Growth-promoting effects of catecholamines may contribute. Hypoxemia causes sympathoexcitation, and prolonged stimulation of α1-adrenoceptors (α1-ARs) induces hypertrophy and hyperplasia of arterial smooth muscle cells and adventitial fibroblasts. Catecholamine trophic actions in arteries are enhanced when other conditions favoring growth or remodeling are present, e.g., injury or altered shear stress, in isolated pulmonary arteries from rats with hypoxic PH. The present study examined the hypothesis that catecholamines contribute to pulmonary vascular remodeling in vivo in hypoxic PH. Mice genetically deficient in norepinephrine and epinephrine production [dopamine β-hydroxylase−/− (DBH−/−)] or α1-ARs were examined for alterations in PH, cardiac hypertrophy, and vascular remodeling after 21 days exposure to normobaric 0.1 inspired oxygen fraction (FiO2). A decrease in the lumen area and an increase in the wall thickness of arteries were strongly inhibited in knockout mice (order of extent of inhibition: DBH−/− = α1D-AR−/− > α1B-AR−/−). Distal muscularization of small arterioles was also reduced (DBH−/− > α1D-AR−/− > α1B-AR−/− mice). Despite these reductions, increases in right ventricular pressure and hypertrophy were not attenuated in DBH−/− and α1B-AR−/− mice. However, hematocrit increased more in these mice, possibly as a consequence of impaired cardiovascular activation that occurs during reduction of FiO2. In contrast, in α1D-AR−/− mice, where hematocrit increased the same as in wild-type mice, right ventricular pressure was reduced. These data suggest that catecholamine stimulation of α1B- and α1D-ARs contributes significantly to vascular remodeling in hypoxic PH.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC 27599-7545, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Harvey AJ, Navarrete Santos A, Kirstein M, Kind KL, Fischer B, Thompson JG. Differential expression of oxygen-regulated genes in bovine blastocysts. Mol Reprod Dev 2007; 74:290-9. [PMID: 16998843 DOI: 10.1002/mrd.20617] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Low oxygen conditions (2%) during post-compaction culture of bovine blastocysts improve embryo quality, which is associated with a small yet significant increase in the expression of glucose transporter 1 (GLUT-1), suggesting a role of oxygen in embryo development mediated through oxygen-sensitive gene expression. However, bovine embryos to at least the blastocyst stage lack a key regulator of oxygen-sensitive gene expression, hypoxia-inducible factor 1alpha (HIF1alpha). A second, less well-characterized protein (HIF2alpha) is, however, detectable from the 8-cell stage of development. Here we use differential display to determine additional gene targets in bovine embryos in response to low oxygen conditions. While development to the blastocyst stage was unaffected by the oxygen concentration used during post-compaction culture, differential display identified oxygen-regulation of myotrophin and anaphase promoting complex 1 expression, with significantly lower levels observed following culture under 20% oxygen than 2% oxygen. These results further support the hypothesis that the level of gene expression of specific transcripts by bovine embryos alters in response to changes in the oxygen environment post-compaction. Specifically, we have identified two oxygen-sensitive genes that are potentially regulated by HIF2 in the bovine blastocyst.
Collapse
Affiliation(s)
- A J Harvey
- Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, The University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Faber JE, Szymeczek CL, Salvi SS, Zhang H. Enhanced α1-adrenergic trophic activity in pulmonary artery of hypoxic pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol 2006; 291:H2272-81. [PMID: 16798826 DOI: 10.1152/ajpheart.00404.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms that induce the excessive proliferation of vascular wall cells in hypoxic pulmonary hypertension (PH) are not fully understood. Alveolar hypoxia causes sympathoexcitation, and norepinephrine can stimulate α1-adrenoceptor (α1-AR)-dependent hypertrophy/hyperplasia of smooth muscle cells and adventitial fibroblasts. Adrenergic trophic activity is augmented in systemic arteries by injury and altered shear stress, which are key pathogenic stimuli in hypoxic PH, and contributes to neointimal formation and flow-mediated hypertrophic remodeling. Here we examined whether norepinephrine stimulates growth of the pulmonary artery (PA) and whether this is augmented in PH. PA from normoxic and hypoxic rats [9 days of 0.1 fraction of inspired O2 (FiO2)] was studied in organ culture, where wall tension, Po2, and Pco2 were maintained at values present in normal and hypoxic PH rats. Norepinephrine treatment for 72 h increased DNA and protein content modestly in normoxic PA (+10%, P < 0.05). In hypoxic PA, these effects were augmented threefold ( P < 0.05), and protein synthesis was increased 34-fold ( P < 0.05). Inferior thoracic vena cava from normoxic or hypoxic rats was unaffected. Norepinephrine-induced growth in hypoxic PA was dose dependent, had efficacy greater than or equal to endothelin-1, required the presence of wall tension, and was inhibited by α1A-AR antagonist. In hypoxic pulmonary vasculature, α1A-AR was downregulated the least among α1-AR subtypes. These data demonstrate that norepinephrine has trophic activity in the PA that is augmented by PH. If evident in vivo in the pulmonary vasculature, adrenergic-induced growth may contribute to the vascular hyperplasia that participates in hypoxic PH.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Agonists
- Adrenergic alpha-1 Receptor Antagonists
- Animals
- DNA/analysis
- DNA/metabolism
- Dose-Response Relationship, Drug
- Endothelin-1/pharmacology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypoxia/complications
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Norepinephrine/pharmacology
- Organ Culture Techniques
- Proteins/analysis
- Proteins/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/pathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/physiology
- Time Factors
Collapse
Affiliation(s)
- James E Faber
- Dept. of Cell and Molecular Physiology, 6309 MBRB, Univ. of North Carolina, Chapel Hill, NC 27599-7545, USA.
| | | | | | | |
Collapse
|
17
|
Kim J, Keys JR, Eckhart AD. Vascular smooth muscle migration and proliferation in response to lysophosphatidic acid (LPA) is mediated by LPA receptors coupling to Gq. Cell Signal 2006; 18:1695-701. [PMID: 16504475 DOI: 10.1016/j.cellsig.2006.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/12/2006] [Accepted: 01/16/2006] [Indexed: 12/21/2022]
Abstract
Many G protein-coupled receptors can couple to multiple G proteins to convey their intracellular signaling cascades. The receptors for lysophosphatidic acid (LPA) possess this ability. LPA receptors are important mediators of a wide variety of biological actions including cell migration, proliferation and survival which are processes that can all have a considerable impact on vascular smooth muscle (VSM) and blood vessels. To date, confirmation of G proteins involved has mostly relied on the inhibition of Gi-mediated signaling via pertussis toxin (PTx). We were interested in the specific involvement of LPA-Gq-mediated signaling therefore we isolated aorta VSM cells (VSMCs) from transgenic mice that express a peptide inhibitor of Gq, GqI, exclusively in VSM. We detected both LPA1 and LPA2 receptor expression in mouse VSM whereas LPA1 and LPA3 were expressed in rat VSM. SM22-GqI did not alter LPA-induced migration but it was sufficient to attenuate LPA-induced proliferation. GqI expression also attenuated LPA-induced ERK1/2 and Akt activation by 40-50%. To test the feasibility of this peptide as a potential therapeutic agent, we also generated adenovirus encoding the GqI. Transient expression of GqI was capable of inhibiting both LPA-induced migration and proliferation of VSMCs isolated from rat and mouse. Furthermore, ERK activation in response to LPA was also attenuated in VSMCs with Adv-GqI. Therefore, LPA receptors couple to Gq in VSMC and mediate migration and proliferation which may be mediated through activation of ERK1/2 and Akt. Our data also suggest that both chronic and transient expression of the GqI peptide is an effective strategy to lower Gq-mediated LPA signaling and may be a successful therapeutic strategy to combat diseases with enhanced VSM growth such as occurs following angioplasty or stent implantation.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- DNA/biosynthesis
- Enzyme Activation/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Gene Expression Regulation/drug effects
- Lysophospholipids/pharmacology
- Mice
- Mice, Transgenic
- Microfilament Proteins/metabolism
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/metabolism
Collapse
Affiliation(s)
- Jihee Kim
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
18
|
Abstract
Adaptation to low oxygen tension (hypoxia) in cells and tissues leads to the transcriptional induction of a series of genes that participate in angiogenesis, iron metabolism, glucose metabolism, and cell proliferation/survival. The primary factor mediating this response is the hypoxia-inducible factor-1 (HIF-1), an oxygen-sensitive transcriptional activator. HIF-1 consists of a constitutively expressed subunit HIF-1beta and an oxygen-regulated subunit HIF-1alpha (or its paralogs HIF-2alpha and HIF-3alpha). The stability and activity of the alpha subunit of HIF are regulated by its post-translational modifications such as hydroxylation, ubiquitination, acetylation, and phosphorylation. In normoxia, hydroxylation of two proline residues and acetylation of a lysine residue at the oxygen-dependent degradation domain (ODDD) of HIF-1alpha trigger its association with pVHL E3 ligase complex, leading to HIF-1alpha degradation via ubiquitin-proteasome pathway. In hypoxia, the HIF-1alpha subunit becomes stable and interacts with coactivators such as cAMP response element-binding protein binding protein/p300 and regulates the expression of target genes. Overexpression of HIF-1 has been found in various cancers, and targeting HIF-1 could represent a novel approach to cancer therapy.
Collapse
Affiliation(s)
- Qingdong Ke
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | |
Collapse
|
19
|
Peters DG, Ning W, Chu TJ, Li CJ, Choi AMK. Comparative SAGE analysis of the response to hypoxia in human pulmonary and aortic endothelial cells. Physiol Genomics 2006; 26:99-108. [PMID: 16595741 DOI: 10.1152/physiolgenomics.00152.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We utilized serial analysis of gene expression (SAGE) to analyze the temporal response of human pulmonary artery endothelial cells (HPAECs) to short-term chronic hypoxia at the level of transcription. Primary cultures of HPAECs were exposed to 1% O2hypoxia for 8 and 24 h and compared with identical same-passage cells cultured under standard (5% CO2-95% air) conditions. Hierarchical clustering of significant hypoxia-responsive genes identified temporal changes in the expressions of a number of well-described gene families including those encoding proteins involved in thrombosis, stress response, apoptosis, angiogenesis, and cell proliferation. These experiments build on previously published data describing the transcriptomic response of human aortic endothelial cells (HAECs) obtained from the same donor and cultured under identical conditions, and we have thus taken advantage of the immortality of SAGE data to make direct comparisons between these two data sets. This approach revealed comprehensive information relating to the similarities and differences at the level of mRNA expression between HAECs and HPAECs. For example, we found differences in the cell type-specific response to hypoxia among genes encoding cytoskeletal factors, including paxillin, and proteins involved in metabolic energy production, the response to oxidative stress, and vasoreactivity (e.g., endothelin-1). These efforts contribute to the expanding collection of publicly available SAGE data and provide a foundation on which to base further efforts to understand the characteristics of the vascular response to hypoxia in the pulmonary circulation relative to systemic vasculature.
Collapse
Affiliation(s)
- D G Peters
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.
| | | | | | | | | |
Collapse
|
20
|
Hirota K, Semenza GL. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 2006; 59:15-26. [PMID: 16716598 DOI: 10.1016/j.critrevonc.2005.12.003] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 12/24/2005] [Accepted: 12/24/2005] [Indexed: 12/22/2022] Open
Abstract
Hypoxia is an imbalance between oxygen supply and demand that occurs in cancer and in ischemic cardiovascular disease. Hypoxia-inducible factor 1 (HIF-1) was originally identified as the transcription factor that mediates hypoxia-induced erythropoietin expression. More recently, the delineation of molecular mechanisms of angiogenesis has revealed a critical role for HIF-1 in the regulation of angiogenic growth factors. In this review, we discuss the role of HIF-1 in developmental, adaptive and pathological angiogenesis. In addition, potential therapeutic interventions involving modulation of HIF-1 activity in ischemic cardiovascular disease and cancer will be discussed.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Anesthesia, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | |
Collapse
|
21
|
Rosenberger C, Rosen S, Heyman SN. Current understanding of HIF in renal disease. Kidney Blood Press Res 2006; 28:325-40. [PMID: 16534228 DOI: 10.1159/000090187] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hypoxia-inducible factors (HIF) are ubiquitous transcription factors regulated by oxygen-dependent proteolysis, and hence rapidly mount an adaptational response to hypoxia. The HIF system is apparently more complex than initially considered in the perspective of the increasing number of HIF target genes, and the inter-relationship with various additional regulatory pathways. Regional hypoxia is believed to play a major role in renal disease. Experimental data confirm a role for HIF in renal pathophysiology. The discovery of HIF prolyl-hydroxylases as key enzymes of oxygen sensing and HIF proteolysis offer new possibilities to therapeutically target HIF. Herein, we review basic concepts of HIF regulation, and existing data on HIF activation in renal disease.
Collapse
|
22
|
Abstract
The hypoxia-inducible factor 1 (HIF-1) was initially identified as a transcription factor that regulated erythropoietin gene expression in response to a decrease in oxygen availability in kidney tissue. Subsequently, a family of oxygen-dependent protein hydroxylases was found to regulate the abundance and activity of three oxygen-sensitive HIFalpha subunits, which, as part of the HIF heterodimer, regulated the transcription of at least 70 different effector genes. In addition to responding to a decrease in tissue oxygenation, HIF is proactively induced, even under normoxic conditions, in response to stimuli that lead to cell growth, ultimately leading to higher oxygen consumption. The growing cell thus profits from an anticipatory increase in HIF-dependent target gene expression. Growth stimuli-activated signaling pathways that influence the abundance and activity of HIFs include pathways in which kinases are activated and pathways in which reactive oxygen species are liberated. These pathways signal to the HIF protein hydroxylases, as well as to HIF itself, by means of covalent or redox modifications and protein-protein interactions. The final point of integration of all of these pathways is the hypoxia-response element (HRE) of effector genes. Here, we provide comprehensive compilations of the known growth stimuli that promote increases in HIF abundance, of protein-protein interactions involving HIF, and of the known HIF effector genes. The consensus HRE derived from a comparison of the HREs of these HIF effectors will be useful for identification of novel HIF target genes, design of oxygen-regulated gene therapy, and prediction of effects of future drugs targeting the HIF system.
Collapse
Affiliation(s)
- Roland H Wenger
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
23
|
Chalothorn D, Zhang H, Clayton JA, Thomas SA, Faber JE. Catecholamines augment collateral vessel growth and angiogenesis in hindlimb ischemia. Am J Physiol Heart Circ Physiol 2005; 289:H947-59. [PMID: 15833801 DOI: 10.1152/ajpheart.00952.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Catecholamine stimulation of α1-adrenoceptors exerts growth factor-like activity, mediated by generation of reactive oxygen species, on arterial smooth muscle cells and adventitial fibroblasts and contributes to hypertrophy and hyperplasia in models of vascular injury and disease. Adrenergic trophic activity also contributes to flow-mediated positive arterial remodeling by augmenting proliferation and leukocyte accumulation. To further examine this concept, we studied whether catecholamines contribute to collateral growth and angiogenesis in hindlimb insufficiency. Support for this hypothesis includes the above-mentioned studies, evidence that ischemia augments norepinephrine release from sympathetic nerves, and proposed involvement of reactive oxygen species in angiogenesis and collateral growth. Mice deficient in catecholamine synthesis [by gene deletion of dopamine β-hydroxylase (DBH−/−)] were studied. At 3 wk after femoral artery ligation, increases in adductor muscle perfusion were similar in DBH−/− and wild-type mice, whereas recovery of plantar perfusion and calf microsphere flow were attenuated, although not significantly. Preexisting collaterals in adductor of wild-type mice showed increases in lumen diameter (60%) and medial and adventitial thickness (57 and 119%, P < 0.05 here and below). Lumen diameter increased similarly in DBH−/− mice (52%); however, increases in medial and adventitial thicknesses were reduced (30 and 65%). Leukocyte accumulation in the adventitia/periadventitia of collaterals was 39% less in DBH−/− mice. Increased density of α-smooth muscle actin-positive vessels in wild-type adductor (45%) was inhibited in DBH−/− mice (2%). Although both groups experienced similar atrophy in the gastrocnemius (∼22%), the increase in capillary-to-muscle fiber ratio in wild-type mice (21%) was inhibited in DBH−/− mice (7%). These data suggest that catecholamines may contribute to collateral growth and angiogenesis in tissue ischemia.
Collapse
Affiliation(s)
- Dan Chalothorn
- Department of Cell and Molecular Physiology, 103 Mason Farm Rd., 6309 MBRB, CB 7545, Univ. of North Carolina, Chapel Hill, NC 27599-7545, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Hypoxia plays a major role in the induction of angiogenesis during tumor development. One mechanism by which tumor cells respond to a reduced oxygen level is via the activation of hypoxia-inducible factor-1 (HIF-1). HIF-1 is an oxygen-dependent transcriptional activator that plays crucial roles in the angiogenesis of tumors and mammalian development. HIF-1 consists of a constitutively expressed HIF-1beta subunit and the highly regulated HIF-1alpha subunits. The stability and activity of HIF-1alpha are regulated by various post-translational modifications, hydroxylation, acetylation, phosphorylation and sumoyaltion. Therefore, HIF-1alpha interacts with several protein factors including PHD, pVHL, ARD-1, SUMO and p300/CBP. Under normoxia, the HIF-1alpha subunit is rapidly degraded via the von Hippel-Lindau tumor suppressor gene product (pVHL)-mediated ubiquitin/proteasome pathway. The association of pVHL and HIF-1alpha under normoxic conditions is triggered by the hydroxylation of prolines and the acetylation of lysine within a polypeptide segment known as the oxygen-dependent degradation (ODD) domain. On the contrary, under the hypoxia condition, the HIF-1alpha subunit becomes stable and interacts with coactivators such as p300/CBP to modulate its transcriptional activity. Under hypoxic conditions, HIF-1 eventually acts as a master regulator of numerous hypoxia-inducible genes. The target genes of HIF-1 are especially related to angiogenesis, cell proliferation and survival, and to glucose and iron metabolism. Moreover, it was reported that the activation of HIF-1alpha is closely associated with a variety of tumors and oncogenic pathways. Hence, the blocking of HIF-1alpha itself or the blocking of HIF-1alpha interacting proteins inhibits tumor growth. Based on these findings, HIF-1 can be a prime target for anticancer therapies. Therefore, this review summarizes the molecular mechanism of HIF-1alpha stability, the biological functions of HIF-1 and its potential applications for cancer therapies.
Collapse
Affiliation(s)
- Soon-Sun Hong
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
25
|
Affiliation(s)
- Frank R Sharp
- Department of Neurology, Pediatrics and Neuroscience Program, Vontz Center for Molecular Studies, Room 2327, 3125 Eden Avenue, University of Cincinnati, Cincinnati, Ohio 45267-0536, USA.
| | | |
Collapse
|
26
|
Ning W, Chu TJ, Li CJ, Choi AMK, Peters DG. Genome-wide analysis of the endothelial transcriptome under short-term chronic hypoxia. Physiol Genomics 2004; 18:70-8. [PMID: 15100389 DOI: 10.1152/physiolgenomics.00221.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have utilized serial analysis of gene expression (SAGE) to analyze the temporal response of human aortic endothelial cells (HAECs) to short-term chronic hypoxia at the level of transcription. Primary cultures of HAECs were exposed to 1% O2hypoxia for 8 and 24 h and compared with identical same passage cells cultured under standard (5% CO2-95% air) conditions. A total of 121,446 tags representing 37,096 unique tags were sequenced and genes whose expression levels were modulated by hypoxia identified by novel statistical analyses. Hierarchical clustering of genes displaying statistically significant hypoxia-responsive alterations in expression revealed temporal modulation of a number of major functional gene families including those encoding heat shock factors, glycolytic enzymes, extracellular matrix factors, cytoskeletal factors, apoptotic factors, cell cycle regulators and angiogenic factors. Within these families we documented the coordinated modulation of both previously known hypoxia-responsive genes, numerous genes whose expressions have not been previously shown to be altered by hypoxia, tags matching uncharacterized UniGene entries and entirely novel tags with no UniGene match. These preliminary data, which indicate a reduction in cell cycle progression, elevated metabolic stress and increased cytoskeletal remodeling under acute hypoxic stress, provide a foundation for further analyses of the molecular mechanisms underlying the endothelial response to short-term chronic hypoxia.
Collapse
Affiliation(s)
- W Ning
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
27
|
Distler JHW, Wenger RH, Gassmann M, Kurowska M, Hirth A, Gay S, Distler O. Physiologic responses to hypoxia and implications for hypoxia-inducible factors in the pathogenesis of rheumatoid arthritis. ACTA ACUST UNITED AC 2004; 50:10-23. [PMID: 14730595 DOI: 10.1002/art.11425] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Roth U, Jungermann K, Kietzmann T. Modulation of glucokinase expression by hypoxia-inducible factor 1 and upstream stimulatory factor 2 in primary rat hepatocytes. Biol Chem 2004; 385:239-47. [PMID: 15134337 DOI: 10.1515/bc.2004.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glucokinase (GK) is the key enzyme of glucose utilization in liver and is localized in the less aerobic perivenous area. Until now, the O2-responsive elements in the liver-specific GK promoter are unknown, and therefore the aim of this study was to identify the O2-responsive element in this promoter. We found that the GK promoter sequence -87/-80 matched the binding site for hypoxia inducible factor 1 (HIF-1) and upstream stimulatory factor (USF). In primary rat hepatocytes we could show that venous pO2 enhanced HIF-1alpha and USF-2a levels, both of which activated GK expression. Furthermore, transfection experiments revealed that the GK sequence -87/-80 mediated the HIF-1alpha- or USF-2-dependent activation of the GK promoter. The binding of HIF-1 and USF to the GK-HRE was corroborated by electrophoretic mobility shift assay (EMSA). However, the maximal response to HIF-1alpha or USF was only achieved when constructs with the -87/-80 sequence in context with a 3'-36 bp native GK promoter sequence containing a hepatocyte nuclear factor 4 (HNF-4) binding site were used. HIF-1alpha and HNF-4 additively activated the GK promoter, while USF-2 and HNF-4 together did not show this additive activation. Thus, HIF-1 and USF may play differential roles in the modulation of GK expression in response to O2.
Collapse
Affiliation(s)
- Ulrike Roth
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
29
|
Lando D, Gorman JJ, Whitelaw ML, Peet DJ. Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:781-90. [PMID: 12603311 DOI: 10.1046/j.1432-1033.2003.03445.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To sustain life mammals have an absolute and continual requirement for oxygen, which is necessary to produce energy for normal cell survival and growth. Hence, maintaining oxygen homeostasis is a critical requirement and mammals have evolved a wide range of cellular and physiological responses to adapt to changes in oxygen availability. In the past few years it has become evident that the transcriptional protein complex hypoxia-inducible factor (HIF) is a key regulator of these processes. In this review we will focus on the way oxygen availability regulates HIF proteins and in particular we will discuss the way oxygen-dependent hydroxylation of specific amino acid residues has been demonstrated to regulate HIF function at the level of both protein stability and transcriptional potency.
Collapse
Affiliation(s)
- David Lando
- Department of Molecular BioSciences (Biochemistry) and the Centre for Molecular Genetics of Development, University of Adelaide, South Australia 5005, Australia
| | | | | | | |
Collapse
|
30
|
Tudek B. Imidazole ring-opened DNA purines and their biological significance. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:12-9. [PMID: 12542970 DOI: 10.5483/bmbrep.2003.36.1.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fragmentation of purine imidazole ring and production of formamidopyrimidines in deoxynucleosides (Fapy lesions) occurs upon DNA oxidation as well as upon spontaneous or alkali-triggered rearrangement of certain alkylated bases. Many chemotherapeutic agents such as cyclophosphamide or thiotepa produce such lesions in DNA. Unsubstituted FapyA and FapyG, formed upon DNA oxidation cause moderate inhibition of DNA synthesis, which is DNA polymerase and sequence dependent. Fapy-7MeG, a methylated counterpart of FapyG-, a efficiently inhibits DNA replication in vitro and in E.coli, however its mutagenic potency is low. This is probably due to preferential incorporation of cytosine opposite Fapy-7MeG and preferential extension of Fapy-7MeG:C pair. In contrast, FapyA and Fapy-7MeA possess miscoding potential. Both lesions in SOS induced E.coli preferentially mispair with cytosine giving rise to A-->G transitions. Fapy lesions substituted with longer chain alkyl groups also show simult aneous lethal and mutagenic properties. Fapy lesions are actively eliminated from DNA by repair glycosylases specific for oxidized purines and pyrimidines both in bacteria and eukaryotic cells. Bacterial enzymes include E.coli formamidopyrimidine-DNA-glycosylase (Fpg protein), endonuclease III (Nth protein) and endonuclease VIII (Nei protein).
Collapse
Affiliation(s)
- Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
31
|
Godschalk RWL, Van Schooten FJ, Bartsch H. A critical evaluation of DNA adducts as biological markers for human exposure to polycyclic aromatic compounds. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:1-11. [PMID: 12542969 DOI: 10.5483/bmbrep.2003.36.1.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The causative role of polycyclic aromatic hydrocarbons (PAH) in human carcinogenesis is undisputed. Measurements of PAH-DNA adduct levels in easily accessible white blood cells therefore represent useful early endpoints in exposure intervention or chemoprevention studies. The successful applicability of DNA adducts as early endpoints depends on several criteria: i. adduct levels in easily accessible surrogate tissues should reflect adduct levels in target-tissues, ii. toxicokinetics and the temporal relevance should be properly defined. iii. sources of interand intra-individual variability must be known and controllable, and finally iv. adduct analyses must have advantages as compared to other markers of PAHexposure. In general, higher DNA adduct levels or a higher proportion of subjects with detectable DNA adduct levels were found in exposed individuals as compared with nonexposed subjects, but saturation may occur at high exposures. Furthermore, DNA adduct levels varied according to changes in exposure, for example smoking cessation resulted in lower DNA adduct levels and adduct levels paralleled seasonal variations of air-pollution. Intraindividual variation during continuous exposure was low over a short period of time (weeks), but varied significantly when longer time periods (months) were investigated. Inter-individual variation is currently only partly explained by genetic polymorphisms in genes involved in PAH-metabolism and deserves further investigation. DNA adduct measurements may have three advantages over traditional exposure assessment: i. they can smooth the extreme variability in exposure which is typical for environmental toxicants and may integrate exposure over a longer period of time. Therefore, DNA adduct assessment may reduce the monitoring effort. ii. biological monitoring of DNA adducts accounts for all exposure routes. iii. DNA adducts may account for inter-individual differences in uptake, elimination, distribution, metabolism and repair amongst exposed individuals. In conclusion, there is now a sufficiently large scientific basis to justify the application of DNA adduct measurements as biomarkers in exposure assessment and intervention studies. Their use in risk-assessment, however, requires further investigation.
Collapse
Affiliation(s)
- Roger W L Godschalk
- Department of Health Risk Analysis and Toxicology, University of Maastricht, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
32
|
Choi KS, Bae MK, Jeong JW, Moon HE, Kim KW. Hypoxia-induced angiogenesis during carcinogenesis. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:120-7. [PMID: 12542982 DOI: 10.5483/bmbrep.2003.36.1.120] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of new blood vessels, angiogenesis, is an essential process during development and disease. Angiogenesis is well known as a crucial step in tumor growth and progression. Angiogenesis is induced by hypoxic conditions and regulated by the hypoxia-inducible factor 1 (HIF-1). The expression of HIF-1 correlates with hypoxia-induced angiogenesis as a result of the induction of the major HIF-1 target gene, vascular endothelial cell growth factor (VEGF). In this review, a brief overview of the mechanism of angiogenesis is discussed, focusing on the regulatory processes of the HIF-1 transcription factor. HIF-1 consists of a constitutively expressed HIF-1 beta (HIF-1beta) subunit and an oxygen-regulated HIF-1 alpha (HIF-1a) subunit. The stability and activity of HIF-1alpha are regulated by the interaction with various proteins, such as pVHL, p53, and p300/CBP as well as by post-translational modifications, hydroxylation, acetylation, and phosphorylation. It was recently reported that HIF-1alpha binds a co-activator of the AP-1 transcription factor, Jab-1, which inhibits the p53-dependent degradation of HIF-1 and enhances the transcriptional activity of HIF-1 and the subsequent VEGF expression under hypoxic conditions. ARD1 acetylates HIF-1alpha and stimulates pVHL-mediated ubiquitination of HIF-1alpha. With a growing knowledge of the molecular mechanisms in this field, novel strategies to prevent tumor angiogenesis can be developed, and from these, new anticancer therapies may arise.
Collapse
Affiliation(s)
- Kyu-Sil Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
33
|
Höpfl G, Ogunshola O, Gassmann M. Hypoxia and High Altitude. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 543:89-115. [PMID: 14713116 DOI: 10.1007/978-1-4419-8997-0_7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased erythropoietin plasma levels and the consequent augmented production of red blood cells is the best known systemic adaptation to reduced oxygen partial pressure (pO2). Intensive research during the last years revealed that the molecular mechanism behind the regulation of erythropoietin is ubiquitous and has far more implications than first thought. Erythropoietin regulation results from the activation of the hypoxia-inducible factor-1 (HIF-1) pathway under hypoxic conditions. HIF-1 is a heterodimer consisting of an oxygen sensitive--HIF-1--and an oxygen-independent subunit--HIF-1beta (also known as the aryl hydrocarbon receptor nuclear translocator--ARNT). In addition to erythropoietin, more than 30 genes are now known to be up-regulated by HIF-1. Recently, the critical involvement of HIF-1alpha post-translational modifications in the cellular oxygen sensing mechanism was discovered. In this review we will focus on the regulation of the HIF-1 pathway and the cellular oxygen sensor and discuss their implications in high altitude hypoxia.
Collapse
Affiliation(s)
- Gisele Höpfl
- Institute of Veterinary Physiology, University of Zürich, Switzerland
| | | | | |
Collapse
|
34
|
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator that functions as a master regulator of O2 homeostasis. HIF-1 target genes encode proteins that increase O2 delivery and mediate adaptive responses to O2 deprivation. HIF-1 activity is regulated by the cellular O2 concentration and by the major growth factor-stimulated signal transduction pathways. In human cancer cells, both intratumoral hypoxia and genetic alterations affecting signal transduction pathways lead to increased HIF-1 activity, which promotes angiogenesis, metabolic adaptation, and other critical aspects of tumor progression.
Collapse
Affiliation(s)
- Gregg Semenza
- Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC-1004, Baltimore, MD 21287-3914, USA.
| |
Collapse
|
35
|
Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 2002; 16:1151-62. [PMID: 12153983 DOI: 10.1096/fj.01-0944rev] [Citation(s) in RCA: 852] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although it was known for a long time that oxygen deprivation leads to the transcriptional induction of the gene encoding erythropoietin, the molecular mechanisms behind this process remained enigmatic. The cloning of the hypoxia-inducible factors (HIFs), the finding that HIF-1 regulates the expression of many more genes apart from erythropoietin, and the elucidation of the oxygen-dependent mechanisms degrading the HIF alpha subunits recently led to the spectacular discovery of the molecular principles of oxygen sensing. This review aims to summarize our current knowledge of oxygen-regulated gene expression..
Collapse
Affiliation(s)
- Roland H Wenger
- Carl-Ludwig-Institute of Physiology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
36
|
Tang Y, Jackson M, Qian K, Phillips MI. Hypoxia inducible double plasmid system for myocardial ischemia gene therapy. Hypertension 2002; 39:695-8. [PMID: 11882633 DOI: 10.1161/hy0202.103784] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coronary artery disease frequently involves repeated bouts of myocardial ischemia. To automatically up-regulate the cardioprotective transgenes under hypoxic ischemia, a "vigilant vector" gene therapy system was developed and tested in a rat embryonic myocardial cell line (H9c2). In the vigilant vector, a hypoxia response element-incorporated promoter was used as a switch to turn on the gene expression in response to hypoxic signal. Furthermore, a novel double plasmid system was designed to elevate the potency of the vigilant vector. Instead of putting the promoter and the reporter gene in the same plasmid (single plasmid system), we separated them into two plasmids: the transactivator plasmid and reporter plasmid (double plasmid system). The hypoxia response element (HRE)-incorporated promoter increased the expression of a chimeric transcription factor consisting of the yeast GAL4 DNA binding domain and the human nuclear (transcription) factor-kappaB (NF-kappaB) p65 activation domain. The powerful chimeric regulator binds specifically to the upstream activating sequence for GAL4 in the reporter plasmid and activates the transcription of the transgene. Our experiments showed that the HRE-mediated expression could quickly increase 2.08 +/- 0.75-fold within 6 hours of hypoxia and further augmented 7.12 +/- 1.52-fold when the hypoxia condition was prolonged to 24 hours. The hypoxia-inducible double plasmid system dramatically amplified the transgene expression under both hypoxia and normoxia by 412.79 +/- 185.27-fold and 205.35 +/- 65.44-fold, respectively, relative to the single plasmid system. From these results, we concluded that this hypoxia inducible double plasmid system could be used therapeutically to switch on genes that have proven beneficial effects in myocardial ischemia.
Collapse
Affiliation(s)
- Yi Tang
- Department of Physiology and Functional Genomics, University of Florida, Gainesville 32610, USA
| | | | | | | |
Collapse
|
37
|
Zamudio S, Douglas M, Mazzeo RS, Wolfel EE, Young DA, Rock PB, Braun B, Muza SR, Butterfield GE, Moore LG. Women at altitude: forearm hemodynamics during acclimatization to 4,300 m with alpha(1)-adrenergic blockade. Am J Physiol Heart Circ Physiol 2001; 281:H2636-44. [PMID: 11709433 DOI: 10.1152/ajpheart.2001.281.6.h2636] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that blockade of alpha(1)-adrenergic receptors would prevent the rise in peripheral vascular resistance that normally occurs during acclimatization. Sixteen eumenorrheic women were studied at sea level (SL) and at 4,300 m (days 3 and 10). Volunteers were randomly assigned to take the selective alpha(1)-blocker prazosin or placebo. Venous compliance, forearm vascular resistance, and blood flow were measured using plethysmography. Venous compliance fell by day 3 in all subjects (1.39 +/- 0.30 vs. 1.62 +/- 0.43 ml. Delta 30 mmHg(-1) x 100 ml tissue(-1) x min(-1) at SL, means +/- SD). Altitude interacted with prazosin treatment (P < 0.0001) such that compliance returned to SL values by day 10 in the prazosin-treated group (1.68 +/- 0.19) but not in the placebo-treated group (1.20 +/- 0.10, P < 0.05). By day 3 at 4,300 m, all women had significant falls in resistance (35.2 +/- 13.2 vs. 54.5 +/- 16.1 mmHg x ml(-1) x min(-1) at SL) and rises in blood flow (2.5 +/- 1.0 vs. 1.6 +/- 0.5 ml. 100 ml tissue(-1) x min(-1) at SL). By day 10, resistance and flow returned toward SL, but this return was less in the prazosin-treated group (resistance: 39.8 +/- 4.6 mmHg x ml(-1) x min(-1) with prazosin vs. 58.5 +/- 9.8 mmHg x ml(-1) x min(-1) with placebo; flow: 1.9 +/- 0.7 ml. 100 ml tissue(-1) x min(-1) with prazosin vs. 2.3 +/- 0.3 ml x 100 ml tissue(-1) x min(-1) with placebo, P < 0.05). Lower resistance related to higher circulating epinephrine in both groups (r = -0.50, P < 0.0001). Higher circulating norepinephrine related to lower venous compliance in the placebo-treated group (r = -0.42, P < 0.05). We conclude that alpha(1)-adrenergic stimulation modulates peripheral vascular changes during acclimatization.
Collapse
Affiliation(s)
- S Zamudio
- Women's Health Research Center, University of Colorado Health Sciences Center, Denver, 80262, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Hypoxia-inducible factor 1 (HIF-1) activates transcription of genes encoding proteins that mediate adaptive responses to reduced oxygen availability. The HIF-1beta subunit is constitutively expressed, whereas the HIF-1alpha subunit is subject to ubiquitination and proteasomal degradation, a process that is inhibited under hypoxic conditions. Recent data indicate that HIF-1 plays major roles in the prevention of myocardial and cerebral ischemia and in the pathogenesis of pulmonary hypertension and cancer. Modulation of HIF-1 activity by genetic or pharmacological means could provide a novel therapeutic approach to these common causes of mortality.
Collapse
Affiliation(s)
- G L Semenza
- Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Johns Hopkins Hospital, CMSC-1004, 600 North Wolfe Street, Baltimore, MD 21287-3914, USA.
| |
Collapse
|
39
|
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator that mediates changes in gene expression in response to changes in cellular oxygen concentrations. HIF-1 is a heterodimer consisting of an oxygen-regulated HIF-1 alpha subunit and a constitutively expressed HIF-1 beta subunit. In mice, complete HIF-1 alpha deficiency results in embryonic lethality at midgestation because of cardiac and vascular malformations. Analyses of animal and cell culture models as well as human tissue have provided evidence that HIF-1 plays important roles in the pathophysiology of preeclampsia, intrauterine growth retardation, hypoxia-mediated pulmonary hypertension, and cancer. HIF-1 promotes neovascularization in response to myocardial or retinal ischemia by activating transcription of the gene encoding vascular endothelial growth factor. HIF-1 may also mediate the protective response to cerebral ischemia known as late-phase preconditioning.
Collapse
Affiliation(s)
- G L Semenza
- Institute of Genetic Medicine and Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| |
Collapse
|
40
|
Michelotti GA, Price DT, Schwinn DA. Alpha 1-adrenergic receptor regulation: basic science and clinical implications. Pharmacol Ther 2000; 88:281-309. [PMID: 11337028 DOI: 10.1016/s0163-7258(00)00092-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Adrenergic receptors (ARs) are members of the G-protein-coupled receptor family, which includes alpha 1ARs, alpha 2ARs, beta 1ARs, beta 2ARs, beta 3ARs, adenosine, muscarinic, angiotensin, endothelin receptors, and many others that are responsible for a large variety of physiologic effects through G-protein coupling. This review focuses on alpha 1ARs and their regulation at both the mRNA and protein levels. Currently, three alpha 1AR subtypes have been characterized both pharmacologically and at the gene level: alpha 1aAR, alpha 1bAR, and alpha 1dAR. These are expressed in a species- and tissue-dependent manner. Mutagenesis approaches have been extremely valuable in the identification of key residues that govern alpha 1AR ligand binding and signaling. These studies reveal that alpha 1ARs have evolved an exquisitely sensitive regulation of their activity in which any disruption of the native structure has profound effects on subsequent function and effector coupling. Significant advances have also been made in the elucidation of signaling pathway components, resulting in the identification of novel pathways that can lead to pathologic conditions. Specific topics include mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and G-protein-coupled receptor cross-talk pathways. Within this context, recent studies identifying underlying transcriptional mechanisms involved in the regulation of the alpha 1AR subtypes are also discussed. Finally, given the potentially important role of alpha 1ARs in the vasculature, as well as in the pathology of many diseases, such as myocardial hypertrophy and benign prostatic hyperplasia, the clinical relevance of alpha 1AR distribution, pharmacology, and therapeutic intervention is reviewed.
Collapse
Affiliation(s)
- G A Michelotti
- Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC 27710, USA
| | | | | |
Collapse
|
41
|
Abstract
Tumor progression occurs as a result of the clonal selection of cells in which somatic mutations have activated oncogenes or inactivated tumor suppressor genes leading to increased proliferation and/or survival within the hypoxic tumor microenvironment. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that mediates adaptive responses to reduced O2 availability, including angiogenesis and glycolysis. Expression of the O2-regulated HIF-1alpha subunit and HIF-1 transcriptional activity are increased dramatically in hypoxic cells. Recent studies indicate that many common tumor-specific genetic alterations also lead to increased HIF-1alpha expression and/or activity. Thus, genetic and physiologic alterations within tumors act synergistically to increase HIF-1 transcriptional activity, which appears to play a critical role in the development of invasive and metastatic properties that define the lethal cancer phenotype.
Collapse
Affiliation(s)
- G L Semenza
- Institute of Genetic Medicine, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-3914, USA.
| |
Collapse
|
42
|
Angeles DM, Williams J, Zhang L, Pearce WJ. Acute hypoxia modulates 5-HT receptor density and agonist affinity in fetal and adult ovine carotid arteries. Am J Physiol Heart Circ Physiol 2000; 279:H502-10. [PMID: 10924047 DOI: 10.1152/ajpheart.2000.279.2.h502] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In light of recent observations that receptor-ligand binding and coupling are physiologically regulated, the present study examined the hypothesis that the direct effects of hypoxia on vascular contractility involve modulation of pharmacomechanical coupling via changes in agonist affinity and/or receptor density. Because the direct effects of hypoxia on vascular smooth muscle contractility can vary with age, we carried out these experiments using both fetal and adult arteries. In common carotid arteries from near-term fetal and adult sheep, hypoxia (PO(2) = 9-12 Torr for 30 min) reduced the maximum responses to potassium by 17.8 +/- 3.5% (fetus) and 20.5 +/- 2.2% (adult), significantly reduced the pD(2) for 5-HT in the fetus (7.01 +/- 0.1 to 6.3 +/- 0.2) but not the adult (6.1 +/- 0.1 to 6.0 +/- 0.1), and significantly reduced 5-HT-induced maximum contractions (as % maximum response to 120 mM K(+)) not in the fetus (from 114 +/- 7 to 70 +/- 10%, not significant) but only in the adult (from 83 +/- 15 to 25 +/- 7%, P < 0.05) arteries. Hypoxia significantly attenuated 5-HT binding affinity (pK(A), determined by partial irreversible blockade with phenoxybenzamine) in both fetal (from 6.5 +/- 0.2 to 6.0 +/- 0.2) and adult arteries (from 6.2 +/- 0. 2 to 5.7 +/- 0.1) and also decreased receptor density (fmol/mg protein, determined by competitive binding with ketanserin and mesulergine) in adult (from 18.3 +/- 1.1 to 10.9 +/- 1.0) but not in fetal (21.0 +/- 1.0 to 23.2 +/- 1.4) arteries. These results suggest that acute hypoxia modulates receptor-ligand binding via age-dependent modulation of agonist affinity and receptor density. These effects may contribute to hypoxic vasodilatation and help explain why the effects of hypoxia on vascular contractility differ between fetuses and adults.
Collapse
Affiliation(s)
- D M Angeles
- Center for Perinatal Biology, Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California 92350, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Oxygen is essential to the life of all aerobic organisms. Virtually every cell type is able to sense a limited oxygen supply (hypoxia) and specifically to induce a set of oxygen-regulated genes. This review summarizes current concepts of mammalian oxygen-sensing and signal-transduction pathways. Since the discovery of the hypoxia-inducible factors (HIFs), a great deal of progress has been made in our comprehension of how hypoxia induces the expression of oxygen-regulated genes. The alpha subunit of the heterodimeric transcription factors HIF-1, 2 and 3 is unstable under normoxia but is rapidly stabilized upon exposure to hypoxic conditions. Following heterodimerization with the constitutively expressed beta subunit, HIFs activate the transcription of an increasing number of genes involved in maintaining oxygen homeostasis at the cellular, local and systemic levels.
Collapse
Affiliation(s)
- R H Wenger
- Institute of Physiology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
44
|
Abstract
All organisms can sense O(2) concentration and respond to hypoxia with adaptive changes in gene expression. The large body size of mammals necessitates the development of multiple complex physiological systems to ensure adequate O(2) delivery to all cells under normal conditions. The transcriptional regulator hypoxia-inducible factor 1 (HIF-1) is an essential mediator of O(2) homeostasis. HIF-1 is required for the establishment of key physiological systems during development and their subsequent utilization in fetal and postnatal life. HIF-1 also appears to play a key role in the pathophysiology of cancer, cardiovascular disease, and chronic lung disease, which represent the major causes of mortality among industrialized societies. Genetic or pharmacological modulation of HIF-1 activity in vivo may represent a novel therapeutic approach to these disorders.
Collapse
Affiliation(s)
- G L Semenza
- Institute of Genetic Medicine, Departments of Pediatrics and Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287-3914, USA.
| |
Collapse
|
45
|
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic-helix-loop-helix-PAS transcription factor consisting of HIF-1 alpha and HIF-1 beta subunits. HIF-1 alpha expression and HIF-1 transcriptional activity increase exponentially as cellular O2 concentration is decreased. Several dozen target genes that are transactivated by HIF-1 have been identified, including those encoding erythropoietin, glucose transporters, glycolytic enzymes, and vascular endothelial growth factor. The products of these genes either increase O2 delivery or allow metabolic adaptation to reduced O2 availability. HIF-1 is required for cardiac and vascular development and embryonic survival. In fetal and postnatal life, HIF-1 is required for a variety of physiological responses to chronic hypoxia. HIF-1 expression is increased in tumor cells by multiple mechanisms and may mediate adaptation to hypoxia that is critical for tumor progression. HIF-1 thus appears to function as a master regulator of O2 homeostasis that plays essential roles in cellular and systemic physiology, development, and pathophysiology.
Collapse
Affiliation(s)
- G L Semenza
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-3914, USA.
| |
Collapse
|
46
|
Abstract
The heart is exposed to alterations in oxygen tension under different pathophysiological conditions. In order to maintain function, changes in the pattern of cardiac gene expression arise. Through the activity of multiple transcription factors, which include activating protein-1, hypoxia-inducible factor-1, and nuclear factor kappaB, there is up-regulation of mRNA encoding factors that enable the cardiomyocyte to adapt to the new environment. In the case of hypoxia or anoxia, there is an increased expression of growth factors, glucose transporters, enzymes associated with anaerobic glycolysis, and stress proteins. When the cardiomyocyte is reoxygenated after hypoxia, there is a rapid increase in antioxidants, pro-inflammatory cytokines, and stress proteins.
Collapse
Affiliation(s)
- L Piacentini
- Cardiology Section, VA Medical Center, San Francisco, CA 94121, USA.
| | | |
Collapse
|
47
|
Abstract
Pulmonary hypertension (PH) is a chronic and disabling condition that affects the pulmonary vasculature. Once PH is diagnosed, the prognosis is generally poor with a rapid downhill course. PH management is largely empirical because the underlying pathophysiologic mechanisms that are responsible for the excessive vasoconstrictor and vascular smooth muscle proliferative responses are poorly understood. Based on new information concerning the role of adrenergic receptors in regulating various cellular functions, a new perspective on the genesis of PH has emerged, along with a unifying hypothesis for the role of alpha1-adrenergic receptors present in the pulmonary vasculature as the major contributor to the pathophysiologic changes associated with PH. Adrenergic receptors that are present on vascular smooth muscle cells regulate vascular tone and growth. The alpha1-adrenergic receptors that are present on the small- and medium-sized pulmonary arteries have a unique and greatly enhanced affinity and activity to alpha1-adrenergic agonists. Under physiologic conditions, this helps in regulating vascular tone and maintains an adequate ventilation/perfusion matching. However, the excessive stimulation of alpha1-adrenergic receptors produces not only smooth muscle contraction but also proliferation and growth. The conditions that produce an increase in alpha1-adrenoreceptor gene synthesis, density, and activity (such as hypoxia or changes in vessel wall pressure) or increase the levels of its agonists (such as norepinephrine, appetite suppressants, or cocaine) greatly enhance pulmonary vascular smooth muscle contractile and proliferative responses and lead to the development of PH. An understanding of the role played by these receptors in the pathophysiology of PH would not only help to avoid the use of alpha1-agonists for appetite suppression and other disease states, but also would help in developing new drugs to block these receptors. A further understanding of the alpha1-adrenoreceptor subtypes present in the pulmonary vasculature, the factors that regulate their expression, and their intracellular signaling pathways would help researchers to devise newer therapeutic strategies and, hopefully, to find a cure for this crippling condition.
Collapse
Affiliation(s)
- S S Salvi
- Department of Medicine, Southampton General Hospital, UK.
| |
Collapse
|
48
|
Dao N, Gao B. The simian virus 40 core C enhancer-like element is a positive regulator in the rat alpha1B adrenergic receptor gene proximal promoter. Biochem Biophys Res Commun 1998; 253:804-8. [PMID: 9918808 DOI: 10.1006/bbrc.1998.9860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription of the rat alpha1B adrenergic receptor (alpha1B AR) gene is controlled by three promoters (P1, P2, and P3), which generate 2.3-, 2.7-, and 3.3-kb transcripts, respectively. The expression of the 2.3-kb mRNA species is tissue-specific. To explore the underlying mechanism, the P1 promoter was analyzed. DNase I footprinting of the P1 promoter yielded three protected regions: Plfl(-49 to -62); P1f2 (-73 to -90), and P1f3 (-95 to -115). Sequence analysis of P1f3 revealed the presence of an SV40 core C enhancer-like element. In gel mobility shift assays, P1f3 was found to bind a sequence specific protein, which was competed away by a SV40 core C enhancer consensus oligonucleotide. Mutations of this enhancer-like core sequence within P1f3 significantly reduced specific protein binding to P1f3 and inhibited P1 promoter activity. The distribution of the protein which binds to P1f3 is restricted. These findings suggest that the P1 promoter is controlled by a cell-type-specific transcription factor, which may account for the tissue-specific expression of 2.3-kb rat alpha1B AR mRNA species.
Collapse
Affiliation(s)
- N Dao
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA
| | | |
Collapse
|
49
|
Gao B, Chen J, Johnson C, Kunos G. Both the cyclic AMP response element and the activator protein 2 binding site mediate basal and cyclic AMP-induced transcription from the dominant promoter of the rat alpha 1B-adrenergic receptor gene in DDT1MF-2 cells. Mol Pharmacol 1997; 52:1019-26. [PMID: 9415711 DOI: 10.1124/mol.52.6.1019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
cAMP markedly increases alpha 1B adrenergic receptor (alpha 1B-AR) expression in FRTL-5 and PC C13 rat thyroid cells, DDT1MF-2 smooth muscle cells, primary rat hepatocytes, and K9 rat liver cells. Here, we used DDT1MF-2 cells to evaluate further the mechanisms by which cAMP stimulates alpha 1B-AR expression. Receptor binding assays, Northern blotting, and nuclear run-on analyses demonstrated that forskolin (1 microM) in the presence of isobutylmethylxanthine (0.25 mM) increased alpha 1B-AR numbers, mRNA level, and gene transcription rate by 2.3 +/- 0.2-, 2.5 +/- 0.3-, and 3.5 +/- 0.2-fold over control, respectively. Dibutyryl cAMP (1 mM) plus isobutylmethylxanthine (0.25 mM) also enhanced alpha 1B-AR density by 2.7 +/- 0.1-fold over control. Further experiments demonstrated that the induction of alpha 1B-AR by forskolin requires new protein synthesis and is protein kinase A dependent. In DDT1MF-2 cells transfected with alpha 1B-AR gene P2 promoter/CAT constructs, both forskolin and dibutyryl cAMP significantly increased P2 promoter activity. The P2 promoter region of the rat alpha 1B-AR gene (-813 to -432) contains a cAMP response element (CRE) (-444 to -437) and an AP2 binding site (-647 to -638). Mutations in either one of these elements alone led to a decrease in both basal and cAMP-induced P2 promoter activity. Mutations in both elements caused a further inhibition of basal transcription and a complete block of cAMP-induced P2 promoter activity. Direct binding of purified activator protein 2 (AP2) to the AP2 element in the P2 promoter was reported previously. Gel mobility shift and super-shift assays using liver nuclear extracts from either rat liver or DDT1MF-2 cells demonstrated that the CRE in the alpha 1B-AR gene bound CRE binding protein. These data indicate that both the CRE and the AP2 element in the P2 promoter contribute to basal as well as cAMP-induced transcription of the alpha 1B-AR gene in DDT1MF-2 cells.
Collapse
MESH Headings
- Animals
- Binding Sites
- Cell Line
- Colforsin/pharmacology
- Cricetinae
- Cyclic AMP/physiology
- Cyclic AMP Response Element-Binding Protein/physiology
- DNA/genetics
- DNA/metabolism
- DNA Mutational Analysis
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiology
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic/physiology
- Protein Binding
- RNA, Messenger/metabolism
- Rats
- Receptors, Adrenergic, alpha-1/biosynthesis
- Receptors, Adrenergic, alpha-1/genetics
- Stimulation, Chemical
- Transcription Factor AP-2
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- B Gao
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA.
| | | | | | | |
Collapse
|