1
|
Dawes JHP, Kelsh RN. Cell Fate Decisions in the Neural Crest, from Pigment Cell to Neural Development. Int J Mol Sci 2021; 22:13531. [PMID: 34948326 PMCID: PMC8706606 DOI: 10.3390/ijms222413531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The neural crest shows an astonishing multipotency, generating multiple neural derivatives, but also pigment cells, skeletogenic and other cell types. The question of how this process is controlled has been the subject of an ongoing debate for more than 35 years. Based upon new observations of zebrafish pigment cell development, we have recently proposed a novel, dynamic model that we believe goes some way to resolving the controversy. Here, we will firstly summarize the traditional models and the conflicts between them, before outlining our novel model. We will also examine our recent dynamic modelling studies, looking at how these reveal behaviors compatible with the biology proposed. We will then outline some of the implications of our model, looking at how it might modify our views of the processes of fate specification, differentiation, and commitment.
Collapse
Affiliation(s)
- Jonathan H. P. Dawes
- Centre for Networks and Collective Behaviour, University of Bath, Bath BA2 7AY, UK;
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| | - Robert N. Kelsh
- Centre for Mathematical Biology, University of Bath, Bath BA2 7AY, UK
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
2
|
Tudrej KB, Czepielewska E, Kozłowska-Wojciechowska M. SOX10-MITF pathway activity in melanoma cells. Arch Med Sci 2017; 13:1493-1503. [PMID: 29181082 PMCID: PMC5701683 DOI: 10.5114/aoms.2016.60655] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/16/2016] [Indexed: 01/28/2023] Open
Abstract
Melanoma is one of the most dangerous and lethal skin cancers, with a considerable metastatic potential and drug resistance. It involves a malignant transformation of melanocytes. The exact course of events in which melanocytes become melanoma cells remains unclear. Nevertheless, this process is said to be dependent on the occurrence of cells with the phenotype of progenitor cells - cells characterized by expression of proteins such as nestin, CD-133 or CD-271. The development of these cells and their survival were found to be potentially dependent on the neural crest stem cell transcription factor SOX10. This is just one of the possible roles of SOX10, which contributes to melanomagenesis by regulating the SOX10-MITF pathway, but also to melanoma cell survival, proliferation and metastasis formation. The aim of this review is to describe the broad influence of the SOX10-MITF pathway on melanoma cells.
Collapse
Affiliation(s)
- Karol B Tudrej
- Department of Clinical Pharmacology and Pharmaceutical Care, Medical University of Warsaw, Warsaw, Poland
| | - Edyta Czepielewska
- Department of Clinical Pharmacology and Pharmaceutical Care, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
3
|
Waqas M, Sun S, Xuan C, Fang Q, Zhang X, Islam IU, Qi J, Zhang S, Gao X, Tang M, Shi H, Li H, Chai R. Bone morphogenetic protein 4 promotes the survival and preserves the structure of flow-sorted Bhlhb5+ cochlear spiral ganglion neurons in vitro. Sci Rep 2017; 7:3506. [PMID: 28615657 PMCID: PMC5471210 DOI: 10.1038/s41598-017-03810-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/04/2017] [Indexed: 01/22/2023] Open
Abstract
SGNs are the primary auditory neurons, and damage or loss of SGNs leads to sensorineural hearing loss. BMP4 is a growth factor that belongs to the TGF-β superfamily and has been shown to play a key role during development, but little is known about its effect on postnatal cochlear SGNs in mice. In this study, we used the P3 Bhlhb5-cre/tdTomato transgenic mouse model and FACS to isolate a pure population of Bhlhb5+ SGNs. We found that BMP4 significantly promoted SGN survival after 7 days of culture. We observed fewer apoptotic cells and decreased expression of pro-apoptotic marker genes after BMP4 treatment. We also found that BMP4 promoted monopolar neurite outgrowth of isolated SGNs, and high concentrations of BMP4 preserved the number and the length of neurites in the explant culture of the modiolus harboring the SGNs. We showed that high concentration of BMP4 enhanced neurite growth as determined by the higher average number of filopodia and the larger area of the growth cone. Finally, we found that high concentrations of BMP4 significantly elevated the synapse density of SGNs in explant culture. Thus, our findings suggest that BMP4 has the potential to promote the survival and preserve the structure of SGNs.
Collapse
Affiliation(s)
- Muhammad Waqas
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.,Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, 210096, China.,Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal campus, Karachi, Pakistan
| | - Shan Sun
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of NHFPC, Shanghai, 200031, China
| | - Chuanyin Xuan
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.,Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qiaojun Fang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.,Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiaoli Zhang
- Department of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Irum-Us Islam
- Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal campus, Karachi, Pakistan
| | - Jieyu Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.,Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.,Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xia Gao
- Department of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.,Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Haibo Shi
- Department of Otorhinolaryngology Head & Neck Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Huawei Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China. .,Key Laboratory of Hearing Medicine of NHFPC, Shanghai, 200031, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Shanghai Engineering Research Centre of Cochlear Implants, Shanghai, 200031, China. .,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China. .,Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
4
|
Delfino-Machín M, Madelaine R, Busolin G, Nikaido M, Colanesi S, Camargo-Sosa K, Law EWP, Toppo S, Blader P, Tiso N, Kelsh RN. Sox10 contributes to the balance of fate choice in dorsal root ganglion progenitors. PLoS One 2017; 12:e0172947. [PMID: 28253350 PMCID: PMC5333849 DOI: 10.1371/journal.pone.0172947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/12/2017] [Indexed: 11/19/2022] Open
Abstract
The development of functional peripheral ganglia requires a balance of specification of both neuronal and glial components. In the developing dorsal root ganglia (DRGs), these components form from partially-restricted bipotent neuroglial precursors derived from the neural crest. Work in mouse and chick has identified several factors, including Delta/Notch signaling, required for specification of a balance of these components. We have previously shown in zebrafish that the Sry-related HMG domain transcription factor, Sox10, plays an unexpected, but crucial, role in sensory neuron fate specification in vivo. In the same study we described a novel Sox10 mutant allele, sox10baz1, in which sensory neuron numbers are elevated above those of wild-types. Here we investigate the origin of this neurogenic phenotype. We demonstrate that the supernumerary neurons are sensory neurons, and that enteric and sympathetic neurons are almost absent just as in classical sox10 null alleles; peripheral glial development is also severely abrogated in a manner similar to other sox10 mutant alleles. Examination of proliferation and apoptosis in the developing DRG reveals very low levels of both processes in wild-type and sox10baz1, excluding changes in the balance of these as an explanation for the overproduction of sensory neurons. Using chemical inhibition of Delta-Notch-Notch signaling we demonstrate that in embryonic zebrafish, as in mouse and chick, lateral inhibition during the phase of trunk DRG development is required to achieve a balance between glial and neuronal numbers. Importantly, however, we show that this mechanism is insufficient to explain quantitative aspects of the baz1 phenotype. The Sox10(baz1) protein shows a single amino acid substitution in the DNA binding HMG domain; structural analysis indicates that this change is likely to result in reduced flexibility in the HMG domain, consistent with sequence-specific modification of Sox10 binding to DNA. Unlike other Sox10 mutant proteins, Sox10(baz1) retains an ability to drive neurogenin1 transcription. We show that overexpression of neurogenin1 is sufficient to produce supernumerary DRG sensory neurons in a wild-type background, and can rescue the sensory neuron phenotype of sox10 morphants in a manner closely resembling the baz1 phenotype. We conclude that an imbalance of neuronal and glial fate specification results from the Sox10(baz1) protein's unique ability to drive sensory neuron specification whilst failing to drive glial development. The sox10baz1 phenotype reveals for the first time that a Notch-dependent lateral inhibition mechanism is not sufficient to fully explain the balance of neurons and glia in the developing DRGs, and that a second Sox10-dependent mechanism is necessary. Sox10 is thus a key transcription factor in achieving the balance of sensory neuronal and glial fates.
Collapse
Affiliation(s)
- Mariana Delfino-Machín
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Romain Madelaine
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Masataka Nikaido
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Sarah Colanesi
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Karen Camargo-Sosa
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Edward W. P. Law
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Patrick Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| |
Collapse
|
5
|
Le Douarin NM, Dupin E. The Pluripotency of Neural Crest Cells and Their Role in Brain Development. Curr Top Dev Biol 2016; 116:659-78. [PMID: 26970647 DOI: 10.1016/bs.ctdb.2015.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neural crest (NC) is, in the Chordate phylum, an innovation of vertebrates, which exhibits several original characteristics: its component cells are pluripotent and give rise to both ectodermal and mesodermal cell types. Moreover, during the early stages of neurogenesis, the NC cells exert a paracrine stimulating effect on the development of the preotic brain.
Collapse
Affiliation(s)
- Nicole M Le Douarin
- Collège de France, 3 rue d'Ulm, Paris, France; INSERM U968, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Paris, France.
| | - Elisabeth Dupin
- INSERM U968, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Paris, France
| |
Collapse
|
6
|
Seo JH, Hirata M, Kakinoki S, Yamaoka T, Yui N. Dynamic polyrotaxane-coated surface for effective differentiation of mouse induced pluripotent stem cells into cardiomyocytes. RSC Adv 2016. [DOI: 10.1039/c6ra03967g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increasing molecular mobility of hydrated polyrotaxane (PRX)-coated surfaces was effective to promote the differentiation of mouse induced pluripotent stem cells (iPS cells) into cardiomyocytes.
Collapse
Affiliation(s)
- Ji-Hun Seo
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Tokyo 101-0062
- Japan
- Department of Materials Science and Engineering
| | - Mitsuhi Hirata
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center Research Institute
- Osaka 565-8565
- Japan
- JST-CREST
| | - Sachiro Kakinoki
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center Research Institute
- Osaka 565-8565
- Japan
- JST-CREST
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center Research Institute
- Osaka 565-8565
- Japan
- JST-CREST
| | - Nobuhiko Yui
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Tokyo 101-0062
- Japan
- JST-CREST
| |
Collapse
|
7
|
Motohashi T, Kunisada T. Extended multipotency of neural crest cells and neural crest-derived cells. Curr Top Dev Biol 2015; 111:69-95. [PMID: 25662258 DOI: 10.1016/bs.ctdb.2014.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural crest cells (NCC) are migratory multipotent cells that give rise to diverse derivatives. They generate various cell types during embryonic development, including neurons and glial cells of the peripheral sensory and autonomic ganglia, Schwann cells, melanocytes, endocrine cells, smooth muscle, and skeletal and connective tissue cells of the craniofacial complex. The multipotency of NCC is thought to be transient at the early stage of NCC generation; once NCC emerge from the neural tube, they change into lineage-restricted precursors. Although many studies have described the clear segregation of NCC lineages right after their delamination from the neural tube, recent reports suggest that multipotent neural crest stem cells (NCSC) are present not only in migrating NCC in the embryo, but also in their target tissues in the fetus and adult. Furthermore, fully differentiated NCC-derived cells such as glial cells and melanocytes have been shown to dedifferentiate or transdifferentiate into other NCC derivatives. The multipotency of migratory and postmigratory NCC-derived cells was found to be similar to that of NCSC. Collectively, these findings support the multipotency or plasticity of NCC and NCC-derived cells.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan.
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| |
Collapse
|
8
|
Dupin E, Le Douarin NM. The neural crest, a multifaceted structure of the vertebrates. ACTA ACUST UNITED AC 2014; 102:187-209. [PMID: 25219958 DOI: 10.1002/bdrc.21080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/22/2014] [Indexed: 12/29/2022]
Abstract
In this review, several features of the cells originating from the lateral borders of the primitive neural anlagen, the neural crest (NC) are considered. Among them, their multipotentiality, which together with their migratory properties, leads them to colonize the developing body and to participate in the development of many tissues and organs. The in vitro analysis of the developmental capacities of single NC cells (NCC) showed that they present several analogies with the hematopoietic cells whose differentiation involves the activity of stem cells endowed with different arrays of developmental potentialities. The permanence of such NC stem cells in the adult organism raises the problem of their role at that stage of life. The NC has appeared during evolution in the vertebrate phylum and is absent in their Protocordates ancestors. The major role of the NCC in the development of the vertebrate head points to a critical role for this structure in the remarkable diversification and radiation of this group of animals.
Collapse
Affiliation(s)
- Elisabeth Dupin
- INSERM, U968, Paris, F-75012, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France; CNRS, UMR_7210, Paris, F-75012, France
| | | |
Collapse
|
9
|
Aoki H, Hara A, Oomori Y, Shimizu Y, Yamada Y, Kunisada T. Neonatal lethality of neural crest cell-specificRestknockout mice is associated with gastrointestinal distension caused by aberrations of myenteric plexus. Genes Cells 2014; 19:723-42. [DOI: 10.1111/gtc.12172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 07/13/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido Gifu 501-1194 Japan
| | - Akira Hara
- Department of Tumor Pathology; Gifu University Graduate School of Medicine; 1-1 Yanagido Gifu 501-1194 Japan
| | - Yoshiyuki Oomori
- TAIYO NIPPON SANSO Corporation; 3054-3 Shimokurosawa Takane-cho Hokuto-shi Yamanashi 408-0015 Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science; Laboratory of Physiology; The United Graduate School of Veterinary Sciences Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
| | - Yasuhiro Yamada
- Center for iPS Cell Research and Application (CiRA); Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Kyoto 606-8507 Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido Gifu 501-1194 Japan
| |
Collapse
|
10
|
|
11
|
Kishida M, Ford Versypt AN, Pack DW, Braatz RD. Optimal Control of One-dimensional Cellular Uptake in Tissue Engineering. OPTIMAL CONTROL APPLICATIONS & METHODS 2013; 34:680-695. [PMID: 24634549 PMCID: PMC3952945 DOI: 10.1002/oca.2047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A control problem motivated by tissue engineering is formulated and solved in which control of the uptake of growth factors (signaling molecules) is necessary to spatially and temporally regulate cellular processes for the desired growth or regeneration of a tissue. Four approaches are compared for determining 1D optimal boundary control trajectories for a distributed parameter model with reaction, diffusion, and convection: (i) basis function expansion, (ii) method of moments, (iii) internal model control (IMC), and (iv) model predictive control (MPC). The proposed method-of-moments approach is computationally efficient while enforcing a non-negativity constraint on the control input. While more computationally expensive than methods (i)-(iii), the MPC formulation significantly reduced the computational cost compared to simultaneous optimization of the entire control trajectory. A comparison of the pros and cons of each of the four approaches suggests that an algorithm that combines multiple approaches is most promising for solving the optimal control problem for multiple spatial dimensions.
Collapse
Affiliation(s)
- Masako Kishida
- University of Illinois at Urbana-Champaign, Urbana IL
- Massachusetts Institute of Technology, Cambridge, MA
| | | | | | | |
Collapse
|
12
|
Xie WB, Li Z, Shi N, Guo X, Tang J, Ju W, Han J, Liu T, Bottinger EP, Chai Y, Jose PA, Chen SY. Smad2 and myocardin-related transcription factor B cooperatively regulate vascular smooth muscle differentiation from neural crest cells. Circ Res 2013; 113:e76-86. [PMID: 23817199 DOI: 10.1161/circresaha.113.301921] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Vascular smooth muscle cell (VSMC) differentiation from neural crest cells (NCCs) is critical for cardiovascular development, but the mechanisms remain largely unknown. OBJECTIVE Transforming growth factor-β (TGF-β) function in VSMC differentiation from NCCs is controversial. Therefore, we determined the role and mechanism of a TGF-β downstream signaling intermediate Smad2 in NCC differentiation to VSMCs. METHODS AND RESULTS By using Cre/loxP system, we generated a NCC tissue-specific Smad2 knockout mouse model and found that Smad2 deletion resulted in defective NCC differentiation to VSMCs in aortic arch arteries during embryonic development and caused vessel wall abnormality in adult carotid arteries where the VSMCs are derived from NCCs. The abnormalities included 1 layer of VSMCs missing in the media of the arteries with distorted and thinner elastic lamina, leading to a thinner vessel wall compared with wild-type vessel. Mechanistically, Smad2 interacted with myocardin-related transcription factor B (MRTFB) to regulate VSMC marker gene expression. Smad2 was required for TGF-β-induced MRTFB nuclear translocation, whereas MRTFB enhanced Smad2 binding to VSMC marker promoter. Furthermore, we found that Smad2, but not Smad3, was a progenitor-specific transcription factor mediating TGF-β-induced VSMC differentiation from NCCs. Smad2 also seemed to be involved in determining the physiological differences between NCC-derived and mesoderm-derived VSMCs. CONCLUSIONS Smad2 is an important factor in regulating progenitor-specific VSMC development and physiological differences between NCC-derived and mesoderm-derived VSMCs.
Collapse
Affiliation(s)
- Wei-Bing Xie
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zuguo Li
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ning Shi
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602
| | - Xia Guo
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602
| | - Junming Tang
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Jun Han
- Center for Craniofacial Molecular Biology, University of Southern California Ostrow School of Dentistry
| | - Tengfei Liu
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Erwin P Bottinger
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California Ostrow School of Dentistry
| | - Pedro A Jose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602
| |
Collapse
|
13
|
Barembaum M, Bronner-Fraser M. A novel spalt gene expressed in branchial arches affects the ability of cranial neural crest cells to populate sensory ganglia. ACTA ACUST UNITED AC 2012; 1:57-63. [PMID: 16845438 PMCID: PMC1508165 DOI: 10.1017/s1740925x04000080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cranial neural crest cells differentiate into diverse derivatives including neurons and glia of the cranial ganglia, and cartilage and bone of the facial skeleton. Here, we explore the function of a novel transcription factor of the spalt family that might be involved in early cell-lineage decisions of the avian neural crest. The chicken spalt4 gene (csal4) is expressed in the neural tube, migrating neural crest, branchial arches and, transiently, in the cranial ectoderm. Later, it is expressed in the mesectodermal, but not neuronal or glial, derivatives of midbrain and hindbrain neural crest. After over-expression by electroporation into the cranial neural tube and neural crest, we observed a marked redistribution of electroporated neural crest cells in the vicinity of the trigeminal ganglion. In control-electroporated embryos, numerous, labeled neural crest cells (approximately 80% of the population) entered the ganglion, many of which differentiated into neurons. By contrast, few (approximately 30% of the population) spalt-electroporated neural crest cells entered the trigeminal ganglion. Instead, they localized in the mesenchyme around the ganglionic periphery or continued further ventrally to the branchial arches. Interestingly, little or no expression of differentiation markers for neurons or other cell types was observed in spalt-electroporated neural crest cells.
Collapse
Affiliation(s)
- Meyer Barembaum
- Division of Biology, 139-74 California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
14
|
Combination of media, biomaterials and extracellular matrix proteins to enhance the differentiation of neural stem/precursor cells into neurons. Acta Biomater 2012; 8:3035-48. [PMID: 22548842 DOI: 10.1016/j.actbio.2012.04.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 04/13/2012] [Accepted: 04/23/2012] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to induce the differentiation of neural stem/precursor cells (NSPC) more towards neurons than glial cells by the combination of media, biomaterials and extracellular matrix (ECM) proteins. Considering the role of serum, 10% fetal bovine serum or its fractions were added to DMEM/F12 medium to examine the effect of the differentiation-promoting potential on cultured NSPC isolated from embryonic rat cerebral cortex. The NSPC were cultured for 7 days, after which differentiation was assayed using immunocytochemistry for lineage specific markers. It was demonstrated that molecules promoting neuron differentiation were present in serum with molecular weight <100 kDa, which could dominate the differentiation of NSPC principally into neurons in the presence of basic fibroblast growth factor. In contrast, NSPC were induced to differentiate predominantly into glial cell phenotypes in the presence of whole serum components. Based on medium containing serum fraction, semi-quantification showed that the MAP2-positive percentage of the immunoreactive ratio within migrated cells could be promoted over 85% by combining poly(ethylene-co-vinyl alcohol) biomaterial and fibronectin matrix protein. These results are very encouraging, since an environment favorable for neuronal differentiation should be useful in the development of strategies for controlling the behavior of NSPC in neuroscience research.
Collapse
|
15
|
Yang J, Gu P, Menges S, Klassen H. Quantitative changes in gene transcription during induction of differentiation in porcine neural progenitor cells. Mol Vis 2012; 18:1484-504. [PMID: 22736940 PMCID: PMC3380908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 06/01/2012] [Indexed: 11/02/2022] Open
Abstract
PURPOSE Differentiation of neural stem/progenitor cells involves changes in the gene expression of these cells. Less clear is the extent to which incremental changes occur and the time course of such changes, particularly in non-rodents. METHODS Using porcine genome microarrays, we analyzed changes in the expression of 23,256 genes in porcine neural progenitor cells (pNPCs) subject to two established differentiation protocols. In addition, we performed sequential quantitative assessment of a defined transcription profile consisting of 15 progenitor- and lineage-associated genes following exposure to the same treatment protocols, to examine the temporal dynamics of phenotypic changes following induction of differentiation. Immunocytochemistry was also used to examine the expression of seven of these phenotypically important genes at the protein level. Initial primary isolates were passaged four times in proliferation medium containing 20 ng/ml epidermal growth factor (EGF) and 20 ng/ml basic fibroblast growth factor (bFGF) before differentiation was induced. Differentiation was induced by medium without EGF or bFGF and containing either 10 ng/ml ciliary neurotrophic factor or 10% fetal bovine serum (FBS). Cultures were fed every two days and harvested on days 0, 1, 3, and 5 for quantitative real-time PCR. RESULTS The microarray results illustrated and contrasted the global shifts in the porcine transcriptome associated with both treatment conditions. PCR confirmed dramatic upregulation of transcripts for myelin basic protein (up to 88 fold), claudin 11 (up to 32 fold), glial fibrillary acidic protein (GFAP; up to 26 fold), together with notable (>twofold) increases in message for microtubule associated protein 2 (MAP2) and C-X-C chemokine receptor type 4 (CXCR4), Janus kinase 1 (Jak1), signal transducer and activator of transcription 1 (STAT1), and signal transducer and activator of transcription 3 (STAT3). Transcripts for nestin and Krüppel-like factor 4 (KLF4) decreased sharply (>twofold). The specific dynamics of expression changes varied according to the transcript and treatment condition over the five days examined following induction. The magnitude of neuronal marker induction was greater for the ciliary neurotrophic factor condition while glial fibrillary acidic protein induction was greater for the FBS condition. CONCLUSIONS The transient dynamic of CXCR4 expression during induction of differentiation, as well as the upregulation of several major histocompatibility complex (MHC) transcripts, has implications in terms of graft integration and tolerance, respectively. These data confirm and extend in the pig the findings previously reported with murine retinal progenitors and support the use of this large animal model for translational development of regenerative approaches to neurologic diseases.
Collapse
Affiliation(s)
- Jing Yang
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Ping Gu
- Gavin Herbert Eye Institute, University of California, Irvine, CA,Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Steven Menges
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Henry Klassen
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| |
Collapse
|
16
|
Hegewald C, Alt R, Hetz S, Cross M, Acikgoez A, Till H, Metzger R, Metzger M. Reduced oxygen stress promotes propagation of murine postnatal enteric neural progenitors in vitro. Neurogastroenterol Motil 2011; 23:e412-24. [PMID: 21815967 DOI: 10.1111/j.1365-2982.2011.01761.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Neural stem and progenitor cells of the Enteric Nervous System (ENS) are regarded as a novel cell source for applications in regenerative medicine. However, improvements to the current ENS cell culture protocols will be necessary to generate clinically useful cell numbers under defined culture conditions. Beneficial effects of physiologically low oxygen concentrations and/or the addition of anti-oxidants on propagation of various types of stem cells have previously been demonstrated. In this study, we tested the effects of such culture conditions on ENS stem and progenitor cell behavior. METHODS Enteric neural progenitor cells were isolated from postnatal day 3 mouse intestine and propagated either as monolayers or neurosphere-like bodies. The influence of hypoxic culture conditions and/or anti-oxidants on enteric cell propagation were studied systematically using proliferation, differentiation and apoptosis assays, whereas effects on gene expression were determined by qRT-PCR, western blot, and immunocytochemistry. KEY RESULTS Both hypoxic culture conditions and anti-oxidants supported a significantly improved enteric cell propagation and the generation of differentiated neural cell types. Enteric neural progenitors were shown to be specifically vulnerable to persistent oxidative stress. CONCLUSIONS & INFERENCES Our findings are consistent with previous reports of improved maintenance of brain stem cells cultured under reduced oxygen stress conditions and may therefore be applied to future cell culture protocols in ENS stem cell research.
Collapse
Affiliation(s)
- C Hegewald
- Translational Centre for Regenerative Medicine, University of Leipzig, Philipp-Rosenthal-Strasse 55, Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Motohashi T, Yamanaka K, Chiba K, Miyajima K, Aoki H, Hirobe T, Kunisada T. Neural crest cells retain their capability for multipotential differentiation even after lineage-restricted stages. Dev Dyn 2011; 240:1681-93. [PMID: 21594952 DOI: 10.1002/dvdy.22658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2011] [Indexed: 11/06/2022] Open
Abstract
Multipotency of neural crest cells (NC cells) is thought to be a transient phase at the early stage of their generation; after NC cells emerge from the neural tube, they are specified into the lineage-restricted precursors. We analyzed the differentiation of early-stage NC-like cells derived from Sox10-IRES-Venus ES cells, where the expression of Sox10 can be visualized with a fluorescent protein. Unexpectedly, both the Sox10+/Kit- cells and the Sox10+/Kit+ cells, which were restricted in vivo to the neuron (N)-glial cell (G) lineage and melanocyte (M) lineage, respectively, generated N, G, and M, showing that they retain multipotency. We generated mice from the Sox10-IRES-Venus ES cells and analyzed the differentiation of their NC cells. Both the Sox10+/Kit- cells and Sox10+/Kit+ cells isolated from these mice formed colonies containing N, G, and M, showing that they are also multipotent. These findings suggest that NC cells retain multipotency even after the initial lineage-restricted stages.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, CREST-JST, Gifu, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Xie WB, Li Z, Miano JM, Long X, Chen SY. Smad3-mediated myocardin silencing: a novel mechanism governing the initiation of smooth muscle differentiation. J Biol Chem 2011; 286:15050-7. [PMID: 21402709 PMCID: PMC3083168 DOI: 10.1074/jbc.m110.202747] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 03/11/2011] [Indexed: 12/30/2022] Open
Abstract
Both TGF-β and myocardin (MYOCD) are important for smooth muscle cell (SMC) differentiation, but their precise role in regulating the initiation of SMC development is less clear. In TGF-β-induced SMC differentiation of pluripotent C3H10T1/2 progenitors, we found that TGF-β did not significantly induce Myocd mRNA expression until 18 h of stimulation. On the other hand, early SMC markers such as SM α-actin, SM22α, and SM calponin were detectable beginning 2 or 4 h after TGF-β treatment. These results suggest that Myocd expression is blocked during the initiation of TGF-β-induced SMC differentiation. Consistent with its endogenous expression, Myocd promoter activity was not elevated until 18 h following TGF-β stimulation. Surprisingly, Smad signaling was inhibitory to Myocd expression because blockade of Smad signaling enhanced Myocd promoter activity. Overexpression of Smad3, but not Smad2, inhibited Myocd promoter activity. Conversely, shRNA knockdown of Smad3 allowed TGF-β to activate the Myocd promoter in the initial phase of induction. Myocd was activated by PI3 kinase signaling and its downstream target Nkx2.5. Interestingly, Smad3 did not affect PI3 kinase activity. However, Smad3 physically interacted with Nkx2.5. This interaction blocked Nkx2.5 binding to the Myocd promoter in the early stage of TGF-β induction, leading to inhibition of Myocd mRNA expression. Moreover, Smad3 inhibited Nkx2.5-activated Myocd promoter activity in a dose-dependent manner. Taken together, our results reveal a novel mechanism for Smad3-mediated inhibition of Myocd in the initiation phase of SMC differentiation.
Collapse
Affiliation(s)
- Wei-Bing Xie
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| | - Zuguo Li
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| | - Joseph M. Miano
- the Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York 14642
| | - Xiaochun Long
- the Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York 14642
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| |
Collapse
|
19
|
Chalazonitis A, D'Autréaux F, Pham TD, Kessler JA, Gershon MD. Bone morphogenetic proteins regulate enteric gliogenesis by modulating ErbB3 signaling. Dev Biol 2010; 350:64-79. [PMID: 21094638 DOI: 10.1016/j.ydbio.2010.11.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 10/20/2010] [Accepted: 11/11/2010] [Indexed: 12/19/2022]
Abstract
The neural crest-derived cell population that colonizes the bowel (ENCDC) contains proliferating neural/glial progenitors. We tested the hypothesis that bone morphogenetic proteins (BMPs 2 and 4), which are known to promote enteric neuronal differentiation at the expense of proliferation, function similarly in gliogenesis. Enteric gliogenesis was analyzed in mice that overexpress the BMP antagonist, noggin, or BMP4 in the primordial ENS. Noggin-induced loss-of-function decreased, while BMP4-induced gain-of-function increased the glial density and glia/neuron ratio. When added to immunoisolated ENCDC, BMPs provoked nuclear translocation of phosphorylated SMAD proteins and enhanced both glial differentiation and expression of the neuregulin receptor ErbB3. ErbB3 transcripts were detected in E12 rat gut, before glial markers are expressed; moreover, expression of the ErbB3 ligand, glial growth factor 2 (GGF2) escalated rapidly after its first detection at E14. ErbB3-immunoreactive cells were located in the ENS of fetal and adult mice. GGF2 stimulated gliogenesis and proliferation and inhibited glial cell derived neurotrophic factor (GDNF)-promoted neurogenesis. Enhanced glial apoptosis occurred following GGF2 withdrawal; BMPs intensified this GGF2-dependence and reduced GGF2-stimulated proliferation. These observations support the hypotheses that BMPs are required for enteric gliogenesis and act by promoting responsiveness of ENCDC to ErbB3 ligands such as GGF2.
Collapse
Affiliation(s)
- Alcmène Chalazonitis
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
20
|
Nishino J, Saunders TL, Sagane K, Morrison SJ. Lgi4 promotes the proliferation and differentiation of glial lineage cells throughout the developing peripheral nervous system. J Neurosci 2010; 30:15228-40. [PMID: 21068328 PMCID: PMC3059102 DOI: 10.1523/jneurosci.2286-10.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/14/2010] [Accepted: 09/07/2010] [Indexed: 11/21/2022] Open
Abstract
The mechanisms that regulate peripheral nervous system (PNS) gliogenesis are incompletely understood. For example, gut neural crest stem cells (NCSCs) do not respond to known gliogenic factors, suggesting that yet-unidentified factors regulate gut gliogenesis. To identify new mechanisms, we performed gene expression profiling to identify factors secreted by gut NCSCs during the gliogenic phase of development. These cells highly expressed leucine-rich glioma inactivated 4 (Lgi4) despite the fact that Lgi4 has never been implicated in stem cell function or enteric nervous system development. Lgi4 is known to regulate peripheral nerve myelination (having been identified as the mutated gene in spontaneously arising claw paw mutant mice), but Lgi4 is not known to play any role in PNS development outside of peripheral nerves. To systematically analyze Lgi4 function, we generated gene-targeted mice. Lgi4-deficient mice exhibited a more severe phenotype than claw paw mice and had gliogenic defects in sensory, sympathetic, and enteric ganglia. We found that Lgi4 is required for the proliferation and differentiation of glial-restricted progenitors throughout the PNS. Analysis of compound-mutant mice revealed that the mechanism by which Lgi4 promotes enteric gliogenesis involves binding the ADAM22 receptor. Our results identify a new mechanism regulating enteric gliogenesis as well as novel functions for Lgi4 regulating the proliferation and maturation of glial lineage cells throughout the PNS.
Collapse
Affiliation(s)
- Jinsuke Nishino
- Howard Hughes Medical Institute, Life Sciences Institute, Department of Internal Medicine, and Center for Stem Cell Biology, and
| | - Thomas L. Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, Michigan 48109-2216, and
| | - Koji Sagane
- Tsukuba Research Laboratories, Eisai Company, Tsukuba, Ibaraki 300-2635, Japan
| | - Sean J. Morrison
- Howard Hughes Medical Institute, Life Sciences Institute, Department of Internal Medicine, and Center for Stem Cell Biology, and
| |
Collapse
|
21
|
Li L, Fukunaga-Kalabis M, Yu H, Xu X, Kong J, Lee JT, Herlyn M. Human dermal stem cells differentiate into functional epidermal melanocytes. J Cell Sci 2010; 123:853-60. [PMID: 20159965 DOI: 10.1242/jcs.061598] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Melanocytes sustain a lifelong proliferative potential, but a stem cell reservoir in glabrous skin has not yet been found. Here, we show that multipotent dermal stem cells isolated from human foreskins lacking hair follicles are able to home to the epidermis to differentiate into melanocytes. These dermal stem cells, grown as three-dimensional spheres, displayed a capacity for self-renewal and expressed NGFRp75, nestin and OCT4, but not melanocyte markers. In addition, cells derived from single-cell clones were able to differentiate into multiple lineages including melanocytes. In a three-dimensional skin equivalent model, sphere-forming cells differentiated into HMB45-positive melanocytes, which migrated from the dermis to the epidermis and aligned singly among the basal layer keratinocytes in a similar fashion to pigmented melanocytes isolated from the epidermis. The dermal stem cells were negative for E-cadherin and N-cadherin, whereas they acquired E-cadherin expression and lost NGFRp75 expression upon contact with epidermal keratinocytes. These results demonstrate that stem cells in the dermis of human skin with neural-crest-like characteristics can become mature epidermal melanocytes. This finding could significantly change our understanding of the etiological factors in melanocyte transformation and pigmentation disorders; specifically, that early epigenetic or genetic alterations leading to transformation may take place in the dermis rather than in the epidermis.
Collapse
Affiliation(s)
- Ling Li
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Garcez RC, Teixeira BL, Schmitt SDS, Alvarez-Silva M, Trentin AG. Epidermal growth factor (EGF) promotes the in vitro differentiation of neural crest cells to neurons and melanocytes. Cell Mol Neurobiol 2009; 29:1087-91. [PMID: 19415484 DOI: 10.1007/s10571-009-9406-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 04/13/2009] [Indexed: 12/23/2022]
Abstract
Proliferation of neural crest (NC) stem cells and their subsequent differentiation into different neural cell types are key early events in the development of the peripheral nervous system. Soluble growth factors present at the sites where NC cells migrate are critical to the development of NC derivatives in each part of the body. In the present study, we further investigate the effect of microenvironmental factors on quail trunk NC development. We show for the first time that EGF induces differentiation of NC to the neuronal and melanocytic phenotypes, while fibroblast growth factor 2 (FGF2) promotes NC differentiation to Schwann cells. In the presence of both EGF and FGF2, the neuronal differentiation predominates. Our results suggest that FGF2 stimulates gliogenesis, while EGF promotes melanogenesis and neurogenesis. The combination of both growth factors stimulates neurogenesis. These findings suggest that these two growth factors may play an important role in the fate decision of NC progenitors and in the development of the peripheral nervous system.
Collapse
Affiliation(s)
- Ricardo Castilho Garcez
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| | | | | | | | | |
Collapse
|
23
|
Woodhoo A, Sommer L. Development of the Schwann cell lineage: from the neural crest to the myelinated nerve. Glia 2009; 56:1481-1490. [PMID: 18803317 DOI: 10.1002/glia.20723] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The myelinating and nonmyelinating Schwann cells in peripheral nerves are derived from the neural crest, which is a transient and multipotent embryonic structure that also generates the other main glial subtypes of the peripheral nervous system (PNS). Schwann cell development occurs through a series of transitional embryonic and postnatal phases, which are tightly regulated by a number of signals. During the early embryonic phases, neural crest cells are specified to give rise to Schwann cell precursors, which represent the first transitional stage in the Schwann cell lineage, and these then generate the immature Schwann cells. At birth, the immature Schwann cells differentiate into either the myelinating or nonmyelinating Schwann cells that populate the mature nerve trunks. In this review, we will discuss the biology of the transitional stages in embryonic and early postnatal Schwann cell development, including the phenotypic differences between them and the recently identified signaling pathways, which control their differentiation and maintenance. In addition, the role and importance of the microenvironment in which glial differentiation takes place will be discussed.
Collapse
Affiliation(s)
- Ashwin Woodhoo
- Department of Anatomy and Developmental Biology, University College London, London, United Kingdom.
| | | |
Collapse
|
24
|
Costa-Silva B, da Costa MC, Melo FR, Neves CM, Alvarez-Silva M, Calloni GW, Trentin AG. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential. Exp Cell Res 2009; 315:955-67. [PMID: 19331824 DOI: 10.1016/j.yexcr.2009.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 01/11/2009] [Accepted: 01/17/2009] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effect was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells.
Collapse
Affiliation(s)
- Bruno Costa-Silva
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário-Trindade, 88040-900 Florianópolis, S.C., Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem 2008. [PMID: 19088079 DOI: 10.1074/jbc.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The platelet-derived growth factor (PDGF) signaling pathway is a critical regulator of animal development and homeostasis. Activation of the PDGF pathway leads to neointimal proliferative responses to artery injury; it promotes a switch of vascular smooth muscle cells (vSMC) to a less contractile phenotype by inhibiting the SMC-specific gene expression and increasing the rate of proliferation and migration. The molecular mechanism for these pleiotropic effects of PDGFs has not been fully described. Here, we identify the microRNA-221 (miR-221), a small noncoding RNA, as a modulator of the phenotypic change of vSMCs in response to PDGF signaling. We demonstrate that miR-221 is transcriptionally induced upon PDGF treatment in primary vSMCs, leading to down-regulation of the targets c-Kit and p27Kip1. Down-regulation of p27Kip1 by miR-221 is critical for PDGF-mediated induction of cell proliferation. Additionally, decreased c-Kit causes inhibition of SMC-specific contractile gene transcription by reducing the expression of Myocardin (Myocd), a potent SMC-specific nuclear coactivator. Our study demonstrates that PDGF signaling, by modulating the expression of miR-221, regulates two critical determinants of the vSMC phenotype; they are SMC gene expression and cell proliferation.
Collapse
Affiliation(s)
- Brandi N Davis
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
26
|
Doss MX, Chen S, Winkler J, Hippler-Altenburg R, Odenthal M, Wickenhauser C, Balaraman S, Schulz H, Hummel O, Hübner N, Ghosh-Choudhury N, Sotiriadou I, Hescheler J, Sachinidis A. Transcriptomic and phenotypic analysis of murine embryonic stem cell derived BMP2+ lineage cells: an insight into mesodermal patterning. Genome Biol 2008; 8:R184. [PMID: 17784959 PMCID: PMC2375022 DOI: 10.1186/gb-2007-8-9-r184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 05/30/2007] [Accepted: 09/04/2007] [Indexed: 01/08/2023] Open
Abstract
Transcriptome analysis of BMP2+ cells in comparison to the undifferentiated BMP2 ES cells and the control population from 7-day old embryoid bodies led to the identification of 479 specifically upregulated and 193 downregulated transcripts. Background Bone morphogenetic protein (BMP)2 is a late mesodermal marker expressed during vertebrate development and plays a crucial role in early embryonic development. The nature of the BMP2-expressing cells during the early stages of embryonic development, their transcriptome and cell phenotypes developed from these cells have not yet been characterized. Results We generated a transgenic BMP2 embryonic stem (ES) cell lineage expressing both puromycin acetyltransferase and enhanced green fluorescent protein (EGFP) driven by the BMP2 promoter. Puromycin resistant and EGFP positive BMP2+ cells with a purity of over 93% were isolated. Complete transcriptome analysis of BMP2+ cells in comparison to the undifferentiated ES cells and the control population from seven-day-old embryoid bodies (EBs; intersection of genes differentially expressed between undifferentiated ES cells and BMP2+ EBs as well as differentially expressed between seven-day-old control EBs and BMP2+ EBs by t-test, p < 0.01, fold change >2) by microarray analysis led to identification of 479 specifically upregulated and 193 downregulated transcripts. Transcription factors, apoptosis promoting factors and other signaling molecules involved in early embryonic development are mainly upregulated in BMP2+ cells. Long-term differentiation of the BMP2+ cells resulted in neural crest stem cells (NCSCs), smooth muscle cells, epithelial-like cells, neuronal-like cells, osteoblasts and monocytes. Interestingly, development of cardiomyocytes from the BMP2+ cells requires secondary EB formation. Conclusion This is the first study to identify the complete transcriptome of BMP2+ cells and cell phenotypes from a mesodermal origin, thus offering an insight into the role of BMP2+ cells during embryonic developmental processes in vivo.
Collapse
Affiliation(s)
- Michael Xavier Doss
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Shuhua Chen
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Johannes Winkler
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Rita Hippler-Altenburg
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Margareta Odenthal
- Institute of Pathology, University of Cologne, Joseph-Stelzmann-Str. 9, 50931 Cologne, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, University of Cologne, Joseph-Stelzmann-Str. 9, 50931 Cologne, Germany
| | - Sridevi Balaraman
- Institute of Pathology, University of Cologne, Joseph-Stelzmann-Str. 9, 50931 Cologne, Germany
| | - Herbert Schulz
- Max-Delbrueck-Center for Molecular Medicine - MDC, Robert-Rössle Str. 10, 13092 Berlin, Germany
| | - Oliver Hummel
- Max-Delbrueck-Center for Molecular Medicine - MDC, Robert-Rössle Str. 10, 13092 Berlin, Germany
| | - Norbert Hübner
- Max-Delbrueck-Center for Molecular Medicine - MDC, Robert-Rössle Str. 10, 13092 Berlin, Germany
| | - Nandini Ghosh-Choudhury
- Department of Pathology, The University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Isaia Sotiriadou
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| |
Collapse
|
27
|
Delfino-Machín M, Chipperfield TR, Rodrigues FSLM, Kelsh RN. The proliferating field of neural crest stem cells. Dev Dyn 2008; 236:3242-54. [PMID: 17823935 DOI: 10.1002/dvdy.21314] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neural crest stem cells were first isolated from early embryonic neural crest in the early 1990s, but in the past 5 years, there has been a burst of discoveries of neural crest-derived stem cells from diverse locations. Here, we summarize these data, highlighting the characteristics of each stem cell type. These cells vary widely in the markers they express and the variety of cell types they appear to generate. They occupy diverse locations, but in some cases multiple stem cell types apparently occupy physically proximate niches. To date, few molecular similarities can be identified between these stem cells, although a systematic comparison is required. We note other issues worthy of attention, including aspects of the in vivo behavior of these stem cells, their niches, and their lineage relationships. Together, analysis of these issues will clarify this expanding, but still young, field and contribute to exploration of the important therapeutic potential of these cells.
Collapse
Affiliation(s)
- Mariana Delfino-Machín
- Centre for Regenerative Medicine and Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | | | | |
Collapse
|
28
|
Ndubaku U, de Bellard ME. Glial cells: old cells with new twists. Acta Histochem 2007; 110:182-95. [PMID: 18068219 PMCID: PMC2365468 DOI: 10.1016/j.acthis.2007.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 09/14/2007] [Accepted: 10/01/2007] [Indexed: 12/11/2022]
Abstract
Based on their characteristics and function--migration, neural protection, proliferation, axonal guidance and trophic effects--glial cells may be regarded as probably the most versatile cells in our body. For many years, these cells were considered as simply support cells for neurons. Recently, it has been shown that they are more versatile than previously believed--as true stem cells in the nervous system--and are important players in neural function and development. There are several glial cell types in the nervous system: the two most abundant are oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system. Although both of these cells are responsible for myelination, their developmental origins are quite different. Oligodendrocytes originate from small niche populations from different regions of the central nervous system, while Schwann cells develop from a stem cell population (the neural crest) that gives rise to many cell derivatives besides glia and which is a highly migratory group of cells.
Collapse
Affiliation(s)
- Ugo Ndubaku
- Biology Department, California State University Northridge, MC 8303, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | | |
Collapse
|
29
|
Sonic Hedgehog promotes the development of multipotent neural crest progenitors endowed with both mesenchymal and neural potentials. Proc Natl Acad Sci U S A 2007; 104:19879-84. [PMID: 18077420 DOI: 10.1073/pnas.0708806104] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the vertebrate embryo, the cephalic neural crest cells (CNCCs) produce cells belonging to two main lineages: the neural [including neurons, glial cells of the peripheral nervous system (PNS), and melanocytes] and the mesenchymal (chondrocytes, osteoblasts, smooth muscle cells, and connective tissue cells), whereas the trunk NCCs (TNCCs) in amniotes yield only neural derivatives. Although multipotent cells have previously been evidenced by in vitro clonal analysis, the issue as to whether all of the mesenchymal and neural phenotypes can be derived from a unique NC stem cell has remained elusive. In the present work, we devised culture conditions that led us to identify a highly multipotent NCC endowed with both neural and mesenchymal potentials, which lies upstream of all the other NC progenitors known so far. We found that addition of recombinant Sonic Hedgehog (Shh) increased the number of CNCC progenitors yielding both mesenchymal and neural lineages and promoted the development of such precursors from the TNCC. Shh decreased the neural-restricted precursors without affecting the overall CNCC survival and proliferation. By showing a differential positive effect of Shh on the expression of mesenchymal phenotypes (i.e., chondrocytes and smooth muscle cells) by multipotent CNCCs, these results shed insights on the in vivo requirement of Shh for craniofacial morphogenesis. Together with evolutionary considerations, these data also suggest that the mesenchymal-neural precursor represents the ancestral form of the NC stem cell, which in extinct forms of vertebrates (the ostracoderms) was able to yield both the PNS and superficial skeleton.
Collapse
|
30
|
Zhang PL, Levy AM, Ben-Simchon L, Haggiag S, Chebath J, Revel M. Induction of neuronal and myelin-related gene expression by IL-6-receptor/IL-6: A study on embryonic dorsal root ganglia cells and isolated Schwann cells. Exp Neurol 2007; 208:285-96. [DOI: 10.1016/j.expneurol.2007.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/31/2007] [Accepted: 08/30/2007] [Indexed: 12/19/2022]
|
31
|
Shi F, Corrales CE, Liberman MC, Edge ASB. BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium. Eur J Neurosci 2007; 26:3016-23. [PMID: 18005071 DOI: 10.1111/j.1460-9568.2007.05909.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mammals, hair cells and auditory neurons lack the capacity to regenerate, and damage to either cell type can result in hearing loss. Replacement cells for regeneration could potentially be made by directed differentiation of human embryonic stem (hES) cells. To generate sensory neurons from hES cells, neural progenitors were first made by suspension culture of hES cells in a defined medium. The cells were positive for nestin, a neural progenitor marker, and Pax2, a marker for cranial placodes, and were negative for alpha-fetoprotein, an endoderm marker. The precursor cells could be expanded in vitro in fibroblast growth factor (FGF)-2. Neurons and glial cells were found after differentiation of the neural progenitors by removal of FGF-2, but evaluation of neuronal markers indicated insignificant production of sensory neurons. Addition of bone morphogenetic protein 4 (BMP4) to neural progenitors upon removal of FGF-2, however, induced significant numbers of neurons that were positive for markers associated with cranial placodes and neural crest, the sources of sensory neurons in the embryo. Neuronal processes from hES cell-derived neurons made contacts with hair cells in denervated ex vivo sensory epithelia and expressed synaptic markers, suggesting the formation of synapses. In a gerbil model with a denervated cochlea, the ES cell-derived neurons engrafted in the auditory nerve trunk and sent out neurites that grew toward the auditory sensory epithelium. These data indicate that hES cells can be induced to form sensory neurons that have the potential to treat neural degeneration associated with sensorineural hearing loss.
Collapse
Affiliation(s)
- Fuxin Shi
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Stem cells are defined by their ability to both self-renew and give rise to multiple lineages in vivo and/or in vitro. As discussed in other chapters in this volume, the embryonic neural crest is a multipotent tissue that gives rise to a plethora of differentiated cell types in the adult organism and is unique to vertebrate embryos. From the point of view of stem cell biology, the neural crest is an ideal source for multipotent adult stem cells. Significant advances have been made in the past few years isolating neural crest stem cell lines that can be maintained in vitro and can give rise to many neural crest derivatives either in vitro or when placed back into the context of an embryo. The initial work identifying these stem cells was carried out with premigratory neural crest from the embryonic neural tube. Later, neural crest stem cells were isolated from postmigratory neural crest, presumably more restricted in developmental potential. More recently it has been demonstrated that neural crest stem cell progenitors persist in the adult in at least two differentiated tissues, the enteric nervous system of the gut and the whisker follicles of the facial skin. In all cases, the properties of the stem cells derived reflect their tissue of origin and the potential of the progenitors becomes more restricted with age. In this chapter we will review this work and speculate on future possibilities with respect to combining our knowledge of neural crest gene function in the embryo and the manipulation of adult neural crest stem cells in vitro and eventually in vivo.
Collapse
Affiliation(s)
- Lu Teng
- Department of Cell and Developmental Biology, 1109 BRBII/III, 421 Curie Blvd., University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA
| | | |
Collapse
|
33
|
Sommer L. Growth factors regulating neural crest cell fate decisions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:197-205. [PMID: 17076283 DOI: 10.1007/978-0-387-46954-6_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of its unique ability to generate a wide variety of both neural and nonneural derivatives, the neural crest is an ideal model system to study the factors regulating cell lineage decisions in stem and progenitor cells. The use of various cell culture techniques and in vivo functional assays, including cell type-specific gene manipulation in mouse, helped to identify signaling factors involved in this process. Moreover, it became apparent that the biological functions of growth factors acting on neural crest cells depend on the context provided by the extracellular microenvironment. Thus, signaling molecules have to be viewed as parts of complex networks that change with time and location. Neural crest cells have to integrate these signals to ensure the generation of appropriate numbers of differentiating progeny. It will be important to determine how such signaling networks are established and how they elicit multiple signaling responses in neural crest cells to activate appropriate genetic programs.
Collapse
Affiliation(s)
- Lukas Sommer
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hoenggerberg, Zürich, Switzerland.
| |
Collapse
|
34
|
Mancini ML, Verdi JM, Conley BA, Nicola T, Spicer DB, Oxburgh LH, Vary CP. Endoglin is required for myogenic differentiation potential of neural crest stem cells. Dev Biol 2007; 308:520-33. [PMID: 17628518 PMCID: PMC2041841 DOI: 10.1016/j.ydbio.2007.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 05/04/2007] [Accepted: 06/11/2007] [Indexed: 01/02/2023]
Abstract
Genetic studies show that TGFbeta signaling is essential for vascular development, although the mechanism through which this pathway operates is incompletely understood. Here we demonstrate that the TGFbeta auxiliary coreceptor endoglin (eng, CD105) is expressed in a subset of neural crest stem cells (NCSCs) in vivo and is required for their myogenic differentiation. Overexpression of endoglin in the neural crest caused pericardial hemorrhaging, correlating with altered vascular smooth muscle cell investment in the walls of major vessels and upregulation of smooth muscle alpha-actin protein levels. Clonogenic differentiation assay of NCSCs derived from neural tube explants demonstrated that only NCSC expressing high levels of endoglin (NCSC(CD105+)) had myogenic differentiation potential. Furthermore, myogenic potential was deficient in NCSCs obtained from endoglin null embryos. Expression of endoglin in NCSCs declined with age, coinciding with a reduction in both smooth muscle differentiation potential and TGFbeta1 responsiveness. These findings demonstrate a cell autonomous role for endoglin in smooth muscle cell specification contributing to vascular integrity.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Movement
- Cells, Cultured
- DNA Primers/genetics
- Embryonic Stem Cells/cytology
- Embryonic Stem Cells/metabolism
- Endoglin
- Gene Expression Regulation, Developmental
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Muscle Development/genetics
- Muscle Development/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/metabolism
- Neural Crest/cytology
- Neural Crest/metabolism
- Rats
- Signal Transduction
- Smad Proteins/metabolism
Collapse
Affiliation(s)
- Maria L. Mancini
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Joseph M. Verdi
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Barbara A. Conley
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Teodora Nicola
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Douglas B. Spicer
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Leif H. Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Calvin P.H. Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
- Corresponding Author: Center for Molecular Medicine; Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074; USA; Telephone (207) 885-8148; Fax (207) 885-8179; Email
| |
Collapse
|
35
|
Taylor MK, Kelly Y, Morrison SJ. Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development 2007; 134:2435-47. [PMID: 17537790 PMCID: PMC2653864 DOI: 10.1242/dev.005520] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Constitutive activation of the Notch pathway can promote gliogenesis by peripheral (PNS) and central (CNS) nervous system progenitors. This raises the question of whether physiological Notch signaling regulates gliogenesis in vivo. To test this, we conditionally deleted Rbpsuh (Rbpj) from mouse PNS or CNS progenitors using Wnt1-Cre or Nestin-Cre. Rbpsuh encodes a DNA-binding protein (RBP/J) that is required for canonical signaling by all Notch receptors. In most regions of the developing PNS and spinal cord, Rbpsuh deletion caused only mild defects in neurogenesis, but severe defects in gliogenesis. These resulted from defects in glial specification or differentiation, not premature depletion of neural progenitors, because we were able to culture undifferentiated progenitors from the PNS and spinal cord despite their failure to form glia in vivo. In spinal cord progenitors, Rbpsuh was required to maintain Sox9 expression during gliogenesis, demonstrating that Notch signaling promotes the expression of a glial-specification gene. These results demonstrate that physiological Notch signaling is required for gliogenesis in vivo, independent of the role of Notch in the maintenance of undifferentiated neural progenitors.
Collapse
|
36
|
Dupin E, Calloni G, Real C, Gonçalves-Trentin A, Le Douarin NM. Neural crest progenitors and stem cells. C R Biol 2007; 330:521-9. [PMID: 17631447 DOI: 10.1016/j.crvi.2007.04.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 04/10/2007] [Indexed: 01/08/2023]
Abstract
In the vertebrate embryo, multiple cell types originate from a common structure, the neural crest (NC), which forms at the dorsal tips of the neural epithelium. The NC gives rise to migratory cells that colonise a wide range of embryonic tissues and later differentiate into neurones and glial cells of the peripheral nervous system (PNS), pigment cells (melanocytes) in the skin and endocrine cells in the adrenal and thyroid glands. In the head and the neck, the NC also yields mesenchymal cells that form craniofacial cartilages, bones, dermis, adipose tissue, and vascular smooth muscle cells. The NC is therefore a model system to study cell diversification during embryogenesis and phenotype maintenance in the adult. By analysing the developmental potentials of quail NC cells in clonal cultures, we have shown that the migratory NC is a collection of heterogeneous progenitors, including various types of intermediate precursors and highly multipotent cells, some of which being endowed of self-renewal capacity. We also have identified common progenitors for mesenchymal derivatives and neural/melanocytic cells in the cephalic NC. These results are consistent with a hierarchical model of lineage segregation wherein environmental cytokines control the fate of progenitors and stem cells. One of these cytokines, the endothelin3 peptide, promotes the survival, proliferation, and self-renewal capacity of common progenitors for glial cells and melanocytes. At post-migratory stages, when they have already differentiated, NC-derived cells exhibit phenotypic plasticity. Epidermal pigment cells and Schwann cells from peripheral nerves in single-cell culture are able to reverse into multipotent NC-like progenitors endowed with self-renewal. Therefore, stem cell properties are expressed by a variety of NC progenitors and can be re-acquired by differentiated cells of NC origin, suggesting potential function for repair.
Collapse
Affiliation(s)
- Elisabeth Dupin
- CNRS UPR2197 DEPSN, Institut de neurobiologie Alfred-Fessard, 91198 Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
37
|
De Mello TR, Busfield S, Dunlop SA, Plant GW. Culture conditions affect proliferative responsiveness of olfactory ensheathing glia to neuregulins. Glia 2007; 55:734-45. [PMID: 17348025 DOI: 10.1002/glia.20502] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Olfactory ensheathing glia (OEG) have been used to improve outcome after experimental spinal cord injury and are being trialed clinically. Their rapid proliferation in vitro is essential to optimize clinical application, with neuregulins (NRG) being potential mitogens. We examined the effects of NRG-1beta, NRG-2alpha, and NRG3 on proliferation of p75-immunopurified adult OEG. OEG were grown in serum-containing medium with added bovine pituitary extract and forskolin (added mitogens) or in serum-containing medium (no added mitogens). Cultures were switched to chemically defined medium (no added mitogens or serum), NRG added and OEG proliferation assayed using BrdU. OEG grown initially with added mitogens were not responsive to added NRGs and pre-exposure to forskolin and pituitary extract increased basal proliferation rates so that OEG no longer responded to added NRG. However, NRG promoted proliferation but only if cells were initially grown in mitogen-free medium. Primary OEG express ErbB2, ErbB3, and small levels of ErbB4 receptors; functional blocking indicates that ErbB2 and ErbB3 are the main NRG receptors utilized in the presence of NRG-1beta. The long-term stimulation of OEG proliferation by initial culture conditions raises the possibility of manipulating OEG before therapeutic transplantation.
Collapse
Affiliation(s)
- T R De Mello
- Red's Spinal Cord Research Laboratory, School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | | | | | | |
Collapse
|
38
|
Marmigère F, Ernfors P. Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 2007; 8:114-27. [PMID: 17237804 DOI: 10.1038/nrn2057] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the development of the nervous system, many different types of neuron are produced. As well as forming the correct type of neuron, each must also establish precise connections. Recent findings show that, because of shared gene programmes, neuronal identity is intimately linked to and coordinated with axonal behaviour. Peripheral sensory neurons provide an excellent system in which to study these interactions. This review examines how neuronal diversity is created in the PNS and describes proteins that help to direct the diversity of neuronal subtypes, cell survival, axonal growth and the establishment of central patterns of modality-specific connections.
Collapse
Affiliation(s)
- Frédéric Marmigère
- Section of Molecular Neurobiology, Karolinska Institutet, MBB, Scheeles vg 1, S17 177 Stockholm, Sweden
| | | |
Collapse
|
39
|
Maurer J, Fuchs S, Jäger R, Kurz B, Sommer L, Schorle H. Establishment and controlled differentiation of neural crest stem cell lines using conditional transgenesis. Differentiation 2007; 75:580-91. [PMID: 17381545 DOI: 10.1111/j.1432-0436.2007.00164.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Murine neural crest stem cells (NCSCs) are a multipotent transient population of stem cells. After being formed during early embryogenesis as a consequence of neurulation at the apical neural fold, the cells rapidly disperse throughout the embryo, migrating along specific pathways and differentiating into a wide variety of cell types. In vitro the multipotency is lost rapidly, making it difficult to study differentiation potential as well as cell fate decisions. Using a transgenic mouse line, allowing for spatio-temporal control of the transforming c-myc oncogene, we derived a cell line (JoMa1), which expressed NCSC markers in a transgene-activity dependent manner. JoMa1 cells express early NCSC markers and can be instructed to differentiate into neurons, glia, smooth muscle cells, melanocytes, and also chondrocytes. A cell-line, clonally derived from JoMa1 culture, termed JoMa1.3 showed identical behavior and was studied in more detail. This system therefore represents a powerful tool to study NCSC biology and signaling pathways. We observed that when proliferative and differentiation stimuli were given, enhanced cell death could be detected, suggesting that the two signals are incompatible in the cellular context. However, the cells regain their differentiation potential after inactivation of c-MycER(T). In summary, we have established a system, which allows for the biochemical analysis of the molecular pathways governing NCSC biology. In addition, we should be able to obtain NCSC lines from crossing the c-MycER(T) mice with mice harboring mutations affecting neural crest development enabling further insight into genetic pathways controlling neural crest differentiation.
Collapse
Affiliation(s)
- Jochen Maurer
- Department of Developmental Pathology, Institute for Pathology, University of Bonn Medical School, Sigmund-Freud-Strasse 25 53127 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Li F, Luo Z, Huang W, Lu Q, Wilcox CS, Jose PA, Chen S. Response gene to complement 32, a novel regulator for transforming growth factor-beta-induced smooth muscle differentiation of neural crest cells. J Biol Chem 2007; 282:10133-7. [PMID: 17327222 DOI: 10.1074/jbc.c600225200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously developed a robust in vitro model system for vascular smooth muscle cell (VSMC) differentiation from neural crest cell line Monc-1 upon transforming growth factor-beta (TGF-beta) induction. Further studies demonstrated that both Smad and RhoA signaling are critical for TGF-beta-induced VSMC development. To identify downstream targets, we performed Affymetrix cDNA array analysis of Monc-1 cells and identified a gene named response gene to complement 32 (RGC-32) to be important for the VSMC differentiation. RGC-32 expression was increased 5-fold after 2 h and 50-fold after 24 h of TGF-beta induction. Knockdown of RGC-32 expression in Monc-1 cells by small interfering RNA significantly inhibited the expression of multiple smooth muscle marker genes, including SM alpha-actin (alpha-SMA), SM22alpha, and calponin. Of importance, the inhibition of RGC-32 expression correlated with the reduction of alpha-SMA while not inhibiting smooth muscle-unrelated c-fos gene expression, suggesting that RGC-32 is an important protein factor for VSMC differentiation from neural crest cells. Moreover, RGC-32 overexpression significantly enhanced TGF-beta-induced alpha-SMA, SM22alpha, and SM myosin heavy chain promoter activities in both Monc-1 and C3H10T1/2 cells. The induction of VSMC gene promoters by RGC-32 appears to be CArG-dependent. These data suggest that RGC-32 controls VSMC differentiation by regulating marker gene transcription in a CArG-dependent manner. Further studies revealed that both Smad and RhoA signaling are important for RGC-32 activation.
Collapse
Affiliation(s)
- Fengmin Li
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
For both vertebrate developmental and evolutionary biologists, and also for clinicians, the neural crest (NC) is a fundamental cell population. An understanding of Sox10 function in NC development is of particular significance since Sox10 mutations underlie several neurocristopathies. Surprisingly, experiments in different model organisms aimed at identifying Sox10's role(s) have suggested at least four distinct functions. Sox10 may be critical for formation of neural crest cells (NCCs), maintaining multipotency of crest cells, specification of derivative cell fates from these cells and their differentiation. Here, I discuss this controversy and argue that these functions are, in part, molecularly interrelated.
Collapse
Affiliation(s)
- Robert N Kelsh
- Centre for Regenerative Medicine, University of Bath, Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
42
|
Motohashi T, Aoki H, Chiba K, Yoshimura N, Kunisada T. Multipotent cell fate of neural crest-like cells derived from embryonic stem cells. Stem Cells 2006; 25:402-10. [PMID: 17038669 DOI: 10.1634/stemcells.2006-0323] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neural crest cells migrate throughout the embryo and differentiate into diverse derivatives: the peripheral neurons, cranial mesenchymal cells, and melanocytes. Because the neural crest cells have critical roles in organogenesis, detailed elucidation of neural crest cell differentiation is important in developmental biology. We recently reported that melanocytes could be induced from mouse ESCs. Here, we improved the culture system and showed the existence of neural crest-like precursors. The addition of retinoic acid to the culture medium reduced the hematopoiesis and promoted the expression of the neural crest marker genes. The colonies formed contained neural crest cell derivatives: neurons and glial cells, together with melanocytes. This suggested that neural crest-like cells assuming multiple cell fates had been generated in these present cultures. To isolate the neural crest-like cells, we analyzed the expression of c-Kit, a cell-surface protein expressed in the early stage of neural crest cells in vivo. The c-Kit-positive (c-Kit(+)) cells appeared as early as day 9 of the culture period and expressed the transcriptional factors Sox10 and Snail, which are expressed in neural crest cells. When the c-Kit(+) cells were separated from the cultures and recultured, they frequently formed colonies containing neurons, glial cells, and melanocytes. Even a single c-Kit(+) cell formed colonies that contained these three cell types, confirming their multipotential cell fate. The c-Kit(+) cells were also capable of migrating along neural crest migratory pathways in vivo. These results indicate that the c-Kit(+) cells isolated from melanocyte-differentiating cultures of ESCs are closely related to neural crest cells.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | |
Collapse
|
43
|
Soen Y, Mori A, Palmer TD, Brown PO. Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments. Mol Syst Biol 2006; 2:37. [PMID: 16820778 PMCID: PMC1681508 DOI: 10.1038/msb4100076] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 05/15/2006] [Indexed: 12/30/2022] Open
Abstract
Cells of a developing embryo integrate a complex array of local and long-range signals that act in concert with cell-intrinsic determinants to influence developmental decisions. To systematically investigate the effects of molecular microenvironments on cell fate decisions, we developed an experimental method based on parallel exposure of cells to diverse combinations of extracellular signals followed by quantitative, multi-parameter analysis of cellular responses. Primary human neural precursor cells were captured and cultured on printed microenvironment arrays composed of mixtures of extracellular matrix components, morphogens, and other signaling proteins. Quantitative single cell analysis revealed striking effects of some of these signals on the extent and direction of differentiation. We found that Wnt and Notch co-stimulation could maintain the cells in an undifferentiated-like, proliferative state, whereas bone morphogenetic protein 4 induced an ‘indeterminate' differentiation phenotype characterized by simultaneous expression of glial and neuronal markers. Multi-parameter analysis of responses to conflicting signals revealed interactions more complex than previously envisaged including dominance relations that may reflect a cell-intrinsic system for robust specification of responses in complex microenvironments.
Collapse
Affiliation(s)
- Yoav Soen
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, 279 Campus Dr, Beckman Center B439, Stanford, CA 94305-5307, USA. Tel.: +1 650 723 6902; Fax: +1 650 725 7811; E-mail:
| | - Akiko Mori
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Theo D Palmer
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, 1201 Welch Rd, MSLS P309, Stanford, CA 94305-5307, USA. Tel.: +1 650 723 9306; Fax: +1 650 736 1949; E-mail:
| | - Patrick O Brown
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, CA, USA
| |
Collapse
|
44
|
|
45
|
Abstract
Extracellular signals dictate the biological processes of neural stem cells (NSCs) both in vivo and in vitro. The intracellular response elicited by these signals is dependent on the context in which the signal is received, which in turn is decided by previous and concurrent signals impinging on the cell. A synthesis of signaling pathways that control proliferation, survival, and differentiation of NSCs in vivo and in vitro will lead to a better understanding of their biology, and will also permit more precise and reproducible manipulation of these cells to particular end points. In this review we summarize the known signals that cause proliferation, survival, and differentiation in mammalian NSCs.
Collapse
Affiliation(s)
- Prithi Rajan
- Center for Neuroscience and Aging, Burham Institute for Medical Research, La Jolla, CA, USA
| | | |
Collapse
|
46
|
Abstract
The neural crest is a transient, migratory cell population found in all vertebrate embryos that generate a diverse range of cell and tissue derivatives including, but not limited, to the neurons and glia of the peripheral nervous system, smooth muscle, connective tissue, melanocytes, craniofacial cartilage, and bone. Over the past few years, many studies have provided tremendous insights into understanding the mechanisms regulating the induction and migration of neural crest cell development. This review highlights the surprising and perhaps unexpected roles for morphogens in these distinct processes. A comparison of studies performed in several different vertebrates emphasizes the requirement for coordination between multiple signaling pathways in the induction and migration of neural crest cells in the developing embryo.
Collapse
Affiliation(s)
- Natalie C Jones
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
47
|
Dore JJ, Crotty KL, Birren SJ. Inhibition of glial maturation by bone morphogenetic protein 2 in a neural crest-derived cell line. Dev Neurosci 2005; 27:37-48. [PMID: 15886483 DOI: 10.1159/000084531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 11/05/2004] [Indexed: 12/23/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) regulate developmental decisions in many neural and nonneural lineages. BMPs influence both CNS neuronal and glial development and promote neuronal differentiation in neural crest derivatives. We investigated the actions of BMP2 on glial differentiation in the peripheral nervous system using NCM1 cells, a neural crest-derived cell line with the properties of peripheral glial precursor cells. BMP2 prevented the acquisition of a mature Schwann cell-like morphology, blocking the expression of mature genes and maintaining expression of several early glial markers. We provide evidence that BMP2 activates the GFAP promoter and define signaling pathways underlying this regulation. Our results demonstrate a novel role for BMPs as inhibitors of glial differentiation in the peripheral nervous system and suggest that BMPs may regulate the developmental timing of glial maturation.
Collapse
Affiliation(s)
- Justin J Dore
- Department of Biology, Volen Center for Complex Systems, Brandeis University Waltham, Waltham, MA 02454, USA
| | | | | |
Collapse
|
48
|
Howard MJ. Mechanisms and perspectives on differentiation of autonomic neurons. Dev Biol 2005; 277:271-86. [PMID: 15617674 DOI: 10.1016/j.ydbio.2004.09.034] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/22/2004] [Accepted: 09/27/2004] [Indexed: 01/17/2023]
Abstract
Neurons share many features in common but are distinguished by expression of phenotypic characteristics that define their specific function, location, or connectivity. One aspect of neuronal fate determination that has been extensively studied is that of neurotransmitter choice. The generation of diversity of neuronal subtypes within the developing nervous system involves integration of extrinsic and intrinsic instructive cues resulting in the expression of a core set of regulatory molecules. This review focuses on mechanisms of growth and transcription factor regulation in the generation of peripheral neural crest-derived neurons. Although the specification and differentiation of noradrenergic neurons are the focus, I have tried to integrate these into a larger picture providing a general roadmap for development of autonomic neurons. There is a core of DNA binding proteins required for the development of sympathetic, parasympathetic, and enteric neurons, including Phox2 and MASH1, whose specificity is regulated by the recruitment of additional transcriptional regulators in a subtype-specific manner. For noradrenergic neurons, the basic helix-loop-helix DNA binding protein HAND2 (dHAND) appears to serve this function. The studies reviewed here support the notion that neurotransmitter identity is closely linked to other aspects of neurogenesis and reveal a molecular mechanism to coordinate expression of pan-neuronal genes with cell type-specific genes.
Collapse
Affiliation(s)
- Marthe J Howard
- Department of Neurosciences, Medical College of Ohio, Toledo, OH 43614, USA.
| |
Collapse
|
49
|
Trainor PA. Specification and Patterning of Neural Crest Cells During Craniofacial Development. BRAIN, BEHAVIOR AND EVOLUTION 2005; 66:266-80. [PMID: 16254415 DOI: 10.1159/000088130] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Indexed: 01/15/2023]
Abstract
Craniofacial evolution is considered fundamental to the origin of vertebrates and central to this process was the formation of a migratory, multipotent cell population known as the neural crest. The number of cell types that arise from the neural crest is truly astonishing as is the number of tissues and organs to which the neural crest contributes. In addition to forming melanocytes as well as many neurons and glia in the peripheral nervous system, neural crest cells also contribute much of the cartilage, bone and connective tissue of the face. These multipotent migrating cells are capable of self renewing decisions and based upon these criteria are often considered stem cells or stem cell-like. Rapid advances in our understanding of neural crest cell patterning continue to shape our appreciation of the evolution of neural crest cells and their impact on vertebrate craniofacial morphogenesis.
Collapse
Affiliation(s)
- Paul A Trainor
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| |
Collapse
|
50
|
Arnold SE, Talbot K, Hahn CG. Neurodevelopment, neuroplasticity, and new genes for schizophrenia. PROGRESS IN BRAIN RESEARCH 2005; 147:319-45. [PMID: 15581715 DOI: 10.1016/s0079-6123(04)47023-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a complex, debilitating neuropsychiatric disorder. Epidemiological, clinical, neuropsychological, and neurophysiological studies have provided substantial evidence that abnormalities in brain development and ongoing neuroplasticity play important roles in the pathogenesis of the disorder. Complementing these clinical studies, a range of cytoarchitectural, morphometric, ultrastructural, immunochemical, and gene expression methods have been applied in investigations of postmortem brain tissues to characterize the cellular and molecular profile of putative developmental and plastic abnormalities in schizophrenia. While findings have been diverse and many are in need of replication, investigations focusing on higher cortical and limbic brain regions are increasingly demonstrating abnormalities in the structural and molecular integrity of the synaptic complex as well as glutamate-related receptors and signal transduction pathways that play critical roles in brain development, synaptogenesis, and synaptic plasticity. Most exciting have been recent associations of schizophrenia with specific genes, such as neuregulin-1, dysbindin-1, and AKT-1, which are vital to synaptic development, neurotransmission, and plasticity.
Collapse
Affiliation(s)
- Steven E Arnold
- Cellular and Molecular Neuropathology Program, Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|