1
|
Castro ED, Mathias PPM, Batista WL, Sato AYS, Toledo MS, de Almeida VT, Curcio MF, da Costa PE, Stern A, Monteiro HP. Knockdown of the inducible nitric oxide synthase (NOS2) splicing variant S3 promotes autophagic cell death from nitrosative stress in SW480 human colon cancer cells. Cell Biol Int 2021; 46:158-169. [PMID: 34719858 DOI: 10.1002/cbin.11717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/29/2021] [Accepted: 10/23/2021] [Indexed: 11/11/2022]
Abstract
Low levels of nitric oxide (NO) produced by constitutively expressed inducible NO synthase (NOS2) in tumor cells may be an important factor in their development. NOS2 expression is associated with high mortality rates for various cancers. Alternative splicing of NOS2 down-regulates its enzymatic activity, resulting in decreased intracellular NO concentrations. Specific probes to detect alternative splicing of NOS2 were used in two isogenic human colon cancer cell lines derived either from the primary tumor (SW480) or from a lymph node metastasis (SW620). Splicing variant of NOS2 S3, lacking exons 9, 10, and 11, was overexpressed in SW480 cells. NOS2 S3 was silenced in SW480 cells. Flow-cytometry analysis was used to estimate the intracellular NO levels and to analyze the cell cycle of the studied cell lines. Western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine apoptosis and autophagy markers. SW480 and SW620 cells expressed NOS2 S3. Overexpression of the NOS2 S3 in SW480 cells downregulated intracellular NO levels. SW480 cells with knocked down NOS2 S3 (referred to as S3C9 cells) had higher intracellular levels of NO compared to the wild-type SW480 cells under serum restriction. Higher NO levels resulted in the loss of viability of S3C9 cells, which was associated with autophagy. Induction of autophagy by elevated intracellular NO levels in S3C9 cells under serum restriction, suggests that autophagy operates as a cytotoxic response to nitrosative stress. The expression of NOS2 S3 plays an important role in regulating intracellular NO production and maintaining viability in SW480 cells under serum restriction. These findings may prove significant in the design of NOS2/NO-based therapies for colon cancer.
Collapse
Affiliation(s)
- Eloisa D Castro
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Pedro Paulo M Mathias
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Wagner L Batista
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alex Yuri S Sato
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maytê S Toledo
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Victor T de Almeida
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paulo E da Costa
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arnold Stern
- New York University Grossman School of Medicine, New York, New York, USA
| | - Hugo P Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Single-Nucleotide Polymorphisms in Oxidative Stress-Related Genes and the Risk of a Stroke in a Polish Population-A Preliminary Study. Brain Sci 2021; 11:brainsci11030391. [PMID: 33808851 PMCID: PMC8003761 DOI: 10.3390/brainsci11030391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
The present preliminary case-control study was undertaken to detect the potential association of six single nucleotide polymorphisms (SNPs) in oxidative stress-related genes: SOD2 (c.47T > C; rs4880), CAT (c.-89A > T; rs7943316), GPX4 (c.660T > A; rs713041), NOS1 (g.117803515C > T; rs1879417) and NOS2 (c.1823C > T; rs2297518 and c.-227G > C; rs10459953) and the occurrence of a stroke. The SNPs were determined using the TaqMan® Allelic Discrimination Assay in 107 patients with strokes and 107 age- and sex-matched individuals who had not experienced cerebrovascular accidents. The T alleles of the rs4880 were positively correlated with a stroke (bootstrap OR 1.31; 1.07-1.59 95% CI). In the case of the rs713041, an association with the T allele was found (bootstrap OR 1.36; 1.12-1.67). In addition, the occurrence of a stroke was associated with the presence of the C allele of the rs1879417 (bootstrap OR 1.32; 1.09-1.61). We also found that the C/C genotype and C allele of the rs2297518 increased the risk of a stroke (bootstrap ORs 7.00; 4.34-11.29 and 4.96; 3.88-6.34, respectively). Moreover, the C allele of the rs10459953 was associated with an increased occurrence of this disease (bootstrap OR 1.31; 1.08-1.60). These results indicated that genetics variants in the SOD2, GPX4, NOS1 and NOS2 might be associated with susceptibility to strokes in the Polish population.
Collapse
|
3
|
Couplet medicines of leech and centipede granules improve erectile dysfunction via inactivation of the CaSR/PLC/PKC signaling in streptozotocin-induced diabetic rats. Biosci Rep 2020; 40:221835. [PMID: 31922200 PMCID: PMC7000366 DOI: 10.1042/bsr20193845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 01/20/2023] Open
Abstract
Erectile dysfunction (ED) is one of the significant complications of diabetes mellitus (DM), and CASR plays an important role in cellular antiapoptosis and NO production in the vascular endothelium by activating PKC. The present study was aimed to investigate the efficacy of Leech and Centipede Granules (LCG) through the CaSR/PLC/PKC signaling. Fifty male Sprague-Dawley rats were treated with streptozotocin to induce the DM model. After 10 weeks, an apomorphine test was used to confirm DMED. Rats with DMED were administrated with LCG and U73122 for 4 weeks. Fasting blood glucose, body weight, insulin and glucagon levels were measured. Erectile function in rats was assessed by apomorphine. Serums were measured using enzyme-linked immunosorbent assay and flow cytometry, and penile tissues were harvested for histologic and the expression of related targets analyses. After treatment, fasting blood glucose, body weight, insulin, glucagon levels, and erectile function were significantly ameliorated in the LCG groups. The LOX-1, NOX, and EMPs concentrations were significantly decreased with LCG treatment. LCG also continuously increased NO and decreased ET-1 content in penile tissues. LCG and U73122 administration also improved penile fibrosis by significantly decreasing VCAM-1, ICAM-1, and CD62P. The data also showed that LCG reduced the apoptosis level in the penis. Furthermore, the inhibited activation of the CaSR/PLC/PKC pathway was observed in DMED rats with LCG treatment. Collectively, LCG significantly ameliorated erectile function of DMED rats via increased NO generation, inhibiting endothelial cells apoptosis and penile fibrosis, which might benefit from the suppression of CaSR/PLC/PKC pathway in DMED rats.
Collapse
|
4
|
Zhang Y, Yang J, Zhuan L, Zang G, Wang T, Liu J. Transplantation of adipose-derived stem cells overexpressing inducible nitric oxide synthase ameliorates diabetes mellitus-induced erectile dysfunction in rats. PeerJ 2019; 7:e7507. [PMID: 31423366 PMCID: PMC6694783 DOI: 10.7717/peerj.7507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background Erectile dysfunction is a major complication of diabetes mellitus. Adipose-derived stem cells (ADSCs) have attracted much attention as a promising tool for the treatment of diabetes mellitus-induced erectile dysfunction (DMED). Inducible nitric oxide synthase (iNOS) plays an important role in protecting penile tissues from fibrosis. The aim of this study was to determine the efficacy of ADSCs overexpressing iNOS on DMED in rats. Methods ADSCs were isolated and infected with adenovirus overexpressing iNOS (named as ADSCs-iNOS). The expression of iNOS was detected using western blot analysis and real-time PCR. Rats were randomly assigned into five groups: control group, DMED group, ADSCs group, ADSCs-EGFP group and ADSCs-iNOS group. 5 × 105 cells were given once via the intracorporal route. Two weeks after treatment, erectile function was assessed by electrical stimulation of the cavernous nerve. Penile tissues were obtained and evaluated at histology level. Results We found that ADSCs-iNOS had significantly higher expression of iNOS at mRNA and protein levels and generated more nitric oxide (NO). ADSCs-iNOS reduced collagen I and collagen IV expression of corpus cavernosum smooth muscle cells (CCSMCs) in cell co-culture model. Transforming growth factor-β1 expression in CCSMCs reduced following co-culture with ADSCs-iNOS. Injection of ADSCs-iNOS significantly ameliorated DMED in rats and decreased collagen/smooth muscle cell ratio of penile tissues. Moreover, elevated NO and cyclic guanosine monophosphate concentrations were detected in penile tissues of ADSCs-iNOS group. Conclusion Taken together, ADSCs-iNOS significantly improved erectile function of DMED rats. The therapeutic effect may be achieved by increased NO generation and the suppression of collagen I and collagen IV expression in the CCSMCs to decrease penile fibrosis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Zhuan
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Guanghui Zang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Nitric oxide and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: A redox signaling perspective. Nitric Oxide 2019; 89:1-13. [DOI: 10.1016/j.niox.2019.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
|
6
|
Shanmuganathan MV, Krishnan S, Fu X, Prasadarao NV. Attenuation of biopterin synthesis prevents Escherichia coli K1 invasion of brain endothelial cells and the development of meningitis in newborn mice. J Infect Dis 2013; 207:61-71. [PMID: 23100563 PMCID: PMC3523800 DOI: 10.1093/infdis/jis656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/10/2012] [Indexed: 11/12/2022] Open
Abstract
Elevated levels of pterins and nitric oxide (NO) are observed in patients with septic shock and bacterial meningitis. We demonstrate that Escherichia coli K1 infection of human brain microvascular endothelial cells (HBMECs) induces the expression of guanosine triphosphate cyclohydrolase (GCH1), the rate-limiting enzyme in pterin synthesis, thereby elevating levels of biopterin. DAHP (2,4-diamino hydroxyl pyrimidine), a specific inhibitor of GCH1, prevented biopterin and NO production and invasion of E. coli K1 in HBMECs. GCH1 interaction with Ecgp96, the receptor for outer membrane protein A of E. coli K1, also increases on infection, and suppression of Ecgp96 expression prevents GCH1 activation and biopterin synthesis. Pretreatment of newborn mice with DAHP prevented the production of biopterin and the development of meningitis. These results suggest a novel role for biopterin synthesis in the pathogenesis of E. coli K1 meningitis.
Collapse
Affiliation(s)
| | | | - Xiaowei Fu
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles
| | - Nemani V. Prasadarao
- Division of Infectious Diseases, Department of Pediatrics
- Department of Surgery
- Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
7
|
Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. Int J Mol Sci 2012; 13:17160-84. [PMID: 23242154 PMCID: PMC3546744 DOI: 10.3390/ijms131217160] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 01/18/2023] Open
Abstract
Nitric oxide (NO) has been implicated in several cellular processes as a signaling molecule and also as a source of reactive nitrogen species (RNS). NO is produced by three isoenzymes called nitric oxide synthases (NOS), all present in skeletal muscle. While neuronal NOS (nNOS) and endothelial NOS (eNOS) are isoforms constitutively expressed, inducible NOS (iNOS) is mainly expressed during inflammatory responses. Recent studies have demonstrated that NO is also involved in the mitochondrial biogenesis pathway, having PGC-1α as the main signaling molecule. Increased NO synthesis has been demonstrated in the sarcolemma of skeletal muscle fiber and NO can also reversibly inhibit cytochrome c oxidase (Complex IV of the respiratory chain). Investigation on cultured skeletal myotubes treated with NO donors, NO precursors or NOS inhibitors have also showed a bimodal effect of NO that depends on the concentration used. The present review will discuss the new insights on NO roles on mitochondrial biogenesis and function in skeletal muscle. We will also focus on potential therapeutic strategies based on NO precursors or analogs to treat patients with myopathies and mitochondrial deficiency.
Collapse
|
8
|
Ball KA, Nelson AW, Foster DG, Poyton RO. Nitric oxide produced by cytochrome c oxidase helps stabilize HIF-1α in hypoxic mammalian cells. Biochem Biophys Res Commun 2012; 420:727-32. [PMID: 22450315 DOI: 10.1016/j.bbrc.2012.03.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 01/29/2023]
Abstract
The mitochondrial respiratory chain has been reported to play a role in the stabilization of HIF-1α when mammalian cells experience hypoxia, most likely through the generation of free radicals. Although previous studies have suggested the involvement of superoxide catalyzed by complex III more recent studies raise the possibility that nitric oxide (NO) catalyzed by cytochrome c oxidase (Cco/NO), which functions in hypoxic signaling in yeast, may also be involved. Herein, we have found that HEK293 cells, which do not express a NOS isoform, possess Cco/NO activity and that this activity is responsible for an increase in intracellular NO levels when these cells are exposed to hypoxia. By using PTIO, a NO scavenger, we have also found that the increased NO levels in hypoxic HEK293 cells help stabilize HIF-1α. These findings suggest a new mechanism for mitochondrial involvement in hypoxic signaling in mammalian cells.
Collapse
Affiliation(s)
- Kerri A Ball
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | |
Collapse
|
9
|
Eyler CE, Wu Q, Yan K, MacSwords JM, Chandler-Militello D, Misuraca KL, Lathia JD, Forrester MT, Lee J, Stamler JS, Goldman SA, Bredel M, McLendon RE, Sloan AE, Hjelmeland AB, Rich JN. Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell 2011; 146:53-66. [PMID: 21729780 DOI: 10.1016/j.cell.2011.06.006] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/04/2011] [Accepted: 06/03/2011] [Indexed: 12/20/2022]
Abstract
Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here, we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell-cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts and suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease.
Collapse
Affiliation(s)
- Christine E Eyler
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Garvin JL, Herrera M, Ortiz PA. Regulation of renal NaCl transport by nitric oxide, endothelin, and ATP: clinical implications. Annu Rev Physiol 2011; 73:359-76. [PMID: 20936940 DOI: 10.1146/annurev-physiol-012110-142247] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NaCl absorption along the nephron is regulated not just by humoral factors but also by factors that do not circulate or act on the cells where they are produced. Generally, nitric oxide (NO) inhibits NaCl absorption along the nephron. However, the effects of NO in the proximal tubule are controversial and may be biphasic. Similarly, the effects of endothelin on proximal tubule transport are biphasic. In more distal segments, endothelin inhibits NaCl absorption and may be mediated by NO. Adenosine triphosphate (ATP) inhibits sodium bicarbonate absorption in the proximal tubule, NaCl absorption in thick ascending limbs via NO, and water reabsorption in collecting ducts. Defects in the effects of NO, endothelin, and ATP increase blood pressure, especially in a NaCl-sensitive manner. In diabetes, disruption of NO-induced inhibition of transport may contribute to increased blood pressure and renal damage. However, our understanding of how NO, endothelin, and ATP work, and of their role in pathology, is rudimentary at best.
Collapse
Affiliation(s)
- Jeffrey L Garvin
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|
11
|
Karasneh JA, Darwazeh AMG, Hassan AF, Thornhill M. Association between recurrent aphthous stomatitis and inheritance of a single-nucleotide polymorphism of the NOS2 gene encoding inducible nitric oxide synthase. J Oral Pathol Med 2011; 40:715-20. [PMID: 21481004 DOI: 10.1111/j.1600-0714.2011.01039.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recurrent aphthous stomatitis is a common ulcerative disease of the oral mucosa. Recurrent oral aphthous ulceration is also a feature of the more serious and systemic Behçet's disease. Nitric oxide is a free radical synthesized by one of a family of nitric oxide synthase (NOS) enzymes and is an important regulator of inflammation and immunity. Association of NOS3 gene polymorphisms encoding endothelial nitric oxide synthase has been reported in Behçet's disease but not recurrent aphthous stomatitis. The aim of this study was to investigate any association between NOS2 gene polymorphisms that encode inducible nitric oxide synthase and recurrent aphthous stomatitis. METHODS This is a case control association study. Eighty-three Jordanian recurrent aphthous stomatitis patients and 83 age, gender and ethnically matched controls were genotyped for three NOS2 single-nucleotide polymorphisms, rs10459953, rs1060822 and rs2297518. Chi-squared analysis was used to compare the allele frequencies and genotypes. RESULTS There was a significant association between recurrent aphthous stomatitis and inheritance of single-nucleotide polymorphism rs2297518 (P = 0.006). Although no direct association was demonstrated between rs10459953 or rs1060822 and recurrent aphthous stomatitis, a strong linkage disequilibrium was identified between rs1060822 and rs2297518. CONCLUSION Inheritence of a NOS2 single-nucleotide polymorphism rs2297518 is associated with increased risk of recurrent aphthous stomatitis in a Jordanian population. Confirmatory studies in other populations and investigation of other NOS2 gene polymorphisms will enhance our understanding of the functional basis of this association and help elucidate the role of inducible nitric oxide synthase in recurrent aphthous stomatitis.
Collapse
Affiliation(s)
- Jumana A Karasneh
- Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan.
| | | | | | | |
Collapse
|
12
|
Kumar S, Kumar S, Rajendran M, Alam SM, Lin FF, Cheng PW, Lin MF. Steroids up-regulate p66Shc longevity protein in growth regulation by inhibiting its ubiquitination. PLoS One 2011; 6:e15942. [PMID: 21264241 PMCID: PMC3021521 DOI: 10.1371/journal.pone.0015942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/30/2010] [Indexed: 11/18/2022] Open
Abstract
Background p66Shc, an isoform of Shc adaptor proteins, mediates diverse signals, including cellular stress and mouse longevity. p66Shc protein level is elevated in several carcinomas and steroid-treated human cancer cells. Several lines of evidence indicate that p66Shc plays a critical role in steroid-related carcinogenesis, and steroids play a role in its elevated levels in those cells without known mechanism. Methods and Findings In this study, we investigated the molecular mechanism by which steroid hormones up-regulate p66Shc protein level. In steroid-treated human prostate and ovarian cancer cells, p66Shc protein levels were elevated, correlating with increased cell proliferation. These steroid effects on p66Shc protein and cell growth were competed out by the respective antagonist. Further, actinomycin D and cyclohexamide could only partially block the elevated p66Shc protein level by steroids. Treatment with proteasomal inhibitors, but not lysosomal protease inhibitor, resulted in elevated p66Shc protein levels, even higher than that by steroids. Using prostate cancer cells as a model, immunoprecipitation revealed that androgens and proteasomal inhibitors reduce the ubiquitinated p66Shc proteins. Conclusions The data collectively indicate that functional steroid receptors are required in steroid up-regulation of p66Shc protein levels in prostate and ovarian cancer cells, correlating with cell proliferation. In these steroid-treated cells, elevated p66Shc protein level is apparently in part due to inhibiting its ubiquitination. The results may lead to an impact on advanced cancer therapy via the regulation of p66Shc protein by up-regulating its ubiquitination pathway.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Satyendra Kumar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mythilypriya Rajendran
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Syed Mahfuzul Alam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fen-Fen Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Pi-Wan Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
13
|
Slyvka Y, Wang Z, Yee J, Inman SR, Nowak FV. Antioxidant diet, gender and age affect renal expression of nitric oxide synthases in obese diabetic rats. Nitric Oxide 2011; 24:50-60. [DOI: 10.1016/j.niox.2010.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/28/2010] [Accepted: 11/15/2010] [Indexed: 01/07/2023]
|
14
|
Sudar E, Dobutovic B, Soskic S, Mandusic V, Zakula Z, Misirkic M, Vucicevic L, Janjetovic K, Trajkovic V, Mikhailidis DP, Isenovic ER. Regulation of inducible nitric oxide synthase activity/expression in rat hearts from ghrelin-treated rats. J Physiol Biochem 2010; 67:195-204. [PMID: 21107779 DOI: 10.1007/s13105-010-0063-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/09/2010] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to examine the effects of ghrelin on protein kinase B (Akt) and mitogen-activated protein kinase p42/44 (ERK1/2) activation as well as ghrelin effects on inducible nitric oxide (NO) synthase (iNOS; for gene Nos2) activity/expression in rat hearts. Male Wistar rats were treated with ghrelin (0.3 nmol/5 μl) or an equal volume of phosphate-buffered saline, injected every 24 h into the lateral cerebral ventricle for 5 days and 2 h after the last treatment the animals were sacrificed. Serum NO, L-arginine (L-Arg), and arginase activity were measured spectrophotometrically. For phosphorylation of Akt, ERK1/2, and iNOS protein expression, Western blot method was used. The expression of Nos2 mRNA was measured by the quantitative real-time polymerase chain reaction (qRT-PCR). Treatment with ghrelin significantly increased NO production in serum by 1.4-fold compared with control. The concentration of L-Arg was significantly higher in ghrelin-treated rats than in control while arginase activity was significantly lower in ghrelin-treated than in control hearts. Ghrelin treatment increased phosphorylation of Akt by 1.9-fold and ERK1/2 by 1.6-fold and increased iNOS expression by 2.5-fold compared with control. In addition, ghrelin treatment increased Nos2 gene expression by 2.2-fold as determined by qRT-PCR. These results indicate that ghrelin regulation of iNOS expression/activity is mediated via Akt/ERK1/2 signaling pathway. These results may be relevant to understanding molecular mechanisms underlying direct cardiovascular actions of ghrelin.
Collapse
Affiliation(s)
- Emina Sudar
- Laboratory of Radiobiology and Molecular Genetics, Institute Vinca, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Regulation of NF-kappaB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13). Proc Natl Acad Sci U S A 2010; 107:13854-9. [PMID: 20634424 DOI: 10.1073/pnas.0913495107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human Rpn13, also known as adhesion regulating molecule 1 (ADRM1), was recently identified as a novel 19S proteasome cap-associated protein, which recruits the deubiquitinating enzyme UCH37 to the 26S proteasome. Knockdown of Rpn13 by siRNA does not lead to global accumulation of ubiquitinated cellular proteins or changes in proteasome expression, suggesting that Rpn13 must have a specialized role in proteasome function. Thus, Rpn13 participation in protein degradation, by recruiting UCH37, is rather selective to specific proteins whose degradation critically depends on UCH37 deubiquitination activity. The specific substrates for the Rpn13/UCH37 complex have not been determined. Because of a previous discovery of an interaction between Rpn13 and inducible nitric oxide synthase (iNOS), we hypothesized that iNOS is one of the substrates for the Rpn13/UCH37 complex. In this study, we show that Rpn13 is involved in iNOS degradation and is required for iNOS interaction with the deubiquitination protein UCH37. Furthermore, we discovered that IkappaB-alpha, a protein whose proteasomal degradation activates the transcription factor NF-kappaB, is also a substrate for the Rpn13/UCH37 complex. Thus, this study defines two substrates, with important roles in inflammation and host defense for the Rpn13/UCH37 pathway.
Collapse
|
16
|
Lasbury ME, Liao CP, Hage CA, Durant PJ, Tschang D, Wang SH, Zhang C, Lee CH. Defective nitric oxide production by alveolar macrophages during Pneumocystis pneumonia. Am J Respir Cell Mol Biol 2010; 44:540-7. [PMID: 20558778 DOI: 10.1165/rcmb.2009-0367oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The effect of nitric oxide (NO) on Pneumocystis (Pc) organisms, the role of NO in the defense against infection with Pc, and the production of NO by alveolar macrophages (AMs) during Pneumocystis pneumonia (PCP) were investigated. The results indicate that NO was toxic to Pc organisms and inhibited their proliferation in culture. When the production of NO was inhibited by intraperitoneal injection of rats with the nitric oxide synthase inhibitor L-N(5)-(1-iminoethyl) ornithine, progression of Pc infection in immunocompetent rats was enhanced. Concentrations of NO in bronchoalveolar lavage fluids from immunosuppressed, Pc-infected rats and mice were greatly reduced, compared with those from uninfected animals, and AMs from these animals were defective in NO production. However, inducible nitric oxide synthase (iNOS) mRNA and protein concentrations were high in AMs from Pc-infected rats and mice. Immunoblot analysis showed that iNOS in AMs from Pc-infected rats existed primarily as a monomer, but the homo-dimerization of iNOS monomers was required for the production of NO. When iNOS dimerization cofactors, including calmodulin, were added to macrophage lysates, iNOS dimerization increased, whereas incubation of the same lysates with all cofactors except calmodulin did not rescue iNOS dimer formation. These data suggest that NO is important in the defense against Pc infection, but that the production of NO in AMs during PCP is defective because of the reduced dimerization of iNOS.
Collapse
Affiliation(s)
- Mark E Lasbury
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5113, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 2010; 23:75-93. [PMID: 20438856 DOI: 10.1016/j.niox.2010.04.007] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/23/2010] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) generated by the inducible isoform of nitric oxide synthase (iNOS) is involved in complex immunomodulatory and antitumoral mechanisms and has been described to have multiple beneficial microbicidal, antiviral and antiparasital effects. However, dysfunctional induction of iNOS expression seems to be involved in the pathophysiology of several human diseases. Therefore iNOS has to be regulated very tightly. Modulation of expression, on both the transcriptional and post-transcriptional level, is the major regulation mechanism for iNOS. Pathways resulting in the induction of iNOS expression vary in different cells or species. Activation of the transcription factors NF-kappaB and STAT-1alpha and thereby activation of the iNOS promoter seems to be an essential step for the iNOS induction in most human cells. However, at least in the human system, also post-transcriptional mechanisms involving a complex network of RNA-binding proteins build up by AUF1, HuR, KSRP, PTB and TTP is critically involved in the regulation of iNOS expression. Recent data also implicate regulation of iNOS expression by non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, D-55101 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Liu XD, Mazumdar T, Xu Y, Getzoff ED, Eissa NT. Identification of a flavin mononucleotide module residue critical for activity of inducible nitrite oxide synthase. THE JOURNAL OF IMMUNOLOGY 2009; 183:5977-82. [PMID: 19828635 DOI: 10.4049/jimmunol.0902274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inducible NO synthase (iNOS) contains an amino-terminal oxygenase domain, a carboxy-terminal reductase domain, and an intervening calmodulin-binding domain. For the synthesis of NO, iNOS is active as a homodimer formed by oxygenase domains, while the reductase domain is required to transfer electrons from NADPH. In this study, we identify glutamate 658 in the FMN domain of human iNOS to be a critical residue for iNOS activity and we explore the underlying mechanism for such role. Mutation of glutamate to aspartate almost abolished iNOS activity and reduced dimer formation. Substitution of this residue with noncharged alanine and glutamine, or positively charged lysine did not affect dimer formation and maintained around 60% of iNOS activity. These results suggest that the negative charge specific to glutamate plays an important role in iNOS activity.
Collapse
Affiliation(s)
- Xian-De Liu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
20
|
Messner S, Leitner S, Bommassar C, Golderer G, Gröbner P, Werner E, Werner-Felmayer G. Physarum nitric oxide synthases: genomic structures and enzymology of recombinant proteins. Biochem J 2009; 418:691-700. [PMID: 19046139 PMCID: PMC2677215 DOI: 10.1042/bj20080192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 11/28/2008] [Accepted: 12/01/2008] [Indexed: 11/26/2022]
Abstract
Physarum polycephalum expresses two closely related, calcium-independent NOSs (nitric oxide synthases). In our previous work, we showed that both NOSs are induced during starvation and apparently play a functional role in sporulation. In the present study, we characterized the genomic structures of both Physarum NOSs, expressed both enzymes recombinantly in bacteria and characterized their biochemical properties. Whereas the overall genomic organization of Physarum NOS genes is comparable with various animal NOSs, none of the exon-intron boundaries are conserved. Recombinant expression of clones with various N-termini identified N-terminal amino acids essential for enzyme activity, but not required for haem binding or dimerization, and suggests the usage of non-AUG start codons for Physarum NOSs. Biochemical characterization of the two Physarum isoenzymes revealed different affinities for L-arginine, FMN and 6R-5,6,7,8-tetrahydro-L-biopterin.
Collapse
Key Words
- arginine
- flavin
- haem
- nitric oxide synthase (nos)
- physarum polycephalum
- 6r-5,6,7,8-tetrahydro-l-biopterin-(h4-bip)
- nos, nitric oxide synthase
- inos, inducible nos
- tb, terrific broth
- dte, dithioerythritol
- h4-bip, 6r-5,6,7,8-tetrahydro-l-biopterin
- lb, luria–bertani
- race, rapid amplification of cdna ends
Collapse
Affiliation(s)
- Simon Messner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3/VI, A-6020 Innsbruck, Austria
| | - Stephan Leitner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3/VI, A-6020 Innsbruck, Austria
| | - Christian Bommassar
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3/VI, A-6020 Innsbruck, Austria
| | - Georg Golderer
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3/VI, A-6020 Innsbruck, Austria
| | - Peter Gröbner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3/VI, A-6020 Innsbruck, Austria
| | - Ernst R. Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3/VI, A-6020 Innsbruck, Austria
| | - Gabriele Werner-Felmayer
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3/VI, A-6020 Innsbruck, Austria
| |
Collapse
|
21
|
Abstract
Nitric Oxide (NO), produced by inducible nitric oxide synthase (iNOS), has been implicated in the pathogenesis of various biological and inflammatory disorders. Recent evidence suggests that aggresome formation is a physiologic stress response not limited to misfolded proteins. That stress response, termed "physiologic aggresome," is exemplified by aggresome formation of iNOS, an important host defense protein. The functional significance of cellular formation of the iNOS aggresome is hitherto unknown. In this study, we used live cell imaging, fluorescence microscopy, and intracellular fluorescence NO probes to map the subcellular location of iNOS and NO under various conditions. We found that NO production colocalized with cytosolic iNOS but aggresomes containing iNOS were distinctly devoid of NO production. Further, cells expressing iNOS aggresomes produced significantly less NO as compared with cells not expressing aggresomes. Importantly, primary normal human bronchial epithelial cells, stimulated by cytokines to express iNOS, progressively sequestered iNOS to the aggresome, a process that correlated with marked reduction of NO production. These results suggest that bronchial epithelial cells used the physiologic aggresome mechanism for iNOS inactivation. Our studies reveal a novel cellular strategy to terminate NO production via formation of the iNOS aggresome.
Collapse
|
22
|
Chibana K, Trudeau JB, Mustovich AT, Mustovitch AT, Hu H, Zhao J, Balzar S, Chu HW, Wenzel SE. IL-13 induced increases in nitrite levels are primarily driven by increases in inducible nitric oxide synthase as compared with effects on arginases in human primary bronchial epithelial cells. Clin Exp Allergy 2008; 38:936-46. [PMID: 18384429 DOI: 10.1111/j.1365-2222.2008.02969.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Exhaled nitric oxide is increased in asthma, but the mechanisms controlling its production, including the effects of T-helper type 2 (Th2) cytokines, are poorly understood. In mouse and submerged human epithelial cells, Th2 cytokines inhibit expression of inducible nitric oxide synthase (iNOS). Arginases have been proposed to contribute to asthma pathogenesis by limiting the arginine substrate available to NOS enzymes, but expression of any of these enzymes has not been extensively studied in primary human cells. OBJECTIVES We hypothesized that primary human airway epithelial cells in air-liquid interface (ALI) culture would increase iNOS expression and activity in response to IL-13, while decreasing arginase expression. METHODS iNOS and arginase mRNA (real-time PCR) and protein expression (Western blot and immunofluorescence) as well as iNOS activity (nitrite levels) were measured in ALI epithelial cells cultured from bronchial brushings of normal and asthmatic subjects following IL-13 stimulation. RESULTS IL-13 up-regulated iNOS mRNA primarily at a transcriptional level in epithelial cells. iNOS protein and activity also increased, arginase1 protein expression decreased while arginase 2 expression did not change. The changes in iNOS protein correlated strongly with changes in nitrites, and inclusion of arginase (1 or 2) did not substantially change the relationship. Interestingly, iNOS mRNA and protein were not correlated. CONCLUSIONS These results contrast with many previous results to confirm that Th2 stimuli enhance iNOS expression and activity. While arginase 1 protein decreases in response to IL-13, neither arginase appears to substantially impact nitrite levels in this system.
Collapse
Affiliation(s)
- K Chibana
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Prüss H, Prass K, Ghaeni L, Milosevic M, Muselmann C, Freyer D, Royl G, Reuter U, Baeva N, Dirnagl U, Meisel A, Priller J. Inducible nitric oxide synthase does not mediate brain damage after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2008; 28:526-39. [PMID: 17851454 DOI: 10.1038/sj.jcbfm.9600550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitric oxide produced by the inducible nitric oxide synthase (iNOS) is believed to participate in the pathogenic events after cerebral ischemia. In this study, we examined the expression of iNOS in the brain after transient focal cerebral ischemia in mice. We detected differential expression of exons 2 and 3 of iNOS mRNA (16-fold upregulation at 24 to 72 h after middle cerebral artery occlusion, MCAO) compared with exons 6 to 8, 12 to 14, 21 to 22, and 26 to 27 (2- to 5-fold upregulation after 72 and 96 h), which would be compatible with alternative splicing. Expression levels of iNOS mRNA were too low for detection by the Northern blot analysis. Using specific antibodies, we did not detect any iNOS immunoreactivity in the mouse brain 1 to 5 days after MCAO, although we detected iNOS immunoreactivity in the lungs of mice with stroke-associated pneumonia, and in mouse and rat dura mater after lipopolysaccharide administration. In chimeric iNOS-deficient mice transplanted with wild-type bone marrow (BM) cells expressing the green fluorescent protein (GFP) or in wild-type mice transplanted with GFP(+) iNOS-deficient BM cells, no expression of iNOS was detected in GFP(+) leukocytes invading the ischemic brain or in resident brain cells. Moreover, both experimental groups did not show any differences in infarct size. Analysis of three different strains of iNOS-deficient mice and wild-type controls confirmed that infarct size was independent of iNOS deletion, but strongly confounded by the genetic background of mouse strains. In conclusion, our data suggest that iNOS is not a universal mediator of brain damage after cerebral ischemia.
Collapse
Affiliation(s)
- Harald Prüss
- Department of Experimental Neurology, Center for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Neilan TG, Blake SL, Ichinose F, Raher MJ, Buys ES, Jassal DS, Furutani E, Perez-Sanz TM, Graveline A, Janssens SP, Picard MH, Scherrer-Crosbie M, Bloch KD. Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin. Circulation 2007; 116:506-14. [PMID: 17638931 DOI: 10.1161/circulationaha.106.652339] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Flavoprotein reductases are involved in the generation of reactive oxygen species by doxorubicin. The objective of the present study was to determine whether or not one flavoprotein reductase, endothelial nitric oxide synthase (nitric oxide synthase 3 [NOS3]), contributes to the cardiac dysfunction and injury seen after the administration of doxorubicin. METHODS AND RESULTS A single dose of doxorubicin (20 mg/kg) was administered to wild-type (WT) mice, NOS3-deficient mice (NOS3-/-), and mice with cardiomyocyte-specific overexpression of NOS3 (NOS3-TG). Cardiac function was assessed after 5 days with the use of echocardiography. Doxorubicin decreased left ventricular fractional shortening from 57+/-2% to 47+/-1% (P<0.001) in WT mice. Compared with WT mice, fractional shortening was greater in NOS3-/- and less in NOS3-TG after doxorubicin (55+/-1% and 35+/-2%; P<0.001 for both). Cardiac tissue was harvested from additional mice at 24 hours after doxorubicin administration for measurement of cell death and reactive oxygen species production. Doxorubicin induced cardiac cell death and reactive oxygen species production in WT mice, effects that were attenuated in NOS3-/- and were more marked in NOS3-TG mice. Finally, WT and NOS3-/- mice were treated with a lower dose of doxorubicin (4 mg/kg) administered weekly over 5 weeks. Sixteen weeks after beginning doxorubicin treatment, fractional shortening was greater in NOS3-/- than in WT mice (45+/-2% versus 28+/-1%; P<0.001), and mortality was reduced (7% versus 60%; P<0.001). CONCLUSIONS These findings implicate NOS3 as a key mediator in the development of left ventricular dysfunction after administration of doxorubicin.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cardiac Catheterization
- Doxorubicin/metabolism
- Doxorubicin/toxicity
- Female
- Gene Expression Regulation/drug effects
- Luminescent Measurements
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Myocardium/enzymology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/physiology
- Nitric Oxide Synthase Type II/antagonists & inhibitors
- Nitric Oxide Synthase Type II/deficiency
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/physiology
- Nitric Oxide Synthase Type III
- Oxidative Stress
- Reactive Oxygen Species/metabolism
- Recombinant Fusion Proteins/physiology
- Superoxides/metabolism
- Ultrasonography
- Ventricular Dysfunction, Left/chemically induced
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/enzymology
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/prevention & control
Collapse
Affiliation(s)
- Tomas G Neilan
- Cardiovascular Research Center, Division of Cardiology, Massachusetts General Hospital, Charlestown, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Buys ES, Raher MJ, Blake SL, Neilan TG, Graveline AR, Passeri JJ, Llano M, Perez-Sanz TM, Ichinose F, Janssens S, Zapol WM, Picard MH, Bloch KD, Scherrer-Crosbie M. Cardiomyocyte-restricted restoration of nitric oxide synthase 3 attenuates left ventricular remodeling after chronic pressure overload. Am J Physiol Heart Circ Physiol 2007; 293:H620-7. [PMID: 17416602 DOI: 10.1152/ajpheart.01236.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although nitric oxide synthase (NOS)3 is implicated as an important modulator of left ventricular (LV) remodeling, its role in the cardiac response to chronic pressure overload is controversial. We examined whether selective restoration of NOS3 to the hearts of NOS3-deficient mice would modulate the LV remodeling response to transverse aortic constriction (TAC). LV structure and function were compared at baseline and after TAC in NOS3-deficient (NOS3−/−) mice and NOS3−/− mice carrying a transgene directing NOS3 expression specifically in cardiomyocytes (NOS3−/−TG mice). At baseline, echocardiographic assessment of LV dimensions and function, invasive hemodynamic measurements, LV mass, and myocyte width did not differ between the two genotypes. Four weeks after TAC, echocardiographic and hemodynamic indexes of LV systolic function indicated that contractile performance was better preserved in NOS3−/−TG mice than in NOS3−/− mice. Echocardiographic LV wall thickness and cardiomyocyte width were greater in NOS3−/− mice than in NOS3−/−TG mice. TAC-induced cardiac fibrosis did not differ between these genotypes. TAC increased cardiac superoxide generation in NOS3−/−TG but not NOS3−/− mice. The ratio of NOS3 dimers to monomers did not differ before and after TAC in NOS3−/−TG mice. Restoration of NOS3 to the heart of NOS3-deficient mice attenuates LV hypertrophy and dysfunction after TAC, suggesting that NOS3 protects against the adverse LV remodeling induced by prolonged pressure overload.
Collapse
Affiliation(s)
- Emmanuel S Buys
- Cardiac Ultrasound Laboratory, 55 Fruit Street, Boston, MA 02115-2696, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kavya R, Saluja R, Singh S, Dikshit M. Nitric oxide synthase regulation and diversity: Implications in Parkinson’s disease. Nitric Oxide 2006; 15:280-94. [PMID: 16934505 DOI: 10.1016/j.niox.2006.07.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 05/31/2006] [Accepted: 07/12/2006] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is a janus faced chemical messenger, which, in the recent years, has been the focus of neurobiologists for its involvement in neurodegenerative disorders in particular, Parkinson's disease (PD). Nitric oxide synthase, the key enzyme involved in NO production exists in three known isoforms. The neuronal and inducible isoforms have been implicated in the pathogenesis of PD. These enzymes are subject to complex expressional and functional regulation involving mRNA diversity, phosphorylation and protein interaction. In the recent years, mRNA diversity and polymorphisms have been identified in the NOS isoforms. Some of these genetic variations have been associated with PD, indicating an etiological role for the NOS genes. This review mainly focuses on the NOS genes - their differential regulation and genetic heterogeneity, highlighting their significance in the pathobiology of PD.
Collapse
Affiliation(s)
- Ramkumar Kavya
- Pharmacy Group, Birla Institute of Technology and Science, Pilani 333031, India
| | | | | | | |
Collapse
|
27
|
Du Q, Park KS, Guo Z, He P, Nagashima M, Shao L, Sahai R, Geller DA, Hussain SP. Regulation of human nitric oxide synthase 2 expression by Wnt beta-catenin signaling. Cancer Res 2006; 66:7024-31. [PMID: 16849547 DOI: 10.1158/0008-5472.can-05-4110] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO.), an important mediator of inflammation, and beta-catenin, a component of the Wnt-adenomatous polyposis coli signaling pathway, contribute to the development of cancer. We have identified two T-cell factor 4 (Tcf-4)-binding elements (TBE1 and TBE2) in the promoter of human inducible NO synthase 2 (NOS2). We tested the hypothesis that beta-catenin regulates human NOS2 gene. Mutation in either of the two TBE sites decreased the basal and cytokine-induced NOS2 promoter activity in different cell lines. The promoter activity was significantly reduced when both TBE1 and TBE2 sites were mutated (P < 0.01). Nuclear extract from HCT116, HepG2, or DLD1 cells bound to NOS2 TBE1 or TBE2 oligonucleotides in electrophoretic mobility shift assays and the specific protein-DNA complexes were supershifted with anti-beta-catenin or anti-Tcf-4 antibody. Overexpression of beta-catenin and Tcf-4 significantly increased both basal and cytokine-induced NOS2 promoter activity (P < 0.01), and the induction was dependent on intact TBE sites. Overexpression of beta-catenin or Tcf-4 increased NOS2 mRNA and protein expression in HCT116 cells. Lithium chloride (LiCl), an inhibitor of glycogen synthase kinase-3beta, increased cytosolic and nuclear beta-catenin level, NOS2 expression, and NO. production in primary human and rat hepatocytes and cancer cell lines. Treatment with Wnt-3A-conditioned medium increased beta-catenin and NOS2 expression in fetal human hepatocytes. When administered in vivo, LiCl increased hepatic beta-catenin level in a dose-dependent manner with simultaneous increase in NOS2 expression. These data are consistent with the hypothesis that beta-catenin up-regulates NOS2 and suggest a novel mechanism by which the Wnt/beta-catenin signaling pathway may contribute to cancer by increasing NO. production.
Collapse
Affiliation(s)
- Qiang Du
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sakai K, Suzuki H, Oda H, Akaike T, Azuma Y, Murakami T, Sugi K, Ito T, Ichinose H, Koyasu S, Shirai M. Phosphoinositide 3-kinase in nitric oxide synthesis in macrophage: critical dimerization of inducible nitric-oxide synthase. J Biol Chem 2006; 281:17736-42. [PMID: 16636057 DOI: 10.1074/jbc.m601896200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) has important functions in various biological systems, including immune response. Although the role of PI3K in signaling by antigen-specific receptors of the adaptive immune system has been extensively studied, less is known about the function of PI3K in innate immunity. In the present study, we demonstrate that macrophages deficient for PI3K (p85alpha regulatory subunit) are impaired in nitric oxide (NO) production upon lipopolysaccharide and interferon-gamma stimulation and thus vulnerable for intracellular bacterial infection such as Chlamydophila pneumoniae. Although expression of inducible nitric-oxide synthase (iNOS) is induced normally in PI3K-deficient macrophages, dimer formation of iNOS protein is significantly impaired. The amount of intracellular tetrahydrobiopterin, a critical stabilizing cofactor for iNOS dimerization, is decreased in the absence of PI3K. In addition, induction of GTP cyclohydrolase 1, a rate-limiting enzyme for biosynthesis of tetrahydrobiopterin, is greatly reduced. Our current results demonstrate a critical role of class IA type PI3K in the bactericidal activity of macrophages by regulating their NO production through GTP cyclohydrolase 1 induction.
Collapse
Affiliation(s)
- Kouhei Sakai
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube-shi, Yamaguchi-Ken 755-8505, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Unlike other types of cancer, tumors of the breast are greatly influenced by steroid hormones. The effect of estrogen and progesterone depends on the presence of their specific receptors and these constitute important parameters in determining the aggressiveness of the tumor, the feasibility of certain therapies and the prediction of relapse. The molecular mechanisms of steroid hormone action have not been fully elucidated but recent findings implicate the nitric oxide (NO) pathway in some of these effects. Both hormones can regulate the nitric oxide synthases (NOS) and, in turn, the NO produced has profound consequences on tumor cell homeostasis. On one hand, estrogen increases the activity of endothelial NOS (eNOS or NOSIII), while progesterone activates inducible NOS (iNOS or NOSII) expression. The data presented suggest that the low levels of NO produced by NOSIII mediate the proliferative effect of estrogen. On the other hand, the increase in apoptosis in response to progesterone could implicate the high levels of NO produced by induction of NOSII expression. Understanding of the mechanisms and interactions of steroid hormones with the NO pathway could lead to the development of new approaches and strategies for the effective treatment of breast cancer.
Collapse
Affiliation(s)
- Alena Pance
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
30
|
Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol 2005; 15:277-89. [PMID: 15914026 DOI: 10.1016/j.semcancer.2005.04.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inducible nitric oxide synthase (iNOS) is one of three key enzymes generating nitric oxide (NO) from the amino acid l-arginine. iNOS-derived NO plays an important role in numerous physiological (e.g. blood pressure regulation, wound repair and host defence mechanisms) and pathophysiological (inflammation, infection, neoplastic diseases, liver cirrhosis, diabetes) conditions. iNOS is the synthase isoform most commonly associated with malignant disease. Nevertheless, the role of iNOS during tumor development is highly complex, and incompletely understood. Both promoting and deterring actions have been described, presumably depending upon the local concentration of iNOS within the tumor microenvironment. In particular, pivotal effects such as malingnant transformation, angiogenesis, and metastasis are modulated by iNOS. On the other hand, NO derived from macrophages has a potentially cytotoxic/cytostatic effect upon tumor cells. Hence, therapeutical interference with iNOS activity is of considerable interest, especially in tumors where metastatic activity, host defence mechanisms and the level of differentiation seem to be correlated to iNOS expression. This review will aim to summarize the dual actions of iNOS as simultaneous tumor promoter and suppressor.
Collapse
Affiliation(s)
- Matthias Lechner
- Clinical Division of General and Surgical Intensive Care Medicine, Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
31
|
Kleinert H, Pautz A, Linker K, Schwarz PM. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 2005; 500:255-66. [PMID: 15464038 DOI: 10.1016/j.ejphar.2004.07.030] [Citation(s) in RCA: 449] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 01/24/2023]
Abstract
The role of nitric oxide (NO) generated by the inducible isoform of nitric oxide synthase (iNOS) is very complex. Induction of iNOS expression and hence NO production has been described to have beneficial antiviral, antiparasital, microbicidal, immunomodulatory, and antitumoral effects. However, induced at the wrong place or at the wrong time, iNOS has detrimental consequences and seems to be involved in the pathophysiology of different human diseases. The pathways regulating iNOS expression seem to vary in different cells or different species. In general, activation of the transcription factors nuclear factor (NF)-kappaB and signal transducer and activator of transcription (STAT)-1alpha and thereby activation of the iNOS promoter seems to be an essential step in the regulation of iNOS expression in most cells. Also, post-transcriptional mechanisms are critically involved in the regulation of iNOS expression.
Collapse
Affiliation(s)
- Hartmut Kleinert
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101 Mainz, Germany.
| | | | | | | |
Collapse
|
32
|
Kolodziejska KE, Burns AR, Moore RH, Stenoien DL, Eissa NT. Regulation of inducible nitric oxide synthase by aggresome formation. Proc Natl Acad Sci U S A 2005; 102:4854-9. [PMID: 15781872 PMCID: PMC555713 DOI: 10.1073/pnas.0500485102] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Misfolding and aggregation of proteins play an important part in the pathogenesis of several genetic and degenerative diseases. Recent evidence suggests that cells have evolved a pathway that involves sequestration of aggregated proteins into specialized "holding stations" called aggresomes. Here we show that cells regulate inducible NO synthase (iNOS), an important host defense protein, through aggresome formation. iNOS aggresome formation depends on a functional dynein motor and the integrity of the microtubules. The iNOS aggresome represents a "physiologic aggresome" and thus defines a new paradigm for cellular regulation of protein processing. This study indicates that aggresome formation in response to misfolded proteins may merely represent an acceleration of an established physiologic regulatory process for specific proteins whose regulation by aggresome formation is deemed necessary by the cell.
Collapse
|
33
|
Mazumdar T, Eissa NT. Preferential Recognition of Undisruptable Dimers of Inducible Nitric Oxide Synthase by a Monoclonal Antibody Directed against an N-Terminal Epitope. THE JOURNAL OF IMMUNOLOGY 2005; 174:2314-7. [PMID: 15699167 DOI: 10.4049/jimmunol.174.4.2314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Overproduction of NO by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer in which the subunits align in a head-to-head manner, with the N-terminal oxygenase domains forming the dimer interface and a zinc metal center stabilizing the dimer. Thus, dimerization represents a critical locus for therapeutic interventions for regulation of NO synthesis. We have recently shown that intracellular iNOS forms dimers that are "undisruptable (UD)" by heat, SDS, strong denaturants, and/or reducing agents. Our data further suggest that the zinc metal center plays a role in forming and/or stabilizing iNOS undisruptable dimers (UD-dimers). In this study, we show that a mAb directed against a unique epitope at the oxygenase domain of human iNOS preferentially recognizes UD-dimers. This observation has implications for the mechanism of formation and regulation of dimer formation of iNOS. Our data suggest that UD-dimers of iNOS, in spite of SDS-PAGE denaturation, still maintain features of the quaternary structure of iNOS particularly at its N-terminal end and including head-to-head contact of the oxygenase domains.
Collapse
Affiliation(s)
- Tuhina Mazumdar
- Pulmonary and Critical Care Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
34
|
Kolodziejski PJ, Koo JS, Eissa NT. Regulation of inducible nitric oxide synthase by rapid cellular turnover and cotranslational down-regulation by dimerization inhibitors. Proc Natl Acad Sci U S A 2004; 101:18141-6. [PMID: 15601772 PMCID: PMC539786 DOI: 10.1073/pnas.0406711102] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Indexed: 11/18/2022] Open
Abstract
Overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) has been implicated in the pathogenesis of many disorders. iNOS is notably distinguished from constitutive NOSs by its production of large amounts of NO for a prolonged period; hence, it was termed the high-output NOS. Understanding how cells regulate iNOS is a prerequisite for strategies aimed at modulating NO synthesis. iNOS is thought to be regulated primarily at the transcriptional level in response to cytokines and inflammatory mediators. In this study, we report a posttranslational regulatory mechanism for control of iNOS expression through a rapid cellular rate of turnover. Unexpectedly, iNOS cellular half-life was found to be relatively short. In primary bronchial epithelial cells, iNOS half-life was 1.6 +/- 0.3 h. A similar half-life was found for iNOS in several cell lines. This fast rate of turnover is in sharp contrast to that reported for the constitutive NOS isoforms. iNOS half-life was not affected by intracellular depletion of tetrahydrobiopterin, a critical cofactor required for iNOS activity. Further, iNOS monomers and dimers had a similar half-life. Importantly, we discovered a previously unrecognized cotranslational down-regulation mechanism by which the newly discovered pyrimidineimidazole-based allosteric dimerization inhibitors of iNOS lead to reduced iNOS expression. This study provides insights into the cellular posttranslational mechanisms of iNOS and has important implications for design of selective iNOS inhibitors and their use in therapeutic strategies.
Collapse
|
35
|
Abstract
Nitric oxide (NO) is a gaseous free radical that serves cell signaling, cellular energetics, host defense, and inflammatory functions in virtually all cells. In the kidney and vasculature, NO plays fundamental roles in the control of systemic and intrarenal hemodynamics, the tubuloglomerular feedback response, pressure natriuresis, release of sympathetic neurotransmitters and renin, and tubular solute and water transport. NO is synthesized from L-arginine by NO synthases (NOS). Because of its high chemical reactivity and high diffusibility, NO production by each of the 3 major NOS isoforms is regulated tightly at multiple levels from gene transcription to spatial proximity near intended targets to covalent modification and allosteric regulation of the enzyme itself. Many of these regulatory mechanisms have yet to be tested in renal cells. The NOS isoforms are distributed differentially and regulated in the kidney, and there remains some controversy over the specific expression of functional protein for the NOS isoforms in specific renal cell populations. Mice with targeted deletion of each of the NOS isoforms have been generated, and these each have unique phenotypes. Studies of the renal and vascular phenotypes of these mice have yielded important insights into certain vascular diseases, ischemic acute renal failure, the tubuloglomerular feedback response, and some mechanisms of tubular fluid and electrolyte transport, but thus far have been underexploited. This review explores the collective knowledge regarding the structure, regulation, and function of the NOS isoforms gleaned from various tissues, and highlights the progress and gaps in understanding in applying this information to renal and vascular physiology.
Collapse
Affiliation(s)
- Bruce C Kone
- University of Texas Health Sciences Center at Houston, 77030, USA.
| |
Collapse
|
36
|
Chantôme A, Pance A, Gauthier N, Vandroux D, Chenu J, Solary E, Jeannin JF, Reveneau S. Casein kinase II-mediated phosphorylation of NF-kappaB p65 subunit enhances inducible nitric-oxide synthase gene transcription in vivo. J Biol Chem 2004; 279:23953-60. [PMID: 15033982 DOI: 10.1074/jbc.m313731200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nitric oxide (NO) produced by inducible nitric-oxide synthase (NOSII) is mainly regulated at the transcriptional level by the nuclear factor-kappaB (NF-kappaB). In the present study, we further analyzed the role of NF-kappaB in the in vivo transcriptional regulation of NOSII gene by comparing two clones isolated from the EMT-6 mouse mammary cancer cell line. In response to interleukin (IL)-1beta or lipopolysaccharide (LPS), EMT-6 clone J (EMT-6J) cells produce 3-fold more NO than EMT-6 clone H (EMT-6H) cells, an effect correlated with enhanced activation of NF-kappaB in EMT-6J cells. In response to IL-1beta, the kinetics of degradation of NF-kappaB inhibitors IkappaB-alpha and IkappaB-beta, the nucleo-cytoplasmic shuttling of the transcription factor and its binding to a specific DNA sequence were similar in both clones. In contrast, an IL-1beta-induced phosphorylation of serine residues in NF-kappaB p65 subunit was observed in EMT-6J, but not in EMT-6H, cells. This IL-1beta-induced phosphorylation of p65 was specifically prevented by pretreatment of EMT-6J cells with the casein kinase II inhibitor DRB. Small interfering RNA-mediated depletion of casein kinase II-alpha subunit also decreased NF-kappaB transcriptional activity and NOSII gene transcription in IL-1beta and LPS-stimulated EMT-6J cells to the levels observed in EMT-6H cells treated in the same conditions. Altogether, these data indicate that casein kinase II-mediated phosphorylation of p65 subunit can enhance the transcriptional activity of NF-kappaB in vivo. This post-translational modification of the transcription factor can be responsible for increased NOSII gene transcription and NO production in tumor cells exposed to either IL-1beta or LPS.
Collapse
Affiliation(s)
- Aurélie Chantôme
- Cancer Immunotherapy Laboratory, Ecole Pratique des Hautes Etudes, INSERM U517, Faculty of Medicine, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang W, Kuncewicz T, Yu ZY, Zou L, Xu X, Kone BC. Protein-protein interactions involving inducible nitric oxide synthase. ACTA ACUST UNITED AC 2004; 179:137-42. [PMID: 14510776 DOI: 10.1046/j.1365-201x.2003.01119.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM Nitric oxide (NO) is a signaling and effector molecule that contributes to multiple physiological and pathophysiological processes in the kidney, vasculature, and other tissues. High output NO generation by inducible NO synthase (iNOS) participates in host defense against pathogens and contributes to tissue injury during inflammatory states. Because of its potent reactivity and diffusibility, NO generation by iNOS is subject to multiple levels of regulation, including transcriptional, translational, and post-translational controls, including protein-protein interactions. This review examines the experimental basis for these protein-protein interactions and their known and potential importance for kidney and vascular physiology. METHODS Analysis of the biomedical literature in the area. RESULTS iNOS interacts with the inhibitory molecules Kalirin and NOS-associated protein 1.10 kd (NAP110), which inhibit iNOS homodimerization, as well as activator proteins, the Rac-GTPases. Interactions with caveolin-1 control the intracellular locale and degradation of iNOS in tumor cells. In polarized epithelial cells, associations of iNOS with the scaffolding protein EBP50 position iNOS in the apical membrane near key ion transport proteins that also interact with EPB50. In addition, protein-protein interactions of proteins governing iNOS transcription function to specify activation or suppression of iNOS induction by cytokines. CONCLUSION Interactions of iNOS with a diverse group of heterologous proteins provides a selective mechanism to control the activity, spatial distribution, and proximity of iNOS to intended targets, while potentially limiting autotoxicity to the iNOS-expressing cell.
Collapse
Affiliation(s)
- W Zhang
- Department of Internal Medicine, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
38
|
Ichinose F, Hataishi R, Wu JC, Kawai N, Rodrigues ACT, Mallari C, Post JM, Parkinson JF, Picard MH, Bloch KD, Zapol WM. A selective inducible NOS dimerization inhibitor prevents systemic, cardiac, and pulmonary hemodynamic dysfunction in endotoxemic mice. Am J Physiol Heart Circ Physiol 2003; 285:H2524-30. [PMID: 12907425 DOI: 10.1152/ajpheart.00530.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased nitric oxide (NO) production by inducible NO synthase (NOS2), an obligate homodimer, is implicated in the cardiovascular sequelae of sepsis. We tested the ability of a highly selective NOS2 dimerization inhibitor (BBS-2) to prevent endotoxin-induced systemic hypotension, myocardial dysfunction, and impaired hypoxic pulmonary vasoconstriction (HPV) in mice. Mice were challenged with Escherichia coli endotoxin before treatment with BBS-2 or vehicle. Systemic blood pressure was measured before and 4 and 7 h after endotoxin challenge, and echocardiographic parameters of myocardial function were measured before and 7 h after endotoxin challenge. The pulmonary vasoconstrictor response to left mainstem bronchus occlusion, which is a measure of HPV, was studied 22 h after endotoxin challenge. BBS-2 treatment alone did not alter baseline hemodynamics. BBS-2 treatment blocked NOS2 dimerization and completely inhibited the endotoxin-induced increase of plasma nitrate and nitrite levels. Treatment with BBS-2 after endotoxin administration prevented systemic hypotension and attenuated myocardial dysfunction. BBS-2 also prevented endotoxin-induced impairment of HPV. In contrast, treatment with NG-nitro-l-arginine methyl ester, which is an inhibitor of all three NOS isoforms, prevented the systemic hypotension but further aggravated the myocardial dysfunction associated with endotoxin challenge. Treatment with BBS-2 prevented endotoxin from causing key features of cardiovascular dysfunction in endotoxemic mice. Selective inhibition of NOS2 dimerization with BBS-2, while sparing the activities of other NOS isoforms, may prove to be a useful treatment strategy in sepsis.
Collapse
Affiliation(s)
- Fumito Ichinose
- Department of Anesthesia and Critical Care and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114-2620, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kolodziejski PJ, Rashid MB, Eissa NT. Intracellular formation of "undisruptable" dimers of inducible nitric oxide synthase. Proc Natl Acad Sci U S A 2003; 100:14263-8. [PMID: 14614131 PMCID: PMC283580 DOI: 10.1073/pnas.2435290100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 10/02/2003] [Indexed: 11/18/2022] Open
Abstract
Overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer. Dimerization of iNOS represents a potentially critical target for therapeutic intervention. In this study, we show that intracellular iNOS forms dimers that are "undisruptable" by boiling, denaturants, or reducing agents. Undisruptable (UD) dimers are clearly distinguishable from the easily dissociated dimers formed by iNOS in vitro. UD dimers do not form in Escherichia coli-expressed iNOS and could not be assembled in vitro, which suggests that an in vivo cellular process is required for their formation. iNOS UD dimers are not affected by intracellular depletion of H4B. However, the mutation of Cys-115 (critical for zinc binding) greatly affects the formation of UD dimers. This study reveals insight into the mechanisms of in vivo iNOS dimer formation. UD dimers represent a class of iNOS dimers that had not been suspected. This unanticipated finding revises our understanding of the mechanisms of iNOS dimerization and lays the groundwork for future studies aimed at modulating iNOS activity in vivo.
Collapse
|
40
|
Tiscornia AC, Cayota A, Landoni AI, Brito C, Oppezzo P, Vuillier F, Robello C, Dighiero G, Gabús R, Pritsch O. Post-transcriptional regulation of inducible nitric oxide synthase in chronic lymphocytic leukemia B cells in pro- and antiapoptotic culture conditions. Leukemia 2003; 18:48-56. [PMID: 14574328 DOI: 10.1038/sj.leu.2403169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Functional inducible NOS (iNOS) may be involved in the prolonged lifespan of chronic lymphocytic leukemia cells (B-CLL), although the exact mechanisms implicated remain elusive as yet. In this work, we have examined iNOS expression in normal B lymphocytes and B-CLL cells in pro- and antiapoptotic conditions. Our results demonstrate: (1) The existence of a new splice variant characterized by a complete deletion of exon 14 (iNOS 13-16(14del)), which was preferentially detected in normal B lymphocytes and may represent an isoform that could play a role in the regulation of enzyme activity. (2) The existence of another alternatively spliced iNOS mRNA transcript involving a partial deletion of the flavodoxin region (iNOS 13-16(neg)) was correlated to a decreased B-CLL cell viability. The 9-beta-D-arabinofuranosyl-2-fluoradenine or fludarabine (F-ara) treatment induced iNOS 13-16(neg) transcript variants, whereas IL-4 enhanced both the transcription of variants, including these exons (iNOS 13-16(pos)), and the expression of a 122 kDa iNOS protein. These results suggest that in B-CLL, a regulation process involving nitric oxide (.- NO) levels could occur by a post-transcriptional mechanism mediated by soluble factors. Our results also provide an insight into a new complementary proapoptotic action of F-ara in B-CLL by the induction of particular iNOS splice variants, leading to the activation of a caspase-3-dependent apoptotic pathway.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Alternative Splicing
- Antineoplastic Agents/pharmacology
- Apoptosis/physiology
- B-Lymphocytes/enzymology
- Base Sequence
- Caspase 3
- Caspases/metabolism
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Leukemic
- Humans
- Interleukin-4/pharmacology
- Isoenzymes
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Male
- Middle Aged
- Molecular Sequence Data
- Nitric Oxide/physiology
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type II
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- Sequence Deletion
- Sequence Homology, Nucleic Acid
- Signal Transduction
- Transcription, Genetic
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
Collapse
Affiliation(s)
- A C Tiscornia
- Departamento de Bioquímica, de la Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kleinert H, Schwarz PM, Förstermann U. Regulation of the Expression of Inducible Nitric Oxide Synthase. Biol Chem 2003; 384:1343-64. [PMID: 14669979 DOI: 10.1515/bc.2003.152] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO), generated by the inducible isoform of nitric oxide synthase (iNOS), has been described to have beneficial microbicidal, antiviral, antiparasital, immunomodulatory, and antitumoral effects. However, aberrant iNOS induction at the wrong place or at the wrong time has detrimental consequences and seems to be involved in the pathophysiology of several human diseases. iNOS is primarily regulated at the expression level by transcriptional and post-transcriptional mechanisms. iNOS expression can be induced in many cell types with suitable agents such as bacterial lipopolysaccharides (LPS), cytokines, and other compounds. Pathways resulting in the induction of iNOS expression may vary in different cells or different species. Activation of the transcription factors NF-kappaB and STAT-1alpha, and thereby activation of the iNOS promoter, seems to be an essential step for iNOS induction in most cells. However, at least in the human system, also post-transcriptional mechanism are critically involved in the regulation of iNOS expression. The induction of iNOS can be inhibited by a wide variety of immunomodulatory compounds acting at the transcriptional levels and/or post-transcriptionally.
Collapse
Affiliation(s)
- Hartmut Kleinert
- Department of Pharmacology, Johannes Gutenberg University, D-55101 Mainz, Germany
| | | | | |
Collapse
|
42
|
Feng X, Guo Z, Nourbakhsh M, Hauser H, Ganster R, Shao L, Geller DA. Identification of a negative response element in the human inducible nitric-oxide synthase (hiNOS) promoter: The role of NF-kappa B-repressing factor (NRF) in basal repression of the hiNOS gene. Proc Natl Acad Sci U S A 2002; 99:14212-7. [PMID: 12381793 PMCID: PMC137863 DOI: 10.1073/pnas.212306199] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although nuclear factor (NF)-kappaB plays a central role in mediating cytokine-stimulated human inducible nitric-oxide synthase (hiNOS) gene transcription, very little is known about the factors involved in silencing of the hiNOS promoter. NF-kappaB-repressing factor (NRF) interacts with a specific negative regulatory element (NRE) to mediate transcriptional repression of certain NF-kappaB responsive genes. By sequence comparison with the IFN-beta and IL-8 promoters, we identified an NRE in the hiNOS promoter located at -6.7 kb upstream. In A549 and HeLa human cells, constitutive NRF mRNA expression is detected by RT-PCR. Gel shift assay showed constitutive NRF binding to the hiNOS NRE. Mutation of the -6.7-kb NRE site in the hiNOS promoter resulted in loss of NRF binding and increased basal but not cytokine-stimulated hiNOS transcription in promoter transfection experiments. Interestingly, overexpression of NRF suppressed both basal and cytokine-induced hiNOS promoter activity that depended on an intact cis-acting NRE motif. By using stably transformed HeLa cells with the tetracycline on/off expression system, reduction of cellular NRF by expressing antisense NRF increased basal iNOS promoter activity and resulted in constitutive iNOS mRNA expression. These data demonstrate that the transacting NRF protein is involved in constitutive silencing of the hiNOS gene by binding to a cis-acting NRE upstream in the hiNOS promoter.
Collapse
Affiliation(s)
- Xuesheng Feng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kolodziejski PJ, Musial A, Koo JS, Eissa NT. Ubiquitination of inducible nitric oxide synthase is required for its degradation. Proc Natl Acad Sci U S A 2002; 99:12315-20. [PMID: 12221289 PMCID: PMC129442 DOI: 10.1073/pnas.192345199] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is responsible for nitric oxide (NO) synthesis from l-arginine in response to inflammatory mediators. We have previously shown that iNOS is degraded through the 26S proteasome. Targeting of proteins for proteasomal degradation may or may not require their covalent linkage to multiubiquitin chains (ubiquitination). In addition, ubiquitination of a protein can serve functions other than signaling proteolysis. In this context, it is not known whether iNOS is subject to ubiquitination or whether ubiquitination is required for its degradation. In this study, we show that iNOS, expressed in HEK293 cells or induced in primary bronchial epithelial cells, A549 cells, or murine macrophages, is subject to ubiquitination. To investigate whether iNOS ubiquitination is required for its degradation, HEK293T cells were cotransfected with plasmids containing cDNAs of human iNOS and of the dominant negative ubiquitin mutant K48R. Disruption of ubiquitination by K48R ubiquitin resulted in inhibition of iNOS degradation. ts20 is a mutant cell line that contains a thermolabile ubiquitin-activating enzyme (E1) that is inactivated at elevated temperature, preventing ubiquitination. Incubation of ts20 cells, stably expressing human iNOS, at the nonpermissive temperature (40 degrees C) resulted in inhibition of iNOS degradation and marked accumulation of iNOS. These studies indicate that iNOS is subject to ubiquitination and that ubiquitination is required for its degradation.
Collapse
|
44
|
Panda K, Rosenfeld RJ, Ghosh S, Meade AL, Getzoff ED, Stuehr DJ. Distinct dimer interaction and regulation in nitric-oxide synthase types I, II, and III. J Biol Chem 2002; 277:31020-30. [PMID: 12048205 DOI: 10.1074/jbc.m203749200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homodimer formation activates all nitric-oxide synthases (NOSs). It involves the interaction between two oxygenase domains (NOSoxy) that each bind heme and (6R)-tetrahydrobiopterin (H4B) and catalyze NO synthesis from L-Arg. Here we compared three NOSoxy isozymes regarding dimer strength, interface composition, and the ability of L-Arg and H4B to stabilize the dimer, promote its formation, and protect it from proteolysis. Urea dissociation studies indicated that the relative dimer strengths were NOSIIIoxy >> NOSIoxy > NOSIIoxy (endothelial NOSoxy (eNOSoxy) >> neuronal NOSOXY (nNOSoxy) > inducible NOSoxy (iNOSoxy)). Dimer strengths of the full-length NOSs had the same rank order as judged by their urea-induced loss of NO synthesis activity. NOSoxy dimers containing L-Arg plus H4B exhibited the greatest resistance to urea-induced dissociation followed by those containing either molecule and then by those containing neither. Analysis of crystallographic structures of eNOSoxy and iNOSoxy dimers showed more intersubunit contacts and buried surface area in the dimer interface of eNOSoxy than iNOSoxy, thus revealing a potential basis for their different stabilities. L-Arg plus H4B promoted dimerization of urea-generated iNOSoxy and nNOSoxy monomers, which otherwise was minimal in their absence, and also protected both dimers against trypsin proteolysis. In these respects, L-Arg alone was more effective than H4B alone for nNOSoxy, whereas for iNOSoxy the converse was true. The eNOSoxy dimer was insensitive to proteolysis under all conditions. Our results indicate that the three NOS isozymes, despite their general structural similarity, differ markedly in their strengths, interfaces, and in how L-Arg and H4B influence their formation and stability. These distinguishing features may provide a basis for selective control and likely help to regulate each NOS in its particular biologic milieu.
Collapse
Affiliation(s)
- Koustubh Panda
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
45
|
Ott SR, Elphick MR. Nitric oxide synthase histochemistry in insect nervous systems: Methanol/formalin fixation reveals the neuroarchitecture of formaldehyde-sensitive NADPH diaphorase in the cockroach Periplaneta americana. J Comp Neurol 2002; 448:165-85. [PMID: 12012428 DOI: 10.1002/cne.10235] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Formaldehyde-insensitive NADPH diaphorase (NADPHd) activity is used widely as a histochemical marker for neuronal nitric oxide synthase (NOS). However, in several insects including the cockroach Periplaneta americana, NOS is apparently formaldehyde-sensitive; NADPHd fails to reveal neuron morphology and results in faint generalized staining. Here we have used a novel fixative, methanol/ formalin (MF), to reveal for the first time the neuroarchitecture of NADPHd in the cockroach, with intense selective staining occurring in neurons throughout the brain and thoracic ganglia. Immunocytochemical and histochemical analysis of cockroach and locust nervous systems indicated that neuronal NADPHd after MF fixation can be attributed to NOS. However, NADPHd in locust glial and perineurial cells was histochemically different from that in neurons and may thus be due to enzymes other than NOS. Histochemical implications of species-specific enzyme properties and of the transcriptional complexity of the NOS gene are discussed. The present findings suggest that MF fixation is a valuable new tool for the comparative analysis of the neuroarchitecture of NO signaling in insects. The Golgi-like definition of the staining enabled analysis of the NADPHd architecture in the cockroach and comparison with that in the locust. NADPHd in the tactile neuropils of the thoracic ganglia showed a similar organization in the two species. The olfactory glomeruli of the antennal lobes were in both species densely innervated by NADPHd-positive local interneurons that correlated in number with the number of glomeruli. Thus, the NADPHd architectures appear highly conserved in primary sensory neuropils. In the cockroach mushroom bodies, particularly dense staining in the gamma-layer of the lobes was apparently derived from Kenyon cells, whereas extrinsic arborizations were organized in domains across the lobes, an architecture that contrasts with the previously described tubular compartmentalization of locust mushroom bodies. These divergent architectures may result in different spatiotemporal dynamics of NO diffusion and suggest species differences in the role of NO in the mushroom bodies.
Collapse
Affiliation(s)
- Swidbert R Ott
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom.
| | | |
Collapse
|
46
|
Pance A, Chantome A, Reveneau S, Bentrari F, Jeannin JF. A repressor in the proximal human inducible nitric oxide synthase promoter modulates transcriptional activation. FASEB J 2002; 16:631-3. [PMID: 11919177 DOI: 10.1096/fj.01-0450fje] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The human inducible nitric oxide synthase (iNOS or NOSII) gene is regulated through an extended and complex promoter. In this study, the transcriptional regulation of human NOSII is investigated in the human colon cell line HCT-8R. Stimulation with a cytokine mix (interferon-gamma, interleukin 1-beta, and tumor necrosis factor alpha) induces NOSII mRNA accumulation, as well as promoter activity in these cells. Several random deletions were performed within the proximal 7 kb of the promoter, which led to the identification of a region, whose deletion provokes a marked increase in transcriptional activity upon cytokine stimulation. Furthermore, this region is shown to repress a viral-driven luciferase construct, mainly at basal levels. An AP-1-like sequence present in this region that is specifically recognized by nuclear proteins is shown to be involved in the repressive effect. This element is capable of repressing a viral promoter, and its deletion augments cytokine-stimulated transcription. These findings are confirmed in various cell lines and suggest a general mechanism for the control of basal levels of NOSII expression, to avoid unnecessary toxicity under normal conditions.
Collapse
Affiliation(s)
- Alena Pance
- Cancer Immunotherapy Laboratory of the Ecole Pratique des Hautes Etudes and INSERM U-517, University of Bourgogne, Faculty of Medicine, 21000 Dijon, France.
| | | | | | | | | |
Collapse
|
47
|
Blasko E, Glaser CB, Devlin JJ, Xia W, Feldman RI, Polokoff MA, Phillips GB, Whitlow M, Auld DS, McMillan K, Ghosh S, Stuehr DJ, Parkinson JF. Mechanistic studies with potent and selective inducible nitric-oxide synthase dimerization inhibitors. J Biol Chem 2002; 277:295-302. [PMID: 11689556 DOI: 10.1074/jbc.m105691200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A series of potent and selective inducible nitric-oxide synthase (iNOS) inhibitors was shown to prevent iNOS dimerization in cells and inhibit iNOS in vivo. These inhibitors are now shown to block dimerization of purified human iNOS monomers. A 3H-labeled inhibitor bound to full-length human iNOS monomer with apparent Kd approximately 1.8 nm and had a slow off rate, 1.2 x 10(-4) x s(-1). Inhibitors also bound with high affinity to both murine full-length and murine oxygenase domain iNOS monomers. Spectroscopy and competition binding with imidazole confirmed an inhibitor-heme interaction. Inhibitor affinity in the binding assay (apparent Kd values from 330 pm to 27 nm) correlated with potency in a cell-based iNOS assay (IC50 values from 290 pm to 270 nm). Inhibitor potency in cells was not prevented by medium supplementation with l-arginine or sepiapterin, but inhibition decreased with time of addition after cytokine stimulation. The results are consistent with a mechanism whereby inhibitors bind to a heme-containing iNOS monomer species to form an inactive iNOS monomer-heme-inhibitor complex in a pterin- and l-arginine-independent manner. The selectivity for inhibiting dimerization of iNOS versus endothelial and neuronal NOS suggests that the energetics and kinetics of monomer-dimer equilibria are substantially different for the mammalian NOS isoforms. These inhibitors provide new research tools to explore these processes.
Collapse
Affiliation(s)
- Eric Blasko
- Cardiovascular Research, Berlex Biosciences, Richmond, California 94804-0099, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated.
Collapse
|
49
|
Abstract
This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated.
Collapse
|
50
|
Ghosh DK, Rashid MB, Crane B, Taskar V, Mast M, Misukonis MA, Weinberg JB, Eissa NT. Characterization of key residues in the subdomain encoded by exons 8 and 9 of human inducible nitric oxide synthase: a critical role for Asp-280 in substrate binding and subunit interactions. Proc Natl Acad Sci U S A 2001; 98:10392-7. [PMID: 11517317 PMCID: PMC56971 DOI: 10.1073/pnas.181251298] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human inducible nitric oxide synthase (iNOS) is active as a dimer of two identical subunits. Each subunit has an amino-terminal oxygenase domain that binds the substrate l-Arg and the cofactors heme and tetrahydrobiopterin and a carboxyl-terminal reductase domain that binds FMN, FAD, and NADPH. We previously demonstrated that a subdomain in the oxygenase domain encoded by exons 8 and 9 is important for dimer formation and NO synthesis. Further, we identified Trp-260, Asn-261, Tyr-267, and Asp-280 as key residues in that subdomain. In this study, using an Escherichia coli expression system, we produced, purified, and characterized wild-type iNOS and iNOS-Ala mutants. Using H(2)O(2)-supported oxidation of N(omega)-hydroxy-l-Arg, we demonstrate that the iNOS mutants' inabilities to synthesize NO are due to selective defects in the oxygenase domain activity. Detailed characterization of the Asp-280-Ala mutant revealed that it retains a functional reductase domain, as measured by its ability to reduce cytochrome c. Gel permeation chromatography confirmed that the Asp-280-Ala mutant exists as a dimer, but, in contrast to wild-type iNOS, urea-generated monomers of the mutant fail to reassociate into dimers when incubated with l-Arg and tetrahydrobiopterin, suggesting inadequate subunit interaction. Spectral analysis reveals that the Asp-280-Ala mutant does not bind l-Arg. This indicates that, in addition to dimerization, proper subunit interaction is required for substrate binding. These data, by defining a critical role for Asp-280 in substrate binding and subunit interactions, give insights into the mechanisms of regulation of iNOS activity.
Collapse
Affiliation(s)
- D K Ghosh
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|