1
|
Limpitikul WB, Dick IE. Inactivation of CaV1 and CaV2 channels. J Gen Physiol 2025; 157:e202313531. [PMID: 39883005 PMCID: PMC11781272 DOI: 10.1085/jgp.202313531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) are highly expressed throughout numerous biological systems and play critical roles in synaptic transmission, cardiac excitation, and muscle contraction. To perform these various functions, VGCCs are highly regulated. Inactivation comprises a critical mechanism controlling the entry of Ca2+ through these channels and constitutes an important means to regulate cellular excitability, shape action potentials, control intracellular Ca2+ levels, and contribute to long-term potentiation and depression. For CaV1 and CaV2 channel families, inactivation proceeds via two distinct processes. Voltage-dependent inactivation (VDI) reduces Ca2+ entry through the channel in response to sustained or repetitive depolarization, while Ca2+-dependent inactivation (CDI) occurs in response to elevations in intracellular Ca2+ levels. These processes are critical for physiological function and undergo exquisite fine-tuning through multiple mechanisms. Here, we review known determinants and modulatory features of these two critical forms of channel regulation and their role in normal physiology and pathophysiology.
Collapse
Affiliation(s)
| | - Ivy E. Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Abstract
The CACNA1C gene encodes the pore-forming subunit of the CaV1.2 L-type Ca2+ channel, a critical component of membrane physiology in multiple tissues, including the heart, brain, and immune system. As such, mutations altering the function of these channels have the potential to impact a wide array of cellular functions. The first mutations identified within CACNA1C were shown to cause a severe, multisystem disorder known as Timothy syndrome (TS), which is characterized by neurodevelopmental deficits, long-QT syndrome, life-threatening cardiac arrhythmias, craniofacial abnormalities, and immune deficits. Since this initial description, the number and variety of disease-associated mutations identified in CACNA1C have grown tremendously, expanding the range of phenotypes observed in affected patients. CACNA1C channelopathies are now known to encompass multisystem phenotypes as described in TS, as well as more selective phenotypes where patients may exhibit predominantly cardiac or neurological symptoms. Here, we review the impact of genetic mutations on CaV1.2 function and the resultant physiological consequences.
Collapse
Affiliation(s)
- Kevin G Herold
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John W Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ivy E Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Bamgboye MA, Traficante MK, Owoyemi J, DiSilvestre D, Vieira DCO, Dick IE. Impaired Ca V1.2 inactivation reduces the efficacy of calcium channel blockers in the treatment of LQT8. J Mol Cell Cardiol 2022; 173:92-100. [PMID: 36272554 PMCID: PMC10583761 DOI: 10.1016/j.yjmcc.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022]
Abstract
Mutations in the CaV1.2 L-type calcium channel can cause a profound form of long-QT syndrome known as long-QT type 8 (LQT8), which results in cardiac arrhythmias that are often fatal in early childhood. A growing number of such pathogenic mutations in CaV1.2 have been identified, increasing the need for targeted therapies. As many of these mutations reduce channel inactivation; resulting in excess Ca2+ entry during the action potential, calcium channel blockers (CCBs) would seem to represent a promising treatment option. Yet CCBs have been unsuccessful in the treatment of LQT8. Here, we demonstrate that this lack of efficacy likely stems from the impact of the mutations on CaV1.2 channel inactivation. As CCBs are known to preferentially bind to the inactivated state of the channel, mutation-dependent deficits in inactivation result in a decrease in use-dependent block of the mutant channel. Further, application of the CCB verapamil to induced pluripotent stem cell (iPSC) derived cardiomyocytes from an LQT8 patient demonstrates that this loss of use-dependent block translates to a lack of efficacy in correcting the LQT phenotype. As a growing number of channelopathic mutations demonstrate effects on channel inactivation, reliance on state-dependent blockers may leave a growing population of patients without a viable treatment option. This biophysical understanding of the interplay between inactivation deficits and state-dependent block may provide a new avenue to guide the development of improved therapies.
Collapse
Affiliation(s)
- Moradeke A Bamgboye
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Maria K Traficante
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Josiah Owoyemi
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Deborah DiSilvestre
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Daiana C O Vieira
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Ivy E Dick
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
4
|
Patel AA, Sakurai A, Himmel NJ, Cox DN. Modality specific roles for metabotropic GABAergic signaling and calcium induced calcium release mechanisms in regulating cold nociception. Front Mol Neurosci 2022; 15:942548. [PMID: 36157080 PMCID: PMC9502035 DOI: 10.3389/fnmol.2022.942548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium (Ca2+) plays a pivotal role in modulating neuronal-mediated responses to modality-specific sensory stimuli. Recent studies in Drosophila reveal class III (CIII) multidendritic (md) sensory neurons function as multimodal sensors regulating distinct behavioral responses to innocuous mechanical and nociceptive thermal stimuli. Functional analyses revealed CIII-mediated multimodal behavioral output is dependent upon activation levels with stimulus-evoked Ca2+ displaying relatively low vs. high intracellular levels in response to gentle touch vs. noxious cold, respectively. However, the mechanistic bases underlying modality-specific differential Ca2+ responses in CIII neurons remain incompletely understood. We hypothesized that noxious cold-evoked high intracellular Ca2+ responses in CIII neurons may rely upon Ca2+ induced Ca2+ release (CICR) mechanisms involving transient receptor potential (TRP) channels and/or metabotropic G protein coupled receptor (GPCR) activation to promote cold nociceptive behaviors. Mutant and/or CIII-specific knockdown of GPCR and CICR signaling molecules [GABA B -R2, Gαq, phospholipase C, ryanodine receptor (RyR) and Inositol trisphosphate receptor (IP3R)] led to impaired cold-evoked nociceptive behavior. GPCR mediated signaling, through GABA B -R2 and IP3R, is not required in CIII neurons for innocuous touch evoked behaviors. However, CICR via RyR is required for innocuous touch-evoked behaviors. Disruptions in GABA B -R2, IP3R, and RyR in CIII neurons leads to significantly lower levels of cold-evoked Ca2+ responses indicating GPCR and CICR signaling mechanisms function in regulating Ca2+ release. CIII neurons exhibit bipartite cold-evoked firing patterns, where CIII neurons burst during rapid temperature change and tonically fire during steady state cold temperatures. GABA B -R2 knockdown in CIII neurons resulted in disorganized firing patterns during cold exposure. We further demonstrate that application of GABA or the GABA B specific agonist baclofen potentiates cold-evoked CIII neuron activity. Upon ryanodine application, CIII neurons exhibit increased bursting activity and with CIII-specific RyR knockdown, there is an increase in cold-evoked tonic firing and decrease in bursting. Lastly, our previous studies implicated the TRPP channel Pkd2 in cold nociception, and here, we show that Pkd2 and IP3R genetically interact to specifically regulate cold-evoked behavior, but not innocuous mechanosensation. Collectively, these analyses support novel, modality-specific roles for metabotropic GABAergic signaling and CICR mechanisms in regulating intracellular Ca2+ levels and cold-evoked behavioral output from multimodal CIII neurons.
Collapse
Affiliation(s)
| | | | | | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
5
|
de Andrade DML, Correia MC, de Oliveira MG, Santos ESA, Neves BJ, de Paula JR, Rocha ML. Vascular relaxing effect of Hydrocotyle umbellata L. is mediated by blocking of l-type Ca 2+ channels. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115019. [PMID: 35074453 DOI: 10.1016/j.jep.2022.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hydrocotyle umbellata L. is a medicinal herb for the treatment of some health problems including hypertension, according to traditional medicine. Even so, its vascular effects and the pharmacological action mechanisms have not been analyzed. AIM OF THE STUDY This experiment aimed to analyze the effects of hydroalcoholic extract of Hydrocotyle umbellata L. (HEHU) on isolated vessels and verify the interaction of hibalactone (chemical marker) against Cav1.2 channels using molecular docking. MATERIALS AND METHODS Vascular reactivity experiments were performed using rat aortas with (E+) or without endothelium (E-) in an isolated organ bath. Computational molecular docking approaches were used to show the direct effect on L-type Ca2+ Channels. RESULTS HEHU (0-560 μg/mL) induced relaxation of the pre-contracted arteries in a concentration-dependent manner. The maximum effect was higher in E+ (76.8 ± 4.1%) as compared to E- (47.3 ± 5.5%). Pre-treatment of E+ arteries with L-NAME or ODQ reduced the relaxation to similar level of E- arteries. The treatment of arteries with MDL-12,330 A, diclofenac, propranolol and atropine did not change the relaxation induced by HEHU. The contraction caused by internal Ca2+ release induced by caffeine was reduced after HEHU treatment. Moreover, the HEHU also impaired the contraction induced by Ca2+ influx stimulated with phenylephrine or high KCl. The docking study demonstrated the effectiveness of hibalactone in blocking the Cav1.2 channel. CONCLUSIONS These findings show that HEHU induces vascular relaxation which is potentiated (but not dependent) by endothelial cells. Blocking of Ca2+ influx seems to be the main mechanism for the vascular effects of HEHU.
Collapse
Affiliation(s)
- Daniela M L de Andrade
- Laboratory of Cardiovascular Pharmacology, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, Brazil.
| | - Mikaelle C Correia
- Laboratory of Cardiovascular Pharmacology, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, Brazil.
| | - Matheus G de Oliveira
- Natural Products Research Laboratory, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, Brazil.
| | - Eder S A Santos
- Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, Brazil.
| | - Bruno J Neves
- Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, Brazil.
| | - José R de Paula
- Natural Products Research Laboratory, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, Brazil.
| | - Matheus L Rocha
- Laboratory of Cardiovascular Pharmacology, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, Brazil.
| |
Collapse
|
6
|
Shabbir W. T1143 essential for Ca V1.2 inhibition by diltiazem. Eur J Pharmacol 2021; 895:173889. [PMID: 33482177 DOI: 10.1016/j.ejphar.2021.173889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 11/15/2022]
Abstract
Careful analysis of previously published reports and some new insights into the structure activity studies revealed an important role of Threonine 1143 in drug binding. Substituting T1143 by alanine and other residues significantly reduced channel inhibition by qDil and Dil. Mutation T1143A did not affect channel activation or inactivation while almost completely diminishing channel block by Dil or qDil. These findings support the view that T1143 serves as drug binding determinant. Other mutations in this position than T1143A (T1143L/Y/S/N/C/V/E) diminished channel inhibition by qDil but additionally affected channel activation and inactivation and may therefore affect channel block allosterically. Collectively, our data suggest that T1143 is an essential diltiazem binding determinant.
Collapse
Affiliation(s)
- Waheed Shabbir
- Institute for Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| |
Collapse
|
7
|
Kushner J, Ferrer X, Marx SO. Roles and Regulation of Voltage-gated Calcium Channels in Arrhythmias. J Innov Card Rhythm Manag 2019; 10:3874-3880. [PMID: 32494407 PMCID: PMC7252866 DOI: 10.19102/icrm.2019.101006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
Calcium flowing through voltage-dependent calcium channels into cardiomyocytes mediates excitation–contraction coupling, controls action-potential duration and automaticity in nodal cells, and regulates gene expression. Proper surface targeting and basal and hormonal regulation of calcium channels are vital for normal cardiac physiology. In this review, we discuss the roles of voltage-gated calcium channels in the heart and the mechanisms by which these channels are regulated by physiological signaling pathways in health and disease.
Collapse
Affiliation(s)
- Jared Kushner
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Xavier Ferrer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Chaturvedi RN, Arish M, Kashif M, Kumar V, Reenu, Pendem K, Rub A, Malhotra S. Synthesis, Biological Evaluation, Molecular Docking and DFT Study of Potent Antileishmanial Agents Based on the Thiazolo[3, 2-a
]pyrimidine Chemical Scaffold. ChemistrySelect 2018. [DOI: 10.1002/slct.201800056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Radha N. Chaturvedi
- Research & Development Center; Ind-Swift Laboratories Ltd. S.A.S Nagar; Punjab 160055 India
- School of Sciences, Discipline of Chemistry; Indira Gandhi National Open University, Maidan Garhi; New Delhi 110068 India
| | - Mohd Arish
- Infection & Immunity lab, Department of Biotechnology; Jamia Millia Islamia (A Central University); New Delhi 110025 India
| | - Mohammad Kashif
- Infection & Immunity lab, Department of Biotechnology; Jamia Millia Islamia (A Central University); New Delhi 110025 India
- Immuniobiology Laboratory, Department of Zoology, Institute of Science; Banaras Hindu University; Varanasi 221005 India
| | - Varinder Kumar
- Department of Bioinformatics; Goswami Ganesh Dutta S. D. College, Sector 32C; Chandigarh 160030 India
| | - Reenu
- Department of Applied Sciences; PEC University of Technology, Sector12; Chandigarh 160012 India
| | | | - Abdur Rub
- Infection & Immunity lab, Department of Biotechnology; Jamia Millia Islamia (A Central University); New Delhi 110025 India
- Department of Medical Laboratory Sciences; College of Applied Medical Sciences; Majmaah University; Al Majmaah Saudi Arabia
| | - Sunita Malhotra
- School of Sciences, Discipline of Chemistry; Indira Gandhi National Open University, Maidan Garhi; New Delhi 110068 India
| |
Collapse
|
9
|
Modulation of T-type Ca2+ channels by Lavender and Rosemary extracts. PLoS One 2017; 12:e0186864. [PMID: 29073181 PMCID: PMC5658086 DOI: 10.1371/journal.pone.0186864] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Abstract
Medicinal plants represent a significant reservoir of unexplored substances for early-stage drug discovery. Of interest, two flowering Mediterranean plants have been used for thousands of years for their beneficial effects on nervous disorders, including anxiety and mood. However, the therapeutic potential of these plants regarding their ability to target ion channels and neuronal excitability remains largely unknown. Towards this goal, we have investigated the ability of Lavender and Rosemary to modulate T-type calcium channels (TTCCs). TTCCs play important roles in neuronal excitability, neuroprotection, sensory processes and sleep. These channels are also involved in epilepsy and pain. Using the whole-cell patch-clamp technique, we have characterized how Lavender and Rosemary extracts, as well as their major active compounds Linalool and Rosmarinic acid, modulate the electrophysiological properties of recombinant TTCCs (CaV3.2) expressed in HEK-293T cells. Both the methanolic and essential oil extracts as well as the active compounds of these plants inhibit Cav3.2 current in a concentration-dependent manner. In addition, these products also induce a negative shift of the steady-state inactivation of CaV3.2 current with no change in the activation properties. Taken together, our findings reveal that TTCCs are a molecular target of the Lavender and Rosemary compounds, suggesting that inhibition of TTCCs could contribute to the anxiolytic and the neuroprotective effects of these plants.
Collapse
|
10
|
Striessnig J, Ortner NJ, Pinggera A. Pharmacology of L-type Calcium Channels: Novel Drugs for Old Targets? Curr Mol Pharmacol 2016; 8:110-22. [PMID: 25966690 PMCID: PMC5384371 DOI: 10.2174/1874467208666150507105845] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/10/2015] [Accepted: 04/20/2015] [Indexed: 11/22/2022]
Abstract
Inhibition of voltage-gated L-type calcium channels by organic calcium channel blockers is a well-established pharmacodynamic concept for the treatment of hypertension and cardiac ischemia. Since decades these antihypertensives (such as the dihydropyridines amlodipine, felodipine or nifedipine) belong to the most widely prescribed drugs
world-wide. Their tolerability is excellent because at therapeutic doses their pharmacological effects in humans are limited to the cardiovascular system. During the last years substantial progress has been made to reveal the physiological role of different L-type calcium channel isoforms in many other tissues, including the brain, endocrine and sensory cells.
Moreover, there is accumulating evidence about their involvement in various human diseases, such as Parkinson's disease, neuropsychiatric disorders and hyperaldosteronism. In this review we discuss the pathogenetic role of L-type calcium channels, potential new indications for existing or isoform-selective compounds and strategies to minimize potential side effects.
Collapse
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
11
|
Bhagya N, Chandrashekar KR. Tetrandrine--A molecule of wide bioactivity. PHYTOCHEMISTRY 2016; 125:5-13. [PMID: 26899361 DOI: 10.1016/j.phytochem.2016.02.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/02/2016] [Accepted: 02/07/2016] [Indexed: 05/18/2023]
Abstract
Stephania tetrandra and other related species of Menispermaceae form the major source of the bisbenzylisoquinoline alkaloid - tetrandrine. The plant is extensively referenced in the Chinese Pharmacopoeia for its use in the Chinese medicinal system as an analgesic and diuretic agent and also in the treatment of hypertension and various other ailments, including asthma, tuberculosis, dysentery, hyperglycemia, malaria, cancer and fever. Tetrandrine, well-known to act as a calcium channel blocker, has been tested in clinical trials and found effective against silicosis, hypertension, inflammation and lung cancer without any toxicity. Recently, the efficacy of tetrandrine was tested against Mycobaterium tuberculosis, Candida albicans, Plasmodium falciparum and Ebola virus. Tetrandrine's pharmacological property has been proved to be through its action on different signalling pathways like reactive oxygen species, enhanced autophagic flux, reversal of multi drug resistance, caspase pathway, cell cycle arrest and by modification of calcium channels. The present review summarises current knowledge on the synthesis, distribution, extraction, structural elucidation, pharmacological properties and the mechanism of action of tetrandrine. Future perspectives in the clinical use of tetrandrine as a drug are also considered.
Collapse
Affiliation(s)
- N Bhagya
- Department of Applied Botany, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
| | - K R Chandrashekar
- Department of Applied Botany, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India.
| |
Collapse
|
12
|
de Fátima Reis C, de Andrade DML, Neves BJ, de Almeida Ribeiro Oliveira L, Pinho JF, da Silva LP, Cruz JDS, Bara MTF, Andrade CH, Rocha ML. Blocking the L-type Ca2+ channel (Cav 1.2) is the key mechanism for the vascular relaxing effect of Pterodon spp. and its isolated diterpene methyl-6α-acetoxy-7β-hydroxyvouacapan-17β-oate. Pharmacol Res 2015; 100:242-9. [DOI: 10.1016/j.phrs.2015.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/14/2015] [Accepted: 08/07/2015] [Indexed: 11/27/2022]
|
13
|
Scholl UI, Stölting G, Nelson-Williams C, Vichot AA, Choi M, Loring E, Prasad ML, Goh G, Carling T, Juhlin CC, Quack I, Rump LC, Thiel A, Lande M, Frazier BG, Rasoulpour M, Bowlin DL, Sethna CB, Trachtman H, Fahlke C, Lifton RP. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. eLife 2015; 4:e06315. [PMID: 25907736 PMCID: PMC4408447 DOI: 10.7554/elife.06315] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/25/2015] [Indexed: 01/05/2023] Open
Abstract
Many Mendelian traits are likely unrecognized owing to absence of traditional segregation patterns in families due to causation by de novo mutations, incomplete penetrance, and/or variable expressivity. Genome-level sequencing can overcome these complications. Extreme childhood phenotypes are promising candidates for new Mendelian traits. One example is early onset hypertension, a rare form of a global cause of morbidity and mortality. We performed exome sequencing of 40 unrelated subjects with hypertension due to primary aldosteronism by age 10. Five subjects (12.5%) shared the identical, previously unidentified, heterozygous CACNA1HM1549V mutation. Two mutations were demonstrated to be de novo events, and all mutations occurred independently. CACNA1H encodes a voltage-gated calcium channel (CaV3.2) expressed in adrenal glomerulosa. CACNA1HM1549V showed drastically impaired channel inactivation and activation at more hyperpolarized potentials, producing increased intracellular Ca2+, the signal for aldosterone production. This mutation explains disease pathogenesis and provides new insight into mechanisms mediating aldosterone production and hypertension. DOI:http://dx.doi.org/10.7554/eLife.06315.001 The consequence of mutations to the large majority of human genes is unknown. Most mutations that are currently known were discovered by tracing their effects through families. This allows the locations of mutations to be pinpointed on chromosomes—the structures that genetic material is packaged into. Other mutations are harder to trace because individuals with these mutations may develop very different signs and symptoms, or not develop clinical abnormalities at all. Alternatively, a trait may appear sporadically in a family because the mutation arises anew in the affected subject. Recently developed technologies that allow scientists to rapidly sequence all the gene-encoding regions of an individual's DNA—their genome—offer a new way to identify harmful genetic variants. Comparing the genomes of individuals with rare disorders can reveal if the individuals share any genetic mutations in common that could cause their symptoms. Scholl et al. used this strategy to sequence the genomes of 40 individuals with a rare type of hypertension—a condition that causes high blood pressure, and increases the risk of strokes, kidney failure and heart attacks—that develops early in childhood. In this form of the disease, high blood pressure is caused by the adrenal glands above the kidneys producing too much of a hormone called aldosterone. Some genetic causes of this form of the disease have already been identified. Now, Scholl et al. have found a new genetic mutation present in five families with this condition. Two of the individuals were the first in their families to develop this mutation, while three others inherited it. Some of the family members with this mutation had hypertension and some did not. The mutation is in a gene that encodes a type of calcium channel—a protein found in the membrane that surrounds cells, and which can open and close to control the amount of calcium in the cell. This particular calcium channel is abundant in the cells of the adrenal gland. Scholl et al. found that the mutation causes the calcium channels to be more likely to open and take longer to close. This increases the number of calcium ions that move into the cell, which causes the adrenal gland to produce more aldosterone. These new insights have provided a new way of diagnosing early-onset hypertension, and suggest that targeting calcium channels could help to develop new treatments for this disease. DOI:http://dx.doi.org/10.7554/eLife.06315.002
Collapse
Affiliation(s)
- Ute I Scholl
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Gabriel Stölting
- Institute of Complex Systems, Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Carol Nelson-Williams
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Alfred A Vichot
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Murim Choi
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Erin Loring
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Manju L Prasad
- Department of Pathology, Yale University School of Medicine, New Haven, United States
| | - Gerald Goh
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Tobias Carling
- Yale Endocrine Neoplasia Laboratory, Yale School of Medicine, New Haven, United States
| | - C Christofer Juhlin
- Yale Endocrine Neoplasia Laboratory, Yale School of Medicine, New Haven, United States
| | - Ivo Quack
- Division of Nephrology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lars C Rump
- Division of Nephrology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anne Thiel
- Division of Nephrology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marc Lande
- Division of Pediatric Nephrology, University of Rochester Medical Center, Rochester, United States
| | | | | | | | - Christine B Sethna
- Department of Pediatrics, Cohen Children's Medical Center of New York, New Hyde Park, United States
| | - Howard Trachtman
- Department of Pediatrics, NYU Langone Medical Center, New York, United States
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Richard P Lifton
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
14
|
Dapagliflozin reduces the amplitude of shortening and Ca(2+) transient in ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem 2014; 400:57-68. [PMID: 25351341 DOI: 10.1007/s11010-014-2262-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/23/2014] [Indexed: 01/11/2023]
Abstract
In the management of type 2 diabetes mellitus, Dapagliflozin (DAPA) is a newly introduced selective sodium-glucose co-transporter 2 inhibitor which promotes renal glucose excretion. Little is known about the effects of DAPA on the electromechanical function of the heart. This study investigated the effects of DAPA on ventricular myocyte shortening and intracellular Ca(2+) transport in streptozotocin (STZ)-induced diabetic rats. Shortening, Ca(2+) transients, myofilament sensitivity to Ca(2+) and sarcoplasmic reticulum Ca(2+), and intracellular Ca(2+) current were measured in isolated rats ventricular myocytes by video edge detection, fluorescence photometry, and whole-cell patch-clamp techniques. Diabetes was characterized in STZ-treated rats by a fourfold increase in blood glucose (440 ± 25 mg/dl, n = 21) compared to Controls (98 ± 2 mg/dl, n = 19). DAPA reduced the amplitude of shortening in Control (76.68 ± 2.28 %, n = 37) and STZ (76.58 ± 1.89 %, n = 42) ventricular myocytes, and reduced the amplitude of the Ca(2+) transients in Control and STZ ventricular myocytes with greater effects in STZ (71.45 ± 5.35 %, n = 16) myocytes compared to Controls (92.01 ± 2.72 %, n = 17). Myofilament sensitivity to Ca(2+) and sarcoplasmic reticulum Ca(2+) were not significantly altered by DAPA in either STZ or Control myocytes. L-type Ca(2+) current was reduced in STZ myocytes compared to Controls and was further reduced by DAPA. In conclusion, alterations in the mechanism(s) of Ca(2+) transport may partly underlie the negative inotropic effects of DAPA in ventricular myocytes from STZ-treated and Control rats.
Collapse
|
15
|
Chang GJ, Chang CJ, Chen WJ, Yeh YH, Lee HY. Electrophysiological and mechanical effects of caffeic acid phenethyl ester, a novel cardioprotective agent with antiarrhythmic activity, in guinea-pig heart. Eur J Pharmacol 2013; 702:194-207. [DOI: 10.1016/j.ejphar.2013.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/16/2012] [Accepted: 01/28/2013] [Indexed: 01/31/2023]
|
16
|
Identification of a sphingosine-sensitive Ca2+ channel in the plasma membrane of Leishmania mexicana. Biochem Biophys Res Commun 2013; 430:1091-6. [DOI: 10.1016/j.bbrc.2012.12.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 11/18/2022]
|
17
|
Teng J, Iida K, Ito M, Izumi-Nakaseko H, Kojima I, Adachi-Akahane S, Iida H. Role of glycine residues highly conserved in the S2-S3 linkers of domains I and II of voltage-gated calcium channel alpha(1) subunits. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:966-74. [PMID: 20067760 DOI: 10.1016/j.bbamem.2010.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/19/2009] [Accepted: 01/04/2010] [Indexed: 11/24/2022]
Abstract
The pore-forming component of voltage-gated calcium channels, alpha(1) subunit, contains four structurally conserved domains (I-IV), each of which contains six transmembrane segments (S1-S6). We have shown previously that a Gly residue in the S2-S3 linker of domain III is completely conserved from yeasts to humans and important for channel activity. The Gly residues in the S2-S3 linkers of domains I and II, which correspond positionally to the Gly in the S2-S3 linker of domain III, are also highly conserved. Here, we investigated the role of the Gly residues in the S2-S3 linkers of domains I and II of Ca(v)1.2. Each of the Gly residues was replaced with Glu or Gln to produce mutant Ca(v)1.2s; G182E, G182Q, G579E, G579Q, and the resulting mutants were transfected into BHK6 cells. Whole-cell patch-clamp recordings showed that current-voltage relationships of the four mutants were the same as those of wild-type Ca(v)1.2. However, G182E and G182Q showed significantly smaller current densities because of mislocalization of the mutant proteins, suggesting that Gly(182) in domain I is involved in the membrane trafficking or surface expression of alpha(1) subunit. On the other hand, G579E showed a slower voltage-dependent current inactivation (VDI) compared to Ca(v)1.2, although G579Q showed a normal VDI, implying that Gly(579) in domain II is involved in the regulation of VDI and that the incorporation of a negative charge alters the VDI kinetics. Our findings indicate that the two conserved Gly residues are important for alpha(1) subunit to become functional.
Collapse
Affiliation(s)
- Jinfeng Teng
- Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui kita-machi, Koganei-shi, Tokyo 184-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Wu BN, Chen ML, Dai ZK, Lin YL, Yeh JL, Wu JR, Chen IJ. Inhibition of voltage-gated L-type calcium channels by labedipinedilol-A involves protein kinase C in rat cerebrovascular smooth muscle cells. Vascul Pharmacol 2009; 51:65-71. [PMID: 19298869 DOI: 10.1016/j.vph.2009.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/07/2009] [Accepted: 03/10/2009] [Indexed: 10/21/2022]
|
19
|
|
20
|
Tarabova B, Lacinova L, Engel J. Effects of phenylalkylamines and benzothiazepines on Cav1.3-mediated Ca2+ currents in neonatal mouse inner hair cells. Eur J Pharmacol 2007; 573:39-48. [PMID: 17651721 DOI: 10.1016/j.ejphar.2007.06.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 06/12/2007] [Accepted: 06/25/2007] [Indexed: 11/23/2022]
Abstract
Calcium currents (I(Ca)) in inner hair cells (IHCs) are carried by the Ca(v)1.3 subtype of L-type calcium channels. They play an important role in synaptic transmission of sound-evoked mechanical stimuli. L-type calcium channels are targets of the organic blocker classes dihydropyridines, phenylalkylamines and benzothiazepines. Previously a low sensitivity of the Ca(v)1.3 subtype towards dihydropyridines has been demonstrated. Therefore, this study evaluates the effect of two phenylalkylamines (verapamil and gallopamil) and the benzothiazepine diltiazem on I(Ca) through Ca(v)1.3 channels in mouse IHCs. Whole-cell I(Ca) was measured using the patch-clamp technique in mouse IHCs aged postnatal day 3-7 with 5 mM calcium as a charge carrier. The phenylalkylamines verapamil and gallopamil and the benzothiazepine diltiazem inhibited I(Ca) in IHCs in a concentration-dependent manner. This block was largely reversible. Dose-response curves revealed IC(50) values of 199+/-19 microM for verapamil, 466+/-151 microM for gallopamil and 326+/-67 microM for diltiazem. The inhibition of peak I(Ca) by phenylalkylamines and benzothiazepines was voltage-independent. Verapamil (300 microM) enhanced current inactivation from -20 to +20 mV while diltiazem (300 microM) did so only at very depolarised potentials (+20 mV). In conclusion, the concentrations of phenylalkylamines and benzothiazepine necessary to inhibit 50% of I(Ca) in IHCs were one order larger compared to concentrations which inhibited I(Ca) through Ca(v)1.2 channels in native cells or expression systems. However, inhibitory concentrations were in the same range as those required for block of I(Ca) in turtle hair cells.
Collapse
MESH Headings
- Algorithms
- Animals
- Animals, Newborn
- Benzazepines/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/physiology
- Calcium Signaling/drug effects
- Diltiazem/pharmacology
- Dose-Response Relationship, Drug
- Gallopamil/pharmacology
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/physiology
- Membrane Potentials/drug effects
- Mice
- Mice, Inbred Strains
- Phenethylamines/pharmacology
- Verapamil/pharmacology
Collapse
Affiliation(s)
- Bohumila Tarabova
- Slovak Academy of Sciences, Institute of Molecular Physiology and Genetics, Vlárska 5, 833 34 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
21
|
Zahradníková A, Minarovic I, Zahradník I. Competitive and cooperative effects of Bay K8644 on the L-type calcium channel current inhibition by calcium channel antagonists. J Pharmacol Exp Ther 2007; 322:638-45. [PMID: 17475903 DOI: 10.1124/jpet.107.122176] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phenylalkylamines, benzothiazepines, and dihydropyridines bind noncompetitively to the L-type calcium channel. The molecular mechanisms of this interaction were investigated in enzymatically isolated rat ventricular myocytes using the whole-cell patch-clamp technique. When applied alone, felodipine, verapamil, and diltiazem inhibited the L-type calcium current with values of inhibitory constant (K(B)) of 11, 246, and 512 nM, respectively, whereas 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-[trifluoromethyl]phenyl)-3-pyridine carboxylic acid methyl ester (Bay K8644) activated I(Ca) with activation constant (K(A)) of 33 nM. Maximal activation of I(Ca) by 300 nM Bay K8644 strongly reduced the inhibitory potency of felodipine (apparent K(B) of 165 nM), significantly reduced the inhibitory potency of verapamil (apparent K(B) of 737 nM), but significantly increased the inhibitory potency of diltiazem (apparent K(B) of 310 nM). In terms of a new pseudoequilibrium two-drug binding model, the interaction between the dihydropyridine agonist Bay K8644 and the antagonist felodipine was found purely competitive. The interaction between Bay K8644 and verapamil or diltiazem was found noncompetitive, and it could be described only by inclusion of a negative interaction factor nu = -0.60 for verapamil and a positive interaction factor nu = +0.24 for diltiazem. These results suggest that at physiological membrane potentials, the L-type calcium channel cannot be simultaneously occupied by a dihydropyridine agonist and antagonist, whereas it can simultaneously bind a dihydropyridine agonist and a nondihydropyridine antagonist. Generally, the effects of the drugs on the L-type calcium channel support a concept of a channel domain responsible for binding of calcium channel antagonists and agonists changing dynamically with the membrane voltage and occupancy of individual binding sites.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/metabolism
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Algorithms
- Allosteric Regulation
- Animals
- Binding Sites
- Binding, Competitive
- Calcium/metabolism
- Calcium Channel Agonists/metabolism
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/physiology
- Cells, Cultured
- Diltiazem/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Felodipine/pharmacology
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Male
- Membrane Potentials/drug effects
- Models, Biological
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Patch-Clamp Techniques
- Protein Binding
- Rats
- Rats, Wistar
- Verapamil/pharmacology
Collapse
Affiliation(s)
- Alexandra Zahradníková
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34 Bratislava, Slovak Republic
| | | | | |
Collapse
|
22
|
Abstract
Triggered activity in cardiac muscle and intracellular Ca2+ have been linked in the past. However, today not only are there a number of cellular proteins that show clear Ca2+ dependence but also there are a number of arrhythmias whose mechanism appears to be linked to Ca2+-dependent processes. Thus we present a systematic review of the mechanisms of Ca2+ transport (forward excitation-contraction coupling) in the ventricular cell as well as what is known for other cardiac cell types. Second, we review the molecular nature of the proteins that are involved in this process as well as the functional consequences of both normal and abnormal Ca2+ cycling (e.g., Ca2+ waves). Finally, we review what we understand to be the role of Ca2+ cycling in various forms of arrhythmias, that is, those associated with inherited mutations and those that are acquired and resulting from reentrant excitation and/or abnormal impulse generation (e.g., triggered activity). Further solving the nature of these intricate and dynamic interactions promises to be an important area of research for a better recognition and understanding of the nature of Ca2+ and arrhythmias. Our solutions will provide a more complete understanding of the molecular basis for the targeted control of cellular calcium in the treatment and prevention of such.
Collapse
Affiliation(s)
- Henk E D J Ter Keurs
- Department of Medicine, Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | |
Collapse
|
23
|
Beyl S, Timin EN, Hohaus A, Stary A, Kudrnac M, Guy RH, Hering S. Probing the architecture of an L-type calcium channel with a charged phenylalkylamine: evidence for a widely open pore and drug trapping. J Biol Chem 2006; 282:3864-70. [PMID: 17138559 PMCID: PMC3189693 DOI: 10.1074/jbc.m609153200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated calcium channels are in a closed conformation at rest and open temporarily when the membrane is depolarized. To gain insight into the molecular architecture of Ca(v)1.2, we probed the closed and open conformations with the charged phenylalkylamine (-)devapamil ((-)qD888). To elucidate the access pathway of (-)D888 to its binding pocket from the intracellular side, we used mutations replacing a highly conserved Ile-781 by threonine/proline in the pore-lining segment IIS6 of Ca(v)1.2 (1). The shifted channel gating of these mutants (by 30-40 mV in the hyperpolarizing direction) enabled us to evoke currents with identical kinetics at different potentials and thus investigate the effect of the membrane potentials on the drug access per se. We show here that under these conditions the development of channel block by (-)qD888 is not affected by the transmembrane voltage. Recovery from block at rest was, however, accelerated at more hyperpolarized voltages. These findings support the conclusion that Ca(v)1.2 must be opening widely to enable free access of the charged (-)D888 molecule to its binding site, whereas drug dissociation from the closed channel conformation is restricted by bulky channel gates. The functional data indicating a location of a trapped (-)D888 molecule close to the central pore region are supported by a homology model illustrating that the closed Ca(v)1.2 is able to accommodate a large cation such as (-)D888.
Collapse
Affiliation(s)
- Stanislav Beyl
- Institute for Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Eugen N. Timin
- Institute for Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Annette Hohaus
- Institute for Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Anna Stary
- Institute of Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria
| | - Michaela Kudrnac
- Institute for Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Robert H. Guy
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-5567
| | - Steffen Hering
- Institute for Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- To whom correspondence should be addressed: Inst. for Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria. Tel.: 43-14277-55310; Fax: 43-14277-9553;
| |
Collapse
|
24
|
Hamid J, Peloquin JB, Monteil A, Zamponi GW. Determinants of the differential gating properties of Cav3.1 and Cav3.3 T-type channels: a role of domain IV? Neuroscience 2006; 143:717-28. [PMID: 16996222 DOI: 10.1016/j.neuroscience.2006.08.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/11/2006] [Accepted: 08/15/2006] [Indexed: 11/24/2022]
Abstract
We have investigated the channel structural determinants that underlie the difference in gating properties of Cav3.1 and Cav3.3 T-type channels, by creating a series of chimeric channel constructs in which the major transmembrane domains were swapped. The chimeras were then expressed in tsA-201 cells and subjected to whole cell patch clamp analysis. Our data reveal that domains I and IV are major determinants of the half-activation potential. Substitution of domain IV was the most important determinant of activation time constant and time constant for recovery from inactivation, with domains I and II mediating a smaller role. In contrast, the carboxy terminal region did not appear to be involved. Determinants of the time constant for inactivation could not be localized to a specific transmembrane domain, but the concomitant substitution of domains I+IV was able to partially confer the inactivation kinetics among the two wild type channels. Our data indicate that the domain IV region mediates an important role in T-type channel activation, whereas multiple channel structural determinants appear to control T-type channel inactivation.
Collapse
Affiliation(s)
- J Hamid
- Hotchkiss Brain Institute and Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Canada T2N 4N1
| | | | | | | |
Collapse
|
25
|
Livneh A, Cohen R, Atlas D. A novel molecular inactivation determinant of voltage-gated CaV1.2 L-type Ca2+ channel. Neuroscience 2006; 139:1275-87. [PMID: 16533566 DOI: 10.1016/j.neuroscience.2006.01.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 01/26/2006] [Accepted: 01/26/2006] [Indexed: 11/16/2022]
Abstract
The inactivation of voltage-gated L-type Ca(2+) channels (Ca(V)1) regulates Ca(2+) entry and controls intracellular Ca(2+) levels that are essential for cellular activity. The molecular entities implicated in L-channel (Ca(V)1.2) inactivation are not fully identified. Here we show for the first time the functional impact of one of the two highly conserved clusters of six negatively charged glutamates and aspartate (802-807; poly ED motif) at the II-III loop of the alpha 1 subunits of rabbit of Ca(v)1.2, alpha(1)1.2 and alpha(1)1.2 DeltaN60-Delta1733) on voltage-dependent inactivation. Mutation of the poly ED motif to alanine or glutamine/asparagine greatly enhanced voltage-dependent inactivation, shifting the voltage dependence to negative potentials by >50 mV and conferring a neuronal like inactivation kinetics onto Ca(V)1.2. The large shift in the midpoint of inactivation of the steady-state inactivation kinetics was observed also in Ca(2+) or Ba(2+) and was not altered by the beta2A subunit. Missing from the fast inactivating neuronal P/Q (Ca(V)2.1)-, N (Ca(V)2.2)- or R (Ca(V)2.3)-type channels and modulating Ca(V)1.2 inactivation kinetics, the poly ED motif is likely to be a specific L-type Ca(2+) channels inactivating domain. Our results fit a model in which the poly ED either by itself or as part of a larger inactivating motif acts as Ca(V)1.2 specific built-in "stopper." In this model, Ca(V)1 accomplishes a large Ca(2+) influx during depolarization, possibly by the poly ED hindering occlusion at the pore. Furthermore, the selective designed poly ED perhaps clarifies major inactivation differences between L- and non-L-type calcium channels.
Collapse
Affiliation(s)
- A Livneh
- Department of Biological Chemistry, The Silverman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | | | | |
Collapse
|
26
|
Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A. The L-type calcium channel in the heart: the beat goes on. J Clin Invest 2006; 115:3306-17. [PMID: 16322774 PMCID: PMC1297268 DOI: 10.1172/jci27167] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sydney Ringer would be overwhelmed today by the implications of his simple experiment performed over 120 years ago showing that the heart would not beat in the absence of Ca2+. Fascination with the role of Ca2+ has proliferated into all aspects of our understanding of normal cardiac function and the progression of heart disease, including induction of cardiac hypertrophy, heart failure, and sudden death. This review examines the role of Ca2+ and the L-type voltage-dependent Ca2+ channels in cardiac disease.
Collapse
Affiliation(s)
- Ilona Bodi
- Institute of Molecular Pharmacology and Biophysics, University of Cincinnati College of Medicine, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
27
|
Boyden PA, ter Keurs H. Would modulation of intracellular Ca2+ be antiarrhythmic? Pharmacol Ther 2005; 108:149-79. [PMID: 16038982 DOI: 10.1016/j.pharmthera.2005.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 01/10/2023]
Abstract
Under several types of conditions, reversal of steps of excitation-contraction coupling (RECC) can give rise to nondriven electrical activity. In this review we explore those conditions for several cardiac cell types (SA, atrial, Purkinje, ventricular cells). We find that abnormal spontaneous Ca2+ release from intracellular Ca2+ stores, aberrant Ca2+ influx from sarcolemmal channels or abnormal Ca2+ surges in nonuniform muscle can be the initiators of the RECC. Often, with such increases in Ca2+, spontaneous Ca2+ waves occur and lead to membrane depolarizations. Because the change in membrane voltage is produced by Ca2+-dependent changes in ion channel function, we also review here what is known about the molecular interaction of Ca2+ and several Ca2+-dependent processes, including the intracellular Ca2+ release channels implicated in the genetic basis of some forms of human arrhythmias. Finally, we review what is known about the effectiveness of several agents in modifying such Ca2+-dependent arrhythmias.
Collapse
Affiliation(s)
- Penelope A Boyden
- Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, NY 10032, USA.
| | | |
Collapse
|
28
|
Kochegarov AA. Therapeutical application of voltage-gated calcium channel modulators. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.2.243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Isaev D, Solt K, Gurtovaya O, Reeves JP, Shirokov R. Modulation of the voltage sensor of L-type Ca2+ channels by intracellular Ca2+. ACTA ACUST UNITED AC 2004; 123:555-71. [PMID: 15111645 PMCID: PMC2234499 DOI: 10.1085/jgp.200308876] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both intracellular calcium and transmembrane voltage cause inactivation, or spontaneous closure, of L-type (CaV1.2) calcium channels. Here we show that long-lasting elevations of intracellular calcium to the concentrations that are expected to be near an open channel (>/=100 microM) completely and reversibly blocked calcium current through L-type channels. Although charge movements associated with the opening (ON) motion of the channel's voltage sensor were not altered by high calcium, the closing (OFF) transition was impeded. In two-pulse experiments, the blockade of calcium current and the reduction of gating charge movements available for the second pulse developed in parallel during calcium load. The effect depended steeply on voltage and occurred only after a third of the total gating charge had moved. Based on that, we conclude that the calcium binding site is located either in the channel's central cavity behind the voltage-dependent gate, or it is formed de novo during depolarization through voltage-dependent rearrangements just preceding the opening of the gate. The reduction of the OFF charge was due to the negative shift in the voltage dependence of charge movement, as previously observed for voltage-dependent inactivation. Elevation of intracellular calcium concentration from approximately 0.1 to 100-300 microM sped up the conversion of the gating charge into the negatively distributed mode 10-100-fold. Since the "IQ-AA" mutant with disabled calcium/calmodulin regulation of inactivation was affected by intracellular calcium similarly to the wild-type, calcium/calmodulin binding to the "IQ" motif apparently is not involved in the observed changes of voltage-dependent gating. Although calcium influx through the wild-type open channels does not cause a detectable negative shift in the voltage dependence of their charge movement, the shift was readily observable in the Delta1733 carboxyl terminus deletion mutant, which produces fewer nonconducting channels. We propose that the opening movement of the voltage sensor exposes a novel calcium binding site that mediates inactivation.
Collapse
Affiliation(s)
- Dmytro Isaev
- Department of Pharmacology and Physiology, New Jersey Medical School, UMDNJ, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Voltage-gated calcium channels are key sources of calcium entry into the cytosol of many excitable tissues. A number of different types of calcium channels have been identified and shown to mediate specialized cellular functions. Because of their fundamental nature, they are important targets for therapeutic intervention in disorders such as hypertension, pain, stroke, and epilepsy. Calcium channel antagonists fall into one of the following three groups: small inorganic ions, large peptide blockers, and small organic molecules. Inorganic ions nonselectively inhibit calcium entry by physical pore occlusion and are of little therapeutic value. Calcium-channel-blocking peptides isolated from various predatory animals such as spiders and cone snails are often highly selective blockers of individual types of calcium channels, either by preventing calcium flux through the pore or by antagonizing channel activation. There are many structure-activity-relation classes of small organic molecules that interact with various sites on the calcium channel protein, with actions ranging from selective high affinity block to relatively nondiscriminatory action on multiple calcium channel isoforms. Detailed interactions with the calcium channel protein are well understood for the dihydropyridine and phenylalkylamine drug classes, whereas we are only beginning to understand the molecular actions of some of the more recently discovered calcium channel blockers. Here, we provide a comprehensive review of pharmacology of high voltage-activated calcium channels.
Collapse
Affiliation(s)
- Clinton J Doering
- Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Dr. NW, Calgary, Canada T2N 4N1
| | | |
Collapse
|
31
|
Park JY, Kang HW, Jeong SW, Lee JH. Multiple Structural Elements Contribute to the Slow Kinetics of the Cav3.3 T-type Channel. J Biol Chem 2004; 279:21707-13. [PMID: 15016809 DOI: 10.1074/jbc.m400684200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular cloning and expression studies established the existence of three T-type Ca(2+) channel (Ca(v)3) alpha(1) subunits: Ca(v)3.1 (alpha(1G)), Ca(v)3.2 (alpha(1H)), and Ca(v)3.3 (alpha(1I)). Although all three channels are low voltage-activated, they display considerable differences in their kinetics, with Ca(v)3.1 and Ca(v)3.2 channels activating and inactivating much faster than Ca(v)3.3 channels. The goal of the present study was to determine the structural elements that confer the distinctively slow kinetics of Ca(v)3.3 channels. To address this question, a series of chimeric channels between Ca(v)3.1 and Ca(v)3.3 channels were constructed and expressed in Xenopus oocytes. Kinetic analysis showed that the slow activation and inactivation kinetics of the Ca(v)3.3 channel were not completely abolished by substitution with any one portion of the Ca(v)3.1 channel. Likewise, the Ca(v)3.1 channel failed to acquire the slow kinetics by simply adopting one portion of the Ca(v)3.3 channel. These findings suggest that multiple structural elements contribute to the slow kinetics of Ca(v)3.3 channels.
Collapse
Affiliation(s)
- Jin-Yong Park
- Department of Life Science, Sogang University, Shinsu-dong, Seoul 121-742, Korea
| | | | | | | |
Collapse
|
32
|
del Valle-Rodríguez A, López-Barneo J, Ureña J. Ca2+ channel-sarcoplasmic reticulum coupling: a mechanism of arterial myocyte contraction without Ca2+ influx. EMBO J 2003; 22:4337-45. [PMID: 12941686 PMCID: PMC202374 DOI: 10.1093/emboj/cdg432] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Contraction of vascular smooth muscle cells (VSMCs) depends on the rise of cytosolic [Ca2+] owing to either Ca2+ influx through voltage-gated Ca2+ channels of the plasmalemma or receptor-mediated Ca2+ release from the sarcoplasmic reticulum (SR). We show that voltage-gated Ca2+ channels in arterial myocytes mediate fast Ca2+ release from the SR and contraction without the need of Ca2+ influx. After sensing membrane depolarization, Ca2+ channels activate G proteins and the phospholipase C-inositol 1,4,5-trisphosphate (InsP3) pathway. Ca2+ released through InsP3-dependent channels of the SR activates ryanodine receptors to amplify the cytosolic Ca2+ signal. These observations demonstrate a new mechanism of signaling SR Ca(2+)-release channels and reveal an unexpected function of voltage-gated Ca2+ channels in arterial myocytes. Our findings may have therapeutic implications as the calcium-channel-induced Ca2+ release from the SR can be suppressed by Ca(2+)-channel antagonists.
Collapse
Affiliation(s)
- Alberto del Valle-Rodríguez
- Laboratorio de Investigaciones Biomédicas, Departamento de Fisiología and Hospital Universitario Virgen del Rocío, Universidad de Sevilla, E-41013, Seville, Spain
| | | | | |
Collapse
|
33
|
Dilmac N, Hilliard N, Hockerman GH. Molecular determinants of Ca2+ potentiation of diltiazem block and Ca2+-dependent inactivation in the pore region of cav1.2. Mol Pharmacol 2003; 64:491-501. [PMID: 12869655 DOI: 10.1124/mol.64.2.491] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diltiazem block of Cav1.2 is frequency-dependent and potentiated by Ca2+. We examined the molecular determinants of these characteristics using mutations that affect Ca2+ interactions with Cav1.2. Mutant and wild-type (WT) Cav1.2 channels were transiently expressed in tsA 201 cells with beta1b and alpha2delta subunits. The four conserved glutamates that compose the Ca2+ selectivity filter in Cav1.2 were mutated to Gln (E363Q, E709Q, E1118Q, E1419Q), and each single mutant was assayed for block by diltiazem using whole-cell voltage-clamp recordings in either 10 mM Ba2+ or 10 mM Ca2+. In Ba2+, none of the mutations affected the potency of diltiazem block of closed channels (0.05 Hz stimulation). However, frequency-dependent block (1Hz stimulation) was eliminated in the mutant E1419Q (domain IV), which recovered more rapidly than WT channels from inactivated channel block. Potentiation of diltiazem block of closed Cav1.2 channels in Ca2+ was abolished in the E1118Q, F1117G (domain III), and E1419Q mutants. Frequency-dependent block in Ca2+ was reduced compared with WT Cav1.2 in the F1117G, E1118Q, and E1419Q mutants. The C-terminal tail IQ domain mutation I1627A, which disrupts Ca2+ dependent inactivation, enhanced diltiazem block of closed channels in Ba2+. We conclude that, in Ba2+, E1419 slows recovery from diltiazem block of depolarized Cav1.2 channels, but in Ca2+, E1118, E1419, and F1117 form a Ca2+ binding site that mediates the potentiation of diltiazem block of both closed and inactivated Cav1.2 channels. Furthermore, Ca2+-dependent inactivation, which is impaired in E709Q, E1118Q, E1419Q, and I1627A, is not required for Ca2+ potentiation of diltiazem block.
Collapse
Affiliation(s)
- Nejmi Dilmac
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | |
Collapse
|
34
|
Kochegarov AA. Pharmacological modulators of voltage-gated calcium channels and their therapeutical application. Cell Calcium 2003; 33:145-62. [PMID: 12600802 DOI: 10.1016/s0143-4160(02)00239-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcium channels (CCs) play an important role in the transduction of action potential to the cytosol. An influx of Ca(2+) is essential for muscle contraction, neurotransmitter, and hormonal release. Level of cytosolic Ca(2+) controls activities of many enzymes and regulatory proteins. Voltage-gated calcium channels (VGCCs) serve as sensors for membrane depolarization. Blood pressure reduction is due to relaxation of actomyosine filaments in vascular smooth muscles. Calcium channel blockers (CCBs) are traditionally used for treatment of cardiovascular diseases. Neurotransmitter release from presynaptic neurons is triggered by Ca(2+) influx. Blockers of neuronal CCs may be applied for pain treatment. Overload of neurons by Ca(2+) is toxic. CCBs may be applied for prevention of some neurodegenerative disorders.
Collapse
Affiliation(s)
- Andrei A Kochegarov
- Department of Neurology, UCLA, 695 Charles E. Young Dr. 50, GONDA 5524, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Bodi I, Koch SE, Yamaguchi H, Szigeti GP, Schwartz A, Varadi G. The role of region IVS5 of the human cardiac calcium channel in establishing inactivated channel conformation: use-dependent block by benzothiazepines. J Biol Chem 2002; 277:20651-9. [PMID: 11912204 DOI: 10.1074/jbc.m200752200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of inactivated channel conformation and use dependence for diltiazem, a specific benzothiazepine calcium channel inhibitor, was studied in chimeric constructs and point mutants created in the IVS5 transmembrane segment of the L-type cardiac calcium channel. All mutations, chimeric or point mutations, were restricted to IVS5, while the YAI-containing segment in IVS6, i.e. the primary interaction site with benzothiazepines, remained intact. Slowed inactivation rate and incomplete steady state inactivation, a behavior of some mutants, were accompanied by a reduced or by a complete loss of use-dependent block by diltiazem. Single channel properties of mutants that lost use dependence toward diltiazem were characterized by drastically elongated mean open times and distinctly slower time constants of open time distribution. Mutation of individual residues of the IVMLF segment in IVS5 did not mimic the complete loss of use dependence as observed for the replacement of the whole stretch. These results establish evidence that amino acids that govern inactivation and the drug-binding site and other amino acids that are located distal from the putative drug-binding site contribute significantly to the function of the benzothiazepine receptor region. The data are consistent with a complex "pocket" conformation that is responsive to a specific class of L-type calcium channel inhibitors. The data allow for a concept that multiple sites within regions of the alpha(1) subunit contribute to auto-regulation of the L-type Ca(2+) channel.
Collapse
Affiliation(s)
- Ilona Bodi
- Institute of Molecular Pharmacology and Biophysics, the Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0828, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Gage MJ, Rane SG, Hockerman GH, Smith TJ. The virally encoded fungal toxin KP4 specifically blocks L-type voltage-gated calcium channels. Mol Pharmacol 2002; 61:936-44. [PMID: 11901234 DOI: 10.1124/mol.61.4.936] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
KP4 is a virally encoded fungal toxin secreted by the P4 killer strain of Ustilago maydis. Previous studies demonstrated that this toxin inhibits growth of the target fungal cells by blocking calcium uptake rather than forming channels, as had been suggested previously. Unexpectedly, this toxin was also shown to inhibit voltage-gated calcium channel activity in mammalian cells. We used whole-cell patch-clamp techniques to further characterize this activity against mammalian cells. KP4 is shown to specifically block L-type calcium channels with weak voltage dependence to the block. Because KP4 activity is abrogated by calcium, KP4 probably binds competitively with calcium to the channel exterior. Finally, it is shown that chemical reagents that modify lysine residues reduce KP4 activity in both patch-clamp experiments on mammalian cells and in fungal killing assays. Because the only lysine residue is K42, this residue seems to be crucial for both mammalian and fungal channel activity. Our results defining the type of mammalian channel affected by this fungal toxin further support our contention that KP4 inhibits fungal growth by blocking transmembrane calcium flux through fungal calcium channels, and imply a high degree of structural homology between these fungal and mammalian calcium channels.
Collapse
Affiliation(s)
- Matthew J Gage
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | | | | |
Collapse
|
37
|
Geib S, Sandoz G, Cornet V, Mabrouk K, Fund-Saunier O, Bichet D, Villaz M, Hoshi T, Sabatier JM, De Waard M. The interaction between the I-II loop and the III-IV loop of Cav2.1 contributes to voltage-dependent inactivation in a beta -dependent manner. J Biol Chem 2002; 277:10003-13. [PMID: 11790766 DOI: 10.1074/jbc.m106231200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the molecular mechanisms whereby the I-II loop controls voltage-dependent inactivation in P/Q calcium channels. We demonstrate that the I-II loop is localized in a central position to control calcium channel activity through the interaction with several cytoplasmic sequences; including the III-IV loop. Several experiments reveal the crucial role of the interaction between the I-II loop and the III-IV loop in channel inactivation. First, point mutations of two amino acid residues of the I-II loop of Ca(v)2.1 (Arg-387 or Glu-388) facilitate voltage-dependent inactivation. Second, overexpression of the III-IV loop, or injection of a peptide derived from this loop, produces a similar inactivation behavior than the mutated channels. Third, the III-IV peptide has no effect on channels mutated in the I-II loop. Thus, both point mutations and overexpression of the III-IV loop appear to act similarly on inactivation, by competing off the native interaction between the I-II and the III-IV loops of Ca(v)2.1. As they are known to affect inactivation, we also analyzed the effects of beta subunits on these interactions. In experiments in which the beta(4) subunit is co-expressed, the III-IV peptide is no longer able to regulate channel inactivation. We conclude that (i) the contribution of the I-II loop to inactivation is partly mediated by an interaction with the III-IV loop and (ii) the beta subunits partially control inactivation by modifying this interaction. These data provide novel insights into the mechanisms whereby the beta subunit, the I-II loop, and the III-IV loop altogether can contribute to regulate inactivation in high voltage-activated calcium channels.
Collapse
Affiliation(s)
- Sandrine Geib
- INSERM Unité 464, Laboratoire de Neurobiologie des Canaux Ioniques, Faculté de Médecine Nord, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shi C, Soldatov NM. Molecular determinants of voltage-dependent slow inactivation of the Ca2+ channel. J Biol Chem 2002; 277:6813-21. [PMID: 11751866 DOI: 10.1074/jbc.m110524200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ba(2+) current through the L-type Ca(2+) channel inactivates essentially by voltage-dependent mechanisms with fast and slow kinetics. Here we found that slow inactivation is mediated by an annular determinant composed of hydrophobic amino acids located near the cytoplasmic ends of transmembrane segments S6 of each repeat of the alpha(1C) subunit. We have determined the molecular requirements that completely obstruct slow inactivation. Critical interventions include simultaneous substitution of A752T in IIS6, V1165T in IIIS6, and I1475T in IVS6, each preventing in additive manner a considerable fraction of Ba(2+) current from inactivation. In addition, it requires the S405I mutation in segment IS6. The fractional inhibition of slow inactivation in tested mutants caused an acceleration of fast inactivation, suggesting that fast and slow inactivation mechanisms are linked. The channel lacking slow inactivation showed approximately 45% of the sustained Ba(2+) or Ca(2+) current with no indication of decay. The remaining fraction of the current was inactivated with a single-exponential decay (pi(f) approximately 10 ms), completely recovered from inactivation within 100 ms and did not exhibit Ca(2+)-dependent inactivation properties. No voltage-dependent characteristics were significantly changed, consistent with the C-type inactivation model suggesting constriction of the pore as the main mechanism possibly targeted by Ca(2+) sensors of inactivation.
Collapse
Affiliation(s)
- Chengzhang Shi
- NIA, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
39
|
Marksteiner R, Schurr P, Berjukow S, Margreiter E, Perez-Reyes E, Hering S. Inactivation determinants in segment IIIS6 of Ca(v)3.1. J Physiol 2001; 537:27-34. [PMID: 11711558 PMCID: PMC2278921 DOI: 10.1111/j.1469-7793.2001.0027k.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Low threshold, T-type, Ca(2+) channels of the Ca(v)3 family display the fastest inactivation kinetics among all voltage-gated Ca(2+) channels. The molecular inactivation determinants of this channel family are largely unknown. Here we investigate whether segment IIIS6 plays a role in Ca(v)3.1 inactivation as observed previously in high voltage-activated Ca(2+) channels. 2. Amino acids that are identical in IIIS6 segments of all Ca(2+) channel subtypes were mutated to alanine (F1505A, F1506A, N1509A, F1511A, V1512A, F1519A, FV1511/1512AA). Additionally M1510 was mutated to isoleucine and alanine. 3. The kinetic properties of the mutants were analysed with the two-microelectrode voltage-clamp technique after expression in Xenopus oocytes. The time constant for the barium current (I(Ba)) inactivation, tau(inact), of wild-type channels at -20 mV was 9.5 +/- 0.4 ms; the corresponding time constants of the mutants ranged from 9.2 +/- 0.4 ms in V1512A to 45.7 +/- 5.2 ms (4.8-fold slowing) in M1510I. Recovery at -80 mV was most significantly slowed by V1512A and accelerated by F1511A. 4. We conclude that amino acids M1510, F1511 and V1512 corresponding to previously identified inactivation determinants in IIIS6 of Ca(v)2.1 (Hering et al. 1998) have a significant role in Ca(v)3.1 inactivation. These data suggest common elements in the molecular architecture of the inactivation mechanism in high and low threshold Ca(2+) channels.
Collapse
Affiliation(s)
- R Marksteiner
- Institut für Biochemische Pharmakologie, Peter-Mayr-Strasse 1, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
40
|
Sokolov S, Timin E, Hering S. On the role of Ca(2+)- and voltage-dependent inactivation in Ca(v)1.2 sensitivity for the phenylalkylamine (-)gallopamil. Circ Res 2001; 89:700-8. [PMID: 11597993 DOI: 10.1161/hh2001.098983] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
L-type calcium channels (Ca(v)1.m) inactivate in response to elevation of intracellular Ca(2+) (Ca(2+)-dependent inactivation) and additionally by conformational changes induced by membrane depolarization (fast and slow voltage-dependent inactivation). Molecular determinants of inactivation play an essential role in channel inhibition by phenylalkylamines (PAAs). The relative impacts, however, of Ca(2+)-dependent and voltage-dependent inactivation in Ca(v)1.2 sensitivity for PAAs remain unknown. In order to analyze the role of the different inactivation processes, we expressed Ca(v)1.2 constructs composed of different beta-subunits (beta(1a)-, beta(2a)-, or beta(3)-subunit) in Xenopus oocytes and estimated their (-)gallopamil sensitivity by means of the two-microelectrode voltage clamp with either Ba(2+) or Ca(2+) as charge carrier. Ca(v)1.2 consisting of the beta(2a)-subunit displayed the slowest inactivation and the lowest apparent sensitivity for the PAA (-)gallopamil. A significantly higher apparent (-)gallopamil-sensitivity with Ca(2+) as charge carrier was observed for all 3 beta-subunit compositions. The kinetics of Ca(2+)-dependent inactivation and slow voltage-dependent inactivation were not affected by drug. The higher sensitivity of the Ca(v)1.2 channels for (-)gallopamil with Ca(2+) as charge carrier results from slower recovery (tau(rec,Ca) approximately 15 seconds versus tau(rec,Ba) approximately 3 to 5 seconds) from a PAA-induced channel conformation. We propose a model where (-)gallopamil promotes a fast voltage-dependent component in Ca(v)1.2 inactivation. The model reproduces the higher drug sensitivity in Ca(2+) as well as the lower sensitivity of slowly inactivating Ca(v)1.2 composed of the beta(2a)-subunit.
Collapse
Affiliation(s)
- S Sokolov
- Institut für Biochemische Pharmakologie, Innsbruck, Austria
| | | | | |
Collapse
|
41
|
Stotz SC, Zamponi GW. Identification of inactivation determinants in the domain IIS6 region of high voltage-activated calcium channels. J Biol Chem 2001; 276:33001-10. [PMID: 11402052 DOI: 10.1074/jbc.m104387200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently reported that transfer of the domain IIS6 region from rapidly inactivating R-type (alpha(1E)) calcium channels to slowly inactivating L-type (alpha(1C)) calcium channel confers rapid inactivation (Stotz, S. C., Hamid, J., Spaetgens, R. L., Jarvis, S. E., and Zamponi, G. W. (2000) J. Biol. Chem. 275, 24575-24582). Here we have identified individual amino acid residues in the IIS6 regions that are responsible for these effects. In this region, alpha(1C) and alpha(1E) channels differ in seven residues, and exchanging five of those residues individually or in combination did not significantly affect inactivation kinetics. By contrast, replacement of residues Phe-823 or Ile-829 of alpha(1C) with the corresponding alpha(1E) residues significantly accelerated inactivation rates and, when substituted concomitantly, approached the rapid inactivation kinetics of R-type channels. A systematic substitution of these residues with a series of other amino acids revealed that decreasing side chain size at position 823 accelerates inactivation, whereas a dependence of the inactivation kinetics on the degree of hydrophobicity could be observed at position 829. Although these point mutations facilitated rapid entry into the inactivated state of the channel, they had little to no effect on the rate of recovery from inactivation. This suggests that the development of and recovery from inactivation are governed by separate structural determinants. Finally, the effects of mutations that accelerated alpha(1C) inactivation could still be antagonized following coexpression of the rat beta(2a) subunit or by domain I-II linker substitutions that produce ultra slow inactivation of wild type channels, indicating that the inactivation kinetics seen with the mutants remain subject to regulation by the domain I-II linker. Overall, our results provide novel insights into a complex process underlying calcium channel inactivation.
Collapse
Affiliation(s)
- S C Stotz
- Department of Physiology and Biophysics, Neuroscience and Smooth Muscle Research Groups, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
42
|
Guida S, Trettel F, Pagnutti S, Mantuano E, Tottene A, Veneziano L, Fellin T, Spadaro M, Stauderman KA, Williams ME, Volsen S, Ophoff RA, Frants RR, Jodice C, Frontali M, Pietrobon D. Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2. Am J Hum Genet 2001; 68:759-64. [PMID: 11179022 PMCID: PMC1274487 DOI: 10.1086/318804] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2000] [Accepted: 01/08/2001] [Indexed: 11/03/2022] Open
Abstract
Familial hemiplegic migraine, episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 are allelic disorders of the CACNA1A gene (coding for the alpha(1A) subunit of P/Q calcium channels), usually associated with different types of mutations (missense, protein truncating, and expansion, respectively). However, the finding of expansion and missense mutations in patients with EA2 has blurred this genotype-phenotype correlation. We report the first functional analysis of a new missense mutation, associated with an EA2 phenotype-that is, T-->C transition of nt 4747 in exon 28, predicted to change a highly conserved phenylalanine residue to a serine at codon 1491, located in the putative transmembrane segment S6 of domain III. Patch-clamp recording in HEK 293 cells, coexpressing the mutagenized human alpha(1A-2) subunit, together with human beta(4) and alpha(2)delta subunits, showed that channel activity was completely abolished, although the mutated protein is expressed in the cell. These results indicate that a complete loss of P/Q channel function is the mechanism underlying EA2, whether due to truncating or to missense mutations.
Collapse
Affiliation(s)
- Serena Guida
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Flavia Trettel
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Stefano Pagnutti
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Elide Mantuano
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Angelita Tottene
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Liana Veneziano
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Tommaso Fellin
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Maria Spadaro
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Kenneth A. Stauderman
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Mark E. Williams
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Stephen Volsen
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Roel A. Ophoff
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Rune R. Frants
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Carla Jodice
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Marina Frontali
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| | - Daniela Pietrobon
- Department of Biology, Tor Vergata University, Institute of Experimental Medicine Consiglio Nazionale delle Ricerche, and Istituto di Clinica delle Malattie Nervose e Mentali, La Sapienza University, Rome; Department of Biomedical Sciences and National Research Council Centre of Biomembranes, University of Padova, Padova, Italy; SIBIA Neurosciences, La Jolla, CA; Lilly Research Center, Eli Lilly Company Limited, Windlesham, United Kingdom; UCLA Center for Neurobehavioral Genetics, Department of Psychiatry and Human Genetics, Los Angeles; and Medical Genetic Center Department of Human and Clinical Genetics, University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Röbe RJ, Grissmer S. Block of the lymphocyte K(+) channel mKv1.3 by the phenylalkylamine verapamil: kinetic aspects of block and disruption of accumulation of block by a single point mutation. Br J Pharmacol 2000; 131:1275-84. [PMID: 11090098 PMCID: PMC1572478 DOI: 10.1038/sj.bjp.0703723] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Phenylalkylamines (PAA) usually known for their action on L-type Ca(2+) channels potently block the C-type inactivating lymphocyte Kv1.3 channel resulting in inhibition of activation of T lymphocytes. In order to design PAAs blocking Kv1.3 specifically over L-type Ca(2+) channels, we investigated the state-dependent manner of mKv1. 3 block by the PAA verapamil. 2. Verapamil seems to have access to the open state (OB) and, once bound to the channel, the channel-verapamil complex is absorbed into a slowly recovering state. This state was proposed to be the inactivated blocked state (IB). Here we present a quantitative description of the transition into this state and provide evidence for the IB state through experiments with an inactivation lacking mutant channel. Since the inactivated state cannot be reached in this case the IB state cannot be reached either. 3. We show that the transition OB-->IB is accelerated by verapamil most likely through a mechanism involving the reduction of [K(+)] at an inactivation modulating low affinity binding site for K(+) at the outer vestibule. 4. Measurements of the voltage-dependence of the off-rate constants for verapamil suggest that verapamil can reach the channel in its neutral form and might get partially protonated while bound. Thus only those verapamil molecules that are protonated can more easily dissociate at hyperpolarizing voltages. 5. Since open block kinetics were shown to be similar for wild type mKv1.3 and the H404T mutant mKv1.3 channel, and since the block of the H404T mutant channels by verapamil could be described exactly by a simple three-state open block model, the mutant channel could serve as a screening channel to determine open block affinities of new PAA derivatives in high through-put experiments.
Collapse
Affiliation(s)
- Raphael J Röbe
- Department of Applied Physiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Stephan Grissmer
- Department of Applied Physiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Author for correspondence:
| |
Collapse
|
44
|
Hockerman GH, Dilmac N, Scheuer T, Catterall WA. Molecular determinants of diltiazem block in domains IIIS6 and IVS6 of L-type Ca(2+) channels. Mol Pharmacol 2000; 58:1264-70. [PMID: 11093762 DOI: 10.1124/mol.58.6.1264] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The benzothiazepine diltiazem blocks ionic current through L-type Ca(2+) channels, as do the dihydropyridines (DHPs) and phenylalkylamines (PAs), but it has unique properties that distinguish it from these other drug classes. Wild-type L-type channels containing alpha(1CII) subunits, wild-type P/Q-type channels containing alpha(1A) subunits, and mutants of both channel types were transiently expressed in tsA-201 cells with beta(1B) and alpha(2)delta subunits. Whole-cell, voltage-clamp recordings showed that diltiazem blocks L-type Ca(2+) channels approximately 5-fold more potently than it does P/Q-type channels. Diltiazem blocked a mutant P/Q-type channel containing nine amino acid changes that made it highly sensitive to DHPs, with the same potency as L-type channels. Thus, amino acids specific to the L-type channel that confer DHP sensitivity in an alpha(1A) background also increase sensitivity to diltiazem. Analysis of single amino acid mutations in domains IIIS6 and IVS6 of alpha(1CII) subunits confirmed the role of these L-type-specific amino acid residues in diltiazem block, and also indicated that Y1152 of alpha(1CII), an amino acid critical to both DHP and PA block, does not play a role in diltiazem block. Furthermore, T1039 and Y1043 in domain IIIS5, which are both critical for DHP block, are not involved in block by diltiazem. Conversely, three amino acid residues (I1150, M1160, and I1460) contribute to diltiazem block but have not been shown to affect DHP or PA block. Thus, binding of diltiazem to L-type Ca(2+) channels requires residues that overlap those that are critical for DHP and PA block as well as residues unique to diltiazem.
Collapse
Affiliation(s)
- G H Hockerman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA.
| | | | | | | |
Collapse
|
45
|
Hering S, Berjukow S, Sokolov S, Marksteiner R, Weiss RG, Kraus R, Timin EN. Molecular determinants of inactivation in voltage-gated Ca2+ channels. J Physiol 2000. [PMID: 11034614 DOI: 10.1111/j.1469‐7793.2000.t01‐1‐00237.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Evolution has created a large family of different classes of voltage-gated Ca2+ channels and a variety of additional splice variants with different inactivation properties. Inactivation controls the amount of Ca2+ entry during an action potential and is, therefore, believed to play an important role in tissue-specific Ca2+ signalling. Furthermore, mutations in a neuronal Ca2+ channel (Ca(v)2.1) that are associated with the aetiology of neurological disorders such as familial hemiplegic migraine and ataxia cause significant changes in the process of channel inactivation. Ca2+ channels of a given subtype may inactivate by three different conformational changes: a fast and a slow voltage-dependent inactivation process and in some channel types by an additional Ca2+-dependent inactivation mechanism. Inactivation kinetics of Ca2+ channels are determined by the intrinsic properties of their pore-forming alpha1-subunits and by interactions with other channel subunits. This review focuses on structural determinants of Ca2+ channel inactivation in different parts of Ca2+ channel alpha1-subunits, including pore-forming transmembrane segments and loops, intracellular domain linkers and the carboxyl terminus. Inactivation is also affected by the interaction of the alpha1-subunits with auxiliary beta-subunits and intracellular regulator proteins. The evidence shows that pore-forming S6 segments and conformational changes in extra- (pore loop) and intracellular linkers connected to pore-forming segments may play a principal role in the modulation of Ca2+ channel inactivation. Structural concepts of Ca2+ channel inactivation are discussed.
Collapse
Affiliation(s)
- S Hering
- Institut für Biochemische Pharmakologie, Peter-Mayr-Strasse 1, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
46
|
Hering S, Berjukow S, Sokolov S, Marksteiner R, Weiss RG, Kraus R, Timin EN. Molecular determinants of inactivation in voltage-gated Ca2+ channels. J Physiol 2000; 528 Pt 2:237-49. [PMID: 11034614 PMCID: PMC2270139 DOI: 10.1111/j.1469-7793.2000.t01-1-00237.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Evolution has created a large family of different classes of voltage-gated Ca2+ channels and a variety of additional splice variants with different inactivation properties. Inactivation controls the amount of Ca2+ entry during an action potential and is, therefore, believed to play an important role in tissue-specific Ca2+ signalling. Furthermore, mutations in a neuronal Ca2+ channel (Ca(v)2.1) that are associated with the aetiology of neurological disorders such as familial hemiplegic migraine and ataxia cause significant changes in the process of channel inactivation. Ca2+ channels of a given subtype may inactivate by three different conformational changes: a fast and a slow voltage-dependent inactivation process and in some channel types by an additional Ca2+-dependent inactivation mechanism. Inactivation kinetics of Ca2+ channels are determined by the intrinsic properties of their pore-forming alpha1-subunits and by interactions with other channel subunits. This review focuses on structural determinants of Ca2+ channel inactivation in different parts of Ca2+ channel alpha1-subunits, including pore-forming transmembrane segments and loops, intracellular domain linkers and the carboxyl terminus. Inactivation is also affected by the interaction of the alpha1-subunits with auxiliary beta-subunits and intracellular regulator proteins. The evidence shows that pore-forming S6 segments and conformational changes in extra- (pore loop) and intracellular linkers connected to pore-forming segments may play a principal role in the modulation of Ca2+ channel inactivation. Structural concepts of Ca2+ channel inactivation are discussed.
Collapse
Affiliation(s)
- S Hering
- Institut für Biochemische Pharmakologie, Peter-Mayr-Strasse 1, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
47
|
Sokolov S, Weiss RG, Timin EN, Hering S. Modulation of slow inactivation in class A Ca2+ channels by beta-subunits. J Physiol 2000; 527 Pt 3:445-54. [PMID: 10990532 PMCID: PMC2270100 DOI: 10.1111/j.1469-7793.2000.t01-1-00445.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
beta-subunit modulation of slow inactivation of class A calcium (Ca2+) channels was studied with two-microlectrode voltage clamp after expression of the alpha1A- (BI-2) together with beta1a-, beta2a-, beta3- or beta4-subunits in Xenopus oocytes. On- and off-rates of slow inactivation were estimated from the kinetics of recovery from slow inactivation. Ca2+ channels with an alpha1A/beta-subunit composition inducing the slower rate of fast inactivation displayed the faster rate of slow inactivation. The corresponding order of slow inactivation time constants (tau[onset]) was: alpha1A/beta2a, 33 +/- 3 s; alpha1A/beta4, 42 +/- 4 s; alpha1A/beta1a, 59 +/- 4 s; alpha1A/beta3, 67 +/- 5 s (n >= 7). Recovery of class A Ca2+ channels from slow inactivation was voltage dependent and accelerated at hyperpolarized voltages. At a given holding potential recovery kinetics were not significantly modulated by different beta-subunits. Two mutations in segment IIIS6 (IF1612/1613AA) slowed fast inactivation and accelerated the onset of slow inactivation in the resulting mutant (alpha1A/IF-AA/beta3) in a similar manner as coexpression of the beta2a-subunit. Recovery from slow inactivation was slightly slowed in the double mutant. Our data suggest that class A Ca2+ channels enter the 'slow inactivated' state more willingly from the open than from the 'fast inactivated' state. The rate of slow inactivation is, therefore, indirectly modulated by different beta-subunits. Fast and slow inactivation in class A Ca2+ channels appears to represent structurally independent conformational changes. Fast inactivation is not a prerequisite for slow inactivation.
Collapse
Affiliation(s)
- S Sokolov
- Institut fur Biochemische Pharmakologie, Peter-Mayr-Strasse 1, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
48
|
Stotz SC, Hamid J, Spaetgens RL, Jarvis SE, Zamponi GW. Fast inactivation of voltage-dependent calcium channels. A hinged-lid mechanism? J Biol Chem 2000; 275:24575-82. [PMID: 10823819 DOI: 10.1074/jbc.m000399200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently described domains II and III as important determinants of fast, voltage-dependent inactivation of R-type calcium channels (Spaetgens, R. L., and Zamponi, G. W. (1999) J. Biol. Chem. 274, 22428-22438). Here we examine in greater detail the structural determinants of inactivation using a series of chimeras comprising various regions of wild type alpha(1C) and alpha(1E) calcium channels. Substitution of the II S6 and/or III S6 segments of alpha(1E) into the alpha(1C) backbone resulted in rapid inactivation rates that closely approximated those of wild type alpha(1E) channels. However, neither individual or combined substitution of the II S6 and III S6 segments could account for the 60 mV more negative half-inactivation potential seen with wild type alpha(1E) channels, indicating that the S6 regions contribute only partially to the voltage dependence of inactivation. Interestingly, the converse replacement of alpha(1E) S6 segments of domains II, III, or II+III with those of alpha(1C) was insufficient to significantly slow inactivation rates. Only when the I-II linker region and the domain II and III S6 regions of alpha(1E) were concomitantly replaced with alpha(1C) sequence could inactivation be abolished. Conversely, introduction of the alpha(1E) domain I-II linker sequence into alpha(1C) conferred alpha(1E)-like inactivation rates, indicating that the domain I-II linker is a key contributor to calcium channel inactivation. Overall, our data are consistent with a mechanism in which inactivation of voltage-dependent calcium channels may occur via docking of the I-II linker region to a site comprising, at least in part, the domain II and III S6 segments.
Collapse
Affiliation(s)
- S C Stotz
- Department of Pharmacology and Therapeutics and the Neuroscience and Smooth Muscle Research Groups, University of Calgary, Calgary, T2N 4N1 Canada
| | | | | | | | | |
Collapse
|
49
|
Sokolov S, Weiss RG, Kurka B, Gapp F, Hering S. Inactivation determinant in the I-II loop of the Ca2+ channel alpha1-subunit and beta-subunit interaction affect sensitivity for the phenylalkylamine (-)gallopamil. J Physiol 1999; 519 Pt 2:315-22. [PMID: 10457051 PMCID: PMC2269510 DOI: 10.1111/j.1469-7793.1999.0315m.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The role of calcium (Ca2+) channel inactivation in the molecular mechanism of channel block by phenylalkylamines (PAAs) was analysed in a PAA-sensitive rabbit brain class A Ca2+ channel mutant (alpha1A-PAA). Use-dependent barium current (IBa) inhibition of alpha1A-PAA by (-)gallopamil and Ca2+ channel recovery from inactivation and block were studied with two-microlectrode voltage clamp after expression of alpha1A-PAA and auxiliary alpha2-delta- and beta1a- or beta2a-subunits in Xenopus oocytes. 2. Mutation Arg387Glu (alpha1A numbering) in the intracellular loop connecting domains I and II of alpha1A-PAA slowed the inactivation kinetics and reduced use-dependent inhibition (100 ms test pulses at 0.2 Hz from -80 to 20 mV) of the resulting mutant alpha1A-PAA/R-E/beta1a channels by 100 microM (-)gallopamil (53 +/- 2 %, alpha1A-PAA/beta1a vs. 31 +/- 2 %, alpha1A-PAA/R-E/beta1a, n >= 4). This amino acid substitution simultaneously accelerated the recovery of channels from inactivation and from block by (-)gallopamil. 3. Coexpression of alpha1A-PAA with the beta2a-subunit reduced fast IBa inactivation and induced a substantial reduction in use-dependent IBa inhibition by (-)gallopamil (25 +/- 4 %, alpha1A-PAA/beta2a; 13 +/- 1 %, alpha1A-PAA/R-E/beta2a). The time constant of recovery from block at rest was not significantly affected. 4. These results demonstrate that changes in channel inactivation induced by Arg387Glu or beta2a-alpha1-subunit interaction affect the drug-channel interaction.
Collapse
Affiliation(s)
- S Sokolov
- Institut für Biochemische Pharmakologie, Peter-Mayr-Strasse 1, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
50
|
Spaetgens RL, Zamponi GW. Multiple structural domains contribute to voltage-dependent inactivation of rat brain alpha(1E) calcium channels. J Biol Chem 1999; 274:22428-36. [PMID: 10428816 DOI: 10.1074/jbc.274.32.22428] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the molecular determinants that mediate the differences in voltage-dependent inactivation properties between rapidly inactivating (R-type) alpha(1E) and noninactivating (L-type) alpha(1C) calcium channels. When coexpressed in human embryonic kidney cells with ancillary beta(1b) and alpha(2)-delta subunits, the wild type channels exhibit dramatically different inactivation properties; the half-inactivation potential of alpha(1E) is 45 mV more negative than that observed with alpha(1C), and during a 150-ms test depolarization, alpha(1E) undergoes 65% inactivation compared with only about 15% for alpha(1C). To define the structural determinants that govern these intrinsic differences, we have created a series of chimeric calcium channel alpha(1) subunits that combine the major structural domains of the two wild type channels, and we investigated their voltage-dependent inactivation properties. Each of the four transmembrane domains significantly affected the half-inactivation potential, with domains II and III being most critical. In particular, substitution of alpha(1C) sequence in domains II or III with that of alpha(1E) resulted in 25-mV negative shifts in half-inactivation potential. Similarly, the differences in inactivation rate were predominantly governed by transmembrane domains II and III and to some extent by domain IV. Thus, voltage-dependent inactivation of alpha(1E) channels is a complex process that involves multiple structural domains and possibly a global conformational change in the channel protein.
Collapse
Affiliation(s)
- R L Spaetgens
- Department of Pharmacology and Therapeutics, Neuroscience Research Group, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|