1
|
Zeng C, Liu J, Zheng X, Hu X, He Y. Prostaglandin and prostaglandin receptors: present and future promising therapeutic targets for pulmonary arterial hypertension. Respir Res 2023; 24:263. [PMID: 37915044 PMCID: PMC10619262 DOI: 10.1186/s12931-023-02559-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH), Group 1 pulmonary hypertension (PH), is a type of pulmonary vascular disease characterized by abnormal contraction and remodeling of the pulmonary arterioles, manifested by pulmonary vascular resistance (PVR) and increased pulmonary arterial pressure, eventually leading to right heart failure or even death. The mechanisms involved in this process include inflammation, vascular matrix remodeling, endothelial cell apoptosis and proliferation, vasoconstriction, vascular smooth muscle cell proliferation and hypertrophy. In this study, we review the mechanisms of action of prostaglandins and their receptors in PAH. MAIN BODY PAH-targeted therapies, such as endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, activators of soluble guanylate cyclase, prostacyclin, and prostacyclin analogs, improve PVR, mean pulmonary arterial pressure, and the six-minute walk distance, cardiac output and exercise capacity and are licensed for patients with PAH; however, they have not been shown to reduce mortality. Current treatments for PAH primarily focus on inhibiting excessive pulmonary vasoconstriction, however, vascular remodeling is recalcitrant to currently available therapies. Lung transplantation remains the definitive treatment for patients with PAH. Therefore, it is imperative to identify novel targets for improving pulmonary vascular remodeling in PAH. Studies have confirmed that prostaglandins and their receptors play important roles in the occurrence and development of PAH through vasoconstriction, vascular smooth muscle cell proliferation and migration, inflammation, and extracellular matrix remodeling. CONCLUSION Prostacyclin and related drugs have been used in the clinical treatment of PAH. Other prostaglandins also have the potential to treat PAH. This review provides ideas for the treatment of PAH and the discovery of new drug targets.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Jing Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xialei Zheng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xinqun Hu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| | - Yuhu He
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
2
|
Yang HH, Wang X, Li S, Liu Y, Akbar R, Fan GC. Lipocalin family proteins and their diverse roles in cardiovascular disease. Pharmacol Ther 2023; 244:108385. [PMID: 36966973 PMCID: PMC10079643 DOI: 10.1016/j.pharmthera.2023.108385] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
The lipocalin (LCN) family members, a group of small extracellular proteins with 160-180 amino acids in length, can be detected in all kingdoms of life from bacteria to human beings. They are characterized by low similarity of amino acid sequence but highly conserved tertiary structures with an eight-stranded antiparallel β-barrel which forms a cup-shaped ligand binding pocket. In addition to bind small hydrophobic ligands (i.e., fatty acids, odorants, retinoids, and steroids) and transport them to specific cells, lipocalins (LCNs) can interact with specific cell membrane receptors to activate their downstream signaling pathways, and with soluble macromolecules to form the complex. Consequently, LCNs exhibit great functional diversity. Accumulating evidence has demonstrated that LCN family proteins exert multiple layers of function in the regulation of many physiological processes and human diseases (i.e., cancers, immune disorders, metabolic disease, neurological/psychiatric disorders, and cardiovascular disease). In this review, we firstly introduce the structural and sequence properties of LCNs. Next, six LCNs including apolipoprotein D (ApoD), ApoM, lipocalin 2 (LCN2), LCN10, retinol-binding protein 4 (RBP4), and Lipocalin-type prostaglandin D synthase (L-PGDS) which have been characterized so far are highlighted for their diagnostic/prognostic values and their potential effects on coronary artery disease and myocardial infarction injury. The roles of these 6 LCNs in cardiac hypertrophy, heart failure, diabetes-induced cardiac disorder, and septic cardiomyopathy are also summarized. Finally, their therapeutic potential for cardiovascular disease is discussed in each section.
Collapse
Affiliation(s)
- Hui-Hui Yang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Siru Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yueying Liu
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rubab Akbar
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
3
|
Beccacece L, Abondio P, Bini C, Pelotti S, Luiselli D. The Link between Prostanoids and Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24044193. [PMID: 36835616 PMCID: PMC9962914 DOI: 10.3390/ijms24044193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global deaths, and many risk factors contribute to their pathogenesis. In this context, prostanoids, which derive from arachidonic acid, have attracted attention for their involvement in cardiovascular homeostasis and inflammatory processes. Prostanoids are the target of several drugs, but it has been shown that some of them increase the risk of thrombosis. Overall, many studies have shown that prostanoids are tightly associated with cardiovascular diseases and that several polymorphisms in genes involved in their synthesis and function increase the risk of developing these pathologies. In this review, we focus on molecular mechanisms linking prostanoids to cardiovascular diseases and we provide an overview of genetic polymorphisms that increase the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Livia Beccacece
- Computational Genomics Lab, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Paolo Abondio
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| |
Collapse
|
4
|
Dai D, Cheng Z, Feng S, Zhu Z, Yu J, Zhang W, Lu H, Zhang R, Zhu J. Quantitative Data-Independent Acquisition Mass Spectrometry Proteomics and Weighted Correlation Network Analysis of Plasma Samples for the Discovery of Chronic Kidney Disease-Specific Atherosclerosis Risk Factors. DNA Cell Biol 2022; 41:966-980. [PMID: 36255451 DOI: 10.1089/dna.2022.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) accelerates atherosclerosis. The mechanism of CKD-related atherosclerosis is complex, and CKD-specific risk factors may contribute to this process in addition to traditional risk factors such as hypertension, diabetes, and hypercholesterolemia. In the present study, to discover CKD-specific atherosclerosis risk factors, a total of 62 patients with different stages of kidney function were enrolled. All patients underwent coronary angiographies and the severity of coronary atherosclerosis was defined by the SYNTAX score. Patients were divided into different groups according to their kidney function levels and coronary atherosclerosis severity. Data-independent acquisition mass spectrometry was used to identify differentially expressed proteins (DEPs) in the plasma samples, and weighted correlation network analysis (WGCNA) was employed to identify significant protein modules and hub proteins related to CKD-specific atherosclerosis. The results showed that 10 DEPs associated with atherosclerosis were found in the comparative groups with modest and severe CKD. Through WGCNA, 1768 proteins were identified and 8 protein modules were established. Enrichment analyses of protein modules revealed functional clusters mainly associated with inflammation and the complement and coagulation cascade as atherosclerosis developed under CKD conditions. The results may help to better understand the mechanisms of CKD-related atherosclerosis and guide future research on developing treatments for CKD-related atherosclerosis.
Collapse
Affiliation(s)
- Daopeng Dai
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Cheng
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics and Data Science, College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Feng
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengbin Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiwei Yu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenli Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Lu
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics and Data Science, College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhou Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Islam MA, Khairnar R, Fleishman J, Thompson K, Kumar S. Lipocalin-Type Prostaglandin D 2 Synthase Protein- A Central Player in Metabolism. Pharm Res 2022; 39:2951-2963. [PMID: 35799081 DOI: 10.1007/s11095-022-03329-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022]
Abstract
Lipocalin-type prostaglandin D synthase was previously known as β-trace protein (BTP), a low-molecular-weight glycoprotein that is heavily expressed in human cerebrospinal fluid. Nevertheless, it is also seen to be expressed in numerous other tissues including the kidney, liver, lung, heart, adipose, muscle, and pancreas. Functionally, L-PGDS behaves like a lipocalin type protein where it helps in binding and transportation of small lipophilic substances, such as steroids, retinoids, and other lipophilic ligands. Enzymatically, L-PGDS functions as a prostaglandin synthase where it helps in the production of PGD2 by catalyzing the isomerization of PGH2, a common precursor of the two series of prostaglandins. PGD2 regulates its physiological function through two individual receptors named DP1 and DP2. L-PGDS has been a central player in many diseases, its role in metabolism including diabetes, fatty liver disease, and obesity has gathered a large attention. In this review, we summarize the current state of knowledge about L-PGDS and it's signaling in adipose, hepatic, skeletal muscle, and pancreas tissues, which are core targets for metabolic studies. Modulation of L-PGDS signaling can be considered as a potential future therapeutic target for the treatment of insulin resistance as well as fatty liver disease.
Collapse
Affiliation(s)
- Md Asrarul Islam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, SAH 141A, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Rhema Khairnar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, SAH 141A, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, SAH 141A, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Kamala Thompson
- Department of Biology, Chemistry, and Environmental Studies, Molloy College, Rockville Centre, NY, 11571, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, SAH 141A, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
6
|
Kong D, Yu Y. Prostaglandin D2 signaling and cardiovascular homeostasis. J Mol Cell Cardiol 2022; 167:97-105. [DOI: 10.1016/j.yjmcc.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
7
|
Urade Y. Biochemical and Structural Characteristics, Gene Regulation, Physiological, Pathological and Clinical Features of Lipocalin-Type Prostaglandin D 2 Synthase as a Multifunctional Lipocalin. Front Physiol 2021; 12:718002. [PMID: 34744762 PMCID: PMC8569824 DOI: 10.3389/fphys.2021.718002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Lipocalin-type prostaglandin (PG) D2 synthase (L-PGDS) catalyzes the isomerization of PGH2, a common precursor of the two series of PGs, to produce PGD2. PGD2 stimulates three distinct types of G protein-coupled receptors: (1) D type of prostanoid (DP) receptors involved in the regulation of sleep, pain, food intake, and others; (2) chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) receptors, in myelination of peripheral nervous system, adipocyte differentiation, inhibition of hair follicle neogenesis, and others; and (3) F type of prostanoid (FP) receptors, in dexamethasone-induced cardioprotection. L-PGDS is the same protein as β-trace, a major protein in human cerebrospinal fluid (CSF). L-PGDS exists in the central nervous system and male genital organs of various mammals, and human heart; and is secreted into the CSF, seminal plasma, and plasma, respectively. L-PGDS binds retinoic acids and retinal with high affinities (Kd < 100 nM) and diverse small lipophilic substances, such as thyroids, gangliosides, bilirubin and biliverdin, heme, NAD(P)H, and PGD2, acting as an extracellular carrier of these substances. L-PGDS also binds amyloid β peptides, prevents their fibril formation, and disaggregates amyloid β fibrils, acting as a major amyloid β chaperone in human CSF. Here, I summarize the recent progress of the research on PGD2 and L-PGDS, in terms of its “molecular properties,” “cell culture studies,” “animal experiments,” and “clinical studies,” all of which should help to understand the pathophysiological role of L-PGDS and inspire the future research of this multifunctional lipocalin.
Collapse
Affiliation(s)
- Yoshihiro Urade
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy, Fukuoka, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Srivastava A, Palaia T, Hall C, Stevenson M, Lee J, Ragolia L. Lipocalin-type Prostaglandin D2 Synthase appears to function as a Novel Adipokine Preventing Adipose Dysfunction in response to a High Fat Diet. Prostaglandins Other Lipid Mediat 2021; 157:106585. [PMID: 34371198 DOI: 10.1016/j.prostaglandins.2021.106585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/24/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
Adipose dysfunction is the primary defect in obesity that contributes to the development of dyslipidemia, insulin resistance, cardiovascular diseases, type 2 diabetes, non-alcoholic fatty liver disease (NAFLD) and some cancers. Previously, we demonstrated the development of NAFLD in lipocalin-type prostaglandin D2 synthase (L-PGDS) knockout mice regardless of diet. In the present study, we examined the role of L-PGDS in adipose in response to a high fat diet. We observed decreased expression of L-PGDS in adipose tissue and concomitant lower plasma levels in a dietary model of obesity as well as in insulin resistant 3T3-L1 adipocytes. We show reduced adiponectin expression and phosphorylation of AMPK in white adipose tissue of L-PGDS KO mice after 14 weeks on a high fat diet as compared to control C57BL/6 mice. We also observe an increased fat content in L-PGDS KO mice as demonstrated by adipocyte hypertrophy and increased expression of lipogenenic genes. We confirmed our in vivo findings in in vitro 3T3-L1 adipocytes, using an enzymatic inhibitor of L-PGDS (AT56). Rosiglitazone treatment drastically increased L-PGDS expression in insulin resistant 3T3-L1 adipocytes and increased adiponectin expression and AMPK phosphorylation in AT56 treated 3T3-L1 adipocytes. We conclude that the absence of L-PGDS has a deleterious effect on adipose tissue functioning, which further reduces insulin sensitivity in adipose tissue. Consequently, we propose L-PGDS appears to function as a potential member of the adipokine secretome involved in the regulation of the obesity-associated metabolic syndrome.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Biomedical research, NYU Langone Hospital, Long Island, United States
| | - Thomas Palaia
- Department of Biomedical research, NYU Langone Hospital, Long Island, United States; Department of Foundations of Medicine, NYU Long Island School of Medicine, 101 Mineola Blvd. Suite 4-003, Mineola, NY, 11501, United States
| | - Christopher Hall
- Department of Biomedical research, NYU Langone Hospital, Long Island, United States
| | - Matthew Stevenson
- Department of Biomedical research, NYU Langone Hospital, Long Island, United States
| | - Jenny Lee
- Department of Biomedical research, NYU Langone Hospital, Long Island, United States
| | - Louis Ragolia
- Department of Biomedical research, NYU Langone Hospital, Long Island, United States; Department of Foundations of Medicine, NYU Long Island School of Medicine, 101 Mineola Blvd. Suite 4-003, Mineola, NY, 11501, United States.
| |
Collapse
|
9
|
Greenan-Barrett J, Doolan G, Shah D, Virdee S, Robinson GA, Choida V, Gak N, de Gruijter N, Rosser E, Al-Obaidi M, Leandro M, Zandi MS, Pepper RJ, Salama A, Jury EC, Ciurtin C. Biomarkers Associated with Organ-Specific Involvement in Juvenile Systemic Lupus Erythematosus. Int J Mol Sci 2021; 22:7619. [PMID: 34299237 PMCID: PMC8306911 DOI: 10.3390/ijms22147619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
Juvenile systemic lupus erythematosus (JSLE) is characterised by onset before 18 years of age and more severe disease phenotype, increased morbidity and mortality compared to adult-onset SLE. Management strategies in JSLE rely heavily on evidence derived from adult-onset SLE studies; therefore, identifying biomarkers associated with the disease pathogenesis and reflecting particularities of JSLE clinical phenotype holds promise for better patient management and improved outcomes. This narrative review summarises the evidence related to various traditional and novel biomarkers that have shown a promising role in identifying and predicting specific organ involvement in JSLE and appraises the evidence regarding their clinical utility, focusing in particular on renal biomarkers, while also emphasising the research into cardiovascular, haematological, neurological, skin and joint disease-related JSLE biomarkers, as well as genetic biomarkers with potential clinical applications.
Collapse
Affiliation(s)
- James Greenan-Barrett
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Georgia Doolan
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Devina Shah
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Simrun Virdee
- Department of Ophthalmology, Royal Free Hospital, London NW3 2QG, UK;
| | - George A. Robinson
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Varvara Choida
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Nataliya Gak
- Department of Rheumatology, University College London Hospital NHS Foundation Trust, London NW1 2BU, UK; (N.G.); (M.L.)
| | - Nina de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Elizabeth Rosser
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Muthana Al-Obaidi
- Department of Paediatric Rheumatology, Great Ormond Street Hospital, London WC1N 3JH, UK;
- NIHR Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Maria Leandro
- Department of Rheumatology, University College London Hospital NHS Foundation Trust, London NW1 2BU, UK; (N.G.); (M.L.)
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6DH, UK;
| | - Michael S. Zandi
- Department of Neurology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK;
| | - Ruth J. Pepper
- Department of Renal Medicine, Royal Free Hospital, University College London, London NW3 2QG, UK; (R.J.P.); (A.S.)
| | - Alan Salama
- Department of Renal Medicine, Royal Free Hospital, University College London, London NW3 2QG, UK; (R.J.P.); (A.S.)
| | - Elizabeth C. Jury
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6DH, UK;
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
- Department of Rheumatology, University College London Hospital NHS Foundation Trust, London NW1 2BU, UK; (N.G.); (M.L.)
| |
Collapse
|
10
|
Ciceri P, Cozzolino M. Expanded Haemodialysis as a Current Strategy to Remove Uremic Toxins. Toxins (Basel) 2021; 13:toxins13060380. [PMID: 34073439 PMCID: PMC8226798 DOI: 10.3390/toxins13060380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 01/04/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by the retention of solutes named uremic toxins, which strongly associate with high morbidity and mortality. Mounting evidence suggests that targeting uremic toxins and/or their pathways may decrease the risk of cardiovascular disease in CKD patients. Dialysis therapies have been developed to improve removal of uremic toxins. Advances in our understanding of uremic retention solutes as well as improvements in dialysis membranes and techniques (HDx, Expanded Hemodialysis) will offer the opportunity to ameliorate clinical symptoms and outcomes, facilitate personalized and targeted dialysis treatment, and improve quality of life, morbidity and mortality.
Collapse
Affiliation(s)
- Paola Ciceri
- Renal Research Laboratory, Department of Nephrology, Dialysis and Renal Transplant, Fondazione Ca’ Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence: ; Tel.: +39-02-81844215
| |
Collapse
|
11
|
Martens MD, Fernando AS, Gordon JW. A new trick for an old dog? Myocardial-specific roles for prostaglandins as mediators of ischemic injury and repair. Am J Physiol Heart Circ Physiol 2021; 320:H2169-H2184. [PMID: 33861147 DOI: 10.1152/ajpheart.00872.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The small lipid-derived paracrine signaling molecules known as prostaglandins have been recognized for their ability to modulate many facets of cardiovascular physiology since their initial discovery more than 85 years ago. Although the role of prostaglandins in the vasculature has gained significant attention across time, a handful of historical studies have also directly implicated the cardiomyocyte in both prostaglandin synthesis and release. Recently, our understanding of how prostaglandin receptor modulation impacts and contributes to myocardial structure and function has gained attention while leaving most other components of myocardial prostaglandin metabolism and signaling unexplored. This mini-review highlights both the key historical studies that underpin modern prostaglandin research in the heart, while concurrently presenting the latest findings related to how prostaglandin metabolism and signaling impact myocardial injury and repair.
Collapse
Affiliation(s)
- Matthew D Martens
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada.,The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Amy S Fernando
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada.,College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada.,The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Schwab S, Kleine CE, Bös D, Bohmann S, Strassburg CP, Lutz P, Woitas RP. Beta-trace protein as a potential biomarker of residual renal function in patients undergoing peritoneal dialysis. BMC Nephrol 2021; 22:87. [PMID: 33706697 PMCID: PMC7953776 DOI: 10.1186/s12882-021-02287-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background Residual renal function is closely linked to quality of life, morbidity and mortality in dialysis patients. Beta-trace protein (BTP), a low molecular weight protein, has been suggested as marker of residual renal function, in particular in patients on hemodialysis. We hypothesized that BTP also serves as a marker of residual renal function in pertioneal dialysis patients. Methods In this study 34 adult patients on peritoneal dialysis were included. BTP, creatinine, cystatin C and urea concentrations were analyzed simultaneously in serum and dialysate to calculate renal and peritoneal removal of the analytes. Results In peritoneal dialysis patients with residual diuresis, mean serum BTP was 8.16 mg/l (SD ± 4.75 mg/l). BTP correlated inversely with residual diuresis (rs = − 0.58, p < 0.001), residual creatinine clearance (ClCr) (rs = − 0.69, p < 0.001) and total urea clearance (Clurea) (rs = − 0.56, p < 0.001). Mean peritoneal removal of BTP was 3.36 L/week/1.73m2 (SD ± 1.38) and mean renal removal 15.14 L/week/1.73m2 (SD ± 12.65) demonstrating a significant renal contribution to the total removal. Finally, serum BTP inversely correlated with alterations in residual diuresis (r = − 0.41, p = 0.035) and renal creatinine clearance over time (r = − 0.79, p = p < 0.001). Conclusion BTP measurement in the serum may be a simple tool to assess residual renal function in peritoneal dialysis patients.
Collapse
Affiliation(s)
- Sebastian Schwab
- Department of Internal Medicine I, University of Bonn, Bonn, Germany. .,Institute of Experimental Immunology, Rheinische-Friedrichs-Wilhelms University of Bonn, Bonn, Germany.
| | | | | | | | | | - Philipp Lutz
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | |
Collapse
|
13
|
Ouhaddi Y, Najar M, Paré F, Lussier B, Urade Y, Benderdour M, Pelletier JP, Martel-Pelletier J, Fahmi H. L-PGDS deficiency accelerated the development of naturally occurring age-related osteoarthritis. Aging (Albany NY) 2020; 12:24778-24797. [PMID: 33361529 PMCID: PMC7803483 DOI: 10.18632/aging.202367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disorder among the elderly. It is characterized by progressive cartilage degradation, synovial inflammation, subchondral bone remodeling and pain. Lipocalin prostaglandin D synthase (L-PGDS) is responsible for the biosynthesis of PGD2, which has been implicated in the regulation of inflammation and cartilage biology. This study aimed to evaluate the effect of L-PGDS deficiency on the development of naturally occurring age-related OA in mice. OA-like structural changes were assessed by histology, immunohistochemistry, and micro–computed tomography. Pain related behaviours were assessed using the von Frey and the open-field assays. L-PGDS deletion promoted cartilage degradation during aging, which was associated with enhanced expression of extracellular matrix degrading enzymes, matrix metalloprotease 13 (MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), and their breakdown products, C1,2C, VDIPEN and NITEG. Moreover, L-PGDS deletion enhanced subchondral bone changes, but had no effect on its angiogenesis. Additionally, L-PGDS deletion increased mechanical sensitivity and reduced spontaneous locomotor activity. Finally, we showed that the expression of L-PGDS was elevated in aged mice. Together, these findings indicate an important role for L-PGDS in naturally occurring age-related OA. They also suggest that L-PGDS may constitute a new efficient therapeutic target in OA.
Collapse
Affiliation(s)
- Yassine Ouhaddi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Frédéric Paré
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Bertrand Lussier
- Faculty of Veterinary Medicine, Clinical Science, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Yoshihiro Urade
- Isotope Science Center, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mohamed Benderdour
- Research Centre, Sacré-Coeur Hospital, University of Montreal, Montreal, QC H4J 1C5, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
14
|
Kumar S, Srivastava A, Palaia T, Hall C, Lee J, Stevenson M, Zhao CL, Ragolia L. Lipocalin-type prostaglandin D2 synthase deletion induces dyslipidemia and non-alcoholic fatty liver disease. Prostaglandins Other Lipid Mediat 2020; 149:106429. [PMID: 32145387 DOI: 10.1016/j.prostaglandins.2020.106429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/16/2023]
|
15
|
Najar M, Ouhaddi Y, Paré F, Lussier B, Urade Y, Kapoor M, Pelletier JP, Martel-Pelletier J, Benderdour M, Fahmi H. Role of Lipocalin-Type Prostaglandin D Synthase in Experimental Osteoarthritis. Arthritis Rheumatol 2020; 72:1524-1533. [PMID: 32336048 DOI: 10.1002/art.41297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Lipocalin-type prostaglandin D synthase (L-PGDS) catalyzes the formation of prostaglandin D2 (PGD2 ), which has important roles in inflammation and cartilage metabolism. We undertook this study to investigate the role of L-PGDS in the pathogenesis of osteoarthritis (OA) using an experimental mouse model. METHODS Experimental OA was induced in wild-type (WT) and L-PGDS-deficient (L-PGDS-/- ) mice (n = 10 per genotype) by destabilization of the medial meniscus (DMM). Cartilage degradation was evaluated by histology. The expression of matrix metalloproteinase 13 (MMP-13) and ADAMTS-5 was assessed by immunohistochemistry. Bone changes were determined by micro-computed tomography. Cartilage explants from L-PGDS-/- and WT mice (n = 6 per genotype) were treated with interleukin-1α (IL-1α) ex vivo in order to evaluate proteoglycan degradation. Moreover, the effect of intraarticular injection of a recombinant adeno-associated virus type 2/5 (rAAV2/5) encoding L-PGDS on OA progression was evaluated in WT mice (n = 9 per group). RESULTS Compared to WT mice, L-PGDS-/- mice had exacerbated cartilage degradation and enhanced expression of MMP-13 and ADAMTS-5 (P < 0.05). Furthermore, L-PGDS-/- mice displayed increased synovitis and subchondral bone changes (P < 0.05). Cartilage explants from L-PGDS-/- mice showed enhanced proteoglycan degradation following treatment with IL-1α (P < 0.05). Intraarticular injection of rAAV2/5 encoding L-PGDS attenuated the severity of DMM-induced OA-like changes in WT mice (P < 0.05). The L-PGDS level was increased in OA tissues of WT mice (P < 0.05). CONCLUSION Collectively, these findings suggest a protective role of L-PGDS in OA, and therefore enhancing levels of L-PGDS may constitute a promising therapeutic strategy.
Collapse
Affiliation(s)
- Mehdi Najar
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | - Yassine Ouhaddi
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | - Frédéric Paré
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | | | | | - Mohit Kapoor
- The Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jean-Pierre Pelletier
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | - Johanne Martel-Pelletier
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | | | - Hassan Fahmi
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Sert ET, Akilli N, Köylü R, Cander B, Kokulu K, Köylü Ö. The Effect of Beta-Trace Protein on Diagnosis and Prognosis in Patients with Acute Coronary Syndrome. Cureus 2020; 12:e7135. [PMID: 32257680 PMCID: PMC7105264 DOI: 10.7759/cureus.7135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective The purpose of this study was to determine the effect of beta-trace protein (BTP) levels at the time of admission and at 8th hour on diagnosis and prognosis in patients who were under treatment and follow-up with acute coronary syndrome (ACS) diagnosis at coronary intensive care unit and emergency department. Materials and Methods This study was conducted between June 2014 and December 2014 at the Emergency Department of Konya Training and Research Hospital. Demographic characteristics, background, vital findings, laboratory findings, blood BTP levels, coronary angiography results, and echocardiography findings of the patients diagnosed with ACS were recorded. Risk classification was performed for patients with ACS and their mortality rates were recorded. Relation of BTP level with risk classification and mortality was evaluated. Results A total of 174 individuals, 138 patients and 36 control subjects, were included in the study. No significant difference was detected between BTP levels at the time of admission and at 8th hour in the patient group (p=0.883). There was no difference between the patient and control groups in terms of the BTP level (p=0.335). Ten patients (7.2%) died in the patient group. BTP levels measured at the time of admission and at 8th hour were not different for dead and living patients (admission p=0.085, 8th hour p=0.141). Conclusion We determined that there was a lack of biochemical markers that could be used for the prognosis of serum BTP levels in patients admitting to the emergency unit with ACS.
Collapse
Affiliation(s)
- Ekrem T Sert
- Emergency Medicine, Aksaray University Medical School, Aksaray, TUR
| | - Nazire Akilli
- Emergency Medicine, Konya Training and Research Hospital, University of Health Sciences, Konya, TUR
| | - Ramazan Köylü
- Emergency Medicine, Konya Training and Research Hospital, University of Health Sciences, Konya, TUR
| | - Basar Cander
- Emergency Medicine, Kanuni Sultan Süleyman Training and Research Hospital, University of Health Sciences, Istanbul, TUR
| | - Kamil Kokulu
- Emergency Medicine, University of Health Sciences, Ümraniye Training and Research Hospital, Istanbul, TUR
| | - Öznur Köylü
- Biochemistry, Konya Training and Research Hospital, University of Health Sciences, Konya, TUR
| |
Collapse
|
17
|
Saito K, Yagi H, Maekawa K, Nishigori M, Ishikawa M, Muto S, Osaki T, Iba Y, Minatoya K, Ikeda Y, Ishibashi-Ueda H, Ogino H, Sasaki H, Matsuda H, Saito Y, Minamino N. Lipidomic signatures of aortic media from patients with atherosclerotic and nonatherosclerotic aneurysms. Sci Rep 2019; 9:15472. [PMID: 31664168 PMCID: PMC6820727 DOI: 10.1038/s41598-019-51885-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/07/2019] [Indexed: 11/09/2022] Open
Abstract
Aortic aneurysms are associated with fatal aortic rupture. Current therapeutic approaches are limited to implantation of aortic prostheses and stent-grafts; no effective drugs are available because the pathogenic mechanisms of aortic aneurysms remain unclear. Here, we aimed to elucidate the molecular mechanisms of the initiation and progression of aortic aneurysm by lipidomics. We performed lipidomics analyses of lipids in the aortic media of normal, border, and aneurysm areas from patients with thoracic atherosclerotic aortic aneurysm (N = 30), thoracic nonatherosclerotic aortic aneurysm (N = 19), and abdominal atherosclerotic aortic aneurysm (N = 11) and from controls (N = 8) using liquid chromatography and mass spectrometry. Significant alterations were observed in the lipid profiles of patients with atherosclerotic aortic aneurysms and to a lesser extent in those with nonatherosclerotic aneurysms. Increased triacylglycerols (TGs) and decreased ether-type phosphatidylethanolamines (ePEs) were observed throughout the normal, border, and aneurysm areas of thoracic and abdominal atherosclerotic aortic aneurysms. Prostaglandin D2 increased, but ePEs and TGs decreased in normal areas of thoracic atherosclerotic aortic aneurysms and thoracic nonatherosclerotic aortic aneurysms compared with the control tissues. These findings expand our knowledge of metabolic changes in aortic aneurysms and provide insights into the pathophysiology of aortic aneurysms.
Collapse
Affiliation(s)
- Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, Japan
| | - Hiroaki Yagi
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Keiko Maekawa
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, Japan
| | - Mitsuhiro Nishigori
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masaki Ishikawa
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, Japan
| | - Sayaka Muto
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tsukasa Osaki
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yutaka Iba
- Department of Vascular Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kenji Minatoya
- Department of Vascular Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoshihiko Ikeda
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | | | - Hitoshi Ogino
- Department of Vascular Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hiroaki Sasaki
- Department of Vascular Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hitoshi Matsuda
- Department of Vascular Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoshiro Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, Japan.
| | - Naoto Minamino
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan. .,Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan.
| |
Collapse
|
18
|
Binda C, Génier S, Degrandmaison J, Picard S, Fréchette L, Jean S, Marsault E, Parent JL. L-type prostaglandin D synthase regulates the trafficking of the PGD 2 DP1 receptor by interacting with the GTPase Rab4. J Biol Chem 2019; 294:16865-16883. [PMID: 31575663 DOI: 10.1074/jbc.ra119.008233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/27/2019] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence indicates that G protein-coupled receptors (GPCRs) interact with Rab GTPases during their intracellular trafficking. How GPCRs recruit and activate the Rabs is unclear. Here, we report that depletion of endogenous L-type prostaglandin D synthase (L-PGDS) in HeLa cells inhibited recycling of the prostaglandin D2 (PGD2) DP1 receptor (DP1) to the cell surface after agonist-induced internalization and that L-PGDS overexpression had the opposite effect. Depletion of endogenous Rab4 prevented l-PGDS-mediated recycling of DP1, and l-PGDS depletion inhibited Rab4-dependent recycling of DP1, indicating that both proteins are mutually involved in this pathway. DP1 stimulation promoted its interaction through its intracellular C terminus with Rab4, which was increased by l-PGDS. Confocal microscopy revealed that DP1 activation induces l-PGDS/Rab4 co-localization. l-PGDS/Rab4 and DP1/Rab4 co-immunoprecipitation levels were increased by DP1 agonist treatment. Pulldown assays with purified GST-l-PGDS and His6-Rab4 indicated that both proteins interact directly. l-PGDS interacted preferentially with the inactive, GDP-locked Rab4S22N variant rather than with WT Rab4 or with constitutively active Rab4Q67L proteins. Overexpression and depletion experiments disclosed that l-PGDS partakes in Rab4 activation following DP1 stimulation. Experiments with deletion mutants and synthetic peptides revealed that amino acids 85-92 in l-PGDS are involved in its interaction with Rab4 and in its effect on DP1 recycling. Of note, GTPγS loading and time-resolved FRET assays with purified proteins suggested that l-PGDS enhances GDP-GTP exchange on Rab4. Our results reveal how l-PGDS, which produces the agonist for DP1, regulates DP1 recycling by participating in Rab4 recruitment and activation.
Collapse
Affiliation(s)
- Chantal Binda
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Samuel Génier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jade Degrandmaison
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Samuel Picard
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Louis Fréchette
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Steve Jean
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Eric Marsault
- Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada .,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
19
|
See Hoe LE, Bartnikowski N, Wells MA, Suen JY, Fraser JF. Hurdles to Cardioprotection in the Critically Ill. Int J Mol Sci 2019; 20:E3823. [PMID: 31387264 PMCID: PMC6695809 DOI: 10.3390/ijms20153823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the largest contributor to worldwide mortality, and the deleterious impact of heart failure (HF) is projected to grow exponentially in the future. As heart transplantation (HTx) is the only effective treatment for end-stage HF, development of mechanical circulatory support (MCS) technology has unveiled additional therapeutic options for refractory cardiac disease. Unfortunately, despite both MCS and HTx being quintessential treatments for significant cardiac impairment, associated morbidity and mortality remain high. MCS technology continues to evolve, but is associated with numerous disturbances to cardiac function (e.g., oxidative damage, arrhythmias). Following MCS intervention, HTx is frequently the destination option for survival of critically ill cardiac patients. While effective, donor hearts are scarce, thus limiting HTx to few qualifying patients, and HTx remains correlated with substantial post-HTx complications. While MCS and HTx are vital to survival of critically ill cardiac patients, cardioprotective strategies to improve outcomes from these treatments are highly desirable. Accordingly, this review summarizes the current status of MCS and HTx in the clinic, and the associated cardiac complications inherent to these treatments. Furthermore, we detail current research being undertaken to improve cardiac outcomes following MCS/HTx, and important considerations for reducing the significant morbidity and mortality associated with these necessary treatment strategies.
Collapse
Affiliation(s)
- Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia.
- Faculty of Medicine, University of Queensland, Chermside 4032, Australia.
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- Science and Engineering Faculty, Queensland University of Technology, Chermside 4032, Australia
| | - Matthew A Wells
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- School of Medical Science, Griffith University, Southport 4222, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- Faculty of Medicine, University of Queensland, Chermside 4032, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- Faculty of Medicine, University of Queensland, Chermside 4032, Australia
| |
Collapse
|
20
|
Song WL, Ricciotti E, Liang X, Grosser T, Grant GR, FitzGerald GA. Lipocalin-Like Prostaglandin D Synthase but Not Hemopoietic Prostaglandin D Synthase Deletion Causes Hypertension and Accelerates Thrombogenesis in Mice. J Pharmacol Exp Ther 2018; 367:425-432. [PMID: 30305427 PMCID: PMC6226547 DOI: 10.1124/jpet.118.250936] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
Prostaglandin (PG) D2 is formed by two distinct PGD synthases (PGDS): lipocalin-type PGDS (L-PGDS), which acts as a PGD2-producing enzyme and as extracellular lipophilic transporter, and hematopoietic PGDS (H-PGDS), a σ glutathione-S-transferase. PGD2 plays an important role in the maintenance of vascular function; however, the relative contribution of L-PGDS– and H-PGDS–dependent formation of PGD2 in this setting is unknown. To gain insight into the function played by these distinct PGDS, we assessed systemic blood pressure (BP) and thrombogenesis in L-Pgds and H-Pgds knockout (KO) mice. Deletion of L-Pgds depresses urinary PGD2 metabolite (PGDM) by ∼35%, whereas deletion of H-Pgds does so by ∼90%. Deletion of L-Pgds, but not H-Pgds, elevates BP and accelerates the thrombogenic occlusive response to a photochemical injury to the carotid artery. HQL-79, a H-PGDS inhibitor, further depresses PGDM in L-Pgds KO mice, but has no effect on BP or on the thrombogenic response. Gene expression profiling reveals that pathways relevant to vascular function are dysregulated in the aorta of L-Pgds KOs. These results indicate that the functional impact of L-Pgds deletion on vascular homeostasis may result from an autocrine effect of L-PGDS–dependent PGD2 on the vasculature and/or the L-PGDS function as lipophilic carrier protein.
Collapse
Affiliation(s)
- Wen-Liang Song
- Department of Systems Pharmacology and Translational Therapeutics (W.-L.S., E.R., X.L., T.G., G.A.F.), Institute for Translational Medicine and Therapeutics (W.-L.S., E.R., X.L., T.G., G.R.G., G.A.F.), and Perelman School of Medicine and Department of Genetics (G.R.G.), University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics (W.-L.S., E.R., X.L., T.G., G.A.F.), Institute for Translational Medicine and Therapeutics (W.-L.S., E.R., X.L., T.G., G.R.G., G.A.F.), and Perelman School of Medicine and Department of Genetics (G.R.G.), University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xue Liang
- Department of Systems Pharmacology and Translational Therapeutics (W.-L.S., E.R., X.L., T.G., G.A.F.), Institute for Translational Medicine and Therapeutics (W.-L.S., E.R., X.L., T.G., G.R.G., G.A.F.), and Perelman School of Medicine and Department of Genetics (G.R.G.), University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tilo Grosser
- Department of Systems Pharmacology and Translational Therapeutics (W.-L.S., E.R., X.L., T.G., G.A.F.), Institute for Translational Medicine and Therapeutics (W.-L.S., E.R., X.L., T.G., G.R.G., G.A.F.), and Perelman School of Medicine and Department of Genetics (G.R.G.), University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory R Grant
- Department of Systems Pharmacology and Translational Therapeutics (W.-L.S., E.R., X.L., T.G., G.A.F.), Institute for Translational Medicine and Therapeutics (W.-L.S., E.R., X.L., T.G., G.R.G., G.A.F.), and Perelman School of Medicine and Department of Genetics (G.R.G.), University of Pennsylvania, Philadelphia, Pennsylvania
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics (W.-L.S., E.R., X.L., T.G., G.A.F.), Institute for Translational Medicine and Therapeutics (W.-L.S., E.R., X.L., T.G., G.R.G., G.A.F.), and Perelman School of Medicine and Department of Genetics (G.R.G.), University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Wolley M, Jardine M, Hutchison CA. Exploring the Clinical Relevance of Providing Increased Removal of Large Middle Molecules. Clin J Am Soc Nephrol 2018; 13:805-814. [PMID: 29507008 PMCID: PMC5969479 DOI: 10.2215/cjn.10110917] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dialysis technologies have continued to advance over recent decades; however, these advancements have not always been met with improved patient outcomes. In part, the high morbidity and mortality associated with dialysis have been attributed to a group of uremic toxins, which are described as "difficult to remove." With a new generation of hemodialysis membranes now making meaningful clearance of these molecules possible, it is an apt time to review the clinical relevance of these middle molecules. Our review describes the developments in membrane technology that enable the removal of large middle molecules (molecular mass >15 kD) that is limited with high-flux dialysis membranes. Of the known 58 middle molecules, a literature search identified 27 that have molecular mass >15 kD. This group contains cytokines, adipokines, hormones, and other proteins. These molecules are implicated in chronic inflammation, atherosclerosis, structural heart disease, and secondary immunodeficiency in the literature. Single-center safety and efficacy studies have identified that use of these membranes in maintenance dialysis populations is associated with limited loss of albumin and increased clearance of large middle molecules. Larger, robustly conducted, multicenter studies are now evaluating these findings. After completion of these safety and efficacy studies, the perceived clinical benefits of providing clearance of large middle molecules must be assessed in rigorously conducted, randomized clinical studies.
Collapse
Affiliation(s)
- Martin Wolley
- Department of Renal Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Meg Jardine
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Renal Medicine, Concord Repatriation General Hospital and University of Sydney, Sydney, New South Wales, Australia; and
| | - Colin A. Hutchison
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Medicine, Hawke’s Bay District Health Board, Hastings, New Zealand
| |
Collapse
|
22
|
Ock S, Kim HM, Lee WS, Ahn J, Kim J. Effect of sodium salicylate on COX-2 expression in neonatal rat cardiomyocytes. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Li X, Zhang Y, Zhang B, Liu X, Hong L, Liu LP, Wu CZ, Cui X. HIF-1α-l-PGDS-PPARγ regulates hypoxia-induced ANP secretion in beating rat atria. Prostaglandins Other Lipid Mediat 2017; 134:38-46. [PMID: 29287795 DOI: 10.1016/j.prostaglandins.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/24/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022]
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS) and peroxisome proliferator activated receptor γ (PPARγ) play important roles in cardiovascular diseases. Nevertheless, effects of hypoxia-inducible factor 1α (HIF-1α) on L-PGDS and PPARγ protein levels and its role in hypoxia-induced atrial natriuretic peptide (ANP) secretion are unclear. In perfused beating rat atria, we observed that hypoxia significantly increased HIF-1α protein levels and stimulated ANP secretion, while upregulating L-PGDS. Hypoxia-induced ANP secretion was clearly attenuated by HIF-1α antagonist 2-methoxyestradiol, downregulating both HIF-1α and L-PGDS protein levels. It was also attenuated by L-PGDS antagonists, AT-56 and HQL-49, downregulating L-PGDS protein levels. In addition, hypoxia-induced ANP secretion was accompanied by increased PPARγ protein levels and was strongly attenuated by PPARγ antagonist GW9662. Hypoxia-induced increase in atrial PPARγ protein levels were dramatically inhibited by both 2-methoxyestradiol and AT-56. These results indicated that hypoxia promotes ANP secretion, at least in part, by activating HIF-1α-l-PGDS-PPARγ signaling in beating rat atria.
Collapse
Affiliation(s)
- Xiang Li
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China
| | - Ying Zhang
- Institute of Clinical Medicine, Yanbian University, Yanji, 133-000, China
| | - Bo Zhang
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China
| | - Xia Liu
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China
| | - Lan Hong
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China
| | - Li-Ping Liu
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China
| | - Cheng-Zhe Wu
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China; Institute of Clinical Medicine, Yanbian University, Yanji, 133-000, China.
| | - Xun Cui
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China; Key Laboratory of Organism Functional Factors of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133-002, China; Cellular Function Research Center, Yanbian University, Yanji, 133-002, China.
| |
Collapse
|
24
|
Peinhaupt M, Sturm EM, Heinemann A. Prostaglandins and Their Receptors in Eosinophil Function and As Therapeutic Targets. Front Med (Lausanne) 2017; 4:104. [PMID: 28770200 PMCID: PMC5515835 DOI: 10.3389/fmed.2017.00104] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Of the known prostanoid receptors, human eosinophils express the prostaglandin D2 (PGD2) receptors DP1 [also D-type prostanoid (DP)] and DP2 (also chemoattractant receptor homologous molecule, expressed on Th2 cells), the prostaglandin E2 receptors EP2 and EP4, and the prostacyclin (PGI2) receptor IP. Prostanoids can bind to either one or multiple receptors, characteristically have a short half-life in vivo, and are quickly degraded into metabolites with altered affinity and specificity for a given receptor subtype. Prostanoid receptors signal mainly through G proteins and naturally activate signal transduction pathways according to the G protein subtype that they preferentially interact with. This can lead to the activation of sometimes opposing signaling pathways. In addition, prostanoid signaling is often cell-type specific and also the combination of expressed receptors can influence the outcome of the prostanoid impulse. Accordingly, it is assumed that eosinophils and their (patho-)physiological functions are governed by a sensitive prostanoid signaling network. In this review, we specifically focus on the functions of PGD2, PGE2, and PGI2 and their receptors on eosinophils. We discuss their significance in allergic and non-allergic diseases and summarize potential targets for drug intervention.
Collapse
Affiliation(s)
- Miriam Peinhaupt
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva M Sturm
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
25
|
Prostanoids in the pathophysiology of human coronary artery. Prostaglandins Other Lipid Mediat 2017; 133:20-28. [PMID: 28347710 DOI: 10.1016/j.prostaglandins.2017.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/16/2017] [Accepted: 03/23/2017] [Indexed: 01/16/2023]
Abstract
Coronary artery disease is one of the leading causes of death in wordwide. There is growing evidence that prostanoids are involved in the physiology and pathophysiology of the human coronary artery by controlling vascular tone, remodelling of the vascular wall or angiogenesis. In this review, the production of prostanoids and the expression of prostanoid receptors in human coronary artery in health or disease are described. In addition, the interactions between sex hormones and prostanoids, their participations in the development of coronary artery diseases have been addressed. Globally, most of the studies performed in human coronary artery preparations have shown that prostacyclin (PGI2) has beneficial effects by inducing vasodilatation and promoting angiogenesis while reverse effects are confirmed by thromboxane A2 (TxA2). More studies are needed to determine the roles of the other prostanoids (PGE2, PGD2 and PGF2α) in vascular functions of the human coronary artery. Finally, in addition to the in vitro data about the human coronary artery, myocardial infarction induced by cyclooxygenase-2 (COX-2) inhibitor and the protective effects of aspirin after coronary artery bypass surgery suggest that prostanoids are key mediators in coronary homeostasis.
Collapse
|
26
|
Duan B, Zhang L, Ding X, Li L, Li Y, Geng H, Ma Y. Serum Beta-Trace Protein as a Novel Predictor of Pregnancy-Induced Hypertension. J Clin Hypertens (Greenwich) 2016; 18:1022-1026. [PMID: 26940810 PMCID: PMC8031803 DOI: 10.1111/jch.12801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/09/2016] [Accepted: 01/17/2016] [Indexed: 11/30/2022]
Abstract
Beta-trace protein (BTP) has emerged as a novel biomarker of cardiovascular risk. However, the level of circulating BTP in pregnancy-induced hypertension (PIH) is still unknown. The aim of this study was to determine the concentration of serum BTP in healthy pregnant women and patients with PIH. No significant difference was found in the serum concentration of BTP in patients with a normal pregnancy. In contrast, serum BTP levels in women with PIH (n=46) were significantly higher than those in women with normal pregnancy (n=57). Receiver operating characteristic analysis revealed that using a serum BTP value of 321.3 ng/mL as a cutoff produced a sensitivity of 91.3% and a specificity of 89.5%. Taken together, these findings suggest that a higher serum BTP concentration in PIH patients compared with those with normal pregnancy and serum BTP might be a novel biomarker in the diagnosis of PIH.
Collapse
Affiliation(s)
- Bide Duan
- Department of Obstetrics and Gynecology, QiLu Hospital of Shandong University, Ji'nan, Shandong Province, China
- Department of Obstetrics, The Central Hospital of Zibo, Zibo, Shandong Province, China
| | - Lei Zhang
- Department of Obstetrics, The Second Hospital of Shandong University, Ji'nan, Shandong Province, China
| | - Xiaoyan Ding
- Department of Obstetrics, The Central Hospital of Zibo, Zibo, Shandong Province, China
| | - Ling Li
- Department of Obstetrics, The People's Hospital of Rizhao, Rizhao, Shandong Province, China
| | - Yuan Li
- Department of Obstetrics, The Central Hospital of Zibo, Zibo, Shandong Province, China
| | - Hui Geng
- Department of Obstetrics, The Central Hospital of Zibo, Zibo, Shandong Province, China
| | - Yuyan Ma
- Department of Obstetrics and Gynecology, QiLu Hospital of Shandong University, Ji'nan, Shandong Province, China.
| |
Collapse
|
27
|
Lipocalin-type prostaglandin D 2 synthase (L-PGDS) modulates beneficial metabolic effects of vertical sleeve gastrectomy. Surg Obes Relat Dis 2016; 12:1523-1531. [PMID: 27425837 DOI: 10.1016/j.soard.2016.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Vertical sleeve gastrectomy (VSG) ameliorates metabolic complications in obese and diabetic patients through unknown mechanisms. OBJECTIVE The objective of this study was to investigate the role of lipocalin-type prostaglandin D2 synthase (L-PGDS) in glucose regulation in response to VSG using L-PGDS knock-out (KO), knock-in (KI), and C57BL/6 (wild type) mice. SETTING Winthrop University Hospital Research Institute. METHODS Animals were divided into 6 groups: L-PGDS KO sham/VSG (n = 5), L-PGDS KI sham/VSG (n = 5), and C57BL/6 (wild type) sham/VSG (n = 5). Related parameters were measured in fasting animals after 10 weeks. RESULTS Our intraperitoneal glucose tolerance tests and homeostatic model assessment insulin resistance results showed significant glycemic improvement 10 weeks post-VSG in both C57BL/6 and KI groups compared with the sham group. In contrast, the KO group developed glucose intolerance and insulin resistance similar to or greater than the sham group 10 weeks post-VSG. Interestingly, weight gain was insignificant 10 weeks post-VSG in all the groups and even trended higher in the KO group compared with sham. Peptide YY levels in the KO group post-VSG were slightly increased but significantly less than other groups. Similarly, the KO group showed significantly less leptin sensitivity in response to VSG compared with the KI group. Total cholesterol level remained unchanged in all groups irrespective of sham or surgery but interestingly, the KO group had significantly higher cholesterol levels. In parallel, adipocyte size was also found to be significantly increased in the KO group post-VSG compared with the sham group. CONCLUSION Our findings propose that L-PGDS plays an important role in the beneficial metabolic effects observed after VSG.
Collapse
|
28
|
Abstract
Arachidonic acid metabolism is involved in acute ischemic syndromes affecting the coronary or cerebrovascular territory, as demonstrated by biochemical measurements of eicosanoid biosynthesis and the results of inhibitor trials in these settings. In particular, the efficacy of low-dose aspirin in reducing the complications of acute ischemic syndromes has focused attention on the cyclooxygenase (COX) pathway of arachidonic acid metabolism and its products, collectively termed prostanoids. Two cyclooxygenase (COX)-isozymes have been characterized, COX-1 and COX-2, that differ in terms of regulatory mechanisms of expression, tissue distribution, substrate specificity and preferential coupling to upstream and downstream enzymes. While the role of platelet COX-1 in acute ischemic diseases is firmly established, the role of COX-2 in atherothrombosis is still uncertain. Studies from our group suggest that variable expression of upstream and downstream enzymes in the prostanoid biosynthesis may represent important determinants of the functional consequences of COX-2 expression and inhibition in different clinical settings.
Collapse
Affiliation(s)
- F Cipollone
- Atherosclerosis Prevention Center, G d'Annunzio University of Chieti, Chieti, Italy.
| |
Collapse
|
29
|
Little DJ, Yuan CM, Thurlow JS, Gounden V, Doi SQ, Pruziner A, Abbott KC, Theeler BJ, Olson SW. Effects of Traumatic Amputation on β-Trace Protein and β2-Microglobulin Concentrations in Male Soldiers. Am J Nephrol 2016; 42:436-42. [PMID: 26800100 DOI: 10.1159/000443775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/04/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Serum creatinine (SCr) levels are decreased following traumatic amputation, leading to the overestimation of glomerular filtration rate (GFR). β-Trace protein (BTP) and β2-microglobulin (B2M) strongly correlate with measured GFR and have not been studied following amputation. We hypothesized that BTP and B2M would be unaffected by traumatic amputation. METHODS We used the Department of Defense Serum Repository to compare pre- and post-traumatic amputation serum BTP and B2M levels in 33 male soldiers, via the N Latex BTP and B2M nephelometric assays (Siemens Diagnostics, Tarrytown, N.Y., USA). Osterkamp estimation using DEXA scan measurements was used to establish percent estimated body weight loss (%EBWL). Results were analyzed for small (3-5.9% EBWL), medium (6-13.5%), and large (>13.5%) amputation subgroups; and for a control group matched 1:1 to the 12 large amputation subjects. Paired Student's t test was used for comparisons. RESULTS Mean serum BTP levels were unchanged in controls, all amputees, and the small and medium amputation subgroups. BTP appeared to decrease following large %EBWL amputation (p = 0.05). Mean serum B2M levels were unchanged in controls, all amputees, and the small and medium amputation subgroups. B2M appeared to increase following large %EBWL amputation (p = 0.05). CONCLUSIONS BTP and B2M levels are less affected than SCr by amputation, and should be considered for future study of GFR estimation. BTP and B2M changes following large %EBWL amputation require validation and may offer insight into non-GFR BTP and B2M determinants as well as increased cardiovascular disease and mortality following amputation.
Collapse
Affiliation(s)
- Dustin J Little
- Nephrology Service, Department of Medicine, Walter Reed National Military Medical Center, Bethesda, Md., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yalcin MU, Gurses KM, Kocyigit D, Kesikli SA, Tokgozoglu L, Guc D, Aytemir K, Ozer N. Elevated Serum Beta-Trace Protein Levels are Associated With the Presence of Atrial Fibrillation in Hypertension Patients. J Clin Hypertens (Greenwich) 2015; 18:439-43. [PMID: 26435487 DOI: 10.1111/jch.12703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 01/13/2023]
Abstract
Beta-trace protein (BTP) has emerged as a novel biomarker of cardiovascular risk. In this study, the authors aimed to assess the relationship between BTP levels and presence of atrial fibrillation in patients who had controlled hypertension (HTN) and normal renal function. A total of 80 controlled HTN patients with paroxysmal atrial fibrillation (PAF) and 80 age- and sex-matched controls with controlled HTN were enrolled. Serum BTP levels were measured by enzyme-linked immunosorbent assay. BTP levels were found to be significantly higher in patients with PAF (P<.001). Other parameters including mean systolic and diastolic blood pressure values, serum creatinine levels, and glomerular filtration rate were similar between the two groups. Along with left atrial diameter (odds ratio, 1.504; P<.001), BTP levels (odds ratio, 1.015; P<.001) were independently associated with the presence of PAF. BTP levels were increased in controlled HTN patients with PAF compared with controls, and this association was observed within normal renal functions as reflected by normal glomerular filtration rate.
Collapse
Affiliation(s)
| | - Kadri M Gurses
- Department of Cardiology, Konya Training and Research Hospital, Konya, Turkey
| | - Duygu Kocyigit
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sacit A Kesikli
- Basic Oncology Department, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Lale Tokgozoglu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Dicle Guc
- Basic Oncology Department, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Kudret Aytemir
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Necla Ozer
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
31
|
Xue SS, He JL, Zhang X, Liu YJ, Xue FX, Wang CJ, Ai D, Zhu Y. Metabolomic analysis revealed the role of DNA methylation in the balance of arachidonic acid metabolism and endothelial activation. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1317-26. [DOI: 10.1016/j.bbalip.2015.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/19/2015] [Accepted: 07/06/2015] [Indexed: 01/26/2023]
|
32
|
Wong J, Vilar E, Davenport A, Farrington K. Incremental haemodialysis. Nephrol Dial Transplant 2015; 30:1639-48. [DOI: 10.1093/ndt/gfv231] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/21/2015] [Indexed: 12/15/2022] Open
|
33
|
Rossitto M, Ujjan S, Poulat F, Boizet-Bonhoure B. Multiple roles of the prostaglandin D2 signaling pathway in reproduction. Reproduction 2015; 149:R49-58. [DOI: 10.1530/rep-14-0381] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostaglandins signaling molecules are involved in numerous physiological processes. They are produced by several enzyme-limited reactions upon fatty acids, which are catalyzed by two cyclooxygenases and prostaglandin synthases. In particular, the prostaglandins E2(PGE2), D2(PGD2), and F2(PGF2α) have been shown to be involved in female reproductive mechanisms. Furthermore, widespread expression of lipocalin- and hematopoietic-PGD2synthases in the male reproductive tract supports the purported roles of PGD2in the development of both embryonic and adult testes, sperm maturation, and spermatogenesis. In this review, we summarize the putative roles of PGD2signaling and the roles of both PGD2synthases in testicular formation and function. We review the data reporting the involvement of PGD2signaling in the differentiation of Sertoli and germ cells of the embryonic testis. Furthermore, we discuss the roles of lipocalin-PGD2synthase in steroidogenesis and spermatogenesis, in terms of lipid molecule transport and PGD2production. Finally, we discuss the hypothesis that PGD2signaling may be affected in certain reproductive diseases, such as infertility, cryptorchidism, and testicular cancer.
Collapse
|
34
|
Lucas E, Jurado-Pueyo M, Fortuño MA, Fernández-Veledo S, Vila-Bedmar R, Jiménez-Borreguero LJ, Lazcano JJ, Gao E, Gómez-Ambrosi J, Frühbeck G, Koch WJ, Díez J, Mayor F, Murga C. Downregulation of G protein-coupled receptor kinase 2 levels enhances cardiac insulin sensitivity and switches on cardioprotective gene expression patterns. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2448-56. [DOI: 10.1016/j.bbadis.2014.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022]
|
35
|
White CA, Ghazan-Shahi S, Adams MA. β-Trace protein: a marker of GFR and other biological pathways. Am J Kidney Dis 2014; 65:131-46. [PMID: 25446025 DOI: 10.1053/j.ajkd.2014.06.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/27/2014] [Indexed: 11/11/2022]
Abstract
β-Trace protein (BTP), also known as lipocalin prostaglandin D2 synthase (L-PGDS; encoded by the PTGDS gene), is a low-molecular-weight glycoprotein and an emerging novel marker of glomerular filtration rate. BTP is an important constituent of cerebral spinal fluid and is found in much lower concentrations in blood. Its serum origin and renal handling remain poorly understood. Unlike serum creatinine, BTP is not physiologically inert. It possesses both ligand-binding and enzymatic properties. BTP catalyzes the conversion of prostaglandin H2 (PGH2) to PGD2. PGD2 is an eicosanoid involved in a variety of important physiologic processes, including platelet aggregation, vasodilation, inflammation, adipogenesis, and bone remodeling. Several studies now have documented BTP's strong association with glomerular filtration rate, end-stage renal disease, cardiovascular disease, and death in a variety of different patient populations. This review provides an overview of the biochemistry, physiology and metabolism, biological functions, and measurement of BTP; summarizes the evidence for BTP as a marker of both kidney function and cardiovascular disease; and then considers the interplay between its biological properties, serum concentration, and patient outcomes.
Collapse
Affiliation(s)
- Christine A White
- Division of Nephrology, Department of Medicine, Queen's University, Kingston, Canada.
| | - Sassan Ghazan-Shahi
- Division of Nephrology, Department of Medicine, Queen's University, Kingston, Canada
| | - Michael A Adams
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| |
Collapse
|
36
|
Filler G, Kusserow C, Lopes L, Kobrzyński M. Beta-trace protein as a marker of GFR--history, indications, and future research. Clin Biochem 2014; 47:1188-94. [PMID: 24833359 DOI: 10.1016/j.clinbiochem.2014.04.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Recent findings suggest that beta-trace protein (BTP), a small molecular weight protein, is at least equal if not superior to serum creatinine as a marker of glomerular filtration rate (GFR), particularly since it is independent from height, gender, age, and muscle mass. The authors sought to summarize knowledge on BTP and its use as a marker of GFR using the most recent literature available. DESIGN AND METHODS The authors compiled key articles and all relevant recent literature on this topic. Physical and chemical features of the molecule are described, as well as factors that may affect its expression. The use of BTP in estimating GFR as a whole and in specific patient groups, including pregnant women, neonates and infants, children and adolescents, and patients who have undergone renal transplantation is discussed. The use of BTP as a marker for cardiovascular risk factors is also briefly addressed. RESULTS Although its performance in the general population is marginally inferior to cystatin C, studies have suggested that it may be superior in accurately estimating GFR in select patient groups such as pregnant women and neonates. CONCLUSIONS This novel marker shows promise, but further research is required to clarify findings from available data.
Collapse
Affiliation(s)
- Guido Filler
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N5A 5A5, Canada; Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N5A 5A5, Canada.
| | - Carola Kusserow
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| | - Laudelino Lopes
- Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| | - Marta Kobrzyński
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| |
Collapse
|
37
|
Characteristic of PGDS potential regulation role on spermatogenesis in the Chinese mitten crab Eriocheir sinensis. Gene 2014; 543:244-52. [PMID: 24709109 DOI: 10.1016/j.gene.2014.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 02/08/2023]
Abstract
Prostaglandin D synthase (PGDS) catalyzes the isomerization of PGH2 to produce PGD2 in the presence of sulfhydryl compounds. In this study, a full length PGDS gene comprising 1250 nucleotides from the Chinese mitten crab Eriocheir sinensis (Es-PGDS) was characterized, with a 615 bp open reading frame encoding 204 amino acid residues. Its deduced peptide has high homology with other species' PGDS protein. The Es-PGDS mRNA expression was tissue-related, with the highest expression observed in the hepatopancreas, accessory sex gland, testis and ovaries. We also detected the different stages of tissue expression and the enzyme activity for Es-PGDS in the testis and male crab hepatopancreas. The different expression patterns and its corresponding enzyme activity level indicated that PGDS is involving in the regulation of reproductive action during the period of rapid development in E. sinensis. Furthermore our research could arouse a heat debate on the PGDS reproductive function in invertebrate and further study will be needed to determine the molecular mechanism(s) linking PGDS functions to spermatogenesis and ontogenesis if this gene is to be exploited as a molecular biomarker in further studies of development.
Collapse
|
38
|
Koyani CN, Windischhofer W, Rossmann C, Jin G, Kickmaier S, Heinzel FR, Groschner K, Alavian-Ghavanini A, Sattler W, Malle E. 15-deoxy-Δ¹²,¹⁴-PGJ₂ promotes inflammation and apoptosis in cardiomyocytes via the DP2/MAPK/TNFα axis. Int J Cardiol 2014; 173:472-80. [PMID: 24698234 PMCID: PMC4008937 DOI: 10.1016/j.ijcard.2014.03.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/14/2014] [Accepted: 03/12/2014] [Indexed: 12/17/2022]
Abstract
Background Prostaglandins (PGs), lipid autacoids derived from arachidonic acid, play a pivotal role during inflammation. PGD2 synthase is abundantly expressed in heart tissue and PGD2 has recently been found to induce cardiomyocyte apoptosis. PGD2 is an unstable prostanoid metabolite; therefore the objective of the present study was to elucidate whether its final dehydration product, 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2, present at high levels in ischemic myocardium) might cause cardiomyocyte damage. Methods and results Using specific (ant)agonists we show that 15d-PGJ2 induced formation of intracellular reactive oxygen species (ROS) and phosphorylation of p38 and p42/44 MAPKs via the PGD2 receptor DP2 (but not DP1 or PPARγ) in the murine atrial cardiomyocyte HL-1 cell line. Activation of the DP2-ROS-MAPK axis by 15d-PGJ2 enhanced transcription and translation of TNFα and induced apoptosis in HL-1 cardiomyocytes. Silencing of TNFα significantly attenuated the extrinsic (caspase-8) and intrinsic apoptotic pathways (bax and caspase-9), caspase-3 activation and downstream PARP cleavage and γH2AX activation. The apoptotic machinery was unaffected by intracellular calcium, transcription factor NF-κB and its downstream target p53. Of note, 9,10-dihydro-15d-PGJ2 (lacking the electrophilic carbon atom in the cyclopentenone ring) did not activate cellular responses. Selected experiments performed in primary murine cardiomyocytes confirmed data obtained in HL-1 cells namely that the intrinsic and extrinsic apoptotic cascades are activated via DP2/MAPK/TNFα signaling. Conclusions We conclude that the reactive α,β-unsaturated carbonyl group of 15d-PGJ2 is responsible for the pronounced upregulation of TNFα promoting cardiomyocyte apoptosis. We propose that inhibition of DP2 receptors could provide a possibility to modulate 15d-PGJ2-induced myocardial injury.
Collapse
Affiliation(s)
- Chintan N Koyani
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Werner Windischhofer
- Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Austria
| | - Christine Rossmann
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Ge Jin
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Austria; Cardiology Department, Medical University of Wenzhou, Wenzhou, China
| | - Sandra Kickmaier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Frank R Heinzel
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Austria
| | - Klaus Groschner
- Institute of Biophysics, Medical University of Graz, Austria
| | - Ali Alavian-Ghavanini
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| |
Collapse
|
39
|
Kinoshita K, Takeda J, Matsuoka K, Takeda S, Eguchi Y, Oda H, Eguchi N, Urade Y. Expression of lipocalin-type prostaglandin D synthase in preeclampsia patients: a novel marker for preeclampsia. HYPERTENSION RESEARCH IN PREGNANCY 2014. [DOI: 10.14390/jsshp.2.72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kazunori Kinoshita
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine
| | - Jun Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine
| | - Kikumi Matsuoka
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine
| | - Yutaka Eguchi
- Department of Emergency and Intensive Care, Shiga University of Medical Science
| | | | - Naomi Eguchi
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute
| | - Yoshihiro Urade
- International Institute for Integrative Sleep Medicine, University of Tsukuba
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute
| |
Collapse
|
40
|
Vílchez JA, Roldán V, Manzano-Fernández S, Fernández H, Avilés-Plaza F, Martínez-Hernández P, Vicente V, Valdés M, Marín F, Lip GY. β-Trace Protein and Prognosis in Patients With Atrial Fibrillation Receiving Anticoagulation Treatment. Chest 2013; 144:1564-1570. [DOI: 10.1378/chest.13-0922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
41
|
Dittrich AM, Meyer HA, Hamelmann E. The role of lipocalins in airway disease. Clin Exp Allergy 2013; 43:503-11. [PMID: 23600540 DOI: 10.1111/cea.12025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The pathogenesis of allergic airway inflammation and disease is complex and still not fully understood. Many cells, factors and mediators are involved in the different aspects of induction, maintenance and persistence of airway inflammation. The heterogeneity and redundancy of this system is one of the main reasons why novel therapeutic targets focusing on the pathogenesis of asthma only hesitantly reach the market and clinical application. Thus, it seems mandatory that we proceed in our efforts to better understand this micro cosmos to succeed in the development of safe and effective drugs for the treatment of more severe and refractory forms of asthma and chronic obstructive pulmonary disease. One of the more recently discovered mediators in the context of airway inflammation are the lipocalins (Lcns). They are a family of proteins that share functional and structural similarities and are involved in the transport of small hydrophobic molecules such as steroids and lipids into the cell. Lcns are found in many different cell types from plants and bacteria through invertebrate cells to cells of vertebrate origin. The purpose of this review is to summarize the role of Lcns in airway diseases, focusing on allergic and infectious inflammation. In particular, we will summarize the present knowledge about Lipocalin 1 and Lipocalin 2, where exciting new discoveries in the recent years have highlighted their role in pulmonary disease and infection. This new class of proteins is another putative candidate for the development of novel drugs against airway inflammation.
Collapse
Affiliation(s)
- A M Dittrich
- Junior Research Group, Allergic Sensitization, Medical School Hannover, Hannover, Germany
| | | | | |
Collapse
|
42
|
Katsumata Y, Shinmura K, Sugiura Y, Tohyama S, Matsuhashi T, Ito H, Yan X, Ito K, Yuasa S, Ieda M, Urade Y, Suematsu M, Fukuda K, Sano M. Endogenous prostaglandin D2 and its metabolites protect the heart against ischemia-reperfusion injury by activating Nrf2. Hypertension 2013; 63:80-7. [PMID: 24101662 DOI: 10.1161/hypertensionaha.113.01639] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We recently demonstrated that glucocorticoids markedly upregulate the expression of cyclooxygenase-2 in cardiomyocytes and protect hearts from ischemia-reperfusion (I/R) injury by activating lipocalin-type prostaglandin D (PGD) synthase (L-PGDS)-derived PGD(2) biosynthesis. We examined a downstream mechanism of cardioprotection elicited by PGD(2) biosynthesis. Acute PGD(2) treatment did not protect hearts against I/R injury. We then speculated that PGD(2) and its metabolite 15-deoxy-Δ12,14-PGJ(2) activate gene expression networks to mediate the glucocorticoid-mediated cardioprotection. Using an unbiased approach, we identified that glucocorticoids induce a number of well-known erythroid-derived 2-like 2 (Nrf2) target genes in the heart in an L-PGDS-dependent manner and that the cardioprotective effect of glucocorticoids against I/R injury was not seen in Nrf2-knockout hearts. We showed relatively low expression of PGD(2) receptors (ie, DP1 and DP2) in the heart but abundant expression of PGF(2α) receptor (FP), which binds PGF(2α) and PGD(2) with equal affinity. Glucocorticoids also failed to induce the expression of L-PGDS-dependent Nrf2 target genes in FP-knockout hearts. PGD(2) acted through its metabolite 15-deoxy-Δ12,14-PGJ(2) in the heart as evidenced by the glucocorticoid-mediated activation of peroxisome proliferator-activated receptor-γ. In turn, glucocorticoids failed to induce the expression of L-PGDS-dependent Nrf2 target genes in hearts pretreated with peroxisome proliferator-activated receptor-γ antagonist GW9662, and glucocorticoid-mediated cardioprotection against I/R injury was compromised in FP-knockout mice and GW9662-treated mice. In conclusion, PGD(2) protects heart against I/R injury by activating Nrf2 predominantly via FP receptor. In addition, we propose activation of peroxisome proliferator-activated receptor-γ by the dehydrated metabolite of PGD(2) (15-deoxy-Δ12,14-PGJ(2)) as another mechanism by which glucocorticoids induce cardioprotection.
Collapse
Affiliation(s)
- Yoshinori Katsumata
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Alvarez-Llamas G, Martín-Rojas T, de la Cuesta F, Calvo E, Gil-Dones F, Dardé VM, Lopez-Almodovar LF, Padial LR, Lopez JA, Vivanco F, Barderas MG. Modification of the secretion pattern of proteases, inflammatory mediators, and extracellular matrix proteins by human aortic valve is key in severe aortic stenosis. Mol Cell Proteomics 2013; 12:2426-39. [PMID: 23704777 DOI: 10.1074/mcp.m113.027425] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of the major challenges in cardiovascular medicine is to identify candidate biomarker proteins. Secretome analysis is particularly relevant in this search as it focuses on a subset of proteins released by a cell or tissue under certain conditions. The sample can be considered as a plasma subproteome and it provides a more direct approximation to the in vivo situation. Degenerative aortic stenosis is the most common worldwide cause of valve replacement. Using a proteomic analysis of the secretome from aortic stenosis valves we could identify candidate markers related to this pathology, which may facilitate early diagnosis and treatment. For this purpose, we have designed a method to validate the origin of secreted proteins, demonstrating their synthesis and release by the tissue and ruling out blood origin. The nLC-MS/MS analysis showed the labeling of 61 proteins, 82% of which incorporated the label in only one group. Western blot and selective reaction monitoring differential analysis, revealed a notable role of the extracellular matrix. Variation in particular proteins such as PEDF, cystatin and clusterin emphasizes the link between aortic stenosis and atherosclerosis. In particular, certain proteins variation in secretome levels correlates well, not only with label incorporation trend (only labeled in aortic stenosis group) but, more importantly, with alterations found in plasma from an independent cohort of samples, pointing to specific candidate markers to follow up in diagnosis, prognosis, and therapeutic intervention.
Collapse
|
44
|
Reduced serum beta-trace protein is associated with metabolic syndrome. Atherosclerosis 2013; 227:404-7. [DOI: 10.1016/j.atherosclerosis.2013.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 11/23/2022]
|
45
|
Foster MC, Inker LA, Levey AS, Selvin E, Eckfeldt J, Juraschek SP, Coresh J. Novel filtration markers as predictors of all-cause and cardiovascular mortality in US adults. Am J Kidney Dis 2013; 62:42-51. [PMID: 23518194 DOI: 10.1053/j.ajkd.2013.01.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/14/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND New filtration markers, including β-trace protein (BTP) and β₂-microglobulin (B2M), may, similar to cystatin C, enable a stronger prediction of mortality compared to serum creatinine-based estimated glomerular filtration rate (eGFRcr). We sought to evaluate these mortality associations in a representative sample of US adults. STUDY DESIGN Prospective cohort study. SETTING & PARTICIPANTS 6,445 adults 20 years or older from the Third National Health and Nutrition Examination Survey (1988-1994) with mortality linkage through December 31, 2006. PREDICTORS Serum cystatin C, BTP, and B2M levels and eGFRcr categorized into quintiles, with the highest quintile (lowest for eGFRcr) split into tertiles (subquintiles Q5a-Q5c). OUTCOMES All-cause, cardiovascular disease, and coronary heart disease mortality. MEASUREMENTS Demographic- and multivariable-adjusted Cox proportional hazard models. RESULTS During follow-up, 2,392 deaths (cardiovascular, 1,079; coronary heart disease, 605) occurred. Levels of all 4 filtration markers were associated with mortality risk after adjusting for demographics (P trend<0.02). Adjusted for mortality risk factors, compared to the middle quintile, the highest subquintiles for cystatin C (Q5c: HR, 1.94; 95% CI, 1.43-2.62), BTP (Q5c: HR, 2.14; 95% CI, 1.56-2.94), and B2M (Q5c: HR, 2.58; 95% CI, 1.96-3.41) were associated with increased all-cause mortality risk, whereas the association was weaker for eGFRcr (Q5c: HR, 1.31; 95% CI, 0.84-2.04). Associations persisted for the novel markers and not for eGFRcr at eGFRcr ≥60 mL/min/1.73 m². Trends were similar for cardiovascular disease and coronary heart disease mortality. LIMITATIONS Single measurements of markers from long-term stored samples. CONCLUSIONS The strong association of cystatin C level with mortality compared with serum creatinine estimates is shared by BTP and B2M. This supports the utility of alternative filtration markers beyond creatinine when improved risk prediction related to decreased GFR is needed.
Collapse
Affiliation(s)
- Meredith C Foster
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Orenes-Piñero E, Manzano-Fernández S, López-Cuenca Á, Marín F, Valdés M, Januzzi JL. β-Trace Protein: From GFR Marker to Cardiovascular Risk Predictor. Clin J Am Soc Nephrol 2013; 8:873-81. [DOI: 10.2215/cjn.08870812] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Gleim S, Stitham J, Tang WH, Martin KA, Hwa J. An eicosanoid-centric view of atherothrombotic risk factors. Cell Mol Life Sci 2012; 69:3361-80. [PMID: 22491820 PMCID: PMC3691514 DOI: 10.1007/s00018-012-0982-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/22/2012] [Accepted: 03/26/2012] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is the foremost cause of morbidity and mortality in the Western world. Atherosclerosis followed by thrombosis (atherothrombosis) is the pathological process underlying most myocardial, cerebral, and peripheral vascular events. Atherothrombosis is a complex and heterogeneous inflammatory process that involves interactions between many cell types (including vascular smooth muscle cells, endothelial cells, macrophages, and platelets) and processes (including migration, proliferation, and activation). Despite a wealth of knowledge from many recent studies using knockout mouse and human genetic studies (GWAS and candidate approach) identifying genes and proteins directly involved in these processes, traditional cardiovascular risk factors (hyperlipidemia, hypertension, smoking, diabetes mellitus, sex, and age) remain the most useful predictor of disease. Eicosanoids (20 carbon polyunsaturated fatty acid derivatives of arachidonic acid and other essential fatty acids) are emerging as important regulators of cardiovascular disease processes. Drugs indirectly modulating these signals, including COX-1/COX-2 inhibitors, have proven to play major roles in the atherothrombotic process. However, the complexity of their roles and regulation by opposing eicosanoid signaling, have contributed to the lack of therapies directed at the eicosanoid receptors themselves. This is likely to change, as our understanding of the structure, signaling, and function of the eicosanoid receptors improves. Indeed, a major advance is emerging from the characterization of dysfunctional naturally occurring mutations of the eicosanoid receptors. In light of the proven and continuing importance of risk factors, we have elected to focus on the relationship between eicosanoids and cardiovascular risk factors.
Collapse
Affiliation(s)
- Scott Gleim
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| | - Jeremiah Stitham
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| | - Wai Ho Tang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| | - Kathleen A. Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
48
|
Philipose S, Konya V, Lazarevic M, Pasterk LM, Marsche G, Frank S, Peskar BA, Heinemann A, Schuligoi R. Laropiprant attenuates EP3 and TP prostanoid receptor-mediated thrombus formation. PLoS One 2012; 7:e40222. [PMID: 22870195 PMCID: PMC3411562 DOI: 10.1371/journal.pone.0040222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/02/2012] [Indexed: 11/24/2022] Open
Abstract
The use of the lipid lowering agent niacin is hampered by a frequent flush response which is largely mediated by prostaglandin (PG) D2. Therefore, concomitant administration of the D-type prostanoid (DP) receptor antagonist laropiprant has been proposed to be a useful approach in preventing niacin-induced flush. However, antagonizing PGD2, which is a potent inhibitor of platelet aggregation, might pose the risk of atherothrombotic events in cardiovascular disease. In fact, we found that in vitro treatment of platelets with laropiprant prevented the inhibitory effects of PGD2 on platelet function, i.e. platelet aggregation, Ca2+ flux, P-selectin expression, activation of glycoprotein IIb/IIIa and thrombus formation. In contrast, laropiprant did not prevent the inhibitory effects of acetylsalicylic acid or niacin on thrombus formation. At higher concentrations, laropiprant by itself attenuated platelet activation induced by thromboxane (TP) and E-type prostanoid (EP)-3 receptor stimulation, as demonstrated in assays of platelet aggregation, Ca2+ flux, P-selectin expression, and activation of glycoprotein IIb/IIIa. Inhibition of platelet function exerted by EP4 or I-type prostanoid (IP) receptors was not affected by laropiprant. These in vitro data suggest that niacin/laropiprant for the treatment of dyslipidemias might have a beneficial profile with respect to platelet function and thrombotic events in vascular disease.
Collapse
Affiliation(s)
- Sonia Philipose
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Viktoria Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Mirjana Lazarevic
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Lisa M. Pasterk
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Sasa Frank
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Bernhard A. Peskar
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
- * E-mail:
| | - Rufina Schuligoi
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
49
|
Shafi T, Parekh RS, Jaar BG, Plantinga LC, Oberai PC, Eckfeldt JH, Levey AS, Powe NR, Coresh J. Serum β-trace protein and risk of mortality in incident hemodialysis patients. Clin J Am Soc Nephrol 2012; 7:1435-45. [PMID: 22745274 DOI: 10.2215/cjn.02240312] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND OBJECTIVES Residual kidney function in dialysis patients is associated with better survival, but there are no simple methods for its assessment. β-Trace protein is a novel endogenous filtration marker of kidney function that is not removed during hemodialysis and may serve as a marker for residual kidney function similar to serum creatinine in patients not on dialysis. The objective of this study was to determine the association of serum β-trace protein with mortality in incident hemodialysis patients. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Serum β-trace protein was measured in baseline samples from 503 participants of a national prospective cohort study of incident dialysis patients with enrollment during 1995-1998 and follow-up until 2004. Outcomes were all-cause and cardiovascular disease mortality analyzed using Cox regression adjusted for demographic, clinical, and treatment factors. RESULTS Serum β-trace protein levels were higher in individuals with no urine output compared with individuals with urine output (9.0±3.5 versus 7.6±3.1 mg/L; P<0.001). There were 321 deaths (159 deaths from cardiovascular disease) during follow-up (median=3.3 years). Higher β-trace protein levels were associated with higher risk of mortality. The adjusted hazard ratio and 95% confidence interval for all-cause mortality per doubling of serum β-trace protein was 1.36 (1.09-1.69). The adjusted hazard ratios (95% confidence intervals) for all-cause mortality in the middle and highest tertiles compared with the lowest tertile were 0.95 (0.69-1.32) and 1.72 (1.25-2.37). Similar results were noted for cardiovascular disease mortality. CONCLUSIONS The serum level of β-trace protein is an independent predictor of death and cardiovascular disease mortality in incident hemodialysis patients.
Collapse
Affiliation(s)
- Tariq Shafi
- Division of Nephrology, Johns Hopkins University School of Medicine, 301 Mason Lord Drive, Suite 2500, Baltimore, MD 21224-2780, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Urade Y, Hayaishi O. Prostaglandin D2 and sleep/wake regulation. Sleep Med Rev 2012; 15:411-8. [PMID: 22024172 DOI: 10.1016/j.smrv.2011.08.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/09/2011] [Accepted: 08/11/2011] [Indexed: 11/19/2022]
Abstract
Prostaglandin (PG) D2 is the most potent endogenous sleep-promoting substance. PGD2 is produced by lipocalin-type PGD synthase localized in the leptomeninges, choroid plexus, and oligodendrocytes in the brain, and is secreted into the cerebrospinal fluid as a sleep hormone. PGD2 stimulates DP1 receptors localized in the leptomeninges under the basal forebrain and the hypothalamus. As a consequence, adenosine is released as a paracrine sleep-promoting molecule to activate adenosine A2A receptor-expressing sleep-promoting neurons and to inhibit adenosine A1 receptor-possessing arousal neurons. PGD2 activates a center of non-rapid eye movement (NREM) sleep regulation in the ventrolateral preoptic area, probably mediated by adenosine signaling, which activation inhibits the histaminergic arousal center in the tuberomammillary nucleus via descending GABAergic and galaninergic projections. The administration of a lipocalin-type PGD synthase inhibitor (SeCl4), DP1 antagonist (ONO-4127Na) or adenosine A2A receptor antagonist (caffeine) suppresses both NREM and rapid eye movement (REM) sleep, indicating that the PGD2-adenosine system is crucial for the maintenance of physiological sleep.
Collapse
Affiliation(s)
- Yoshihiro Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4, Furuedai, Suita, Osaka 565 0874, Japan.
| | | |
Collapse
|