1
|
Spittler D, Indorato RL, Boeri Erba E, Delaforge E, Signor L, Harris SJ, Garcia-Saez I, Palencia A, Gabel F, Blackledge M, Noirclerc-Savoye M, Petosa C. Binding stoichiometry and structural model of the HIV-1 Rev/importin β complex. Life Sci Alliance 2022; 5:5/10/e202201431. [PMID: 35995566 PMCID: PMC9396022 DOI: 10.26508/lsa.202201431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
HIV-1 Rev mediates the nuclear export of intron-containing viral RNA transcripts and is essential for viral replication. Rev is imported into the nucleus by the host protein importin β (Impβ), but how Rev associates with Impβ is poorly understood. Here, we report biochemical, mutational, and biophysical studies of the Impβ/Rev complex. We show that Impβ binds two Rev monomers through independent binding sites, in contrast to the 1:1 binding stoichiometry observed for most Impβ cargos. Peptide scanning data and charge-reversal mutations identify the N-terminal tip of Rev helix α2 within Rev's arginine-rich motif (ARM) as a primary Impβ-binding epitope. Cross-linking mass spectrometry and compensatory mutagenesis data combined with molecular docking simulations suggest a structural model in which one Rev monomer binds to the C-terminal half of Impβ with Rev helix α2 roughly parallel to the HEAT-repeat superhelical axis, whereas the other monomer binds to the N-terminal half. These findings shed light on the molecular basis of Rev recognition by Impβ and highlight an atypical binding behavior that distinguishes Rev from canonical cellular Impβ cargos.
Collapse
Affiliation(s)
- Didier Spittler
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Rose-Laure Indorato
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Elisabetta Boeri Erba
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Elise Delaforge
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Luca Signor
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Simon J Harris
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Isabel Garcia-Saez
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Andrés Palencia
- Institute for Advanced Biosciences, Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Frank Gabel
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Martin Blackledge
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Marjolaine Noirclerc-Savoye
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Carlo Petosa
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| |
Collapse
|
2
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) proteome is expressed from alternatively spliced and unspliced genomic RNAs. However, HIV-1 RNAs that are not fully spliced are perceived by the host machinery as defective and are retained in the nucleus. During late infection, HIV-1 bypasses this regulatory mechanism by expression of the Rev protein from a fully spliced mRNA. Once imported into the nucleus, Rev mediates the export of unprocessed HIV-1 RNAs to the cytoplasm, leading to the production of the viral progeny. While regarded as a canonical RNA export factor, Rev has also been linked to HIV-1 RNA translation, stabilization, splicing and packaging. However, Rev's functions beyond RNA export have remained poorly understood. Here, we revisit this paradigmatic protein, reviewing recent data investigating its structure and function. We conclude by asking: what remains unknown about this enigmatic viral protein?
Collapse
Affiliation(s)
| | - Aino Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
3
|
Wong RW, Balachandran A, Cheung PK, Cheng R, Pan Q, Stoilov P, Harrigan PR, Blencowe BJ, Branch DR, Cochrane A. An activator of G protein-coupled receptor and MEK1/2-ERK1/2 signaling inhibits HIV-1 replication by altering viral RNA processing. PLoS Pathog 2020; 16:e1008307. [PMID: 32069328 PMCID: PMC7048317 DOI: 10.1371/journal.ppat.1008307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/28/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
The ability of HIV-1 to evolve resistance to combined antiretroviral therapies (cARTs) has stimulated research into alternative means of controlling this infection. We assayed >60 modulators of RNA alternative splicing (AS) to identify new inhibitors of HIV-1 RNA processing-a segment of the viral lifecycle not targeted by current drugs-and discovered compound N-[4-chloro-3-(trifluoromethyl)phenyl]-7-nitro-2,1,3-benzoxadiazol-4-amine (5342191) as a potent inhibitor of both wild-type (Ba-L, NL4-3, LAI, IIIB, and N54) and drug-resistant strains of HIV-1 (IC50: ~700 nM) with no significant effect on cell viability at doses tested. 5342191 blocks expression of four essential HIV-1 structural and regulatory proteins (Gag, Env, Tat, and Rev) without affecting total protein synthesis of the cell. This response is associated with altered unspliced (US) and singly-spliced (SS) HIV-1 RNA accumulation (~60% reduction) and transport to the cytoplasm (loss of Rev) whereas parallel analysis of cellular RNAs revealed less than a 0.7% of host alternative splicing (AS) events (0.25-0.67% by ≥ 10-20%), gene expression (0.01-0.46% by ≥ 2-5 fold), and protein abundance (0.02-0.34% by ≥ 1.5-2 fold) being affected. Decreased expression of Tat, but not Gag/Env, upon 5342191 treatment was reversed by a proteasome inhibitor, suggesting that this compound alters the synthesis/degradation of this key viral factor. Consistent with an affect on HIV-1 RNA processing, 5342191 treatment of cells altered the abundance and phosphorylation of serine/arginine-rich splicing factor (SRSF) 1, 3, and 4. Despite the activation of several intracellular signaling pathways by 5342191 (Ras, MEK1/2-ERK1/2, and JNK1/2/3), inhibition of HIV-1 gene expression by this compound could be reversed by pre-treatment with either a G-protein α-subunit inhibitor or two different MEK1/2 inhibitors. These observations demonstrate enhanced sensitivity of HIV-1 gene expression to small changes in host RNA processing and highlights the potential of modulating host intracellular signaling as an alternative approach for controlling HIV-1 infection.
Collapse
Affiliation(s)
- Raymond W. Wong
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ahalya Balachandran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter K. Cheung
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Ran Cheng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Qun Pan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, United States of America
| | - P. Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin J. Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Donald R. Branch
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Advanced Diagnostics, Infection and Immunity Group, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Jayaraman B, Fernandes JD, Yang S, Smith C, Frankel AD. Highly Mutable Linker Regions Regulate HIV-1 Rev Function and Stability. Sci Rep 2019; 9:5139. [PMID: 30914719 PMCID: PMC6435700 DOI: 10.1038/s41598-019-41582-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/05/2019] [Indexed: 11/12/2022] Open
Abstract
HIV-1 Rev is an essential viral regulatory protein that facilitates the nuclear export of intron-containing viral mRNAs. It is organized into structured, functionally well-characterized motifs joined by less understood linker regions. Our recent competitive deep mutational scanning study confirmed many known constraints in Rev’s established motifs, but also identified positions of mutational plasticity, most notably in surrounding linker regions. Here, we probe the mutational limits of these linkers by testing the activities of multiple truncation and mass substitution mutations. We find that these regions possess previously unknown structural, functional or regulatory roles, not apparent from systematic point mutational approaches. Specifically, the N- and C-termini of Rev contribute to protein stability; mutations in a turn that connects the two main helices of Rev have different effects in different contexts; and a linker region which connects the second helix of Rev to its nuclear export sequence has structural requirements for function. Thus, Rev function extends beyond its characterized motifs, and is tuned by determinants within seemingly plastic portions of its sequence. Additionally, Rev’s ability to tolerate many of these massive truncations and substitutions illustrates the overall mutational and functional robustness inherent in this viral protein.
Collapse
Affiliation(s)
- Bhargavi Jayaraman
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jason D Fernandes
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA.,UCSC Genomics Institute/Howard Hughes Medical Institute, University of Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Shumin Yang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA.,School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Cynthia Smith
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
5
|
Olgun HB, Tasyurek HM, Sanlioglu AD, Sanlioglu S. High-Titer Production of HIV-Based Lentiviral Vectors in Roller Bottles for Gene and Cell Therapy. Methods Mol Biol 2018; 1879:323-345. [PMID: 29797007 DOI: 10.1007/7651_2018_150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lentiviral vectors are becoming preferred vectors of choice for clinical gene therapy trials due to their safety, efficacy, and the long-term gene expression they provide. Although the efficacy of lentiviral vectors is mainly predetermined by the therapeutic genes they carry, they must be produced at high titers to exert therapeutic benefit for in vivo applications. Thus, there is need for practical, robust, and scalable viral vector production methods applicable to any laboratory setting. Here, we describe a practical lentiviral production technique in roller bottles yielding high-titer third-generation lentiviral vectors useful for in vivo gene transfer applications. CaPO4-mediated transient transfection protocol involving the use of a transfer vector and three different packaging plasmids is employed to generate lentivectors in roller bottles. Following clearance of cellular debris via low-speed centrifugation and filtration, virus is concentrated by high-speed ultracentrifugation over sucrose cushion.
Collapse
Affiliation(s)
- Hazal Banu Olgun
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals, Antalya, Turkey
| | - Hale M Tasyurek
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals, Antalya, Turkey
| | | | - Salih Sanlioglu
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals, Antalya, Turkey.
| |
Collapse
|
6
|
Abstract
Pre-mRNA processing protein 40 (Prp40) is a nuclear protein that has a role in pre-mRNA splicing. Prp40 possesses two leucine-rich nuclear export signals, but little is known about the function of Prp40 in the export process. Another protein that has a role in protein export is centrin, a member of the EF-hand superfamily of Ca2+-binding proteins. Prp40 was found to be a centrin target by yeast-two-hybrid screening using both Homo sapiens centrin 2 (Hscen2) and Chlamydomonas reinhardtii centrin (Crcen). We identified a centrin-binding site within H. sapiens Prp40 homolog A (HsPrp40A), which contains a hydrophobic triad W1L4L8 that is known to be important in the interaction with centrin. This centrin-binding site is highly conserved within the first nuclear export signal consensus sequence identified in Saccharomyces cerevisiae Prp40. Here, we examine the interaction of HsPrp40A peptide (HsPrp40Ap) with both Hscen2 and Crcen by isothermal titration calorimetry. We employed the thermodynamic parameterization to estimate the polar and apolar surface area of the interface. In addition, we have defined the molecular mechanism of thermally induced unfolding and dissociation of the Crcen-HsPrp40Ap complex using two-dimensional infrared correlation spectroscopy. These complementary techniques showed for the first time, to our knowledge, that HsPrp40Ap interacts with centrin in vitro, supporting a coupled functional role for these proteins in pre-mRNA splicing.
Collapse
|
7
|
Nakano K, Watanabe T. HTLV-1 Rex Tunes the Cellular Environment Favorable for Viral Replication. Viruses 2016; 8:58. [PMID: 26927155 PMCID: PMC4810248 DOI: 10.3390/v8030058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) Rex is a viral RNA binding protein. The most important and well-known function of Rex is stabilizing and exporting viral mRNAs from the nucleus, particularly for unspliced/partially-spliced mRNAs encoding the structural proteins essential for viral replication. Without Rex, these unspliced viral mRNAs would otherwise be completely spliced. Therefore, Rex is vital for the translation of structural proteins and the stabilization of viral genomic RNA and, thus, for viral replication. Rex schedules the period of extensive viral replication and suppression to enter latency. Although the importance of Rex in the viral life-cycle is well understood, the underlying molecular mechanism of how Rex achieves its function has not been clarified. For example, how does Rex protect unspliced/partially-spliced viral mRNAs from the host cellular splicing machinery? How does Rex protect viral mRNAs, antigenic to eukaryotic cells, from cellular mRNA surveillance mechanisms? Here we will discuss these mechanisms, which explain the function of Rex as an organizer of HTLV-1 expression based on previously and recently discovered aspects of Rex. We also focus on the potential influence of Rex on the homeostasis of the infected cell and how it can exert its function.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| | - Toshiki Watanabe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| |
Collapse
|
8
|
Bose D, Gagnon J, Chebloune Y. Comparative Analysis of Tat-Dependent and Tat-Deficient Natural Lentiviruses. Vet Sci 2015; 2:293-348. [PMID: 29061947 PMCID: PMC5644649 DOI: 10.3390/vetsci2040293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/10/2023] Open
Abstract
The emergence of human immunodeficiency virus (HIV) causing acquired immunodeficiency syndrome (AIDS) in infected humans has resulted in a global pandemic that has killed millions. HIV-1 and HIV-2 belong to the lentivirus genus of the Retroviridae family. This genus also includes viruses that infect other vertebrate animals, among them caprine arthritis-encephalitis virus (CAEV) and Maedi-Visna virus (MVV), the prototypes of a heterogeneous group of viruses known as small ruminant lentiviruses (SRLVs), affecting both goat and sheep worldwide. Despite their long host-SRLV natural history, SRLVs were never found to be responsible for immunodeficiency in contrast to primate lentiviruses. SRLVs only replicate productively in monocytes/macrophages in infected animals but not in CD4+ T cells. The focus of this review is to examine and compare the biological and pathological properties of SRLVs as prototypic Tat-independent lentiviruses with HIV-1 as prototypic Tat-dependent lentiviruses. Results from this analysis will help to improve the understanding of why and how these two prototypic lentiviruses evolved in opposite directions in term of virulence and pathogenicity. Results may also help develop new strategies based on the attenuation of SRLVs to control the highly pathogenic HIV-1 in humans.
Collapse
Affiliation(s)
- Deepanwita Bose
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Jean Gagnon
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Yahia Chebloune
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| |
Collapse
|
9
|
Lin MH, Sivakumaran H, Jones A, Li D, Harper C, Wei T, Jin H, Rustanti L, Meunier FA, Spann K, Harrich D. A HIV-1 Tat mutant protein disrupts HIV-1 Rev function by targeting the DEAD-box RNA helicase DDX1. Retrovirology 2014; 11:121. [PMID: 25496916 PMCID: PMC4271445 DOI: 10.1186/s12977-014-0121-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/03/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Previously we described a transdominant negative mutant of the HIV-1 Tat protein, termed Nullbasic, that downregulated the steady state levels of unspliced and singly spliced viral mRNA, an activity caused by inhibition of HIV-1 Rev activity. Nullbasic also altered the subcellular localizations of Rev and other cellular proteins, including CRM1, B23 and C23 in a Rev-dependent manner, suggesting that Nullbasic may disrupt Rev function and trafficking by intervening with an unidentified component of the Rev nucleocytoplasmic transport complex. RESULTS To seek a possible mechanism that could explain how Nullbasic inhibits Rev activity, we used a proteomics approach to identify host cellular proteins that interact with Nullbasic. Forty-six Nullbasic-binding proteins were identified by mass spectrometry including the DEAD-box RNA helicase, DDX1. To determine the effect of DDX1 on Nullbasic-mediated Rev activity, we performed cell-based immunoprecipitation assays, Rev reporter assays and bio-layer interferometry (BLI) assays. Interaction between DDX1 and Nullbasic was observed by co-immunoprecipitation of Nullbasic with endogenous DDX1 from cell lysates. BLI assays showed a direct interaction between Nullbasic and DDX1. Nullbasic affected DDX1 subcellular distribution in a Rev-independent manner. Interestingly overexpression of DDX1 in cells not only restored Rev-dependent mRNA export and gene expression in a Rev reporter assay but also partly reversed Nullbasic-induced Rev subcellular mislocalization. Moreover, HIV-1 wild type Tat co-immunoprecipitated with DDX1 and overexpression of Tat could rescue the unspliced viral mRNA levels inhibited by Nullbasic in HIV-1 expressing cells. CONCLUSIONS Nullbasic was used to further define the complex mechanisms involved in the Rev-dependent nuclear export of the 9 kb and 4 kb viral RNAs. All together, these data indicate that DDX1 can be sequestered by Nullbasic leading to destabilization of the Rev nucleocytoplasmic transport complex and decreased levels of Rev-dependent viral transcripts. The outcomes support a role for DDX1 in maintenance of a Rev nuclear complex that transports viral RRE-containing mRNA to the cytoplasm. To our knowledge Nullbasic is the first anti-HIV protein that specifically targets the cellular protein DDX1 to block Rev's activity. Furthermore, our research raises the possibility that wild type Tat may play a previously unrecognized but very important role in Rev function.
Collapse
Affiliation(s)
- Min-Hsuan Lin
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Haran Sivakumaran
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| | - Dongsheng Li
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Callista Harper
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland, Australia.
| | - Ting Wei
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Hongping Jin
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Lina Rustanti
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Frederic A Meunier
- Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia. .,Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland, Australia.
| | - Kirsten Spann
- Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.
| | - David Harrich
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. .,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
10
|
Banerjee A, Benjamin R, Balakrishnan K, Ghosh P, Banerjee S. Human protein Staufen-2 promotes HIV-1 proliferation by positively regulating RNA export activity of viral protein Rev. Retrovirology 2014; 11:18. [PMID: 24520823 PMCID: PMC4016256 DOI: 10.1186/1742-4690-11-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/05/2014] [Indexed: 11/24/2022] Open
Abstract
Background The export of intron containing viral RNAs from the nucleus to the cytoplasm is an essential step in the life cycle of Human Immunodeficiency Virus-1 (HIV-1). As the eukaryotic system does not permit the transport of intron containing RNA out of the nucleus, HIV-1 makes a regulatory protein, Rev, that mediates the transportation of unspliced and partially spliced viral mRNA from the nucleus to the cytoplasm, thereby playing a decisive role in the generation of new infectious virus particles. Therefore, the host factors modulating the RNA export activity of Rev can be major determinants of virus production in an infected cell. Results In this study, human Staufen-2 (hStau-2) was identified as a host factor interacting with HIV-1 Rev through affinity chromatography followed by MALDI analyses. Our experiments involving transient expressions, siRNA mediated knockdowns and infection assays conclusively established that hStau-2 is a positive regulator of HIV-1 pathogenesis. We demonstrated that Rev-hStau-2 interactions positively regulated the RNA export activity of Rev and promoted progeny virus synthesis. The Rev-hStau-2 interaction was independent of RNA despite both being RNA binding proteins. hStau-2 mutant, with mutations at Q314R-A318F-K319E, deficient of binding Rev, failed to promote hStau-2 dependent Rev activity and viral production, validating the essentiality of this protein-protein interaction. The expression of this positive regulator was elevated upon HIV-1 infection in both human T-lymphocyte and astrocyte cell lines. Conclusions With this study, we establish that human Staufen-2, a host factor which is up-regulated upon HIV-1 infection, interacts with HIV-1 Rev, thereby promoting its RNA export activity and progeny virus formation. Altogether, our study provides new insights into the emerging role of the Staufen family of mRNA transporters in host-pathogen interaction and supports the notion that obliterating interactions between viral and host proteins that positively regulate HIV-1 proliferation can significantly contribute to anti-retroviral treatments.
Collapse
Affiliation(s)
| | | | | | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Andhra Pradesh 500046, India.
| |
Collapse
|
11
|
Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses. J Virol 2013; 88:1972-89. [PMID: 24284329 DOI: 10.1128/jvi.03031-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.
Collapse
|
12
|
Wong RW, Balachandran A, Ostrowski MA, Cochrane A. Digoxin suppresses HIV-1 replication by altering viral RNA processing. PLoS Pathog 2013; 9:e1003241. [PMID: 23555254 PMCID: PMC3610647 DOI: 10.1371/journal.ppat.1003241] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/24/2013] [Indexed: 11/18/2022] Open
Abstract
To develop new approaches to control HIV-1 replication, we examined the capacity of recently described small molecular modulators of RNA splicing for their effects on viral RNA metabolism. Of the drugs tested, digoxin was found to induce a dramatic inhibition of HIV-1 structural protein synthesis, a response due, in part, to reduced accumulation of the corresponding viral mRNAs. In addition, digoxin altered viral RNA splice site use, resulting in loss of the essential viral factor Rev. Digoxin induced changes in activity of the CLK family of SR protein kinases and modification of several SR proteins, including SRp20 and Tra2β, which could account for the effects observed. Consistent with this hypothesis, overexpression of SRp20 elicited changes in HIV-1 RNA processing similar to those observed with digoxin. Importantly, digoxin was also highly active against clinical strains of HIV-1 in vitro, validating this novel approach to treatment of this infection.
Collapse
Affiliation(s)
- Raymond W. Wong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
13
|
Nakano K, Watanabe T. HTLV-1 Rex: the courier of viral messages making use of the host vehicle. Front Microbiol 2012; 3:330. [PMID: 22973269 PMCID: PMC3434621 DOI: 10.3389/fmicb.2012.00330] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/24/2012] [Indexed: 01/25/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus causing an aggressive T-cell malignancy, adult T-cell leukemia (ATL). Although HTLV-1 has a compact RNA genome, it has evolved elaborate mechanisms to maximize its coding potential. The structural proteins Gag, Pro, and Pol are encoded in the unspliced form of viral mRNA, whereas the Env protein is encoded in singly spliced viral mRNA. Regulatory and accessory proteins, such as Tax, Rex, p30II, p12, and p13, are translated only from fully spliced mRNA. For effective viral replication, translation from all forms of HTLV-1 transcripts has to be achieved in concert, although unspliced mRNA are extremely unstable in mammalian cells. It has been well recognized that HTLV-1 Rex enhances the stability of unspliced and singly spliced HTLV-1 mRNA by promoting nuclear export and thereby removing them from the splicing site. Rex specifically binds to the highly structured Rex responsive element (RxRE) located at the 3' end of all HTLV-1 mRNA. Rex then binds to the cellular nuclear exporter, CRM1, via its nuclear export signal domain and the Rex-viral transcript complex is selectively exported from the nucleus to the cytoplasm for effective translation of the viral proteins. Yet, the mechanisms by which Rex inhibits the cellular splicing machinery and utilizes the cellular pathways beneficial to viral survival in the host cell have not been fully explored. Furthermore, physiological impacts of Rex against homeostasis of the host cell via interactions with numerous cellular proteins have been largely left uninvestigated. In this review, we focus on the biological importance of HTLV-1 Rex in the HTLV-1 life cycle by following the historical path in the literature concerning this viral post-transcriptional regulator from its discovery to this day. In addition, for future studies, we discuss recently discovered aspects of HTLV-1 Rex as a post-transcriptional regulator and its use in host cellular pathways.
Collapse
Affiliation(s)
- Kazumi Nakano
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Tokyo, Japan
| | - Toshiki Watanabe
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
14
|
Kula A, Marcello A. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression. BIOLOGY 2012; 1:116-33. [PMID: 24832221 PMCID: PMC4009772 DOI: 10.3390/biology1020116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 01/08/2023]
Abstract
Gene expression of the human immunodeficiency virus type 1 (HIV-1) is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE). These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function.
Collapse
Affiliation(s)
- Anna Kula
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste 99 34012, Italy.
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste 99 34012, Italy.
| |
Collapse
|
15
|
Liu J, Henao-Mejia J, Liu H, Zhao Y, He JJ. Translational regulation of HIV-1 replication by HIV-1 Rev cellular cofactors Sam68, eIF5A, hRIP, and DDX3. J Neuroimmune Pharmacol 2011; 6:308-21. [PMID: 21360055 DOI: 10.1007/s11481-011-9265-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
Nuclear export and translation of HIV-1 RNA are two important posttranscriptional events for HIV-1 gene expression and replication. HIV-1 Rev functions to export unspliced and incompletely spliced HIV-1 RNA from the nucleus to the cytoplasm; it requires interaction with several cellular cofactors such as Sam68, eIF5A, hRIP, and DDX3. Meanwhile, some studies have also implicated Rev and some of its cofactors such as Sam68 in HIV-1 RNA translation. Thus, in this study, we aimed to characterize the potential function of all these four Rev cofactors in HIV-1 RNA translation. Ectopic expression, siRNA knockdown, and trans-complementation assays confirmed that all these cofactors were very important for HIV-1 gene expression and production through Rev and, accordingly, Rev-dependent reporter gene expression. Importantly, these studies revealed for the first time that each of these cofactors also regulated Rev-independent reporter gene expression. To directly determine the roles of these cofactors in HIV-1 RNA translation, we designed and synthesized a full-length capped HIV-1 RNA in vitro, transfected it into cells to bypass the RNA nuclear export step, and determined HIV-1 Gag expression from the cytoplasmic RNA in the cells that had ectopically expressed or siRNA knocked down cofactors. Gag expression was found to closely correlate with the expression levels of all these cofactors. Furthermore, we took advantage of a HIV-1 internal ribosomal entry site (IRES)-based bicistronic reporter gene assay and determined the effects of these cofactors on cap-independent IRES-mediated HIV-1 translation. The results showed that DDX3, eIF5A, and hRIP enhanced HIV-1 IRES-mediated translation, whereas Sam68 did not. Taken together, these results show that HIV-1 Rev cofactors Sam68, eIF5A, hRIP, and DDX3 also function in the translation of HIV-1 RNA and suggest that the regulatory mechanisms of HIV-1 RNA translation are likely different among these cofactors.
Collapse
Affiliation(s)
- Jinfeng Liu
- The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Abstract
Cellular life can be described as a dynamic equilibrium of a highly complex network of interacting molecules. For this reason, it is no longer sufficient to “only” know the identity of the participants in a cellular process, but questions such as where, when, and for how long also have to be addressed to understand the mechanism being investigated. Additionally, ensemble measurements may not sufficiently describe individual steps of molecular mobility, spatial-temporal resolution, kinetic parameters, and geographical mapping. It is vital to investigate where individual steps exactly occur to enhance our understanding of the living cell. The nucleus, home too many highly complex multi-order processes, such as replication, transcription, splicing, etc., provides a complicated, heterogeneous landscape. Its dynamics were studied to a new level of detail by fluorescence correlation spectroscopy (FCS). Single-molecule tracking, while still in its infancy in cell biology, is becoming a more and more attractive method to deduce key elements of this organelle. Here we discuss the potential of tracking single RNAs and proteins in the nucleus. Their dynamics, localization, and interaction rates will be vital to our understanding of cellular life. To demonstrate this, we provide a review of the HIV life cycle, which is an extremely elegant balance of nuclear and cytoplasmic functions and provides an opportunity to study mechanisms deeply integrated within the structure of the nucleus. In summary, we aim to present a specific, dynamic view of nuclear cellular life based on single molecule and FCS data and provide a prospective for the future.
Collapse
|
17
|
Na H, Huisman W, Ellestad KK, Phillips TR, Power C. Domain- and nucleotide-specific Rev response element regulation of feline immunodeficiency virus production. Virology 2010; 404:246-60. [PMID: 20570310 DOI: 10.1016/j.virol.2010.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/23/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Computational analysis of feline immunodeficiency virus (FIV) RNA sequences indicated that common FIV strains contain a rev response element (RRE) defined by a long unbranched hairpin with 6 stem-loop sub-domains, termed stem-loop A (SLA). To examine the role of the RNA secondary structure of the RRE, mutational analyses were performed in both an infectious FIV molecular clone and a FIV CAT-RRE reporter system. These studies disclosed that the stems within SLA (SA1, 2, 3, 4, and 5) of the RRE were critical but SA6 was not essential for FIV replication and CAT expression. These studies also revealed that the secondary structure rather than an antisense protein (ASP) mediates virus expression and replication in vitro. In addition, a single synonymous mutation within the FIV-RRE, SA3/45, reduced viral reverse transcriptase activity and p24 expression after transfection but in addition also showed a marked reduction in viral expression and production following infection.
Collapse
Affiliation(s)
- Hong Na
- Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | | | | | |
Collapse
|
18
|
Abstract
Rev remains a hot topic. In this review, we revisit the insights that have been gained into the control of gene expression by the retroviral protein Rev and speculate on where current research is leading. We outline what is known about the role of Rev in translation and encapsidation and how these are linked to its more traditional role of nuclear export, underlining the multifaceted nature of this small viral protein. We discuss what more is to be learned in these fields and why continuing research on these 116 amino acids and understanding their function is still important in devising methods to combat AIDS.
Collapse
Affiliation(s)
- H C T Groom
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - E C Anderson
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - A M L Lever
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| |
Collapse
|
19
|
Modem S, Reddy TR. An anti-apoptotic protein, Hax-1, inhibits the HIV-1 rev function by altering its sub-cellular localization. J Cell Physiol 2007; 214:14-9. [DOI: 10.1002/jcp.21305] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Ramakrishnan R, Ahmad N. Derivation of primary sequences and secondary structures of rev responsive element from HIV-1 infected mothers and infants following vertical transmission. Virology 2006; 359:201-11. [PMID: 17045321 DOI: 10.1016/j.virol.2006.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Revised: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 11/15/2022]
Abstract
We have characterized the primary RRE sequences of HIV-1, including in vivo genetic variation and functional motifs required for Rev-RRE interactions as well as evaluated the RNA secondary structures of RRE derived from five mother-infant pairs following vertical transmission. Multiple (157) RRE sequences derived from mother-infant pairs showed that primary nucleotide sequences of RRE were highly conserved with a low degree of viral heterogeneity following vertical transmission. We found that the RRE sequences from mothers and infants folded and retained all the essential stem-loop formation required for Rev-RRE interactions. More importantly, a primary 9-nucleotide (5'-CACTATGGG-3') RRE sequence in the stem-loop B that is required for optimal Rev recognition and must be presented as a stem-bulge-stem structure was highly conserved in most of the sequences. The domains required for RRE-host protein interactions were also conserved in most of the RRE sequences. Taken together, the primary RRE sequences in the context of secondary structures were maintained and the Rev-RRE interaction domains were conserved following vertical transmission, which is consistent with a crucial role of RRE in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Rajesh Ramakrishnan
- Department of Immunobiology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | | |
Collapse
|
21
|
Lützelberger M, Reinert LS, Das AT, Berkhout B, Kjems J. A novel splice donor site in the gag-pol gene is required for HIV-1 RNA stability. J Biol Chem 2006; 281:18644-51. [PMID: 16675444 DOI: 10.1074/jbc.m513698200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Productive infection and successful replication of human immunodeficiency virus 1 (HIV-1) requires the balanced expression of all viral genes. This is achieved by a combination of alternative splicing events and regulated nuclear export of viral RNA. Because viral splicing is incomplete and intron-containing RNAs must be exported from the nucleus where they are normally retained, it must be ensured that the unspliced HIV-1 RNA is actively exported from the nucleus and protected from degradation by processes such as nonsense-mediated decay. Here we report the identification of a novel 178-nt-long exon located in the gag-pol gene of HIV-1 and its inclusion in at least two different mRNA species. Although efficiently spliced in vitro, this exon appears to be tightly repressed and infrequently used in vivo. The splicing is activated or repressed in vitro by the splicing factors ASF/SF2 and heterogeneous nuclear ribonucleoprotein A1, respectively, suggesting that splicing is controlled by these factors. Interestingly, mutations in the 5'-splice site resulted in a dramatic reduction in the steady-state level of HIV-1 RNA, and this effect was partially reversed by expression of U1 small nuclear RNA harboring the compensatory mutation. This implies that U1 small nuclear RNA binding to optimal but non-functional splice sites might have a role in protecting unspliced HIV-1 mRNA from degradation.
Collapse
Affiliation(s)
- Martin Lützelberger
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé 130, 8000 Arhus C, Denmark
| | | | | | | | | |
Collapse
|
22
|
Mertz JA, Simper MS, Lozano MM, Payne SM, Dudley JP. Mouse mammary tumor virus encodes a self-regulatory RNA export protein and is a complex retrovirus. J Virol 2006; 79:14737-47. [PMID: 16282474 PMCID: PMC1287593 DOI: 10.1128/jvi.79.23.14737-14747.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) has been classified as a simple retrovirus with two accessory genes, dut and sag. Cloned MMTV proviruses carrying a trimethoprim (trim) cassette in the envelope gene were defective for Gag protein production and the nuclear export of unspliced gag-pol RNA. Complementation experiments indicated that a trans-acting product was responsible for the Gag defect of such mutants. Analysis of MMTV-infected cells revealed the presence of a novel, doubly spliced RNA that encodes a putative product of 301 amino acids. Overexpression of cDNA from this RNA increased Gag levels from env mutant proviruses or reporter gene expression from unspliced mRNAs and allowed detection of a 33-kDa protein product, which has been named regulator of export of MMTV mRNA, or Rem. The Rem N terminus has motifs similar to the Rev-like export proteins of complex retroviruses, and mutation of the nuclear localization signal (NLS) abolished RNA export and detection within the nucleus. The Rem C terminus has few identifiable features, but removal of this domain increased Rem-mediated export, suggesting an autoregulatory function. A reporter vector developed from the 3' end of the MMTV provirus was Rem responsive and required both the presence of the MMTV env-U3 junction and a functional Crm1 pathway. The identification of a third accessory protein from a doubly spliced transcript suggests that MMTV is the first murine complex retrovirus to be documented. Manipulation of the MMTV genome may provide mouse models for human retroviral diseases, such as AIDS.
Collapse
Affiliation(s)
- Jennifer A Mertz
- The University of Texas at Austin, Section of Molecular Genetics and Microbiology, One University Station, A5000, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
23
|
Phuphuakrat A, Paris RM, Nittayaphan S, Louisirirotchanakul S, Auewarakul P. Functional variation of HIV-1 Rev Response Element in a longitudinally studied cohort. J Med Virol 2005; 75:367-73. [PMID: 15648073 DOI: 10.1002/jmv.20279] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We showed previously that HIV-1 Rev Response Element (RRE) contains a certain degree of structural variation, and in a set of limited samples, RRE from HIV-1 natural isolates were found to have functional variability. The significance of the RRE heterogeneity is addressed further by analyzing the functional variation of RREs in a longitudinal cohort. While the RRE activity at early time points was not a good predictor of disease outcome, the RRE activity at late time points was correlated with rates of CD4+ count decline. These data suggest that RRE heterogeneity may be important in viral pathogenesis and disease progression.
Collapse
Affiliation(s)
- Angsana Phuphuakrat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
24
|
Phuphuakrat A, Auewarakul P. Functional variability of Rev response element in HIV-1 primary isolates. Virus Genes 2005; 30:23-9. [PMID: 15744559 DOI: 10.1007/s11262-004-4578-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/21/2004] [Accepted: 07/12/2004] [Indexed: 11/27/2022]
Abstract
We have previously studied sequence heterogeneity of HIV-1 Rev response element (RRE), and showed uneven variations in different stem-loops of both primary sequence and secondary structure. Here we studied the functional variation of RRE clones from a set of 10 primary isolates, and demonstrated a variation in the function of these RRE clones on the expression of Gag proteins from a truncated HIV-1 genome. The difference in Gag level was, in part, if not exclusively, resulted from the differential efficiency of RNA transport and enhancing of translation. These data suggested that variation of HIV-1 RRE may play a role in regulation of viral replication rate in HIV-1 primary isolates.
Collapse
Affiliation(s)
- Angsana Phuphuakrat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
25
|
McPhillips MG, Veerapraditsin T, Cumming SA, Karali D, Milligan SG, Boner W, Morgan IM, Graham SV. SF2/ASF binds the human papillomavirus type 16 late RNA control element and is regulated during differentiation of virus-infected epithelial cells. J Virol 2004; 78:10598-605. [PMID: 15367627 PMCID: PMC516382 DOI: 10.1128/jvi.78.19.10598-10605.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pre-mRNA splicing occurs in the spliceosome, which is composed of small ribonucleoprotein particles (snRNPs) and many non-snRNP components. SR proteins, so called because of their C-terminal arginine- and serine-rich domains (RS domains), are essential members of this class. Recruitment of snRNPs to 5' and 3' splice sites is mediated and promoted by SR proteins. SR proteins also bridge splicing factors across exons to help to define these units and have a central role in alternative and enhancer-dependent splicing. Here, we show that the SR protein SF2/ASF is part of a complex that forms upon the 79-nucleotide negative regulatory element (NRE) that is thought to be pivotal in posttranscriptional regulation of late gene expression in human papillomavirus type 16 (HPV-16). However, the NRE does not contain any active splice sites, is located in the viral late 3' untranslated region, and regulates RNA-processing events other than splicing. The level of expression and extent of phosphorylation of SF2/ASF are upregulated with epithelial differentiation, as is subcellular distribution, specifically in HPV-16-infected epithelial cells, and expression levels are controlled, at least in part, by the virus transcription regulator E2.
Collapse
Affiliation(s)
- Maria G McPhillips
- Institute of Biomedical and Life Sciences, Division of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
26
|
McLaren M, Asai K, Cochrane A. A novel function for Sam68: enhancement of HIV-1 RNA 3' end processing. RNA (NEW YORK, N.Y.) 2004; 10:1119-29. [PMID: 15208447 PMCID: PMC1370602 DOI: 10.1261/rna.5263904] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Both cis elements and host cell proteins can significantly affect HIV-1 RNA processing and viral gene expression. Previously, we determined that the exon splicing silencer (ESS3) within the terminal exon of HIV-1 not only reduces use of the adjacent 3' splice site but also prevents Rev-induced export of the unspliced viral RNA to the cytoplasm. In this report, we demonstrate that loss of unspliced viral RNA export is correlated with the inhibition of 3' end processing by the ESS3. Furthermore, we find that the host factor Sam68, a stimulator of HIV-1 protein expression, is able to reverse the block to viral RNA export mediated by the ESS3. The reversal is associated with a stimulation of 3' end processing of the unspliced viral RNA. Our findings identify a novel activity for the ESS3 and Sam68 in regulating HIV-1 RNA polyadenylation. Furthermore, the observations provide an explanation for how Sam68, an exclusively nuclear protein, modulates cytoplasmic utilization of the affected RNAs. Our finding that Sam68 is also able to enhance 3' end processing of a heterologous RNA raises the possibility that it may play a similar role in regulating host gene expression.
Collapse
Affiliation(s)
- Meredith McLaren
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
27
|
Abstract
We compiled all the RRE sequences of HIV-1 in the HIV Sequence Database and analyzed for base variation frequency at each nucleotide position. Positions with high frequency of base alteration scattered throughout the region, but primary sequences of almost all bases in stem IIA, Rev-binding bubble, and most of the stem region of stem-loop III were highly conserved. Comparing to HXB2 secondary structure, basepair-disrupting mutations did not distribute evenly in every region of the RRE. Stem I, stem IIB outside the Rev-binding site, stem IIC, and proximal parts of stem IV and V were more variable, while stem IIA, stem III, and distal parts of stem IV and V were highly conserved. These data indicated that RREs are structurally heterogeneous. The uneven distribution of variation in both primary sequence and the stem structure put forward highly conserved sites that might be more crucial to the function of RRE than the less conserved parts.
Collapse
Affiliation(s)
- Angsana Phuphuakrat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | |
Collapse
|
28
|
Zheng YH, Yu HF, Peterlin BM. Human p32 protein relieves a post-transcriptional block to HIV replication in murine cells. Nat Cell Biol 2003; 5:611-8. [PMID: 12833064 DOI: 10.1038/ncb1000] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Accepted: 05/20/2003] [Indexed: 11/09/2022]
Abstract
In the mouse, replication of human immunodeficiency virus type 1 (HIV) is blocked at the levels of entry, transcription and assembly. For the latter effect, the amounts of unspliced viral genomic RNA could have an important function. Indeed, in murine cells, HIV transcripts are spliced excessively, a process that is not inhibited by the murine splicing inhibitor p32 (mp32). In marked contrast, its human counterpart, hp32, not only blocks this splicing but promotes the accumulation of viral genomic transcripts and structural proteins, resulting in the assembly and release of infectious virions. A single substitution in hp32 of Gly 35 to Asp 35, which is found in mp32, abrogates this activity. Thus, hp32 overcomes an important post-transcriptional block to HIV replication in murine cells.
Collapse
Affiliation(s)
- Yong-Hui Zheng
- Department of Medicine, Rosalind Russell Medical Research Center, Mt. Zion Research Building Room N231, 2340 Sutter Street, University of California, San Francisco, CA 94115, USA
| | | | | |
Collapse
|
29
|
Marques SMP, Veyrune JL, Shukla RR, Kumar A. Restriction of human immunodeficiency virus type 1 Rev function in murine A9 cells involves the Rev C-terminal domain. J Virol 2003; 77:3084-90. [PMID: 12584334 PMCID: PMC149738 DOI: 10.1128/jvi.77.5.3084-3090.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Rev and human T-cell leukemia virus type 1 (HTLV-1) Rex proteins are essential for the expression of viral structural proteins and productive infection. Both contain a nuclear export signal (NES) in their C-terminal domain and a nuclear localization signal (NLS) in their N-terminal domain. The NES and NLS are necessary for shuttling between nucleus and cytoplasm and are therefore indispensable for the transport of unspliced and singly spliced viral transcripts. HIV-1 Rev function is restricted in A9 cells, a murine fibroblast cell line, whereas HTLV-1 Rex is functional in these cells. Immunofluorescence studies with RevGFP fusion protein demonstrate normal import and export of Rev in A9 cells. To ascertain which domains of Rev are necessary for the restriction of Rev function in A9 cells, we studied a chimeric construct in which the NES domain of Rev was exchanged with Rex C-terminal amino acids 79 to 95, the Rev1-79/Rex79-95 chimera, which restored Rev function in A9 cells. In addition, overexpression of a truncated Rev containing the Rev C-terminal domain in the presence of wild-type Rev, led to restoration of Rev function in A9 cells. These results suggest that the C-terminal domain of HIV-1 Rev plays an important role in restricting Rev function in murine cells.
Collapse
Affiliation(s)
- Sandra M P Marques
- Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
30
|
Greene WC, Peterlin BM. Charting HIV's remarkable voyage through the cell: Basic science as a passport to future therapy. Nat Med 2002; 8:673-80. [PMID: 12091904 DOI: 10.1038/nm0702-673] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adequate control of HIV requires impairing the infection, replication and spread of the virus, no small task given the extraordinary capacity of HIV to exploit the cell's molecular machinery in the course of infection. Understanding the dynamic interplay of host cell and virus is essential to the effort to eradicate HIV.
Collapse
Affiliation(s)
- Warner C Greene
- Gladstone Institute of Virology and Immunology, Department of Medicine, University of California at San Francisco, San Francisco, California, USA.
| | | |
Collapse
|
31
|
Pongoski J, Asai K, Cochrane A. Positive and negative modulation of human immunodeficiency virus type 1 Rev function by cis and trans regulators of viral RNA splicing. J Virol 2002; 76:5108-20. [PMID: 11967326 PMCID: PMC136130 DOI: 10.1128/jvi.76.10.5108-5120.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the entire complement of human immunodeficiency virus type 1 (HIV-1) viral proteins depends on the competing activities of viral RNA splicing and export into the cytoplasm by Rev. To investigate the possibility that modulation of viral RNA metabolism may alter Rev function, we analyzed the impact of multiple SR proteins on both processes. While overexpression of several of the SR factors altered splicing of HIV-1 env mRNA, they had disparate effects on Rev function that varied with the cell line used. Subsequent examination of exon splicing enhancer (ESE) and/or silencer (ESS) deletions suggests that the effects of the SR proteins on Rev function are not mediated through interaction with these elements. However, analysis of the deletions did indicate that the ESE and/or ESS does have significant effects on Rev function, with deletion of the ESS augmenting the magnitude of the response to Rev and deletion of the ESE significantly reducing it. In situ hybridization and reverse transcription-PCR indicated that the loss of Rev response upon deletion of the ESE was due to a failure of Rev to induce transport of the unspliced RNA into the cytoplasm. Together, the data indicate that cellular splicing factors and viral regulatory elements can have significant stimulatory and inhibitory effects on Rev function, raising the possibility that cells can be rendered permissive or nonpermissive for virus replication by modulation of splicing activities.
Collapse
Affiliation(s)
- Jodi Pongoski
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
32
|
Yi R, Bogerd HP, Cullen BR. Recruitment of the Crm1 nuclear export factor is sufficient to induce cytoplasmic expression of incompletely spliced human immunodeficiency virus mRNAs. J Virol 2002; 76:2036-42. [PMID: 11836381 PMCID: PMC153812 DOI: 10.1128/jvi.76.5.2036-2042.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2001] [Accepted: 11/27/2001] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic expression of the incompletely spliced RNA transcripts that encode the late, structural proteins of human immunodeficiency virus type 1 (HIV-1) is dependent on the viral Rev regulatory protein. General agreement exists that Rev acts, at least in part, by recruiting the cellular Crm1 nuclear export factor to HIV-1 transcripts bearing the Rev response element RNA target, and thereby inducing their nuclear egress. However, several groups have argued that Crm1 recruitment may not be sufficient for Rev function. Thus, several additional candidate cofactors for Rev have been proposed, and Rev has also been suggested to also inhibit the nuclear splicing of HIV-1 transcripts and/or to directly enhance their cytoplasmic translation. To examine whether Crm1 recruitment is, instead, sufficient to activate the nuclear export of viral mRNAs, we targeted a leucine-rich Crm1 binding domain, derived from a heterologous protein that normally plays no role in RNA metabolism, to HIV-1 RNAs and showed that this tethered Crm1 binding domain is sufficient to induce the nuclear export and cytoplasmic translation of late HIV-1 mRNA species. More importantly, we show that direct tethering of the Crm1 nuclear export factor to target mRNAs, by fusion to a heterologous RNA binding domain, is in and of itself sufficient to induce the nuclear export and cytoplasmic expression of the unspliced HIV-1 mRNAs that encode the viral Gag proteins.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Cell Line
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Gene Expression Regulation, Viral
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Genes, env/genetics
- Genes, env/physiology
- HIV-1/genetics
- HIV-1/metabolism
- HIV-1/physiology
- Humans
- Karyopherins/genetics
- Karyopherins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/metabolism
- Receptors, Cytoplasmic and Nuclear
- Transfection
- rev Gene Products, Human Immunodeficiency Virus
- Exportin 1 Protein
Collapse
Affiliation(s)
- Rui Yi
- Department of Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
33
|
Reddy TR, Suhasini M, Xu W, Yeh LY, Yang JP, Wu J, Artzt K, Wong-Staal F. A role for KH domain proteins (Sam68-like mammalian proteins and quaking proteins) in the post-transcriptional regulation of HIV replication. J Biol Chem 2002; 277:5778-84. [PMID: 11741900 DOI: 10.1074/jbc.m106836200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of Sam68 functionally substitutes for, as well as synergizes with, human immunodeficiency virus type 1 (HIV-1) Rev in RRE (Rev response element)-mediated gene expression and virus replication. In addition, COOH-terminal deletion and/or point mutants of Sam68 exhibit a transdominant negative phenotype for HIV replication. Sam68 is a member of KH domain family that includes SLM-1, SLM-2 (Sam68 like mammalian); and QKI-5, QKI-6, and QKI-7 (mouse quaking) proteins. The objective of this study was to examine the effects of these KH family proteins on RRE- and CTE (constitutive transport element of type-D retrovirus)-mediated transactivation. We now report that SLM-1 and SLM-2 proteins, which are the closest relatives of Sam68, marginally enhanced RRE-mediated transactivation, while QK isoforms that are distant relatives of Sam68 had no effect. Interestingly, these proteins still enhanced the effect of Rev in RRE-mediated gene expression. The increase in chloramphenicol acetyltransferase activity was also reflected at the levels of cytoplasmic RRE-chloramphenicol acetyltransferase mRNAs, indicating that Sam68 and KH proteins may have been involved in the stability or export of unspliced RNA. The increase in Rev activity was sensitive to leptomycin B, but not to olomoucine, indicating that the effect of SLM-1, SLM-2, QKI-5, QKI-6, and QKI-7 is exerted through a CRM-1-dependent mRNA export pathway. Thus, KH family proteins play an important role in the post-transcriptional regulation of HIV.
Collapse
Affiliation(s)
- T Raghavendar Reddy
- Department of Immunology and Microbiology, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Derse D. Binding sites for Rev and ASF/SF2 map to a 55-nucleotide purine-rich exonic element in equine infectious anemia virus RNA. J Biol Chem 2001; 276:18960-7. [PMID: 11278454 DOI: 10.1074/jbc.m008996200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The equine infectious anemia virus (EIAV) Rev protein (ERev) negatively regulates its own synthesis by inducing alternative splicing of its mRNA. This bicistronic mRNA contains four exons; exons 1 and 2 encode Tat, and exons 3 and 4 encode Rev. When Rev is expressed, exon 3 is skipped to produce an mRNA that contains only exons 1, 2, and 4. The interaction of ERev with its cis-acting RNA response element, the RRE, is also essential for nuclear export of intron-containing viral mRNAs that encode structural and enzymatic gene products. The primary ERev binding site and the manner in which ERev interacts with RNA or cellular proteins to exert its regulatory function have not been defined. We have performed in vitro RNA binding experiments to show that recombinant ERev binds to a 55-nucleotide, purine-rich tract proximal to the 5' splice site of exon 3. Because of its proximity to the 5' splice site and since it contains elements related to consensus exonic splicing enhancer sequences, we asked whether cellular proteins recognize the EIAV RRE. The cellular protein, ASF/SF2, a member of the serine- and arginine-rich family of splicing factors (SR proteins) bound to repeated sequences within the 55-nucleotide RRE region. Electrophoretic mobility shift and UV cross-linking experiments indicated that ERev and SR proteins bind simultaneously to the RRE. Furthermore, in vitro protein-protein interaction studies revealed an association between ERev and SR proteins. These data suggest that EIAV Rev-induced exon skipping observed in vivo may be initiated by simultaneous binding of Rev and SR proteins to the RRE that alter the subsequent assembly or catalytic activity of the spliceosomal complex.
Collapse
|
35
|
D'Agostino DM, Ferro T, Zotti L, Meggio F, Pinna LA, Chieco-Bianchi L, Ciminale V. Identification of a domain in human immunodeficiency virus type 1 rev that is required for functional activity and modulates association with subnuclear compartments containing splicing factor SC35. J Virol 2000; 74:11899-910. [PMID: 11090190 PMCID: PMC112473 DOI: 10.1128/jvi.74.24.11899-11910.2000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2000] [Accepted: 09/15/2000] [Indexed: 11/20/2022] Open
Abstract
The activity of human immunodeficiency virus Rev as a regulator of viral mRNA expression is tightly linked to its ability to shuttle between the nucleus and cytoplasm; these properties are conferred by a leucine-rich nuclear export signal (NES) and by an arginine-rich nuclear localization signal/RNA binding domain (NLS/RBD) required for binding to the Rev-responsive element (RRE) located on viral unspliced and singly spliced mRNAs. Structure predictions and biophysical measurements indicate that Rev consists of an unstructured region followed by a helix-loop-helix motif containing the NLS/RBD and sequences directing multimerization and by a carboxy-terminal tail containing the NES. We present evidence that the loop portion of the helix-loop-helix region is an essential functional determinant that is required for binding to the RRE and for correct intracellular routing. Data obtained using a protein kinase CK2 phosphorylation assay indicated that the loop region is essential for juxtaposition of helices 1 and 2 and phosphorylation by protein kinase CK2. Deletion of the loop resulted in partial accumulation of Rev in SC35-positive nuclear bodies that resembled nuclear bodies that form in response to inhibition of transcription. Accumulation of the DeltaLoop mutant in nuclear bodies depended on the presence of an intact NES, suggesting that both the loop and the NES play a role in controlling intranuclear compartmentalization of Rev and its association with splicing factors.
Collapse
Affiliation(s)
- D M D'Agostino
- Dipartimento di Scienze Oncologiche e Chirurgiche, Sezione di Oncologia, University of Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Graf M, Bojak A, Deml L, Bieler K, Wolf H, Wagner R. Concerted action of multiple cis-acting sequences is required for Rev dependence of late human immunodeficiency virus type 1 gene expression. J Virol 2000; 74:10822-6. [PMID: 11044131 PMCID: PMC110961 DOI: 10.1128/jvi.74.22.10822-10826.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Based on the human immunodeficiency virus type 1 (HIV-1) gag gene, subgenomic reporter constructs have been established allowing the contributions of different cis-acting elements to the Rev dependency of late HIV-1 gene products to be determined. Modification of intragenic regulatory elements achieved by adapting the codon usage of the complete gene to highly expressed mammalian genes resulted in constitutive nuclear export allowing high levels of Gag expression independent from the Rev/Rev-responsive element system and irrespective of the absence or presence of the isolated major splice donor. Leptomycin B inhibitor studies revealed that the RNAs derived from the codon-optimized gag gene lacking AU-rich inhibitory elements are directed to a distinct, CRM1-independent, nuclear export pathway.
Collapse
Affiliation(s)
- M Graf
- Institute of Medical Microbiology and Hygiene, University of Regensburg, D-93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Equine infectious anemia virus (EIAV) is an ungulate lentivirus that is related to human immunodeficiency virus (HIV). Much of the understanding of lentiviral gene regulation comes from studies using HIV. HIV studies have provided insights into molecular regulation of EIAV expression; however, much of the regulation of EIAV expression stands in stark contrast to that of HIV. This review provides an overview of the current state of knowledge of EIAV regulation by comparing and contrasting EIAV gene regulation to HIV. The role of EIAV gene regulation is discussed in relation to EIAV pathogenesis.
Collapse
Affiliation(s)
- W Maury
- Department of Microbiology, University of South Dakota School of Medicine, Vermillion 57069, USA.
| |
Collapse
|
38
|
Belshan M, Park GS, Bilodeau P, Stoltzfus CM, Carpenter S. Binding of equine infectious anemia virus rev to an exon splicing enhancer mediates alternative splicing and nuclear export of viral mRNAs. Mol Cell Biol 2000; 20:3550-7. [PMID: 10779344 PMCID: PMC85647 DOI: 10.1128/mcb.20.10.3550-3557.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to facilitating the nuclear export of incompletely spliced viral mRNAs, equine infectious anemia virus (EIAV) Rev regulates alternative splicing of the third exon of the tat/rev mRNA. In the presence of Rev, this exon of the bicistronic RNA is skipped in a fraction of the spliced mRNAs. In this report, the cis-acting requirements for exon 3 usage were correlated with sequences necessary for Rev binding and transport of incompletely spliced RNA. The presence of a purine-rich exon splicing enhancer (ESE) was required for exon 3 recognition, and the addition of Rev inhibited exon 3 splicing. Glutathione-S-transferase (GST)-Rev bound to probes containing the ESE, and mutation of GAA repeats to GCA within the ESE inhibited both exon 3 recognition in RNA splicing experiments and GST-Rev binding in vitro. These results suggest that Rev regulates alternative splicing by binding at or near the ESE to block SR protein-ESE interactions. A 57-nucleotide sequence containing the ESE was sufficient to mediate Rev-dependent nuclear export of incompletely spliced RNAs. Rev export activity was significantly inhibited by mutation of the ESE or by trans-complementation with SF2/ASF. These results indicate that the ESE functions as a Rev-responsive element and demonstrate that EIAV Rev mediates exon 3 exclusion through protein-RNA interactions required for efficient export of incompletely spliced viral RNAs.
Collapse
Affiliation(s)
- M Belshan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
39
|
Zhang X, Wang C, Schook LB, Hawken RJ, Rutherford MS. An RNA helicase, RHIV -1, induced by porcine reproductive and respiratory syndrome virus (PRRSV) is mapped on porcine chromosome 10q13. Microb Pathog 2000; 28:267-78. [PMID: 10799277 DOI: 10.1006/mpat.1999.0349] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The impact of porcine reproductive and respiratory syndrome virus (PRRSV) infection on porcine alveolar macrophages (Mo) was examined by differential display reverse transcription PCR (DDRT-PCR). A PRRSV-induced expressed gene tag (EST) was used to isolate and identify a single cDNA clone from a library prepared from porcine peripheral blood. Rapid amplification of cDNA ends (RACE) was employed to clone a 1.5 kb fragment at the 5' end of the mRNA. DNA sequencing identified an open reading frame (ORF) of 2820 bp. Deduced amino acid sequence revealed the eight conserved domains characteristic of the DEAD/H box protein superfamily. The putative porcine RNA helicase induced by virus (RHIV -1) showed 84% amino acid similarity to human retinoic acid-induced gene (RIG-I). Porcine RHIV -1 transcripts were ubiquitously expressed in various pig tissues, while in PRRSV-infected pigs, higher expression was observed in several tissues persistent for PRRSV. These data indicate the association of PRRSV genome replication with enhaced host cell RNA helicase gene expression. Finally, the RHIV -1 gene was localized on porcine chromosome 10q13 between markers SSC25A02 and SWR334 via somatic cell panel and radiation hybrid (RH) mapping strategies.
Collapse
Affiliation(s)
- X Zhang
- Department of Veterinary PathoBiology, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Lentiviruses are associated with chronic diseases of the hematological and neurological systems in animals and man. In particular, human immunodeficiency virus type 1 (HIV-1) is the etiological agent of the global AIDS epidemic. The genomes of lentiviruses are complex, encoding a number of regulatory and accessory proteins not found in other retroviruses. This complexity is reflected in their replication cycle, which reveals intricate regulatory pathways and unique mechanisms for viral persistence. In this review, we highlight some of these unique features for HIV-1, with particular focus on the transcriptional and posttranscriptional control of gene expression. Although our understanding of the biology of HIV-1 is far from complete, the knowledge gained thus far has already led to novel strategies for both virus intervention and exploiting the lentiviruses for therapeutic applications.
Collapse
Affiliation(s)
- H Tang
- Department of Medicine and Biology, University of California, San Diego 92093-0665, USA.
| | | | | |
Collapse
|
41
|
Cui Y, Iwakuma T, Chang LJ. Contributions of viral splice sites and cis-regulatory elements to lentivirus vector function. J Virol 1999; 73:6171-6. [PMID: 10364378 PMCID: PMC112687 DOI: 10.1128/jvi.73.7.6171-6176.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mobile transgene constructs of most human immunodeficiency virus (HIV)-based lentivirus vectors currently in use contain viral long terminal repeats, a 5' untranslated region, gag sequences, and env sequences that include the Rev-responsive element (RRE). In this study, we examined the possibility of deleting HIV splice sites and gag and env sequences from an HIV type 1 recombinant vector established in our laboratory as part of our ongoing efforts to improve this vector system. Mutations in the major splice donor site (SD) markedly reduced viral RNA expression but had little effect on vector titer. Deletion of gag or env sequences, excluding RRE, led to a moderate reduction in vector titer. Interestingly, deletion of RRE slightly reduced viral RNA expression but markedly impaired vector function. Combined deletions of RRE, gag (except for the first 40 nucleotides), env, and the SD mutation resulted in a twofold increase in cytoplasmic viral RNA expression and a recovery of vector efficiency to approximately 50% of the wild-type level. This increase in cytoplasmic RNA levels is likely to be due, at least in part, to effects of the TE671 host cells, a human rhabdomyosarcoma cell line used for vector production in our system, on the cytoplasmic distribution of spliced and unspliced viral RNA. These results show that optimal lentivirus vector function can be maintained in the absence of multiple essential viral elements.
Collapse
Affiliation(s)
- Y Cui
- Department of Molecular Genetics and Microbiology, Gene Therapy Center, and University of Florida Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610-0266, USA
| | | | | |
Collapse
|
42
|
Reddy TR, Xu W, Mau JK, Goodwin CD, Suhasini M, Tang H, Frimpong K, Rose DW, Wong-Staal F. Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1 Rev. Nat Med 1999; 5:635-42. [PMID: 10371501 DOI: 10.1038/9479] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The HIV-1 Rev protein facilitates the nuclear export of mRNA containing the Rev response element (RRE) through binding to the export receptor CRM-1. Here we show that a cellular nuclear protein, Sam68 (Src-associated protein in mitosis), specifically interacts with RRE and can partially substitute for as well as synergize with Rev in RRE-mediated gene expression and virus replication. Differential sensitivity to leptomycin B, an inhibitor of CRM-1, indicates that the export pathways mediated by Rev and Sam68 are distinct. C-terminally deleted mutants of Sam68 inhibited the transactivation of RRE-mediated expression by both wild-type Sam68 and Rev. They were retained in the cytoplasm and impeded the nuclear localization of Rev in co-expressed cells. These mutants also inhibited wild-type HIV-1 replication to the same extent as the RevM10 mutant, and may be useful as anti-viral agents in the treatment of AIDS.
Collapse
Affiliation(s)
- T R Reddy
- Department of Medicine, University of California San Diego, La Jolla 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Li J, Tang H, Mullen TM, Westberg C, Reddy TR, Rose DW, Wong-Staal F. A role for RNA helicase A in post-transcriptional regulation of HIV type 1. Proc Natl Acad Sci U S A 1999; 96:709-14. [PMID: 9892698 PMCID: PMC15201 DOI: 10.1073/pnas.96.2.709] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retroviruses must bypass the tight coupling of splicing and nuclear export of mRNA in their replication cycle because unspliced genomic RNA and incompletely spliced mRNA must be exported to the cytoplasm for packaging or translation. This process is mediated by a cis-acting constitutive transport element (CTE) for simple retroviruses and by the trans-acting viral protein Rev in concert with its response element (RRE) for complex retroviruses (e.g., HIV). Recently, we identified RNA helicase A (RHA) as a potential cellular cofactor for CTE. Here, we report that RHA also plays a role in Rev/RRE-mediated gene expression and HIV replication. RHA binds weakly to HIV-1 RRE independently of Rev. Overexpression of RHA, but not of an RHA mutant lacking helicase activity, increased both Rev/RRE- and CTE-dependent gene expression and the levels of unspliced HIV mRNA. Microinjection of antibodies to RHA into nuclei dramatically inhibited both CTE- and Rev-dependent gene expression in human cells. Exogenous RHA cDNA, but not the mutant RHA, rescued this inhibition. We propose that RHA is required to release both CTE- and RRE-containing mRNA from spliceosomes before completion of splicing, thus freeing them for nuclear export.
Collapse
Affiliation(s)
- J Li
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Favaro JP, Borg KT, Arrigo SJ, Schmidt MG. Effect of Rev on the intranuclear localization of HIV-1 unspliced RNA. Virology 1998; 249:286-96. [PMID: 9791020 DOI: 10.1006/viro.1998.9312] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) Rev is a 19-kDa regulatory protein which binds to unspliced and partially spliced HIV-1 RNAs. Export, splicing, stability, and translation of HIV-1 RNAs are influenced by Rev. To further understand the effect of Rev on HIV-1 RNA splicing, the intranuclear localization of unspliced HIV-1 RNA and a cellular splicing factor was examined in the presence and absence of Rev. Splicing component-35 (SC-35) is an essential SR protein splicing factor which localizes into 20-40 nuclear granules (Fu, X. D., and Maniatis, T. Nature 343 (6257), 437-441, 1990). Laser scanning confocal microscopy was utilized to examine the colocalization of unspliced HIV-1 RNA and SC-35-containing granules. In the presence of Rev, many of the SC-35-containing granules were colocalized on their edges or completely colocalized with HIV-1 unspliced RNA speckles. In the absence of Rev, however, little colocalization of the unspliced HIV-1 RNA speckles and the SC-35-containing granules was observed. Quantitative RT-PCR was utilized to examine the effect of Rev on the level of fully spliced HIV-1 RNA. In the presence of Rev, a decrease in the level of fully spliced HIV-1 RNA was observed. Thus both the intranuclear localization and posttranscriptional processing of HIV-1 unspliced RNA are affected by Rev.
Collapse
Affiliation(s)
- J P Favaro
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, 29425-2230, USA
| | | | | | | |
Collapse
|
45
|
Abstract
The nuclear export of intron-containing HIV-1 RNA is critically dependent on the activity of Rev, a virally encoded sequence-specific RNA-binding protein. Rev shuttles between the nucleus and the cytoplasm and harbors both a nuclear localization signal and a nuclear export signal. These essential peptide motifs have now been shown to function by accessing cellular signal-mediated pathways for nuclear import and nuclear export. HIV-1 Rev therefore represents an excellent system with which to study aspects of transport across the nuclear envelope.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Carrier Proteins/analysis
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Cell Nucleus/metabolism
- Gene Expression Regulation, Viral
- Gene Products, rev/analysis
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, rev/physiology
- HIV Infections/therapy
- HIV-1/chemistry
- Humans
- Karyopherins
- Molecular Sequence Data
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Receptors, Cytoplasmic and Nuclear
- Trans-Activators
- rev Gene Products, Human Immunodeficiency Virus
- Exportin 1 Protein
Collapse
Affiliation(s)
- V W Pollard
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA.
| | | |
Collapse
|