1
|
Chen X, Hou X, Yang H, Liu H, Wang J, Wang C. Molecular interplay between ecdysone receptor and retinoid X receptor in regulating the molting of the Chinese mitten crab, Eriocheir sinensis. Front Endocrinol (Lausanne) 2023; 14:1251723. [PMID: 37929030 PMCID: PMC10621794 DOI: 10.3389/fendo.2023.1251723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Purpose Molting is a pivotal biological process regulated by the ecdysteroid signaling pathway that requires molecular coordination of two transcription factors, Ecdysone receptor (EcR) and ultraspiracle (USP) in arthropods. However, the molecular interplay of EcR and Retinoid X receptor (RXR), the crustacean homolog of USP in the ecdysteroid signaling pathway, is not well understood. Methods In this study, we conducted temporal and spatial expression, co-immunoprecipitation (CO-IP), and luciferase reporter assay experiments to investigate the molecular function and interplay of EcR and RXR during the molting process of the Chinese mitten crab, Eriocheir sinensis. Results The results showed that the expression level of RXR was more stable and significantly higher than EcR during the entire molting process. However, the expression level of EcR fluctuated dynamically and increased sharply at the premolt stage. The CO-IP and luciferase reporter assay results confirmed the molecular interplay of EcR and RXR. The heterodimer complex formed by the two transcription factors significantly induced the transcription of E75, an essential gene in the ecdysteroid signaling pathway. Conclusions Our study unveiled the diverse molecular function and molecular interplay of EcR and RXR; RXR is possibly a "constitutive-type" gene, and EcR is possibly a vital speed-limiting gene while both EcR and RXR are required to initiate the ecdysteroid signaling cascade, which may be indispensable for molting regulation in E. sinensis. The results provide a theoretical basis for the endocrine control of molting in E. sinensis and novel insights into the molecular mechanism of molting mediated by the ecdysteroid signaling pathway in crustaceans.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenghui Wang
- Key Laboratory of Freshwater Fisheries Germplasm Resources Certificated by The Ministry of Agriculture and Rural Affairs/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering/Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Palli SR. Juvenile hormone receptor Methoprene tolerant: Functions and applications. VITAMINS AND HORMONES 2023; 123:619-644. [PMID: 37718000 DOI: 10.1016/bs.vh.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
During the past 15years, after confirming Methoprene tolerant (Met) as a juvenile hormone (JH) receptor, tremendous progress has been made in understanding the function of Met in supporting JH signal transduction. Met role in JH regulation of development, including metamorphosis, reproduction, diapause, cast differentiation, behavior, im`munity, sleep and epigenetic modifications, have been elucidated. Met's Heterodimeric partners involved in performing some of these functions were discovered. The availability of JH response elements (JHRE) and JH receptor allowed the development of screening assays in cell lines and yeast. These screening assays facilitated the identification of new chemicals that function as JH agonists and antagonists. These new chemicals and others that will likely be discovered in the near future by using JH receptor and JHRE will lead to highly effective species-specific environmentally friendly insecticides for controlling pests and disease vectors.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
3
|
Zhang JJ, Xi GS, Zhao J. Vitellogenin regulates estrogen-related receptor expression by crosstalk with the JH and IIS-TOR signaling pathway in Polyrhachis vicina Roger (Hymenoptera, Formicidae). Gen Comp Endocrinol 2021; 310:113836. [PMID: 34181936 DOI: 10.1016/j.ygcen.2021.113836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022]
Abstract
The Estrogen-related receptor (ERR) can regulate the growth and development, metabolism, reproduction, and other physiological activities of insects, but its specific mechanism of action is still unclear. The aim of this study was to explore the relationship between expression of ERR and Vitellogenins (Vg) and the juvenile hormone (JH) and insulin/insulin-like growth factor/target of rapamycin (IIS/TOR) signaling pathways in Polyrhachis vicina Roger. P. vicina was used as the experimental model to clone the PvVg gene, perform double-stranded RNA synthesis and delivery and observe the effects of pharmacological treatments. The full-length PvVg cDNA product is 5586 bp. Higher PvVg mRNA expression was seen in the pupa and adults, and varying levels were seen in the different body parts of three different castes. RNA interference of PvVg expression led to disturbed development, an abnormal phenotype, and high mortality. PvVg RNAi also led to a reduction in mRNA levels of PvERR, ultraspiracle (PvUSP), forkhead box protein O (PvFOXO) and PvTOR genes in fourth instar larval, but a significant increase was seen in pupa and females. No significant change was seen in workers and males. After PvVg knockdown, application of exogenous JHIII reduced the expression of these genes in pupa and females, increased expression in workers, and decreased PvUSP mRNA expression in males. Both protein and mRNA expression levels of PvFOXO were affected by PvVg RNAi. PvERR RNAi increased PvVg expression in pupa and females and Kruppel-homolog 1 (PvKr-h1) and PvFOXO expression in males. The results of this study suggest that there is an interaction between PvERR and PvVg, and that crosstalk with the JH and IIS/TOR signaling pathways can affect development and reproduction. This effect is caste and developmental stage specific. We also speculate that the FOXO/USP complex participates in JH regulation of PvVg in P. vicina.
Collapse
Affiliation(s)
- Juan-Juan Zhang
- Department of Physical Education, Xi'an International Studies University, Shaanxi Province, Xi'an 710119, China.
| | - Geng-Si Xi
- College of Life Science, Shaanxi Normal University, Shaanxi Province, Xi'an 710119, China
| | - Jing Zhao
- Department of Physical Education, Xi'an International Studies University, Shaanxi Province, Xi'an 710119, China
| |
Collapse
|
4
|
In Silico Prediction of the Mechanism of Action of Pyriproxyfen and 4'-OH-Pyriproxyfen against A. mellifera and H. sapiens Receptors. Int J Mol Sci 2021; 22:ijms22147751. [PMID: 34299368 PMCID: PMC8306554 DOI: 10.3390/ijms22147751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background. Poisoning from pesticides can be extremely hazardous for non-invasive species, such as bees, and humans causing nearly 300,000 deaths worldwide every year. Several pesticides are recognized as endocrine disruptors compounds that alter the production of the normal hormones mainly by acting through their interaction with nuclear receptors (NRs). Among the insecticides, one of the most used is pyriproxyfen. As analogous to the juvenile hormone, the pyriproxyfen acts in the bee’s larval growth and creates malformations at the adult organism level. Methods. This work aims to investigate the possible negative effects of pyriproxyfen and its metabolite, the 4′-OH-pyriproxyfen, on human and bee health. We particularly investigated the mechanism of binding of pyriproxyfen and its metabolite with ultraspiracle protein/ecdysone receptor (USP-EcR) dimer of A. mellifera and the relative heterodimer farnesoid X receptor/retinoid X receptor alpha (FXR-RXRα) of H. sapiens using molecular dynamic simulations. Results. The results revealed that pyriproxyfen and its metabolite, the 4′-OH- pyriproxyfen, stabilize each dimer and resulted in stronger binders than the natural ligands. Conclusion. We demonstrated the endocrine interference of two pesticides and explained their possible mechanism of action. Furthermore, in vitro studies should be carried out to evaluate the biological effects of pyriproxyfen and its metabolite.
Collapse
|
5
|
Nicewicz AW, Sawadro MK, Nicewicz Ł, Babczyńska AI. Juvenile hormone in spiders. Is this the solution to a mystery? Gen Comp Endocrinol 2021; 308:113781. [PMID: 33862048 DOI: 10.1016/j.ygcen.2021.113781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/25/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022]
Abstract
The juvenile hormone (JH) plays a crucial role in arthropod physiological processes, e.g., the regulation of metamorphosis, development, and reproduction (the vitellogenesis, the development of gonads, egg production). Still, data about this sesquiterpenoid hormone in spiders (Araneae) are rudimentary and equivocal. The presence of the JH or its precursors (e.g. methyl farnesoate) is not confirmed in spiders. The site of synthesis of its is still undetermined. No receptors of the JH are identified in spiders and thus, the molecular mechanism of action of this group of hormones is still unknown. Here we show by using the phylogenetic analysis and qPCR method the presence of the transcript of the enzyme catalyzing the last phase of the JH biosynthesis pathway (epox CYP15A1), the JH receptor (Met), and a possible candidate to the methyl farnesoate receptor (USP) in the various tissues and stages of ontogenesis in both sexes of spider Parasteatoda tepidariorum. Our results indicate that the juvenile hormone and/or methyl farnesoate presence is possible in the species of spider P. tepidariorum. The presence of the Ptepox CYP15A1 gene suggests that the main site of the juvenile hormone synthesis can be the integument and not the Schneider organ 2. It also seems that the juvenile hormone and/or methyl farnesoate can be hormones with biological activity due to the presence of the transcript of insect and crustacean JH/MG receptor - Met. The Ptepox CYP15A1, PtMet, and Ptusp expression are sex-, tissue-and time-specific. This study is the first report about the presence of the Ptepox CYP15A1 and PtMet transcripts in the Arachnida, which may indicate the presence of the juvenile hormone and/or methyl farnesoate in spiders.
Collapse
Affiliation(s)
- Agata Wanda Nicewicz
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40007 Katowice, Poland.
| | - Marta Katarzyna Sawadro
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40007 Katowice, Poland
| | - Łukasz Nicewicz
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40007 Katowice, Poland
| | - Agnieszka Izabela Babczyńska
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40007 Katowice, Poland
| |
Collapse
|
6
|
Taubenheim J, Kortmann C, Fraune S. Function and Evolution of Nuclear Receptors in Environmental-Dependent Postembryonic Development. Front Cell Dev Biol 2021; 9:653792. [PMID: 34178983 PMCID: PMC8222990 DOI: 10.3389/fcell.2021.653792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors (NRs) fulfill key roles in the coordination of postembryonal developmental transitions in animal species. They control the metamorphosis and sexual maturation in virtually all animals and by that the two main environmental-dependent developmental decision points. Sexual maturation and metamorphosis are controlled by steroid receptors and thyroid receptors, respectively in vertebrates, while both processes are orchestrated by the ecdysone receptor (EcR) in insects. The regulation of these processes depends on environmental factors like nutrition, temperature, or photoperiods and by that NRs form evolutionary conserved mediators of phenotypic plasticity. While the mechanism of action for metamorphosis and sexual maturation are well studied in model organisms, the evolution of these systems is not entirely understood and requires further investigation. We here review the current knowledge of NR involvement in metamorphosis and sexual maturation across the animal tree of life with special attention to environmental integration and evolution of the signaling mechanism. Furthermore, we compare commonalities and differences of the different signaling systems. Finally, we identify key gaps in our knowledge of NR evolution, which, if sufficiently investigated, would lead to an importantly improved understanding of the evolution of complex signaling systems, the evolution of life history decision points, and, ultimately, speciation events in the metazoan kingdom.
Collapse
Affiliation(s)
| | | | - Sebastian Fraune
- Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Kim JH, Ko IK, Jeon MJ, Kim I, Vanschaayk MM, Atala A, Yoo JJ. Pelvic floor muscle function recovery using biofabricated tissue constructs with neuromuscular junctions. Acta Biomater 2021; 121:237-249. [PMID: 33321220 DOI: 10.1016/j.actbio.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023]
Abstract
Damages in pelvic floor muscles often cause dysfunction of the entire pelvic urogenital system, which is clinically challenging. A bioengineered skeletal muscle construct that mimics structural and functional characteristics of native skeletal muscle could provide a therapeutic option to restore normal muscle function. However, most of the current bioengineered muscle constructs are unable to provide timely innervation necessary for successful grafting and functional recovery. We previously have demonstrated that post-synaptic acetylcholine receptors (AChR) clusters can be pre-formed on cultured skeletal muscle myofibers with agrin treatment and suggested that implantation of AChR clusters containing myofibers could accelerate innervation and recovery of muscle function. In this study, we develop a 3-dimensional (3D) bioprinted human skeletal muscle construct, consisting of multi-layers bundles with aligned and AChR clusters pre-formed human myofibers, and investigate the effect of pre-formed AChR clusters in bioprinted skeletal muscle constructs and innervation efficiency in vivo. Agrin treatment successfully pre-formed functional AChR clusters on the bioprinted muscle constructs in vitro that increased neuromuscular junction (NMJ) formation in vivo in a transposed nerve implantation model in rats. In a rat model of pelvic floor muscle injury, implantation of skeletal muscle constructs containing the pre-formed AChR clusters resulted in functional muscle reconstruction with accelerated construct innervation. This approach may provide a therapeutic solution to the many challenges associated with pelvic floor reconstruction resulting from the lack of suitable bioengineered tissue for efficient innervation and muscle function restoration.
Collapse
|
8
|
Riddiford LM. Rhodnius, Golden Oil, and Met: A History of Juvenile Hormone Research. Front Cell Dev Biol 2020; 8:679. [PMID: 32850806 PMCID: PMC7426621 DOI: 10.3389/fcell.2020.00679] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Juvenile hormone (JH) is a unique sesquiterpenoid hormone which regulates both insect metamorphosis and insect reproduction. It also may be utilized by some insects to mediate polyphenisms and other life history events that are environmentally regulated. This article details the history of the research on this versatile hormone that began with studies by V. B. Wigglesworth on the "kissing bug" Rhodnius prolixus in 1934, through the discovery of a natural source of JH in the abdomen of male Hyalophora cecropia moths by C. M. Williams that allowed its isolation ("golden oil") and identification, to the recent research on its receptor, termed Methoprene-tolerant (Met). Our present knowledge of cellular actions of JH in metamorphosis springs primarily from studies on Rhodnius and the tobacco hornworm Manduca sexta, with recent studies on the flour beetle Tribolium castaneum, the silkworm Bombyx mori, and the fruit fly Drosophila melanogaster contributing to the molecular understanding of these actions. Many questions still need to be resolved including the molecular basis of competence to metamorphose, differential tissue responses to JH, and the interaction of nutrition and other environmental signals regulating JH synthesis and degradation.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| |
Collapse
|
9
|
Liu J, Yi J, Wu H, Zheng L, Zhang G. Prepupae and pupae transcriptomic characterization of Trichogramma chilonis. Genomics 2019; 112:1651-1659. [PMID: 31626898 DOI: 10.1016/j.ygeno.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 11/25/2022]
Abstract
The egg parasitoid, Trichogramma chilonis, has significant control effects on agriculture and forestry pests and is widely employed in southern China for the biological control of lepidopteran pests. In this study, transcriptomic analysis was used to gain a clear understanding of the molecular changes in prepupae and pupae of T. chilonis. A total of 16.88 Gb of clean data were obtained and finally assembled into 43,136 unigenes, 18,880 of which were annotated. After FPKM standardization, 117 and 838 specific expression genes were found in prepupae and pupae, respectively. There were 3129 differentially expressed genes between prepupae and pupae. Compared to pupae, 806 genes were up-regulated and 2323 were down-regulated in prepupae. Background on the T. chilonis transcriptome, the enriched GO function and KEGG pathway analysis of DEGs were considered. As indicated by GO classification, up-regulated genes were mainly involved in chitin metabolism, cell adhesion and endocytic, while most down-regulated genes were involved in synthesis of cell components, ion transport and biological regulation. KEGG enrichment analysis showed that 458 DEGs were enriched in 94 metabolic pathways. DEGs involved in nucleotide replication and transcription, substance metabolism, insect hormone biosynthesis, cell growth and death, reproductive metabolism, circadian rhythms and signal transduction pathways were up-regulated or down-regulated to different degrees, indicating that these genes played important roles during the process of metamorphosis in T. chilonis. This study provides a rich data source for the future study of T. chilonis molecular and biological mechanisms. A large number of genes related to metamorphosis were found based on comparison analysis between prepupae and pupae transcriptomes. This study lays a good foundation for in-depth study of gene transcription and regulation mechanisms during T. chilonis metamorphosis.
Collapse
Affiliation(s)
- Jianbai Liu
- State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiequn Yi
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou 510316, China
| | - Han Wu
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou 510316, China
| | - Lingyan Zheng
- State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guren Zhang
- State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
10
|
Steffen MA, Rehan SM. Genetic signatures of dominance hierarchies reveal conserved cis-regulatory and brain gene expression underlying aggression in a facultatively social bee. GENES BRAIN AND BEHAVIOR 2019; 19:e12597. [PMID: 31264771 DOI: 10.1111/gbb.12597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/29/2022]
Abstract
Agonistic interactions among individuals can result in the formation of dominance hierarches that can reinforce individual behavior and social status. Such dominance hierarches precede the establishment of reproductive dominance, division of labor and caste formation in highly social insect taxa. As such, deciphering the molecular basis of aggression is fundamental in understanding the mechanisms of social evolution. Assessing the proximate mechanisms of aggression in incipiently social bees can provide insights into the foundations of genomic mechanisms of social behavior. Here, we measured the effects of aggression on brain gene expression in the incipiently social bee, Ceratina australensis. We examine the brain transcriptomic differences between individuals who have experienced recurrent winning, losing, or a change in rank during repeated encounters. Using comparative analyses across taxa, we identify deeply conserved candidate genes, pathways, and regulatory networks for the formation of social hierarchies.
Collapse
Affiliation(s)
- Michael A Steffen
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire
| | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire
| |
Collapse
|
11
|
Falcon T, Pinheiro DG, Ferreira-Caliman MJ, Turatti ICC, de Abreu FCP, Galaschi-Teixeira JS, Martins JR, Elias-Neto M, Soares MPM, Laure MB, Figueiredo VLC, Lopes NP, Simões ZLP, Garófalo CA, Bitondi MMG. Exploring integument transcriptomes, cuticle ultrastructure, and cuticular hydrocarbons profiles in eusocial and solitary bee species displaying heterochronic adult cuticle maturation. PLoS One 2019; 14:e0213796. [PMID: 30870522 PMCID: PMC6417726 DOI: 10.1371/journal.pone.0213796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Differences in the timing of exoskeleton melanization and sclerotization are evident when comparing eusocial and solitary bees. This cuticular maturation heterochrony may be associated with life style, considering that eusocial bees remain protected inside the nest for many days after emergence, while the solitary bees immediately start outside activities. To address this issue, we characterized gene expression using large-scale RNA sequencing (RNA-seq), and quantified cuticular hydrocarbon (CHC) through gas chromatography-mass spectrometry in comparative studies of the integument (cuticle plus its underlying epidermis) of two eusocial and a solitary bee species. In addition, we used transmission electron microscopy (TEM) for studying the developing cuticle of these and other three bee species also differing in life style. We found 13,200, 55,209 and 30,161 transcript types in the integument of the eusocial Apis mellifera and Frieseomelitta varia, and the solitary Centris analis, respectively. In general, structural cuticle proteins and chitin-related genes were upregulated in pharate-adults and newly-emerged bees whereas transcripts for odorant binding proteins, cytochrome P450 and antioxidant proteins were overrepresented in foragers. Consistent with our hypothesis, a distance correlation analysis based on the differentially expressed genes suggested delayed cuticle maturation in A. mellifera in comparison to the solitary bee. However, this was not confirmed in the comparison with F. varia. The expression profiles of 27 of 119 genes displaying functional attributes related to cuticle formation/differentiation were positively correlated between A. mellifera and F. varia, and negatively or non-correlated with C. analis, suggesting roles in cuticular maturation heterochrony. However, we also found transcript profiles positively correlated between each one of the eusocial species and C. analis. Gene co-expression networks greatly differed between the bee species, but we identified common gene interactions exclusively between the eusocial species. Except for F. varia, the TEM analysis is consistent with cuticle development timing adapted to the social or solitary life style. In support to our hypothesis, the absolute quantities of n-alkanes and unsaturated CHCs were significantly higher in foragers than in the earlier developmental phases of the eusocial bees, but did not discriminate newly-emerged from foragers in C. analis. By highlighting differences in integument gene expression, cuticle ultrastructure, and CHC profiles between eusocial and solitary bees, our data provided insights into the process of heterochronic cuticle maturation associated to the way of life.
Collapse
Affiliation(s)
- Tiago Falcon
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Núcleo de Bioinformática, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Brazil
| | - Maria Juliana Ferreira-Caliman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Izabel C. C. Turatti
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Fabiano C. Pinto de Abreu
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juliana S. Galaschi-Teixeira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juliana R. Martins
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Moysés Elias-Neto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Michelle P. M. Soares
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marcela B. Laure
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vera L. C. Figueiredo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Zilá L. P. Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carlos A. Garófalo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Márcia M. G. Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Hyde CJ, Elizur A, Ventura T. The crustacean ecdysone cassette: A gatekeeper for molt and metamorphosis. J Steroid Biochem Mol Biol 2019; 185:172-183. [PMID: 30157455 DOI: 10.1016/j.jsbmb.2018.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
Arthropods have long been utilized as models to explore molecular function, and the findings derived from them can be applied throughout metazoa, including as a basis for medical research. This has led to the adoption of many representative insect models beyond Drosophila, as each lends its own unique perspective to questions in endocrinology and genetics. However, non-insect arthropods are yet to be realised for the potential insight they may provide in such studies. The Crustacea are among the most ancient arthropods from which insects descended, comprising a huge variety of life histories and ecological roles. Of the events in a typical crustacean development, metamorphosis is perhaps the most ubiquitous, challenging and highly studied. Despite this, our knowledge of the endocrinology which underpins metamorphosis is rudimentary at best; although several key molecules have been identified and studied in depth, the link between them is quite nebulous and leans heavily on well-explored insect models, which diverged from the Pancrustacea over 450 million years ago. As omics technologies become increasingly accessible, they bring the prospect of explorative molecular research which will allow us to uncover components and pathways unique to crustaceans. This review reconciles known components of crustacean metamorphosis and reflects on our findings in insects to outline a future search space, with focus given to the ecdysone cascade. To expand our knowledge of this ubiquitous endocrine system not only aids in our understanding of crustacean metamorphosis, but also provides a deeper insight into the adaptive capacity of arthropods throughout evolution.
Collapse
Affiliation(s)
- Cameron J Hyde
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Tomer Ventura
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia.
| |
Collapse
|
13
|
Zhang J, Xi G, Guo Z, Jia F. RNA-Seq analysis of Polyrhachis vicina Roger and insights into the heat shock protein 90 and 70 families. Cell Stress Chaperones 2019; 24:45-58. [PMID: 30377954 PMCID: PMC6363624 DOI: 10.1007/s12192-018-0940-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/25/2022] Open
Abstract
The heat shock protein 90 (Hsp90) and heat shock cognate proteins (Hsc70) have been identified as chaperones of the ecdysone receptor (EcR)/ultraspiracle protein (USP) heterocomplex. However, little is known about the status of Hsp90 and Hsc70 in Polyrhachis vicina Roger. Here, we sequenced the transcriptomes of adult ants in P. vicina for the first time. Clean reads in female, male, and worker ants were annotated into 40,147 transcripts, and 37,488, 28,300, and 33,638 unigenes were assembled in female, male, and worker ants, respectively. According to RPKM, the numbers of differentially expressed genes between female and male ants, between female and worker ants, and between male and worker ants and the common differentially expressed genes were 12,657, 21,630, 15,112 and 3704, respectively. These results reveal that caste differentiation, caste specificity formation, and social divisions of P. vicina ants may be due to gene expression differences. Moreover, PvEcR and PvUSP were also detected as differentially expressed genes in the ants; specifically, PvUSP expression was higher than PvEcR expression in all castes. We speculate that PvUSP may have a role similar to that of juvenile hormone receptor. Four identified PvHsp90 family members and 23 identified PvHsp70 family members were found in the ants, and 2 PvHsp90 genes and 8 PvHsp70 genes were analyzed by qRT-PCR. Among those genes, the expression of 2 PvHsp90 genes and 5 PvHsp70 genes coincided with the expression profiles of PvEcR and PvUSP, which suggest that the characterization of PvHsp90 and PvHsc70 may be as EcR/USP molecular chaperones in P. vicina.
Collapse
Affiliation(s)
- JuanJuan Zhang
- Institute of Zoology, College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, People's Republic of China
| | - GengSi Xi
- Institute of Zoology, College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, People's Republic of China.
| | - ZhiYi Guo
- Institute of Zoology, College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, People's Republic of China
| | - FengHua Jia
- Institute of Zoology, College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, People's Republic of China
| |
Collapse
|
14
|
Qu Z, Bendena WG, Tobe SS, Hui JHL. Juvenile hormone and sesquiterpenoids in arthropods: Biosynthesis, signaling, and role of MicroRNA. J Steroid Biochem Mol Biol 2018; 184:69-76. [PMID: 29355708 DOI: 10.1016/j.jsbmb.2018.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
Arthropod molting and reproduction are precisely controlled by the levels of sesquiterpenoids, a class of C15 hormones derived from three isoprene units. The two major functional arthropod sesquiterpenoids are juvenile hormone (JH) and methyl farnesoate (MF). In hemimetabolous insects (such as the aphids, bugs, and cockroaches) and holometabolous insects (such as beetles, bees, butterflies, and flies), dramatic decrease in the titers of JH and/or MF promote metamorphosis from larvae to adults either directly or through an intermediate pupal stage, respectively. JH is absent in crustaceans (lobster, shrimp, crab) and other arthropods (chelicerates such as ticks, mites, spiders, scorpions and myriapods such as millipede and centipedes). In some crustaceans, molting and reproduction is dependent on changing levels of MF. The regulation of sesquiterpenoid production is thus crucial in the life cycle of arthropods. Dynamic and complex mechanisms have evolved to regulate sesquiterpenoid production. Noncoding RNAs such as the microRNAs are primary regulators. This article provides an overview of microRNAs that are known to regulate sesquiterpenoid production in arthropods.
Collapse
Affiliation(s)
- Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | | | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Canada.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
15
|
Rebijith KB, Asokan R, Hande HR, Krishna Kumar NK. The First Report of miRNAs from a Thysanopteran Insect, Thrips palmi Karny Using High-Throughput Sequencing. PLoS One 2016; 11:e0163635. [PMID: 27685664 PMCID: PMC5042526 DOI: 10.1371/journal.pone.0163635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022] Open
Abstract
Thrips palmi Karny (Thysanoptera: Thripidae) is the sole vector of Watermelon bud necrosis tospovirus, where the crop loss has been estimated to be around USD 50 million annually. Chemical insecticides are of limited use in the management of T. palmi due to the thigmokinetic behaviour and development of high levels of resistance to insecticides. There is an urgent need to find out an effective futuristic management strategy, where the small RNAs especially microRNAs hold great promise as a key player in the growth and development. miRNAs are a class of short non-coding RNAs involved in regulation of gene expression either by mRNA cleavage or by translational repression. We identified and characterized a total of 77 miRNAs from T. palmi using high-throughput deep sequencing. Functional classifications of the targets for these miRNAs revealed that majority of them are involved in the regulation of transcription and translation, nucleotide binding and signal transduction. We have also validated few of these miRNAs employing stem-loop RT-PCR, qRT-PCR and Northern blot. The present study not only provides an in-depth understanding of the biological and physiological roles of miRNAs in governing gene expression but may also lead as an invaluable tool for the management of thysanopteran insects in the future.
Collapse
Affiliation(s)
- K. B. Rebijith
- Division of Biotechnology, Indian Institute of Horticultural Research, Bangalore, India
- * E-mail: ;
| | - R. Asokan
- Division of Biotechnology, Indian Institute of Horticultural Research, Bangalore, India
- * E-mail: ;
| | - H. Ranjitha Hande
- Division of Biotechnology, Indian Institute of Horticultural Research, Bangalore, India
| | - N. K. Krishna Kumar
- Division of Horticultural Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
16
|
Liu W, Li Y, Zhu L, Zhu F, Lei CL, Wang XP. Juvenile hormone facilitates the antagonism between adult reproduction and diapause through the methoprene-tolerant gene in the female Colaphellus bowringi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 74:50-60. [PMID: 27180724 DOI: 10.1016/j.ibmb.2016.05.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
In insects, the process whereby juvenile hormone (JH) regulates short-day (SD)-induced reproductive diapause has been previously investigated. However, we still do not understand the mechanism by which JH regulates long-day (LD)-induced reproductive diapause. In this study, we use a cabbage beetle, Colaphellus bowringi, which is a serious pest of cruciferous vegetables in Asia capable of entering reproductive diapause under LD conditions, as a model to test whether JH regulates female reproductive diapause similar to the mechanism of SD-induced diapause. Our results showed that the JH analog (JHA) methoprene significantly induced ovarian development but inhibited lipid accumulation of diapause-destined adults. Meanwhile, the transcripts of the vitellogenin (Vg) genes were upregulated, whereas the expression of the fat synthesis and stress tolerance genes were downregulated. RNA interference of the JH candidate receptor gene methoprene-tolerant (Met) blocked JH-induced ovarian development and Vg transcription, suggesting a positive regulatory function for JH-Met signaling in reproduction. Furthermore, under reproduction-inducing conditions, Met depletion promoted a diapause-like phenotype, including arrested ovarian development and increased lipid storage, and stimulated the expression of diapause-related genes involved in lipid synthesis and stress tolerance, suggesting JH-Met signaling plays an important role in the inhibition of diapause. Accordingly, our data indicate that JH acts through Met to facilitate development of the reproductive system by upregulating Vg expression while inhibiting diapause by suppressing lipid synthesis and stress tolerance in the cabbage beetle. Combined with previous studies in SD-induced reproductive diapause, we conclude that JH may regulate female reproductive diapause using a conserved Met-dependent pathway, regardless of the length of the photoperiod inducing diapause in insects.
Collapse
Affiliation(s)
- Wen Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yi Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Li Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fen Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiao-Ping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
17
|
Gong J, Huang C, Shu L, Bao C, Huang H, Ye H, Zeng C, Li S. The retinoid X receptor from mud crab: new insights into its roles in ovarian development and related signaling pathway. Sci Rep 2016; 6:23654. [PMID: 27009370 PMCID: PMC4806290 DOI: 10.1038/srep23654] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/08/2016] [Indexed: 11/09/2022] Open
Abstract
In arthropods, retinoid X receptor (RXR) is a highly conserved nuclear hormone receptor. By forming a heterodimeric complex with the ecdysone receptor (EcR), RXR is known to be vital importance for various physiological processes. However, in comparison to EcR, the RXR signaling pathway and its roles in crustacean reproduction are poorly understood. In the present study, the RXR mRNA was detected in the ovarian follicular cells of mud crab Scylla paramamosain (SpRXR) and during ovarian maturation, its expression level was found to increase significantly. In vitro experiment showed that both SpRXR and vitellogenin (SpVg) mRNA in the ovarian explants were significantly induced by 20-hydroxyecdysone (20E) but not methyl farnesoate (MF). However, differing from the in vitro experiment, injection of MF in in vivo experiment significantly stimulated the expressions of SpRXR and SpVg in female crabs at early vitellogenic stage, but the ecdysone and insect juvenile hormone (JH) signaling pathway genes were not induced. The results together suggest that both MF and SpRXR play significant roles in regulating the expression of SpVg and ovarian development of S. paramamosain through their own specific signaling pathway rather than sharing with the ecdysone or the insect JH.
Collapse
Affiliation(s)
- Jie Gong
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- School of Life Sciences, Nantong University, Nantong 226007, China
| | - Chencui Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ling Shu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Chenchang Bao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, China
| | - Chaoshu Zeng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Shaojing Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
18
|
Wheeler MM, Ament SA, Rodriguez-Zas SL, Southey B, Robinson GE. Diet and endocrine effects on behavioral maturation-related gene expression in the pars intercerebralis of the honey bee brain. ACTA ACUST UNITED AC 2015; 218:4005-14. [PMID: 26567353 DOI: 10.1242/jeb.119420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 10/22/2015] [Indexed: 01/05/2023]
Abstract
Nervous and neuroendocrine systems mediate environmental conditions to control a variety of life history traits. Our goal was to provide mechanistic insights as to how neurosecretory signals mediate division of labor in the honey bee (Apis mellifera). Worker division of labor is based on a process of behavioral maturation by individual bees, which involves performing in-hive tasks early in adulthood, then transitioning to foraging for food outside the hive. Social and nutritional cues converge on endocrine factors to regulate behavioral maturation, but whether neurosecretory systems are central to this process is not known. To explore this, we performed transcriptomic profiling of a neurosecretory region of the brain, the pars intercerebralis (PI). We first compared PI transcriptional profiles for bees performing in-hive tasks and bees engaged in foraging. Using these results as a baseline, we then performed manipulative experiments to test whether the PI is responsive to dietary changes and/or changes in juvenile hormone (JH) levels. Results reveal a robust molecular signature of behavioral maturation in the PI, with a subset of gene expression changes consistent with changes elicited by JH treatment. In contrast, dietary changes did not induce transcriptomic changes in the PI consistent with behavioral maturation or JH treatment. Based on these results, we propose a new verbal model of the regulation of division of labor in honey bees in which the relationship between diet and nutritional physiology is attenuated, and in its place is a relationship between social signals and nutritional physiology that is mediated by JH.
Collapse
Affiliation(s)
| | - Seth A Ament
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Bruce Southey
- Department of Animal Sciences, UIUC, Urbana, IL 61801, USA
| | - Gene E Robinson
- Department of Entomology, UIUC, Urbana, IL 61801, USA Institute for Genomic Biology, UIUC, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Jindra M, Uhlirova M, Charles JP, Smykal V, Hill RJ. Genetic Evidence for Function of the bHLH-PAS Protein Gce/Met As a Juvenile Hormone Receptor. PLoS Genet 2015; 11:e1005394. [PMID: 26161662 PMCID: PMC4498814 DOI: 10.1371/journal.pgen.1005394] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/26/2015] [Indexed: 12/31/2022] Open
Abstract
Juvenile hormones (JHs) play a major role in controlling development and reproduction in insects and other arthropods. Synthetic JH-mimicking compounds such as methoprene are employed as potent insecticides against significant agricultural, household and disease vector pests. However, a receptor mediating effects of JH and its insecticidal mimics has long been the subject of controversy. The bHLH-PAS protein Methoprene-tolerant (Met), along with its Drosophila melanogaster paralog germ cell-expressed (Gce), has emerged as a prime JH receptor candidate, but critical evidence that this protein must bind JH to fulfill its role in normal insect development has been missing. Here, we show that Gce binds a native D. melanogaster JH, its precursor methyl farnesoate, and some synthetic JH mimics. Conditional on this ligand binding, Gce mediates JH-dependent gene expression and the hormone's vital role during development of the fly. Any one of three different single amino acid mutations in the ligand-binding pocket that prevent binding of JH to the protein block these functions. Only transgenic Gce capable of binding JH can restore sensitivity to JH mimics in D. melanogaster Met-null mutants and rescue viability in flies lacking both Gce and Met that would otherwise die at pupation. Similarly, the absence of Gce and Met can be compensated by expression of wild-type but not mutated transgenic D. melanogaster Met protein. This genetic evidence definitively establishes Gce/Met in a JH receptor role, thus resolving a long-standing question in arthropod biology.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, North Ryde, New South Wales, Australia
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jean-Philippe Charles
- Centre des Sciences du Gout et de l’Alimentation (CSGA), CNRS 6265, INRA 1324, Université Bourgogne-Franche-Comté, Dijon, France
| | - Vlastimil Smykal
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Ronald J. Hill
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, North Ryde, New South Wales, Australia
| |
Collapse
|
20
|
Khamis AM, Hamilton AR, Medvedeva YA, Alam T, Alam I, Essack M, Umylny B, Jankovic BR, Naeger NL, Suzuki M, Harbers M, Robinson GE, Bajic VB. Insights into the Transcriptional Architecture of Behavioral Plasticity in the Honey Bee Apis mellifera. Sci Rep 2015; 5:11136. [PMID: 26073445 PMCID: PMC4466890 DOI: 10.1038/srep11136] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/01/2015] [Indexed: 12/30/2022] Open
Abstract
Honey bee colonies exhibit an age-related division of labor, with worker bees performing discrete sets of behaviors throughout their lifespan. These behavioral states are associated with distinct brain transcriptomic states, yet little is known about the regulatory mechanisms governing them. We used CAGEscan (a variant of the Cap Analysis of Gene Expression technique) for the first time to characterize the promoter regions of differentially expressed brain genes during two behavioral states (brood care (aka “nursing”) and foraging) and identified transcription factors (TFs) that may govern their expression. More than half of the differentially expressed TFs were associated with motifs enriched in the promoter regions of differentially expressed genes (DEGs), suggesting they are regulators of behavioral state. Strikingly, five TFs (nf-kb, egr, pax6, hairy, and clockwork orange) were predicted to co-regulate nearly half of the genes that were upregulated in foragers. Finally, differences in alternative TSS usage between nurses and foragers were detected upstream of 646 genes, whose functional analysis revealed enrichment for Gene Ontology terms associated with neural function and plasticity. This demonstrates for the first time that alternative TSSs are associated with stable differences in behavior, suggesting they may play a role in organizing behavioral state.
Collapse
Affiliation(s)
- Abdullah M Khamis
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Adam R Hamilton
- Departments of Entomology and Institute for Genomic Biology, Urbana, IL 61801; and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yulia A Medvedeva
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Tanvir Alam
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Boris Umylny
- Lumenogix Inc., 2935 Rodeo Park Drive East, Santa Fe NM, 87505, USA
| | - Boris R Jankovic
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nicholas L Naeger
- Departments of Entomology and Institute for Genomic Biology, Urbana, IL 61801; and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Makoto Suzuki
- DNAFORM Inc., Leading Venture Plaza-2, 75-1, Ono-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0046, Japan
| | - Matthias Harbers
- 1] DNAFORM Inc., Leading Venture Plaza-2, 75-1, Ono-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0046, Japan [2] RIKEN Center for Life Science Technologies, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Gene E Robinson
- Departments of Entomology and Institute for Genomic Biology, Urbana, IL 61801; and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Vladimir B Bajic
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
21
|
Huang MX, Du J, Su BJ, Zhao GD, Shen WD, Wei ZG. The expression profile and promoter analysis of ultraspiracle gene in the silkworm Bombyx mori. Mol Biol Rep 2014; 41:7955-65. [DOI: 10.1007/s11033-014-3690-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 08/21/2014] [Indexed: 12/01/2022]
|
22
|
Zhao WL, Liu CY, Liu W, Wang D, Wang JX, Zhao XF. Methoprene-tolerant 1 regulates gene transcription to maintain insect larval status. J Mol Endocrinol 2014; 53:93-104. [PMID: 24872508 DOI: 10.1530/jme-14-0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insect molting and metamorphosis are regulated by two hormones: 20-hydroxyecdysone (20E) and juvenile hormone (JH). The hormone 20E regulates gene transcription via the nuclear receptor EcR to promote metamorphosis, whereas JH regulates gene transcription via its intracellular receptor methoprene-tolerant (Met) to prevent larval-pupal transition. However, the function and mechanism of Met in various insect developments are not well understood. We propose that Met1 plays a key role in maintaining larval status not only by promoting JH-responsive gene transcription but also by repressing 20E-responsive gene transcription in the Lepidopteran insect Helicoverpa armigera. Met1 protein is increased during feeding stage and decreased during molting and metamorphic stages. Met1 is upregulated by JH III and a low concentration of 20E independently, but is downregulated by a high concentration of 20E. Knockdown of Met1 in larvae causes precocious pupation, decrease in JH pathway gene expression, and increase in 20E pathway gene expression. Met1 interacts with heat shock protein 90 and binds to JH response element to regulate Krüppel homolog 1 transcription in JH III induction. Met1 interacts with ultraspiracle protein 1 (USP1) to repress 20E transcription complex EcRB1/USP1 formation and binding to ecdysone response element. These data indicate that JH via Met1 regulates JH pathway gene expression and represses 20E pathway gene expression to maintain the larval status.
Collapse
Affiliation(s)
- Wen-Li Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Chun-Yan Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Wen Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Di Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
23
|
Ren B, Peat TS, Streltsov VA, Pollard M, Fernley R, Grusovin J, Seabrook S, Pilling P, Phan T, Lu L, Lovrecz GO, Graham LD, Hill RJ. Unprecedented conformational flexibility revealed in the ligand-binding domains of theBovicola ovisecdysone receptor (EcR) and ultraspiracle (USP) subunits. ACTA ACUST UNITED AC 2014; 70:1954-64. [DOI: 10.1107/s1399004714009626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/28/2014] [Indexed: 11/10/2022]
Abstract
The heterodimeric ligand-binding region of theBovicola ovisecdysone receptor has been crystallized either in the presence of an ecdysteroid or a synthetic methylene lactam insecticide. Two X-ray crystallographic structures, determined at 2.7 Å resolution, show that the ligand-binding domains of both subunits of this receptor, like those of other nuclear receptors, can display significant conformational flexibility. Thermal melt experiments show that while ponasterone A stabilizes the higher order structure of the heterodimer in solution, the methylene lactam destabilizes it. The conformations of the EcR and USP subunits observed in the structure crystallized in the presence of the methylene lactam have not been seen previously in any ecdysone receptor structure and represent a new level of conformational flexibility for these important receptors. Interestingly, the new USP conformation presents an open, unoccupied ligand-binding pocket.
Collapse
|
24
|
Nuclear receptors in nematode development: Natural experiments made by a phylum. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:224-37. [PMID: 24984201 DOI: 10.1016/j.bbagrm.2014.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/21/2022]
Abstract
The development of complex multicellular organisms is dependent on regulatory decisions that are necessary for the establishment of specific differentiation and metabolic cellular states. Nuclear receptors (NRs) form a large family of transcription factors that play critical roles in the regulation of development and metabolism of Metazoa. Based on their DNA binding and ligand binding domains, NRs are divided into eight NR subfamilies from which representatives of six subfamilies are present in both deuterostomes and protostomes indicating their early evolutionary origin. In some nematode species, especially in Caenorhabditis, the family of NRs expanded to a large number of genes strikingly exceeding the number of NR genes in vertebrates or insects. Nematode NRs, including the multiplied Caenorhabditis genes, show clear relation to vertebrate and insect homologues belonging to six of the eight main NR subfamilies. This review summarizes advances in research of nematode NRs and their developmental functions. Nematode NRs can reveal evolutionarily conserved mechanisms that regulate specific developmental and metabolic processes as well as new regulatory adaptations. They represent the results of a large number of natural experiments with structural and functional potential of NRs for the evolution of the phylum. The conserved and divergent character of nematode NRs adds a new dimension to our understanding of the general biology of regulation by NRs. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|
25
|
Scholl C, Wang Y, Krischke M, Mueller MJ, Amdam GV, Rössler W. Light exposure leads to reorganization of microglomeruli in the mushroom bodies and influences juvenile hormone levels in the honeybee. Dev Neurobiol 2014; 74:1141-53. [DOI: 10.1002/dneu.22195] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Christina Scholl
- Behavioral Physiology and Sociobiology (Zoology II); Biocenter; University of Würzburg; 97074 Würzburg Germany
| | - Ying Wang
- School of Life Sciences; Arizona State University; Tempe 85004 Arizona USA
| | - Markus Krischke
- Pharmaceutical Biology; Biocenter; Julius-von-Sachs-Institute for Biosciences; University of Würzburg; 97082 Würzburg Germany
| | - Martin J. Mueller
- Pharmaceutical Biology; Biocenter; Julius-von-Sachs-Institute for Biosciences; University of Würzburg; 97082 Würzburg Germany
| | - Gro V. Amdam
- School of Life Sciences; Arizona State University; Tempe 85004 Arizona USA
- Department of Chemistry; Biotechnology; and Food Science; University of Life Sciences; 1432 Aas Norway
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II); Biocenter; University of Würzburg; 97074 Würzburg Germany
| |
Collapse
|
26
|
Géminard C, González-Morales N, Coutelis JB, Noselli S. The myosin ID pathway and left-right asymmetry in Drosophila. Genesis 2014; 52:471-80. [PMID: 24585718 DOI: 10.1002/dvg.22763] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/12/2022]
Abstract
Drosophila is a classical model to study body patterning, however left-right (L/R) asymmetry had remained unexplored, until recently. The discovery of the conserved myosin ID gene as a major determinant of L/R asymmetry has revealed a novel L/R pathway involving the actin cytoskeleton and the adherens junction. In this process, the HOX gene Abdominal-B plays a major role through the control of myosin ID expression and therefore symmetry breaking. In this review, we present organs and markers showing L/R asymmetry in Drosophila and discuss our current understanding of the underlying molecular genetic mechanisms. Drosophila represents a valuable model system revealing novel strategies to establish L/R asymmetry in invertebrates and providing an evolutionary perspective to the problem of laterality in bilateria.
Collapse
Affiliation(s)
- Charles Géminard
- Université de Nice Sophia Antipolis, institut de Biologie Valrose, iBV, Parc Valrose, Nice cedex 2, France; CNRS, institut de Biologie Valrose, iBV, UMR 7277, Parc Valrose, Nice cedex 2, France; INSERM, institut de Biologie Valrose, iBV, U1091, Parc Valrose, Nice cedex 2, France
| | | | | | | |
Collapse
|
27
|
The hormone-dependent function of Hsp90 in the crosstalk between 20-hydroxyecdysone and juvenile hormone signaling pathways in insects is determined by differential phosphorylation and protein interactions. Biochim Biophys Acta Gen Subj 2013; 1830:5184-92. [DOI: 10.1016/j.bbagen.2013.06.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/05/2013] [Accepted: 06/29/2013] [Indexed: 11/19/2022]
|
28
|
Buttstedt A, Moritz RFA, Erler S. Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family. Biol Rev Camb Philos Soc 2013; 89:255-69. [PMID: 23855350 DOI: 10.1111/brv.12052] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/17/2022]
Abstract
In the honeybee, Apis mellifera, the queen larvae are fed with a diet exclusively composed of royal jelly (RJ), a secretion of the hypopharyngeal gland of young worker bees that nurse the brood. Up to 15% of RJ is composed of proteins, the nine most abundant of which have been termed major royal jelly proteins (MRJPs). Although it is widely accepted that RJ somehow determines the fate of a female larva and in spite of considerable research efforts, there are surprisingly few studies that address the biochemical characterisation and functions of these MRJPs. Here we review the research on MRJPs not only in honeybees but in hymenopteran insects in general and provide metadata analyses on genome organisation of mrjp genes, corroborating previous reports that MRJPs have important functions for insect development and not just a nutritional value for developing honeybee larvae.
Collapse
Affiliation(s)
- Anja Buttstedt
- Departamentul de Apicultură şi Sericicultură, Facultatea de Zootehnie şi Biotehnologii, Universitatea de Ştiinţe Agricole şi Medicină Veterinară, Cluj-Napoca, 400372, Romania; Institut für Biologie, Zoologie-Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Halle, 06099, Germany
| | | | | |
Collapse
|
29
|
Hui J, Bendena W, Tobe S. Future Perspectives for Research on the Biosynthesis of Juvenile Hormones and Related Sesquiterpenoids in Arthropod Endocrinology and Ecotoxicology. QSAR IN ENVIRONMENTAL AND HEALTH SCIENCES 2013. [DOI: 10.1201/b14899-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Andruszewska G, Ożyhar A, Kochman M, Schmidt M. Different pattern of Galleria mellonella jhbp gene expression in high five and Sf9 cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 82:141-157. [PMID: 23334896 DOI: 10.1002/arch.21081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Juvenile hormone binding protein (JHBP) is the key element of the system that transmits hormone signals to target tissues. Recently, we found that the core promoter of the jhbp gene is strongly under the control of the TATA box and the transcription start site. In this report, we have shown that the jhbp promoter contains distal regulatory elements whose functionality clearly depends on the particular cell environment and that the scope of research from one cell line is insufficient to generalize the conclusions of the analysis. Cf1/Usp (where Usp is ultraspiracle protein previously known as Cf1, chorion factor 1) elements suppressed transcription of the reporter gene in the High Five cell line but not in the Sf9 cell line. However, upstream from all three Cf1/Usp elements there is a DNA sequence, containing the Zeste element, which activates jhbp in both systems. We found that juvenile hormone strongly inhibited the activity of the jhbp promoter in the Sf9 cell line, whereas it did not have an effect in the High Five cell line. A second key hormone that controls insect development--20-hydroxyecdysone, was also found to suppress the transcription of jhbp. This is the first report describing how these two hormones affect jhbp gene expression in different cell lines.
Collapse
Affiliation(s)
- Grażyna Andruszewska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego, Wrocław, Poland
| | | | | | | |
Collapse
|
31
|
Jones G, Teal P, Henrich VC, Krzywonos A, Sapa A, Wozniak M, Smolka J, Jones D. Ligand binding pocket function of Drosophila USP is necessary for metamorphosis. Gen Comp Endocrinol 2013; 182:73-82. [PMID: 23211750 DOI: 10.1016/j.ygcen.2012.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/22/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
Abstract
The widely accepted paradigm that epoxidized methyl farnesoates ("juvenile hormones," JHs) are the principal sesquiterpenoid hormones regulating insect metamorphosis was assessed in Drosophila melanogaster. GC-MS analysis of circulating methyl farnesoids during the mid to late 3rd instar showed that methyl farnesoate is predominant over methyl epoxyfarnesoate (=JH III). The circulating concentration of methyl farnesoate (reaching nearly 500 nM), was easily high enough on a kinetic basis to load the Drosophila ortholog of the nuclear hormone receptor RXR (also known as "ultraspiracle," USP), whereas the circulating concentrations of JH III and methyl bisepoxyfarnesoate (bisepoxyJH III) were not. The hypothesis that the ligand pocket of USP necessarily binds an endogenous ligand for differentiation of the immature to the adult was tested with USP mutated at residue that normally extends a side chain into the ligand binding pocket. An equilibrium binding assay confirmed that the mutation (Q288A) strongly altered methyl farnesoate interaction with USP, while a heterologous cell-line transfection assay confirmed that the mutation did not allosterically alter the transcriptional response of the ultraspiracle/ecdysone receptor heterodimer to ecdysteroid signaling. Transgenic wildtype USP driven by the cognate natural promoter rescued null animals to develop to the adult inside a normally formed puparium, while in contrast animals transgenically expressing instead the ligand pocket mutant exhibited developmental derangement at the larval to pupal transition, including failure to form a properly shaped or sclerotized puparium. Other point mutations to the pocket strongly reducing affinity for methyl farnesoate similarly disrupted the larval to pupal metamorphosis. These results suggest that normal larval to pupal maturation in this mecopteran model insect requires the involvement of a distinct endocrine axis of USP binding to its own endogenous terpenoid ligand.
Collapse
Affiliation(s)
- Grace Jones
- Department of Biology, University of Kentucky, Lexington, KY 40504, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Musille PM, Kohn JA, Ortlund EA. Phospholipid--driven gene regulation. FEBS Lett 2013; 587:1238-46. [PMID: 23333623 DOI: 10.1016/j.febslet.2013.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 12/15/2022]
Abstract
Phospholipids (PLs), well known for their fundamental role in cellular structure, play critical signaling roles via their derivatives and cleavage products acting as second messengers in signaling cascades. Recent work has shown that intact PLs act as signaling molecules in their own right by modulating the activity of nuclear hormone transcription factors responsible for tuning genes involved in metabolism, lipid flux, steroid synthesis and inflammation. As such, PLs have been classified as novel hormones. This review highlights recent work in PL-driven gene regulation with a focus on the unique structural features of phospholipid-sensing transcription factors and what sets them apart from well known soluble phospholipid transporters.
Collapse
Affiliation(s)
- Paul M Musille
- Department of Biochemistry, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
33
|
Nunes FMF, Ihle KE, Mutti NS, Simões ZLP, Amdam GV. The gene vitellogenin affects microRNA regulation in honey bee (Apis mellifera) fat body and brain. J Exp Biol 2013; 216:3724-32. [DOI: 10.1242/jeb.089243] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Summary
In honey bees, Vitellogenin (Vg) is hypothesized to be a major factor affecting hormone signaling, food-related behavior, immunity, stress resistance and lifespan. Likewise microRNAs play important roles in posttranscriptional gene regulation and affect many biological processes. The action of microRNAs and Vg are known to intersect in the context of reproduction; however, the role of these associations on social behavior is unknown. The phenotypic effects of Vg knockdown are best established and studied in the forager stage of workers. Thus, we exploited the well-established RNA interference (RNAi) protocol for Vg knockdown to investigate its downstream effects on microRNA population in honey bee foragers' brain and fat body tissue. To identify microRNAs that are differentially expressed between tissues in control and knockdown foragers, we used µParaflo® microfluidic oligonucleotide microRNA microarrays. Our results show 76 and 74 microRNAs were expressed in the brain of control and knockdown foragers whereas 66 and 69 microRNAs were expressed in the fat body of control and knockdown foragers respectively. Target prediction identified potential seed matches for a differentially expressed subset of microRNAs affected by Vg knockdown. These candidate genes are involved in a broad range of biological processes including insulin signaling, juvenile hormone (JH) and ecdysteroid signaling previously shown to affect foraging behavior. Thus, here we demonstrate a causal link between the Vg knockdown forager phenotype and variation in the abundance of microRNAs in different tissues with possible consequences for regulation of foraging behavior.
Collapse
|
34
|
Bielska K, Seliga J, Wieczorek E, Kędracka-Krok S, Niedenthal R, Ożyhar A. Alternative sumoylation sites in the Drosophila nuclear receptor Usp. J Steroid Biochem Mol Biol 2012; 132:227-38. [PMID: 22676916 DOI: 10.1016/j.jsbmb.2012.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/24/2012] [Accepted: 05/28/2012] [Indexed: 01/09/2023]
Abstract
The ultraspiracle protein (Usp), together with an ecdysone receptor (EcR) forms a heterodimeric ecdysteroid receptor complex, which controls metamorphosis in Drosophila melanogaster. Although the ecdysteroid receptor is considered to be a source of elements for ecdysteroid inducible gene switches in mammals, nothing is known about posttranslational modifications of the receptor constituents in mammalian cells. Up until now there has been no study about Usp sumoylation. Using Ubc9 fusion-directed sumoylation system, we identified Usp as a new target of SUMO1 and SUMO3 modification. Mutagenesis studies on the fragments of Usp indicated that sumoylation can occur alternatively on several defined Lys residues, i.e. three (Lys16, Lys20, Lys37) in A/B region, one (Lys424) in E region and one (Lys506) in F region. However, sumoylation of one Lys residue within A/B region prevents modification of other residues in this region. This was also observed for Lys residues in carboxyl-terminal fragment of Usp, i.e. comprising E and F regions. Mass spectrometry analysis of the full-length Usp indicated that the main SUMO attachment site is at Lys20. EcR, the heterodimerization partner of Usp, and muristerone A, the EcR ligand, do not influence sumoylation patterns of Usp. Another heterodimerization partner of Usp - HR38 fused with Ubc9 interacts with Usp in HEK293 cells and allows sumoylation of Usp independent of the direct fusion to Ubc9. Taken together, we propose that sumoylation of DmUsp can be an important factor in modulating its activity by changing molecular interactions.
Collapse
Affiliation(s)
- Katarzyna Bielska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
35
|
Jindra M, Palli SR, Riddiford LM. The juvenile hormone signaling pathway in insect development. ANNUAL REVIEW OF ENTOMOLOGY 2012; 58:181-204. [PMID: 22994547 DOI: 10.1146/annurev-ento-120811-153700] [Citation(s) in RCA: 526] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The molecular action of juvenile hormone (JH), a regulator of vital importance to insects, was until recently regarded as a mystery. The past few years have seen an explosion of studies of JH signaling, sparked by a finding that a JH-resistance gene, Methoprene-tolerant (Met), plays a critical role in insect metamorphosis. Here, we summarize the recently acquired knowledge on the capacity of Met to bind JH, which has been mapped to a particular ligand-binding domain, thus establishing this bHLH-PAS protein as a novel type of an intracellular hormone receptor. Next, we consider the significance of JH-dependent interactions of Met with other transcription factors and signaling pathways. We examine the regulation and biological roles of genes acting downstream of JH and Met in insect metamorphosis. Finally, we discuss the current gaps in our understanding of JH action and outline directions for future research.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic
| | | | | |
Collapse
|
36
|
Wang Y, Brent CS, Fennern E, Amdam GV. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees. PLoS Genet 2012; 8:e1002779. [PMID: 22761585 PMCID: PMC3386229 DOI: 10.1371/journal.pgen.1002779] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/07/2012] [Indexed: 12/11/2022] Open
Abstract
Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor). Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America.
| | | | | | | |
Collapse
|
37
|
Song HY, Kim MY, Kim BY, Park SW, Sung DK, Kang PD, Park C, Jeon SH, Lee BH. Increase of 30K protein in identified motoneurons by hemolymph results in inhibition of programmed cell death in silkworm, Bombyx mori (Lepidoptera, Bombycidae). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:756-762. [PMID: 22414538 DOI: 10.1016/j.jinsphys.2012.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/03/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
This study demonstrates that a 30K protein was gradually synthesized in primary-cultured motoneurons from the accessory planta retractor (APR) of the 6th abdominal ganglion (APR6) in silkworm ventral ganglia through stimulation of hemolymph. An increase in 30K protein synthesis resulted in an inhibition of programmed cell death (PCD) of APR6 motoneurons. The 30K protein was gradually synthesized from the 30Kc6 gene of identified APR6s in day-6 4th instars to day-9 5th instar larvae, but synthesis of the 30K protein ceased in isolated APR6s of day-1 pupa, which normally begin to undergo PCD. When pupal APR6s were treated with larval hemolymph, however, the 30K protein was synthesized suggesting the existence of an anti-PCD factor in the larval hemolymph. An increase of 30K protein within the APR6s was confirmed by antiserum made against the recombinant 30K protein that originated from the APR 30Kc6 gene. Larval APR6, in which PCD was induced with 20-hydroxyecdysone (20E) added to the primary culture, exhibited some PCD characteristics of shrinkage of cell bodies, axonal fragmentation and loss of mitochondrial function. These results provide new insights on the survival or PCD of insect motoneurons through stimulation of hemolymph.
Collapse
Affiliation(s)
- Hwa Young Song
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ament SA, Wang Y, Chen CC, Blatti CA, Hong F, Liang ZS, Negre N, White KP, Rodriguez-Zas SL, Mizzen CA, Sinha S, Zhong S, Robinson GE. The transcription factor ultraspiracle influences honey bee social behavior and behavior-related gene expression. PLoS Genet 2012; 8:e1002596. [PMID: 22479195 PMCID: PMC3315457 DOI: 10.1371/journal.pgen.1002596] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 01/30/2012] [Indexed: 01/30/2023] Open
Abstract
Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily “nursing” brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP–chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH– and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how “single gene effects” on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues. Animals use behavior as one of the principal means of meeting their basic needs and responding flexibly to changes in their environment. An emerging insight is that changes in behavior are associated with massive changes in gene expression in the brain, but we know relatively little about how these changes are regulated. One important class of gene regulators are transcription factors (TF), proteins that orchestrate the expression of tens to thousands of genes. We discovered that ultraspiracle (USP), a TF previously known primarily for its role in development, regulates behavioral change in the honey bee; and we show that USP causes behaviorally related changes in gene expression by mediating responses to an endocrine regulator, juvenile hormone. We present evidence that these effects on gene expression occur through combinatorial interactions between USP and other TFs, and that these hormonally related transcriptional networks are preserved between two tissues with causal roles in behavioral plasticity: the brain and the fat body, a peripheral nutrient-sensing organ. These results suggest that behavior is subserved by complex interactions between genes and gene networks, occurring both in the brain and in peripheral tissues. More generally our results suggest that molecular systems biology is a promising paradigm by which to understand the mechanistic basis for behavior.
Collapse
Affiliation(s)
- Seth A. Ament
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ying Wang
- Department of Cellular and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Chieh-Chun Chen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Charles A. Blatti
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Feng Hong
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Zhengzheng S. Liang
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nicolas Negre
- Institute for Genomics and Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Kevin P. White
- Institute for Genomics and Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Craig A. Mizzen
- Department of Cellular and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sheng Zhong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gene E. Robinson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Cellular and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
39
|
Tiu SHK, Hult EF, Yagi KJ, Tobe SS. Farnesoic acid and methyl farnesoate production during lobster reproduction: possible functional correlation with retinoid X receptor expression. Gen Comp Endocrinol 2012; 175:259-69. [PMID: 22137909 DOI: 10.1016/j.ygcen.2011.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/02/2011] [Accepted: 11/11/2011] [Indexed: 11/24/2022]
Abstract
Farnesoic acid (FA) and methyl farnesoate (MF) are juvenile hormone-related compounds secreted by the mandibular organ (MO) of crustaceans and play an important role in stimulation of ovarian maturation. To better understand how the MO activity influences female reproduction by secretion of FA and MF, the biosynthesis and release of these two compounds were measured in vitro by the incorporation of l-[(3)H-methyl]methionine into MF and [2-(14)C]acetate into FA by the MO of Homarus americanus. The production of FA is 7.5 times that of MF, and most FA and MF synthesized remained within the gland, and was not released into the surrounding medium. Most FA and MF were synthesized in the anterior fan-fold region of the MO. The rates of biosynthesis of FA and MF were stage-related, with maximal production occurring during secondary vitellogenesis (i.e. stages 4 and 5). A potential juvenoid receptor, retinoid X receptor (RXR), HaRXR, was characterized using PCR cloning techniques. HaRXR belongs to the nuclear hormone receptor superfamily and its deduced amino acid sequence shares a high homology to other RXRs of crustaceans, insects, and vertebrates. Transcripts of HaRXR can be detected in many tissues, and significant high expression level was detected in the MO, especially in the anterior fan-fold region. Expression of HaRXR was also related to reproductive stage, and maximal level of expression was observed at stage 4, in which secondary vitellogenesis is occurring. Changes in transcript level of HaRXR and the rates of FA/MF biosynthesis in the female reproductive cycle indicate that HaRXR and FA/MF may play important roles in crustacean reproduction.
Collapse
Affiliation(s)
- Shirley Hiu-Kwan Tiu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| | | | | | | |
Collapse
|
40
|
Kim J, Kim Y, Lee S, Kwak K, Chung WJ, Choi K. Determination of mRNA expression of DMRT93B, vitellogenin, and cuticle 12 in Daphnia magna and their biomarker potential for endocrine disruption. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1741-1748. [PMID: 21656159 DOI: 10.1007/s10646-011-0707-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/29/2011] [Indexed: 05/30/2023]
Abstract
We explored the use of molecular genetic biomarkers for endocrine disruption in Daphnia magna after the exposure to fenoxycarb (FOC), a model juvenile hormone analog. For this purpose, the mRNA expression patterns of DMRT93B (DMRT, sex determination), cuticle 12 (CUT, molting), and vitellogenin (VTG, embryo development) were determined in D. magna. Furthermore, these results were compared with developmental abnormality and reproduction performance. The fold changes of CUT and VTG mRNA expression showed significant dose-response relationship with FOC exposure. Relative mRNA expressions of DMRT and CUT showed notable changes at as low as 1 ng/l FOC. After chronic exposure FOC significantly delayed the first day of reproduction and decreased the number of young and growth rate even at 10 ng/l FOC. A concentration-dependant trend in reproduction effect was also observed. Developmental abnormality such as poorly developed second antennae and curved or unextended shell spines were observed. These results suggest that the three mRNAs, i.e., DMRT, CUT, and VTG can be used as biomarkers of endocrine disrupting effects in D. magna.
Collapse
Affiliation(s)
- Jungkon Kim
- School of Public Health, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Giraudo M, Califano J, Hilliou F, Tran T, Taquet N, Feyereisen R, Le Goff G. Effects of hormone agonists on Sf9 cells, proliferation and cell cycle arrest. PLoS One 2011; 6:e25708. [PMID: 21991338 PMCID: PMC3185036 DOI: 10.1371/journal.pone.0025708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/08/2011] [Indexed: 12/19/2022] Open
Abstract
Methoxyfenozide and methoprene are two insecticides that mimic the action of the main hormones involved in the control of insect growth and development, 20-hydroxyecdysone and juvenile hormone. We investigated their effect on the Spodoptera frugiperda Sf9 cell line. Methoxyfenozide was more toxic than methoprene in cell viability tests and more potent in the inhibition of cellular proliferation. Cell growth arrest occurred in the G2/M phase after a methoprene treatment and more modestly in G1 after methoxyfenozide treatment. Microarray experiments and real-time quantitative PCR to follow the expression of nuclear receptors ultraspiracle and ecdysone receptor were performed to understand the molecular action of these hormone agonists. Twenty-six genes were differentially expressed after methoxyfenozide treatment and 55 genes after methoprene treatment with no gene in common between the two treatments. Our results suggest two different signalling pathways in Sf9 cells.
Collapse
Affiliation(s)
- Maeva Giraudo
- Institut National de la Recherche Agronomique, UMR 1301 Interactions Biotiques et Santé Végétale, Centre National de la Recherche Scientifique, UMR 6243, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
- UMR 6023 CNRS-Université Blaise Pascal, Bât. Biologie A – Campus des Cézeaux, Aubière, France
| | - Jérôme Califano
- Institut National de la Recherche Agronomique, UMR 1301 Interactions Biotiques et Santé Végétale, Centre National de la Recherche Scientifique, UMR 6243, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
- Département des affaires réglementaires, Grasse, France
| | - Frédérique Hilliou
- Institut National de la Recherche Agronomique, UMR 1301 Interactions Biotiques et Santé Végétale, Centre National de la Recherche Scientifique, UMR 6243, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
| | - Trang Tran
- Institut National de la Recherche Agronomique, UMR 1301 Interactions Biotiques et Santé Végétale, Centre National de la Recherche Scientifique, UMR 6243, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
- Lanaud Gestion-Pôle de Lanaud, Boisseuil, France
| | - Nathalie Taquet
- Institut National de la Recherche Agronomique, UMR 1301 Interactions Biotiques et Santé Végétale, Centre National de la Recherche Scientifique, UMR 6243, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
- Bioimagerie, Villeneuve Loubet, France
| | - René Feyereisen
- Institut National de la Recherche Agronomique, UMR 1301 Interactions Biotiques et Santé Végétale, Centre National de la Recherche Scientifique, UMR 6243, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
| | - Gaëlle Le Goff
- Institut National de la Recherche Agronomique, UMR 1301 Interactions Biotiques et Santé Végétale, Centre National de la Recherche Scientifique, UMR 6243, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
- * E-mail:
| |
Collapse
|
42
|
Hult EF, Tobe SS, Chang BSW. Molecular evolution of ultraspiracle protein (USP/RXR) in insects. PLoS One 2011; 6:e23416. [PMID: 21901121 PMCID: PMC3162005 DOI: 10.1371/journal.pone.0023416] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/16/2011] [Indexed: 12/20/2022] Open
Abstract
Ultraspiracle protein/retinoid X receptor (USP/RXR) is a nuclear receptor and transcription factor which is an essential component of a heterodimeric receptor complex with the ecdysone receptor (EcR). In insects this complex binds ecdysteroids and plays an important role in the regulation of growth, development, metamorphosis and reproduction. In some holometabolous insects, including Lepidoptera and Diptera, USP/RXR is thought to have experienced several important shifts in function. These include the acquisition of novel ligand-binding properties and an expanded dimerization interface with EcR. In light of these recent hypotheses, we implemented codon-based likelihood methods to investigate if the proposed shifts in function are reflected in changes in site-specific evolutionary rates across functional and structural motifs in insect USP/RXR sequences, and if there is any evidence for positive selection at functionally important sites. Our results reveal evidence of positive selection acting on sites within the loop connecting helices H1 and H3, the ligand-binding pocket, and the dimer interface in the holometabolous lineage leading to the Lepidoptera/Diptera/Trichoptera. Similar analyses conducted using EcR sequences did not indicate positive selection. However, analyses allowing for variation across sites demonstrated elevated non-synonymous/synonymous rate ratios (d(N)/d(S)), suggesting relaxed constraint, within the dimerization interface of both USP/RXR and EcR as well as within the coactivator binding groove and helix H12 of USP/RXR. Since the above methods are based on the assumption that d(S) is constant among sites, we also used more recent models which relax this assumption and obtained results consistent with traditional random-sites models. Overall our findings support the evolution of novel function in USP/RXR of more derived holometabolous insects, and are consistent with shifts in structure and function which may have increased USP/RXR reliance on EcR for cofactor recruitment. Moreover, these findings raise important questions regarding hypotheses which suggest the independent activation of USP/RXR by its own ligand.
Collapse
Affiliation(s)
- Ekaterina F. Hult
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen S. Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Belinda S. W. Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Tremmel C, Azoitei A, Schaefer M, Hollmann H, Spindler-Barth M. Influence of helix 12 of Ultraspiracle on Drosophila melanogaster ecdysone receptor function. INSECT MOLECULAR BIOLOGY 2011; 20:417-428. [PMID: 21585578 DOI: 10.1111/j.1365-2583.2011.01077.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Although it has no ligand, helix 12 in the ligand binding domain of Ultraspiracle (USP) is locked in an antagonistic position. To investigate whether this position is of functional importance, we enhanced the flexibility of helix 12 by mutating two amino acids (259, located in L1-3 and F491 in helix 12). Mutated USP reduces the stability of USP and all isoforms of the ecdysone receptor (EcR) and impairs nuclear localization and DNA binding of EcR/USP(L259A/F491/A), resulting in lower levels of basal transcriptional activity. Although the affinity of the ligand ponasterone A to EcR/USP(L259/F491) is moderately diminished, hormone-induced stimulation of transcriptional activity is normal. Potentiation of the ecdysone response by juvenile hormone (JH) is selectively increased in mutated heterodimers with EcR-B1, demonstrating that the antagonistic position impairs functional interaction of the EcR complex with JHIII.
Collapse
Affiliation(s)
- Ch Tremmel
- Institute of General Zoology and Endocrinology, Ulm University, D-89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
44
|
Yang XH, Liu PC, Zheng WW, Wang JX, Zhao XF. The juvenile hormone analogue methoprene up-regulates the Ha-RNA-binding protein. Mol Cell Endocrinol 2011; 333:172-80. [PMID: 21193013 DOI: 10.1016/j.mce.2010.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
RNA-binding proteins (RBPs) associate with RNA in cells to form ribonucleoprotein (RNP) complexes. The RBPs are involved in various aspects of RNA metabolism, but their roles in the juvenile hormone (JH) signaling pathway are not well known. An RNA-binding protein (Ha-RBP) was obtained from Helicoverpa armigera, a lepidopteran insect, which could be up-regulated by the juvenile hormone analogue methoprene at the mRNA level. Immunohistochemistry showed that Ha-RBP was mainly distributed in cells where protein synthesis was active, and its knockdown decreased the protein levels of JH-responsive genes. Immunocytochemistry showed that Ha-RBP was located in both the nucleus and the cytoplasm of normal cells, and methoprene could promote the translocation of Ha-RBP from the nucleus to the cytoplasm. This process was mediated by the JH receptor candidate HaMet but not by the ultraspiracle protein (USP). The knockdown of HaMet by RNAi decreased the expression of Ha-RBP and blocked its translocation from the nucleus to the cytoplasm. Together these findings indicate that Ha-RBP is involved in the juvenile hormone signaling pathway and Met mediates JH signaling by regulating Ha-RBP translocation from nucleus to cytoplasm, which may allow Ha-RBP to modify protein translation.
Collapse
Affiliation(s)
- Xiao-Hui Yang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda Road 27, Jinan 250100, China
| | | | | | | | | |
Collapse
|
45
|
Tremmel C, Schaefer M, Azoitei A, Ruff H, Spindler-Barth M. Interaction of the N-terminus of ecdysone receptor isoforms with the ligand-binding domain. Mol Cell Endocrinol 2011; 332:293-300. [PMID: 21094674 DOI: 10.1016/j.mce.2010.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
Ecdysone receptor (EcR) isoforms exert different biological functions, although they vary only in their N-terminal domain. Despite identical C-termini, which mediate hormone-induced activity, the influence of ligand is isoform specific, which indicates an N/C-interaction. The position of helix 12 with and without hormone varies among isoforms and modifies N/C-interaction determined by fluorescence resonance-energy transfer (FRET), which depends on the salt bridge between helices 4 and 12 of the ligand-binding domain (LBD). Disruption of the salt bridge by mutation of K497 (helix 4) had no effect on basal N/C-interaction, but prevented the hormone-induced increase, which was partially restored by a salt bridge with reversed polarity. The heterodimerization partner Ultraspiracle (Usp) can compensate for the disruption of the salt bridge. Without ligand the AB-domains of EcR-A and EcR-B1, but not EcR-B2, interact with the LBD via K497 and repress transcriptional activity. This intramolecular cross talk between N- and C-terminus along with the position of helix 12 stabilized by K497 regulates transcriptional activity of EcR isoforms.
Collapse
Affiliation(s)
- Ch Tremmel
- Institute of General Zoology and Endocrinology, Ulm University, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
46
|
Ament SA, Wang Y, Robinson GE. Nutritional regulation of division of labor in honey bees: toward a systems biology perspective. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:566-576. [PMID: 20836048 DOI: 10.1002/wsbm.73] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Organisms adapt their behavior and physiology to environmental conditions through processes of phenotypic plasticity. In one well-studied example, the division of labor among worker honey bees involves a stereotyped yet plastic pattern of behavioral and physiological maturation. Early in life, workers perform brood care and other in-hive tasks and have large internal nutrient stores; later in life, they forage for nectar and pollen outside the hive and have small nutrient stores. The pace of maturation depends on colony conditions, and the environmental, physiological, and genomic mechanisms by which this occurs are being actively investigated. Here we review current knowledge of the mechanisms by which a key environmental variable, nutritional status, influences worker honey bee division of labor. These studies demonstrate that changes in individual nutritional status and conserved food-related molecular and hormonal pathways regulate the age at which individual bees begin to forage. We then outline ways in which systems biology approaches, enabled by the sequencing of the honey bee genome, will allow researchers to gain deeper insight into nutritional regulation of honey bee behavior, and phenotypic plasticity in general.
Collapse
Affiliation(s)
- Seth A Ament
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA
| | - Ying Wang
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | - Gene E Robinson
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA.,Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA.,Entomology Department, University of Illinois, Urbana, IL 61801, USA.,Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
47
|
The knockdown of Ha-GRIM-19 by RNA interference induced programmed cell death. Amino Acids 2010; 42:1297-307. [DOI: 10.1007/s00726-010-0824-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/07/2010] [Indexed: 01/27/2023]
|
48
|
Nagaraju GPC, Prasad GLV, Taliaferro-Smith L, Aruna BV, Naik BR, Sekhar YN. Computational analysis of the structural basis of ligand binding to the crustacean retinoid X receptor. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 5:317-24. [PMID: 20937572 DOI: 10.1016/j.cbd.2010.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 09/09/2010] [Accepted: 09/12/2010] [Indexed: 11/29/2022]
Abstract
Homodimerization of the retinoid X receptor (RXR) occurs upon binding of ligands to the receptor, but little is known about structural mechanisms involved in RXR ligand binding. In the present study, binding of known ligands (5-Hydroxytryptamine, dopamine and naloxone) to the Celuca pugilator RXR was modeled computationally using the human RXR-α as a homology template. Docking scores calculated for these ligands showed reasonably good binding interactions to C. pugilator RXR. Furthermore, RXR is the receptor that mediates the different activities of neurotransmitters and opioid against naloxone in crustaceans and possibly other species. These results indicate that 5-hydroxytryptamine and naloxone might have similar functions. These also results suggest a 3-D model of C. pugilator RXR that describes the binding of ligands at a single RXR receptor binding site and offers further insight into the binding of structurally diverse ligands to this receptor. Further, computational studies showed that crustacean RXRs might be closer to vertebrate RXR than to insect RXR. The predicted binding models for C. pugilator RXR may allow for better design of experimental studies, such as site-directed mutagenesis and affinity labeling studies that may yield valuable information concerning structure-activity relationship studies of RXR and its ligands.
Collapse
|
49
|
Cui Z, Zhang L, Huang J, Yang X, Ling Y. Synthesis and Bioactivity of Novel N,N′-Diacylhydrazine Derivatives Containing Furan (III). CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.201090218] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Tiu SHK, Chan SM, Tobe SS. The effects of farnesoic acid and 20-hydroxyecdysone on vitellogenin gene expression in the lobster, Homarus americanus, and possible roles in the reproductive process. Gen Comp Endocrinol 2010; 166:337-45. [PMID: 19919838 DOI: 10.1016/j.ygcen.2009.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/06/2009] [Accepted: 11/10/2009] [Indexed: 11/22/2022]
Abstract
Reproduction in female lobster (Homarus americanus) is characterized by the maturation of the ovary, with a gradual increase in its size as a result of uptake of yolk protein precursor, vitellogenin (Vg) to the final product vitellin (Vn). Vn is formed by aggregation of several Vg subunits. In most decapods, the hepatopancreas is the major site of vitellogenin biosynthesis. The production of vitellogenin is controlled by endocrine factors. In this study, the effect of farnesoic acid (FA) and 20-hydroxyecdysone (20E) on production of vitellogenin by hepatopancreas (HaVg1) was investigated by in vitro organ explant HaVg1 gene expression was stimulated by FA or 20E in a dose-dependent manner. A 2-fold and 2.2-fold increase in HaVg1 gene expression was observed with 4.2 microM FA and 0.7 microM 20E, respectively. The stimulatory effect by either FA or 20E was observed principally during the first 90 min. Stimulation of HaVg1 gene expression by FA and 20E together is greater (3.3-fold increase) than that of either hormone alone. This stimulation was also observed within the first 90 min. To study the synergistic effect of these two hormones, FA and 20E were tested separately and together at low concentration (42.3 nM and 6.7 nM, respectively). Combined use of FA and 20E increased HaVg1 gene expression synergistically, but not additively. These findings should contribute to our understanding of lobster reproduction and provide insights into manipulation of lobster reproduction in aquaculture or under captive conditions.
Collapse
Affiliation(s)
- Shirley Hiu-Kwan Tiu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|