1
|
Ortega MA, Celoy RM, Chacon F, Yuan Y, Xue LJ, Pandey SP, Drowns MR, Kvitko BH, Tsai CJ. Altering cold-regulated gene expression decouples the salicylic acid-growth trade-off in Arabidopsis. THE PLANT CELL 2024; 36:4293-4308. [PMID: 39056470 PMCID: PMC11448890 DOI: 10.1093/plcell/koae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
In Arabidopsis (Arabidopsis thaliana), overproduction of salicylic acid (SA) increases disease resistance and abiotic stress tolerance but penalizes growth. This growth-defense trade-off has hindered the adoption of SA-based disease management strategies in agriculture. However, investigation of how SA inhibits plant growth has been challenging because many SA-hyperaccumulating Arabidopsis mutants have developmental defects due to the pleiotropic effects of the underlying genes. Here, we heterologously expressed a bacterial SA synthase gene in Arabidopsis and observed that elevated SA levels decreased plant growth and reduced the expression of cold-regulated (COR) genes in a dose-dependent manner. Growth suppression was exacerbated at below-ambient temperatures. Severing the SA-responsiveness of individual COR genes was sufficient to overcome the growth inhibition caused by elevated SA at ambient and below-ambient temperatures while preserving disease- and abiotic-stress-related benefits. Our results show the potential of decoupling SA-mediated growth and defense trade-offs for improving crop productivity.
Collapse
Affiliation(s)
- María A Ortega
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Rhodesia M Celoy
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Francisco Chacon
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Yinan Yuan
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Liang-Jiao Xue
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saurabh P Pandey
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - MaKenzie R Drowns
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Brian H Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA 30603, USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Bánfalvi Z, Kalapos B, Hamow KÁ, Jose J, Éva C, Odgerel K, Karsai-Rektenwald F, Villányi V, Sági L. Transcriptome, hormonal, and secondary metabolite changes in leaves of DEFENSE NO DEATH 1 (DND1) silenced potato plants. Sci Rep 2024; 14:20601. [PMID: 39232097 PMCID: PMC11375208 DOI: 10.1038/s41598-024-71380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
DEFENSE NO DEATH 1 (DND1) is a cyclic nucleotide-gated ion channel protein. Earlier, it was shown that the silencing of DND1 in the potato (Solanum tuberosum L.) leads to resistance to late blight, powdery mildew, and gray mold diseases. At the same time, however, it can reduce plant growth and cause leaf necrosis. To obtain knowledge of the molecular events behind the pleiotropic effect of DND1 downregulation in the potato, metabolite and transcriptome analyses were performed on three DND1 silenced lines of the cultivar 'Désirée.' A massive increase in the salicylic acid content of leaves was detected. Concentrations of jasmonic acid and chlorogenic acid and their derivatives were also elevated. Expression of 1866 genes was altered in the same way in all three DND1 silenced lines, including those related to the synthesis of secondary metabolites. The activation of several alleles of leaf rust, late blight, and other disease resistance genes, as well as the induction of pathogenesis-related genes, was detected. WRKY and NAC transcription factor families were upregulated, whereas bHLHs were downregulated, indicating their central role in transcriptome changes. These results suggest that the maintenance of the constitutive defense state leads to the reduced growth of DND1 silenced potato plants.
Collapse
Affiliation(s)
- Zsófia Bánfalvi
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary.
| | - Balázs Kalapos
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Kamirán Áron Hamow
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Jeny Jose
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Csaba Éva
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Khongorzul Odgerel
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Flóra Karsai-Rektenwald
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Vanda Villányi
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - László Sági
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| |
Collapse
|
3
|
Li R, Cui L, Martina M, Bracuto V, Meijer-Dekens F, Wolters AMA, Moglia A, Bai Y, Acquadro A. Less is more: CRISPR/Cas9-based mutations in DND1 gene enhance tomato resistance to powdery mildew with low fitness costs. BMC PLANT BIOLOGY 2024; 24:763. [PMID: 39123110 PMCID: PMC11316316 DOI: 10.1186/s12870-024-05428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Powdery mildew (PM), triggered by Oidium neolycopersici, represents a significant threat and a major concern for the productivity of tomato plants (Solanum lycopersicum L.). The presence of susceptibility (S) genes in plants facilitates pathogen proliferation and their dysfunction can lead to a recessively inherited broad-spectrum and durable type of resistance. Past studies have demonstrated that disrupting the function of DND1 (Defense No Death 1) increases plant resilience against various pathogens, such as powdery mildew (PM), but this comes at the cost of negatively affecting the overall health and vigor of the plant. To investigate the possibility of minimizing the adverse effects of the dnd1 mutation while boosting disease resistance, a CRISPR-Cas9 construct with four single guide RNAs targeting three exons of SlDND1 (Solyc02g088560.4.1) was designed and introduced into the tomato variety Moneymaker (MM) through Agrobacterium tumefaciens-mediated transformation. Three T1 lines (named E1, E3 and E4) were crossed with MM and then selfed to produce TF2 families. All the TF2 plants in homozygous state dnd1/dnd1, showed reduced PM symptoms compared to the heterozygous (DND1/dnd1) and wild type (DND1/DND1) ones. Two full knock-out (KO) mutant events (E1 and E4) encoding truncated DND1 proteins, exhibited clear dwarfness and auto-necrosis phenotypes, while mutant event E3 harbouring deletions of 3 amino acids, showed normal growth in height with less auto-necrotic spots. Analysis of the 3D structures of both the reference and the mutant proteins revealed significant conformational alterations in the protein derived from E3, potentially impacting its function. A dnd1/dnd1 TF2 line (TV181848-9, E3) underwent whole-genome sequencing using Illumina technology, which confirmed the absence of off-target mutations in selected genomic areas. Additionally, no traces of the Cas9 gene were detected, indicating its elimination through segregation. Our findings confirm the role of DND1 as an S-gene in tomato because impairment of this gene leads to a notable reduction in susceptibility to O. neolycopersici. Moreover, we provide, for the first time, a dnd1 mutant allele (E3) that exhibits fitness advantages in comparison with previously reported dnd1 mutant alleles, indicating a possible way to breed with dnd1 mutants.
Collapse
Affiliation(s)
- Ruiling Li
- Plant Genetics and Breeding, Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, 10095, Italy
| | - Lei Cui
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
- College of Agriculture, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Matteo Martina
- Plant Genetics and Breeding, Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, 10095, Italy
| | - Valentina Bracuto
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
| | - Fien Meijer-Dekens
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
| | - Anne-Marie A Wolters
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
| | - Andrea Moglia
- Plant Genetics and Breeding, Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, 10095, Italy
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands.
| | - Alberto Acquadro
- Plant Genetics and Breeding, Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, 10095, Italy.
| |
Collapse
|
4
|
Wang X, Song X, Miao H, Feng S, Wu G. Natural variation in CYCLIC NUCLEOTIDE-GATED ION CHANNEL 4 reveals a novel role of calcium signaling in vegetative phase change in Arabidopsis. THE NEW PHYTOLOGIST 2024; 242:1043-1054. [PMID: 38184789 DOI: 10.1111/nph.19498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/07/2023] [Indexed: 01/08/2024]
Abstract
The timing of vegetative phase change (VPC) in plants is regulated by a temporal decline in the expression of miR156. Both exogenous cues and endogenous factors, such as temperature, light, sugar, nutrients, and epigenetic regulators, have been shown to affect VPC by altering miR156 expression. However, the genetic basis of natural variation in VPC remains largely unexplored. Here, we conducted a genome-wide association study on the variation of the timing of VPC in Arabidopsis. We identified CYCLIC NUCLEOTIDE-GATED ION CHANNEL 4 (CNGC4) as a significant locus associated with the diversity of VPC. Mutations in CNGC4 delayed VPC, accompanied by an increased expression level of miR156 and a corresponding decrease in SQUAMOSA PROMOTER BINDING-LIKE (SPL) gene expression. Furthermore, mutations in CNGC2 and CATION EXCHANGER 1/3 (CAX1/3) also led to a delay in VPC. Polymorphisms in the CNGC4 promoter contribute to the natural variation in CNGC4 expression and the diversity of VPC. Specifically, the early CNGC4 variant promotes VPC and enhances plant adaptation to local environments. In summary, our findings offer genetic insights into the natural variation in VPC in Arabidopsis, and reveal a previously unidentified role of calcium signaling in the regulation of VPC.
Collapse
Affiliation(s)
- Xiang Wang
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xia Song
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Huaiqi Miao
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Shengjun Feng
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Gang Wu
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| |
Collapse
|
5
|
Wang J, Eulgem T. Growth deficiency and enhanced basal immunity in Arabidopsis thaliana mutants of EDM2, EDM3 and IBM2 are genetically interlinked. PLoS One 2024; 19:e0291705. [PMID: 38329997 PMCID: PMC10852260 DOI: 10.1371/journal.pone.0291705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024] Open
Abstract
Mutants of the Arabidopsis thaliana genes, EDM2 (Enhanced Downy Mildew 2), EDM3 (Enhanced Downy Mildew 3) and IBM2 (Increase in Bonsai Methylation 2) are known to show defects in a diverse set of defense and developmental processes. For example, they jointly exhibit enhanced levels of basal defense and stunted growth. Here we show that these two phenotypes are functionally connected by their dependency on the salicylic acid biosynthesis gene SID2 and the basal defense regulatory gene PAD4. Stunted growth of edm2, edm3 and ibm2 plants is a consequence of up-regulated basal defense. Constitutively enhanced activity of reactive oxygen species-generating peroxidases, we observed in these mutants, appears also to contribute to both, their enhanced basal defense and their growth retardation phenotypes. Furthermore, we found the histone H3 demethylase gene IBM1, a direct regulatory target of EDM2, EDM3 and IBM2, to be at least partially required for the basal defense and growth-related effects observed in these mutants. We recently reported that EDM2, EDM3 and IBM2 coordinate basal immunity with the timing of the floral transition by gradually reducing the extent of this defense mechanism prior to flowering. Together with these observations, data presented here show that at least some of the diverse phenotypic effects in edm2, edm3 and ibm2 mutants are genetically interlinked and functionally connected. Our new results show that repression of basal immunity by EDM2, EDM3 and IBM2 limits negative impact on growth and development.
Collapse
Affiliation(s)
- Jianqiang Wang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Thomas Eulgem
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| |
Collapse
|
6
|
Peng S, Li P, Li T, Tian Z, Xu R. GhCNGC13 and 32 Act as Critical Links between Growth and Immunity in Cotton. Int J Mol Sci 2023; 25:1. [PMID: 38203172 PMCID: PMC10778622 DOI: 10.3390/ijms25010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) remain poorly studied in crop plants, most of which are polyploid. In allotetraploid Upland cotton (Gossypium hirsutum), silencing GhCNGC13 and 32 impaired plant growth and shoot apical meristem (SAM) development, while triggering plant autoimmunity. Both growth hormones (indole-3-acetic acid and gibberellin) and stress hormones (abscisic acid, salicylic acid, and jasmonate) increased, while leaf photosynthesis decreased. The silenced plants exhibited an enhanced resistance to Botrytis cinerea; however, Verticillium wilt resistance was weakened, which was associated with LIPOXYGENASE2 (LOX2) downregulation. Transcriptomic analysis of silenced plants revealed 4835 differentially expressed genes (DEGs) with functional enrichment in immunity and photosynthesis. These DEGs included a set of transcription factors with significant over-representation in the HSF, NAC, and WRKY families. Moreover, numerous members of the GhCNGC family were identified among the DEGs, which may indicate a coordinated action. Collectively, our results suggested that GhCNGC13 and 32 functionally link to photosynthesis, plant growth, and plant immunity. We proposed that GhCNGC13 and 32 play a critical role in the "growth-defense tradeoff" widely observed in crops.
Collapse
Affiliation(s)
- Song Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Panyu Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianming Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zengyuan Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruqiang Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Rufián JS, Rueda-Blanco J, Beuzón CR, Ruiz-Albert J. Suppression of NLR-mediated plant immune detection by bacterial pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6069-6088. [PMID: 37429579 PMCID: PMC10575702 DOI: 10.1093/jxb/erad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
The plant immune system is constituted of two functionally interdependent branches that provide the plant with an effective defense against microbial pathogens. They can be considered separate since one detects extracellular pathogen-associated molecular patterns by means of receptors on the plant surface, while the other detects pathogen-secreted virulence effectors via intracellular receptors. Plant defense depending on both branches can be effectively suppressed by host-adapted microbial pathogens. In this review we focus on bacterially driven suppression of the latter, known as effector-triggered immunity (ETI) and dependent on diverse NOD-like receptors (NLRs). We examine how some effectors secreted by pathogenic bacteria carrying type III secretion systems can be subject to specific NLR-mediated detection, which can be evaded by the action of additional co-secreted effectors (suppressors), implying that virulence depends on the coordinated action of the whole repertoire of effectors of any given bacterium and their complex epistatic interactions within the plant. We consider how ETI activation can be avoided by using suppressors to directly alter compromised co-secreted effectors, modify plant defense-associated proteins, or occasionally both. We also comment on the potential assembly within the plant cell of multi-protein complexes comprising both bacterial effectors and defense protein targets.
Collapse
Affiliation(s)
- José S Rufián
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | | | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
8
|
Zhao H, Ding X, Chu X, Zhang H, Wang X, Zhang X, Liu H, Zhang X, Yin Z, Li Y, Ding X. Plant immune inducer ZNC promotes rutin accumulation and enhances resistance to Botrytis cinerea in tomato. STRESS BIOLOGY 2023; 3:36. [PMID: 37676331 PMCID: PMC10444710 DOI: 10.1007/s44154-023-00106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/09/2023] [Indexed: 09/08/2023]
Abstract
Gray mold is a destructive disease caused by Botrytis cinerea, a pervasive plant pathogen, which poses a threat to both tomato growth and postharvest storage. The utilization of induced resistance presents a potential strategy for combating plant pathogenic attacks. ZNC (zhinengcong), an extract derived from the endophytic fungus Paecilomyces variotii, has been discovered to play a vital role in preventing diverse forms of bacterial infections. Nevertheless, the precise mechanism behind its ability to enhance tomato resistance to fungi remains unclear. In this study, we found that the exogenous spraying of ZNC could significantly improve the resistance of tomato plants to B. cinerea. The results of both the metabolomic analysis and high-performance liquid chromatography (HPLC) demonstrated that tomato plants responded to ZNC treatment by accumulating high levels of rutin. Additional transcriptome analysis uncovered that rutin enhances tomato resistance possible by initiating the generation of reactive oxygen species (ROS) and phosphorylation of mitogen-activated protein kinases (MPKs) related genes expression during the initial phase of invasion by B. cinerea. In addition, we also found that rutin might activate plant immunity by eliciting ethylene (ET) and jasmonic acid (JA)-mediated pathways. Therefore, plant immune inducer ZNC and rutin has bright application prospects and high utilization value to control gray mold.
Collapse
Affiliation(s)
- Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xiangyu Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xiaomeng Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xinyu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xinwen Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Haoqi Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xiaoying Zhang
- Shandong Pengbo Biotechnology Co., Ltd., Taian, 271000, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China.
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China.
| |
Collapse
|
9
|
Zhao L, Wang HJ, Martins PD, van Dongen JT, Bolger AM, Schmidt RR, Jing HC, Mueller-Roeber B, Schippers JHM. The Arabidopsis thaliana onset of leaf death 12 mutation in the lectin receptor kinase P2K2 results in an autoimmune phenotype. BMC PLANT BIOLOGY 2023; 23:294. [PMID: 37264342 DOI: 10.1186/s12870-023-04300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Plant immunity relies on the perception of immunogenic signals by cell-surface and intracellular receptors and subsequent activation of defense responses like programmed cell death. Under certain circumstances, the fine-tuned innate immune system of plants results in the activation of autoimmune responses that cause constitutive defense responses and spontaneous cell death in the absence of pathogens. RESULTS Here, we characterized the onset of leaf death 12 (old12) mutant that was identified in the Arabidopsis accession Landsberg erecta. The old12 mutant is characterized by a growth defect, spontaneous cell death, plant-defense gene activation, and early senescence. In addition, the old12 phenotype is temperature reversible, thereby exhibiting all characteristics of an autoimmune mutant. Mapping the mutated locus revealed that the old12 phenotype is caused by a mutation in the Lectin Receptor Kinase P2-TYPE PURINERGIC RECEPTOR 2 (P2K2) gene. Interestingly, the P2K2 allele from Landsberg erecta is conserved among Brassicaceae. P2K2 has been implicated in pathogen tolerance and sensing extracellular ATP. The constitutive activation of defense responses in old12 results in improved resistance against Pseudomonas syringae pv. tomato DC3000. CONCLUSION We demonstrate that old12 is an auto-immune mutant and that allelic variation of P2K2 contributes to diversity in Arabidopsis immune responses.
Collapse
Affiliation(s)
- Liming Zhao
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
- Beijng Academy, Beijing, 100028, China
| | - Hao-Jie Wang
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
| | - Patricia Dalcin Martins
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
| | - Joost T van Dongen
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
| | - Anthony M Bolger
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
- IBG-4: Bioinformatik,Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Romy R Schmidt
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
- Plant Biotechnology Group, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Ruski 139 Blvd, Plovdiv, 4000, Bulgaria
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
10
|
Zhang N, Lin H, Zeng Q, Fu D, Gao X, Wu J, Feng X, Wang Q, Ling Q, Wu Z. Genome-wide identification and expression analysis of the cyclic nucleotide-gated ion channel (CNGC) gene family in Saccharum spontaneum. BMC Genomics 2023; 24:281. [PMID: 37231370 DOI: 10.1186/s12864-023-09307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Cyclic nucleotide-gated ion channels (CNGCs) are nonselective cation channels that are ubiquitous in eukaryotic organisms. As Ca2+ channels, some CNGCs have also proven to be K+-permeable and involved in plant development and responses to environmental stimuli. Sugarcane is an important sugar and energy crop worldwide. However, reports on CNGC genes in sugarcane are limited. RESULTS In this study, 16 CNGC genes and their alleles were identified from Saccharum spontaneum and classified into 5 groups based on phylogenetic analysis. Investigation of gene duplication and syntenic relationships between S. spontaneum and both rice and Arabidopsis demonstrated that the CNGC gene family in S. spontaneum expanded primarily by segmental duplication events. Many SsCNGCs showed variable expression during growth and development as well as in tissues, suggesting functional divergence. Light-responsive cis-acting elements were discovered in the promoters of all the identified SsCNGCs, and the expression of most of the SsCNGCs showed a diurnal rhythm. In sugarcane, the expression of some SsCNGCs was regulated by low-K+ treatment. Notably, SsCNGC13 may be involved in both sugarcane development and its response to environmental stimuli, including response to low-K+ stress. CONCLUSION This study identified the CNGC genes in S. spontaneum and provided insights into the transcriptional regulation of these SsCNGCs during development, circadian rhythm and under low-K+ stress. These findings lay a theoretical foundation for future investigations of the CNGC gene family in sugarcane.
Collapse
Affiliation(s)
- Nannan Zhang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Huanzhang Lin
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Qiaoying Zeng
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Danwen Fu
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Xiaoning Gao
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Jiayun Wu
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Xiaomin Feng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Qinnan Wang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Qiuping Ling
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China.
| | - Zilin Wu
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China.
| |
Collapse
|
11
|
Vega-Muñoz I, Herrera-Estrella A, Martínez-de la Vega O, Heil M. ATM and ATR, two central players of the DNA damage response, are involved in the induction of systemic acquired resistance by extracellular DNA, but not the plant wound response. Front Immunol 2023; 14:1175786. [PMID: 37256140 PMCID: PMC10225592 DOI: 10.3389/fimmu.2023.1175786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Background The plant immune response to DNA is highly self/nonself-specific. Self-DNA triggered stronger responses by early immune signals such as H2O2 formation than nonself-DNA from closely related plant species. Plants lack known DNA receptors. Therefore, we aimed to investigate whether a differential sensing of self-versus nonself DNA fragments as damage- versus pathogen-associated molecular patterns (DAMPs/PAMPs) or an activation of the DNA-damage response (DDR) represents the more promising framework to understand this phenomenon. Results We treated Arabidopsis thaliana Col-0 plants with sonicated self-DNA from other individuals of the same ecotype, nonself-DNA from another A. thaliana ecotype, or nonself-DNA from broccoli. We observed a highly self/nonself-DNA-specific induction of H2O2 formation and of jasmonic acid (JA, the hormone controlling the wound response to chewing herbivores) and salicylic acid (SA, the hormone controlling systemic acquired resistance, SAR, to biotrophic pathogens). Mutant lines lacking Ataxia Telangiectasia Mutated (ATM) or ATM AND RAD3-RELATED (ATR) - the two DDR master kinases - retained the differential induction of JA in response to DNA treatments but completely failed to induce H2O2 or SA. Moreover, we observed H2O2 formation in response to in situ-damaged self-DNA from plants that had been treated with bleomycin or SA or infected with virulent bacteria Pseudomonas syringae pv. tomato DC3000 or pv. glycinea carrying effector avrRpt2, but not to DNA from H2O2-treated plants or challenged with non-virulent P. syringae pv. glycinea lacking avrRpt2. Conclusion We conclude that both ATM and ATR are required for the complete activation of the plant immune response to extracellular DNA whereas an as-yet unknown mechanism allows for the self/nonself-differential activation of the JA-dependent wound response.
Collapse
Affiliation(s)
- Isaac Vega-Muñoz
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, Irapuato, GTO, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad de Genómica Avanzada, Irapuato, GTO, Mexico
| | - Octavio Martínez-de la Vega
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad de Genómica Avanzada, Irapuato, GTO, Mexico
| | - Martin Heil
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, Irapuato, GTO, Mexico
| |
Collapse
|
12
|
Jeon HS, Jang E, Kim J, Kim SH, Lee MH, Nam MH, Tobimatsu Y, Park OK. Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity. Autophagy 2023; 19:597-615. [PMID: 35652914 PMCID: PMC9851231 DOI: 10.1080/15548627.2022.2085496] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The evolutionary plant-pathogen arms race has equipped plants with the immune system that can defend against pathogens. Pattern-triggered immunity and effector-triggered immunity are two major branches of innate immunity that share immune responses, including oxidative bursts, transcriptional reprogramming, and cell wall modifications such as lignin deposition. In a previous study, we reported that lignin rapidly accumulates in pathogen-infected Arabidopsis leaves and acts as a mechanical barrier, spatially restricting pathogens and cell death. Lignin deposition into the cell wall is a three-step process: monolignol biosynthesis, transport, and polymerization. While monolignol biosynthesis and polymerization are relatively well understood, the mechanism of monolignol transport remains unclear. In this study, we show that macroautophagy/autophagy modulates pathogen-induced lignin formation. Lignification and other immune responses were impaired in autophagy-defective atg (autophagy-related) mutants. In microscopy analyses, monolignols formed punctate structures in response to pathogen infection and colocalized with autophagic vesicles. Furthermore, autophagic activity and lignin accumulation were both enhanced in dnd1 (defense, no death 1) mutant with elevated disease resistance but no cell death and crossing dnd1-1 with atg mutants resulted in a lignin deficit, further supporting that lignin formation requires autophagy. Collectively, these findings demonstrate that lignification, particularly monolignol transport, is achieved through autophagic membrane trafficking in plant immunity.Abbreviations: ABC transporter: ATP-binding cassette transporter; ACD2/AT4G37000: accelerated cell death 2; ATG: autophagy-related; C3'H/AT2G40890: p-coumaroyl shikimate 3-hydroxylase; C4H/AT2G30490: cinnamate 4-hydroxylase; CA: coniferyl alcohol; CaMV: cauliflower mosaic virus; CASP: Casparian strip membrane domain protein; CASPL: CASP-like protein; CBB: Coomassie Brilliant Blue; CCoAOMT1/AT4G34050: caffeoyl-CoA O-methyltransferase 1; CCR1/AT1G15950: cinnamoyl-CoA reductase 1; CFU: colony-forming unit; COMT1/AT5G54160: caffeic acid O-methyltransferase 1; Con A: concanamycin A; DMAC: dimethylaminocoumarin; DND1/AT5G15410: defense, no death 1; CNGC2: cyclic nucleotide-gated channel 2; ER: endoplasmic reticulum; ESB1/AT2G28670/DIR10: enhanced suberin 1; ETI: effector-triggered immunity; EV: extracellular vesicle; F5H/AT4G36220: ferulate-5-hydroxylase; Fluo-3 AM: Fluo-3 acetoxymethyl ester; GFP: green fluorescent protein; HCT/AT5G48930: p-hydroxycinnamoyl-CoA:quinate/shikimate p-hydroxycinnamoyltransferase; HR: hypersensitive response; LAC: laccase; LTG: LysoTracker Green; LSD1/AT4G200380: lesion stimulating disease 1; PAL1/AT2G37040: phenylalanine ammonia-lyase 1; PAMP: pathogen-associated molecular patterns; PCD: programmed cell death; PE: phosphatidylethanolamine; PRX: peroxidase; Pst DC3000: Pseudomonas syringe pv. tomato DC3000; PTI: pattern-triggered immunity; SA: salicylic acid; SD: standard deviation; SID2/AT1G7410: SA induction-deficient 2; UGT: UDP-glucosyltransferase; UPLC: ultraperformance liquid chromatography; UPS: unconventional protein secretion; V-ATPase: vacuolar-type H+-translocating ATPase.
Collapse
Affiliation(s)
- Hwi Seong Jeon
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Eunjeong Jang
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jinwoo Kim
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Seu Ha Kim
- Department of Life Sciences, Korea University, Seoul, Korea
| | | | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Ohkmae K. Park
- Department of Life Sciences, Korea University, Seoul, Korea,CONTACT Ohkmae K. Park Department of Life Sciences, Korea University, Seoul02841, Korea
| |
Collapse
|
13
|
Li W, He J, Wang X, Ashline M, Wu Z, Liu F, Fu ZQ, Chang M. PBS3: a versatile player in and beyond salicylic acid biosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:414-422. [PMID: 36263689 DOI: 10.1111/nph.18558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
AVRPPHB SUSCEPTIBLE 3 (PBS3) belongs to the GH3 family of acyl acid amido synthetases, which conjugates amino acids to diverse acyl acid substrates. Recent studies demonstrate that PBS3 in Arabidopsis plays a key role in the biosynthesis of plant defense hormone salicylic acid (SA) by catalyzing the conjugation of glutamate to isochorismate to form isochorismate-9-glutamate, which is then used to produce SA through spontaneous decay or ENHANCED PSEUDOMONAS SUSCEPTIBILITY (EPS1) catalysis. Consistent with its function as an essential enzyme for SA biosynthesis, PBS3 is well known to be a positive regulator of plant immunity in Arabidopsis. Additionally, PBS3 is also involved in the trade-off between abiotic and biotic stress responses in Arabidopsis by suppressing the inhibitory effect of abscisic acid on SA-mediated plant immunity. Besides stress responses, PBS3 also plays a role in plant development. Under long-day conditions, PBS3 influences Arabidopsis flowering time by regulating the expression of flowering regulators FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, PBS3 functions in the signaling network of plant development and responses to biotic and/or abiotic stresses, but the molecular mechanisms underlying its diverse roles remain obscure.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jinyu He
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiuzhuo Wang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Matthew Ashline
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Zirui Wu
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Ming Chang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
14
|
Concerted actions of PRR- and NLR-mediated immunity. Essays Biochem 2022; 66:501-511. [PMID: 35762737 DOI: 10.1042/ebc20220067] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022]
Abstract
Plants utilise cell-surface immune receptors (functioning as pattern recognition receptors, PRRs) and intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) to detect pathogens. Perception of pathogens by these receptors activates immune signalling and resistance to infections. PRR- and NLR-mediated immunity have primarily been considered parallel processes contributing to disease resistance. Recent studies suggest that these two pathways are interdependent and converge at multiple nodes. This review summarises and provides a perspective on these convergent points.
Collapse
|
15
|
Sun L, Qin J, Wu X, Zhang J, Zhang J. TOUCH 3 and CALMODULIN 1/4/6 cooperate with calcium-dependent protein kinases to trigger calcium-dependent activation of CAM-BINDING PROTEIN 60-LIKE G and regulate fungal resistance in plants. THE PLANT CELL 2022; 34:4088-4104. [PMID: 35863056 PMCID: PMC9516039 DOI: 10.1093/plcell/koac209] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/14/2022] [Indexed: 05/24/2023]
Abstract
Plants utilize localized cell-surface and intracellular receptors to sense microbes and activate the influx of calcium, which serves as an important second messenger in eukaryotes to regulate cellular responses. However, the mechanisms through which plants decipher calcium influx to activate immune responses remain largely unknown. Here, we show that pathogen-associated molecular patterns (PAMPs) trigger calcium-dependent phosphorylation of CAM-BINDING PROTEIN 60-LIKE G (CBP60g) in Arabidopsis (Arabidopsis thaliana). CALCIUM-DEPENDENT PROTEIN KINASE5 (CPK5) phosphorylates CBP60g directly, thereby enhancing its transcription factor activity. TOUCH 3 (TCH3) and its homologs CALMODULIN (CAM) 1/4/6 and CPK4/5/6/11 are required for PAMP-induced CBP60g phosphorylation. TCH3 interferes with the auto-inhibitory region of CPK5 and promotes CPK5-mediated CBP60g phosphorylation. Furthermore, CPKs-mediated CBP60g phosphorylation positively regulates plant resistance to soil-borne fungal pathogens. These lines of evidence uncover a novel calcium signal decoding mechanism during plant immunity through which TCH3 relieves auto-inhibition of CPK5 to phosphorylate and activate CBP60g. The findings reveal cooperative interconnections between different types of calcium sensors in eukaryotes.
Collapse
Affiliation(s)
- Lifan Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyun Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Hebei University, Baoding, Hebei 710023, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Park CJ, Shin R. Calcium channels and transporters: Roles in response to biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:964059. [PMID: 36161014 PMCID: PMC9493244 DOI: 10.3389/fpls.2022.964059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Calcium (Ca2+) serves as a ubiquitous second messenger by mediating various signaling pathways and responding to numerous environmental conditions in eukaryotes. Therefore, plant cells have developed complex mechanisms of Ca2+ communication across the membrane, receiving the message from their surroundings and transducing the information into cells and organelles. A wide range of biotic and abiotic stresses cause the increase in [Ca2+]cyt as a result of the Ca2+ influx permitted by membrane-localized Ca2+ permeable cation channels such as CYCLIC NUCLEOTIDE-GATE CHANNELs (CNGCs), and voltage-dependent HYPERPOLARIZATION-ACTIVATED CALCIUM2+ PERMEABLE CHANNELs (HACCs), as well as GLUTAMATE RECEPTOR-LIKE RECEPTORs (GLRs) and TWO-PORE CHANNELs (TPCs). Recently, resistosomes formed by some NUCLEOTIDE-BINDING LEUCINE-RICH REPEAT RECEPTORs (NLRs) are also proposed as a new type of Ca2+ permeable cation channels. On the contrary, some Ca2+ transporting membrane proteins, mainly Ca2+-ATPase and Ca2+/H+ exchangers, are involved in Ca2+ efflux for removal of the excessive [Ca2+]cyt in order to maintain the Ca2+ homeostasis in cells. The Ca2+ efflux mechanisms mediate the wide ranges of cellular activities responding to external and internal stimuli. In this review, we will summarize and discuss the recent discoveries of various membrane proteins involved in Ca2+ influx and efflux which play an essential role in fine-tuning the processing of information for plant responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| | - Ryoung Shin
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
17
|
Tsai WA, Brosnan CA, Mitter N, Dietzgen RG. Perspectives on plant virus diseases in a climate change scenario of elevated temperatures. STRESS BIOLOGY 2022; 2:37. [PMID: 37676437 PMCID: PMC10442010 DOI: 10.1007/s44154-022-00058-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 09/08/2023]
Abstract
Global food production is at risk from many abiotic and biotic stresses and can be affected by multiple stresses simultaneously. Virus diseases damage cultivated plants and decrease the marketable quality of produce. Importantly, the progression of virus diseases is strongly affected by changing climate conditions. Among climate-changing variables, temperature increase is viewed as an important factor that affects virus epidemics, which may in turn require more efficient disease management. In this review, we discuss the effect of elevated temperature on virus epidemics at both macro- and micro-climatic levels. This includes the temperature effects on virus spread both within and between host plants. Furthermore, we focus on the involvement of molecular mechanisms associated with temperature effects on plant defence to viruses in both susceptible and resistant plants. Considering various mechanisms proposed in different pathosystems, we also offer a view of the possible opportunities provided by RNA -based technologies for virus control at elevated temperatures. Recently, the potential of these technologies for topical field applications has been strengthened through a combination of genetically modified (GM)-free delivery nanoplatforms. This approach represents a promising and important climate-resilient substitute to conventional strategies for managing plant virus diseases under global warming scenarios. In this context, we discuss the knowledge gaps in the research of temperature effects on plant-virus interactions and limitations of RNA-based emerging technologies, which should be addressed in future studies.
Collapse
Affiliation(s)
- Wei-An Tsai
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Christopher A Brosnan
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Neena Mitter
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Ralf G Dietzgen
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
18
|
Köster P, DeFalco TA, Zipfel C. Ca 2+ signals in plant immunity. EMBO J 2022; 41:e110741. [PMID: 35560235 PMCID: PMC9194748 DOI: 10.15252/embj.2022110741] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
Calcium ions function as a key second messenger ion in eukaryotes. Spatially and temporally defined cytoplasmic Ca2+ signals are shaped through the concerted activity of ion channels, exchangers, and pumps in response to diverse stimuli; these signals are then decoded through the activity of Ca2+ -binding sensor proteins. In plants, Ca2+ signaling is central to both pattern- and effector-triggered immunity, with the generation of characteristic cytoplasmic Ca2+ elevations in response to potential pathogens being common to both. However, despite their importance, and a long history of scientific interest, the transport proteins that shape Ca2+ signals and their integration remain poorly characterized. Here, we discuss recent work that has both shed light on and deepened the mysteries of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Philipp Köster
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| |
Collapse
|
19
|
Dynamic Expression, Differential Regulation and Functional Diversity of the CNGC Family Genes in Cotton. Int J Mol Sci 2022; 23:ijms23042041. [PMID: 35216157 PMCID: PMC8878070 DOI: 10.3390/ijms23042041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 01/16/2023] Open
Abstract
Cyclic nucleotide-gated channels (CNGCs) constitute a family of non-selective cation channels that are primarily permeable to Ca2+ and activated by the direct binding of cyclic nucleotides (i.e., cAMP and cGMP) to mediate cellular signaling, both in animals and plants. Until now, our understanding of CNGCs in cotton (Gossypium spp.) remains poorly addressed. In the present study, we have identified 40, 41, 20, 20, and 20 CNGC genes in G. hirsutum, G. barbadense, G. herbaceum, G. arboreum, and G. raimondii, respectively, and demonstrated characteristics of the phylogenetic relationships, gene structures, chromosomal localization, gene duplication, and synteny. Further investigation of CNGC genes in G. hirsutum, named GhCNGC1-40, indicated that they are not only extensively expressed in various tissues and at different developmental stages, but also display diverse expression patterns in response to hormones (abscisic acid, salicylic acid, methyl jasmonate, ethylene), abiotic (salt stress) and biotic (Verticillium dahlia infection) stimuli, which conform with a variety of cis-acting regulatory elements residing in the promoter regions; moreover, a set of GhCNGCs are responsive to cAMP signaling during cotton fiber development. Protein–protein interactions supported the functional aspects of GhCNGCs in plant growth, development, and stress responses. Accordingly, the silencing of the homoeologous gene pair GhCNGC1&18 and GhCNGC12&31 impaired plant growth and development; however, GhCNGC1&18-silenced plants enhanced Verticillium wilt resistance and salt tolerance, whereas GhCNGC12&31-silenced plants had opposite effects. Together, these results unveiled the dynamic expression, differential regulation, and functional diversity of the CNGC family genes in cotton. The present work has laid the foundation for further studies and the utilization of CNGCs in cotton genetic improvement.
Collapse
|
20
|
Sun K, Schipper D, Jacobsen E, Visser RGF, Govers F, Bouwmeester K, Bai Y. Silencing susceptibility genes in potato hinders primary infection of Phytophthora infestans at different stages. HORTICULTURE RESEARCH 2022; 9:uhab058. [PMID: 35043191 PMCID: PMC8968627 DOI: 10.1093/hr/uhab058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 11/12/2021] [Indexed: 06/01/2023]
Abstract
Most potato cultivars are susceptible to late blight disease caused by the oomycete pathogen Phytophthora infestans. A new source of resistance to prevent or diminish pathogen infection is found in the genetic loss of host susceptibility. Previously, we showed that RNAi-mediated silencing of the potato susceptibility (S) genes StDND1, StDMR1 and StDMR6 leads to increased late blight resistance. The mechanisms underlying this S-gene mediated resistance have thus far not been identified. In this study, we examined the infection process of P. infestans on StDND1-, StDMR1- and StDMR6-silenced potato lines. Microscopic analysis showed that penetration of P. infestans spores was hampered on StDND1-silenced plants. On StDMR1- and StDMR6-silenced plants, P. infestans infection was arrested at a primary infection stage by enhanced cell death responses. Histochemical staining revealed that StDMR1- and StDMR6-silenced plants display elevated ROS levels in cells at the infection sites. Resistance in StDND1-silenced plants, however, seems not to rely on a cell death response as ROS accumulation was found to be absent at most inoculated sites. Quantitative analysis of marker gene expression suggests that the increased resistance observed in StDND1- and StDMR6-silenced plants relies on an early onset of SA- and ET-mediated signalling pathways. Resistance mediated by silencing StDMR1 was found to be correlated with the early induction of SA-mediated signalling. These data provide evidence that different defense mechanisms are involved in late blight resistance mediated by functional impairment of different potato S-genes.
Collapse
Affiliation(s)
- Kaile Sun
- College of Horticulture, Henan Agricultural University, Nongye Road 63, 450002 Zhengzhou, Henan, China
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Danny Schipper
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Evert Jacobsen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
21
|
A Novel Target (Oxidation Resistant 2) in Arabidopsis thaliana to Reduce Clubroot Disease Symptoms via the Salicylic Acid Pathway without Growth Penalties. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The clubroot disease (Plasmodiophora brassicae) is one of the most damaging diseases worldwide among brassica crops. Its control often relies on resistant cultivars, since the manipulation of the disease hormones, such as salicylic acid (SA) alters plant growth negatively. Alternatively, the SA pathway can be increased by the addition of beneficial microorganisms for biocontrol. However, this potential has not been exhaustively used. In this study, a recently characterized protein Oxidation Resistant 2 (OXR2) from Arabidopsis thaliana is shown to increase the constitutive pathway of SA defense without decreasing plant growth. Plants overexpressing AtOXR2 (OXR2-OE) show strongly reduced clubroot symptoms with improved plant growth performance, in comparison to wild type plants during the course of infection. Consequently, oxr2 mutants are more susceptible to clubroot disease. P. brassicae itself was reduced in these galls as determined by quantitative real-time PCR. Furthermore, we provide evidence for the transcriptional downregulation of the gene encoding a SA-methyltransferase from the pathogen in OXR2-OE plants that could contribute to the phenotype.
Collapse
|
22
|
Chakraborty S, Toyota M, Moeder W, Chin K, Fortuna A, Champigny M, Vanneste S, Gilroy S, Beeckman T, Nambara E, Yoshioka K. CYCLIC NUCLEOTIDE-GATED ION CHANNEL 2 modulates auxin homeostasis and signaling. PLANT PHYSIOLOGY 2021; 187:1690-1703. [PMID: 34618044 PMCID: PMC8566268 DOI: 10.1093/plphys/kiab332] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/05/2021] [Indexed: 05/04/2023]
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) have been firmly established as Ca2+-conducting ion channels that regulate a wide variety of physiological responses in plants. CNGC2 has been implicated in plant immunity and Ca2+ signaling due to the autoimmune phenotypes exhibited by null mutants of CNGC2 in Arabidopsis thaliana. However, cngc2 mutants display additional phenotypes that are unique among autoimmune mutants, suggesting that CNGC2 has functions beyond defense and generates distinct Ca2+ signals in response to different triggers. In this study, we found that cngc2 mutants showed reduced gravitropism, consistent with a defect in auxin signaling. This was mirrored in the diminished auxin response detected by the auxin reporters DR5::GUS and DII-VENUS and in a strongly impaired auxin-induced Ca2+ response. Moreover, the cngc2 mutant exhibits higher levels of the endogenous auxin indole-3-acetic acid, indicating that excess auxin in the cngc2 mutant causes its pleiotropic phenotypes. These auxin signaling defects and the autoimmunity syndrome of the cngc2 mutant could be suppressed by loss-of-function mutations in the auxin biosynthesis gene YUCCA6 (YUC6), as determined by identification of the cngc2 suppressor mutant repressor of cngc2 (rdd1) as an allele of YUC6. A loss-of-function mutation in the upstream auxin biosynthesis gene TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA1, WEAK ETHYLENE INSENSITIVE8) also suppressed the cngc2 phenotypes, further supporting the tight relationship between CNGC2 and the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS-YUCCA -dependent auxin biosynthesis pathway. Taking these results together, we propose that the Ca2+ signal generated by CNGC2 is a part of the negative feedback regulation of auxin homeostasis in which CNGC2 balances cellular auxin perception by influencing auxin biosynthesis.
Collapse
Affiliation(s)
- Sonhita Chakraborty
- Department of Cell and Systems Biology, University of Toronto, Toronto, , Canada, ON M5S 3B2
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Sakura-ku, Saitama, 338-8570, Japan
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, Toronto, , Canada, ON M5S 3B2
| | - Kimberley Chin
- Department of Cell and Systems Biology, University of Toronto, Toronto, , Canada, ON M5S 3B2
| | - Alex Fortuna
- Department of Cell and Systems Biology, University of Toronto, Toronto, , Canada, ON M5S 3B2
| | | | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Faculty of Bioscience Engineering, Department Plants and Crops, Ghent University, Unit HortiCell, Coupure Links 653, 9000 Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Faculty of Bioscience Engineering, Department Plants and Crops, Ghent University, Unit HortiCell, Coupure Links 653, 9000 Ghent, Belgium
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, , Canada, ON M5S 3B2
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, Toronto, , Canada, ON M5S 3B2
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, Canada, ON M5S 3B2
| |
Collapse
|
23
|
Kemppainen M, Pardo A. Nucleus-directed fluorescent reporter system for promoter studies in the ectomycorrhizal fungus Laccaria bicolor. J Microbiol Methods 2021; 190:106341. [PMID: 34610385 DOI: 10.1016/j.mimet.2021.106341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022]
Abstract
Currently ectomycorrhizal research suffers from a lack of molecular tools specifically adapted to study gene expression in fungal symbionts. Considering that, we designed pReNuK, a cloning vector for transcriptional promoter studies in the ectomycorrhizal basidiomycete Laccaria bicolor. The pReNuK vector offers the use of a nuclear localizing and chromatin incorporating histone H2B-mCherry fluorescent reporter protein and it is specifically optimized for efficient transgene expression in Laccaria. Moreover, pReNuK is designed to work in concert with Agrobacterium-mediated transformation under hygromycin B resistance selection. The functionality of the pReNuK reporter system was tested with the constitutive Laccaria glyceraldehyde 3-phosphate dehydrogenase gene promoter and further validated with the nitrogen source regulated nitrate reductase gene promoter. The expression of the nucleus-directed H2B-mCherry reporter is highly stable in time. Moreover, the transformation of Laccaria with pReNuK and the expression of the reporter do not have negative effects on the growth of the fungus. The pReNuK offers a novel tool for studying in vivo gene expression regulation in Laccaria, the leading fungal model for ectomycorrhizal research.
Collapse
Affiliation(s)
- Minna Kemppainen
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, National University of Quilmes and CONICET, Bernal, Province of Buenos Aires, Argentina.
| | - Alejandro Pardo
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, National University of Quilmes and CONICET, Bernal, Province of Buenos Aires, Argentina
| |
Collapse
|
24
|
Yuan M, Ngou BPM, Ding P, Xin XF. PTI-ETI crosstalk: an integrative view of plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102030. [PMID: 33684883 DOI: 10.1016/j.pbi.2021.102030] [Citation(s) in RCA: 359] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 02/08/2021] [Indexed: 05/02/2023]
Abstract
Plants resist attacks by pathogens via innate immune responses, which are initiated by cell surface-localized pattern-recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat containing receptors (NLRs) leading to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. Although the two classes of immune receptors involve different activation mechanisms and appear to require different early signalling components, PTI and ETI eventually converge into many similar downstream responses, albeit with distinct amplitudes and dynamics. Increasing evidence suggests the existence of intricate interactions between PRR-mediated and NLR-mediated signalling cascades as well as common signalling components shared by both. Future investigation of the mechanisms underlying signal collaboration between PRR-initiated and NLR-initiated immunity will enable a more complete understanding of the plant immune system. This review discusses recent advances in our understanding of the relationship between the two layers of plant innate immunity.
Collapse
Affiliation(s)
- Minhang Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands.
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
25
|
Zhao C, Tang Y, Wang J, Zeng Y, Sun H, Zheng Z, Su R, Schneeberger K, Parker JE, Cui H. A mis-regulated cyclic nucleotide-gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:1078-1094. [PMID: 33469907 DOI: 10.1111/nph.17218] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Calcium (Ca2+ ) is a second messenger for plant cell surface and intracellular receptors mediating pattern-triggered and effector-triggered immunity (respectively, PTI and ETI). Several CYCLIC NUCLEOTIDE-GATED CHANNELS (CNGCs) were shown to control transient cytosolic Ca2+ influx upon PTI activation. The contributions of specific CNGC members to PTI and ETI remain unclear. ENHANCED DISEASE SUSCEPTIBLITY1 (EDS1) regulates ETI signaling. In an Arabidopsis genetic screen for suppressors of eds1, we identify a recessive gain-of-function mutation in CNGC20, denoted cngc20-4, which partially restores disease resistance in eds1. cngc20-4 enhances PTI responses and ETI hypersensitive cell death. A cngc20-4 single mutant exhibits autoimmunity, which is dependent on genetically parallel EDS1 and salicylic acid (SA) pathways. CNGC20 self-associates, forms heteromeric complexes with CNGC19, and is phosphorylated and stabilized by BOTRYTIS INDUCED KINASE1 (BIK1). The cngc20-4 L371F exchange on a predicted transmembrane channel inward surface does not disrupt these interactions but leads to increased cytosolic Ca2+ accumulation, consistent with mis-regulation of CNGC20 Ca2+ -permeable channel activity. Our data show that ectopic Ca2+ influx caused by a mutant form of CNGC20 in cngc20-4 affects both PTI and ETI responses. We conclude that tight control of the CNGC20 Ca2+ ion channel is important for regulated immunity.
Collapse
Affiliation(s)
- Chunhui Zhao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yinhua Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junli Wang
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, 50829, Germany
| | - Yanhong Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hequan Sun
- Department of Chromosome Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, 50829, Germany
| | - Zichao Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rong Su
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, 50829, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, 50829, Germany
- Cologne-Duesseldorf Cluster of Excellence on Plant Sciences (CEPLAS), Duesseldorf, 40225, Germany
| | - Haitao Cui
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
26
|
Sun L, Zhang J. Regulatory role of receptor-like cytoplasmic kinases in early immune signaling events in plants. FEMS Microbiol Rev 2021; 44:845-856. [PMID: 32717059 DOI: 10.1093/femsre/fuaa035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022] Open
Abstract
Receptor-like cytoplasmic kinases (RLCKs) play crucial roles in regulating plant development and immunity. Conserved pathogen-associated molecular patterns (PAMPs) derived from microbes are recognized by plant pattern recognition receptors to activate PAMP-triggered immunity (PTI). Microbial effectors, whose initial function is to promote virulence, are recognized by plant intracellular nucleotide-binding domain and leucine-rich repeat receptors (NLRs) to initiate effector-triggered immunity (ETI). Both PTI and ETI trigger early immune signaling events including the production of reactive oxygen species, induction of calcium influx and activation of mitogen-activated protein kinases. Research progress has revealed the important roles of RLCKs in the regulation of early PTI signaling. Accordingly, RLCKs are often targeted by microbial effectors that are evolved to evade PTI via diverse modulations. In some cases, modulation of RLCKs by microbial effectors triggers the activation of NLRs. This review covers the mechanisms by which RLCKs engage diverse substrates to regulate early PTI signaling and the regulatory roles of RLCKs in triggering NLR activation. Accumulating evidence suggests evolutionary links and close connections between PAMP- and effector-triggered early immune signaling that are mediated by RLCKs. As key immune regulators, RLCKs can be considered targets with broad prospects for the improvement of plant resistance via genetic engineering.
Collapse
Affiliation(s)
- Lifan Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| |
Collapse
|
27
|
Wang J, Ren Y, Liu X, Luo S, Zhang X, Liu X, Lin Q, Zhu S, Wan H, Yang Y, Zhang Y, Lei B, Zhou C, Pan T, Wang Y, Wu M, Jing R, Xu Y, Han M, Wu F, Lei C, Guo X, Cheng Z, Zheng X, Wang Y, Zhao Z, Jiang L, Zhang X, Wang YF, Wang H, Wan J. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice. MOLECULAR PLANT 2021; 14:315-329. [PMID: 33278597 DOI: 10.1016/j.molp.2020.11.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/23/2020] [Accepted: 11/25/2020] [Indexed: 05/08/2023]
Abstract
Low temperature is a major environmental factor that limits plant growth and productivity. Although transient elevation of cytoplasmic calcium has long been recognized as a critical signal for plant cold tolerance, the calcium channels responsible for this process have remained largely elusive. Here we report that OsCNGC9, a cyclic nucleotide-gated channel, positively regulates chilling tolerance by mediating cytoplasmic calcium elevation in rice (Oryza sativa). We showed that the loss-of-function mutant of OsCNGC9 is defective in cold-induced calcium influx and more sensitive to prolonged cold treatment, whereas OsCNGC9 overexpression confers enhanced cold tolerance. Mechanistically, we demonstrated that in response to chilling stress, OsSAPK8, a homolog of Arabidopsis thaliana OST1, phosphorylates and activates OsCNGC9 to trigger Ca2+ influx. Moreover, we found that the transcription of OsCNGC9 is activated by a rice dehydration-responsive element-binding transcription factor, OsDREB1A. Taken together, our results suggest that OsCNGC9 enhances chilling tolerance in rice through regulating cold-induced calcium influx and cytoplasmic calcium elevation.
Collapse
Affiliation(s)
- Jiachang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xi Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiao Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hua Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunlei Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Pan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongfei Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruonan Jing
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yihua Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
28
|
Jarratt-Barnham E, Wang L, Ning Y, Davies JM. The Complex Story of Plant Cyclic Nucleotide-Gated Channels. Int J Mol Sci 2021; 22:ijms22020874. [PMID: 33467208 PMCID: PMC7830781 DOI: 10.3390/ijms22020874] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Plant cyclic nucleotide-gated channels (CNGCs) are tetrameric cation channels which may be activated by the cyclic nucleotides (cNMPs) adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP). The genome of Arabidopsis thaliana encodes 20 CNGC subunits associated with aspects of development, stress response and immunity. Recently, it has been demonstrated that CNGC subunits form heterotetrameric complexes which behave differently from the homotetramers produced by their constituent subunits. These findings have widespread implications for future signalling research and may help explain how specificity can be achieved by CNGCs that are known to act in disparate pathways. Regulation of complex formation may involve cyclic nucleotide-gated channel-like proteins.
Collapse
|
29
|
Yakura H. Cognitive and Memory Functions in Plant Immunity. Vaccines (Basel) 2020; 8:vaccines8030541. [PMID: 32957664 PMCID: PMC7563390 DOI: 10.3390/vaccines8030541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
From the time of Thucydides in the 5th century BC, it has been known that specific recognition of pathogens and memory formation are critical components of immune functions. In contrast to the immune system of jawed vertebrates, such as humans and mice, plants lack a circulatory system with mobile immune cells and a repertoire of clonally distributed antigen receptors with almost unlimited specificities. However, without these systems and mechanisms, plants can live and survive in the same hostile environment faced by other organisms. In fact, they achieve specific pathogen recognition and elimination, with limited self-reactivity, and generate immunological memory, sometimes with transgenerational characteristics. Thus, the plant immune system satisfies minimal conditions for constituting an immune system, namely, the recognition of signals in the milieu, integration of that information, subsequent efficient reaction based on the integrated information, and memorization of the experience. In the previous report, this set of elements was proposed as an example of minimal cognitive functions. In this essay, I will first review current understanding of plant immunity and then discuss the unique features of cognitive activities, including recognition of signals from external as well as internal environments, autoimmunity, and memory formation. In doing so, I hope to reach a deeper understanding of the significance of immunity omnipresent in the realm of living organisms.
Collapse
Affiliation(s)
- Hidetaka Yakura
- Institute for Science and Human Existence, Tokyo 163-8001, Japan
| |
Collapse
|
30
|
Dietrich P, Moeder W, Yoshioka K. Plant Cyclic Nucleotide-Gated Channels: New Insights on Their Functions and Regulation. PLANT PHYSIOLOGY 2020; 184:27-38. [PMID: 32576644 PMCID: PMC7479878 DOI: 10.1104/pp.20.00425] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/17/2020] [Indexed: 05/02/2023]
Abstract
Recent advances of plant cyclic nucleotide-gated channels give new insight into their molecular functions focusing on regulation, subunit assembly, and phosphorylation.
Collapse
Affiliation(s)
- Petra Dietrich
- Molecular Plant Physiology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
31
|
Tian W, Wang C, Gao Q, Li L, Luan S. Calcium spikes, waves and oscillations in plant development and biotic interactions. NATURE PLANTS 2020; 6:750-759. [PMID: 32601423 DOI: 10.1038/s41477-020-0667-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/15/2020] [Indexed: 05/08/2023]
Abstract
The calcium ion (Ca2+) is a universal signal in all eukaryotic cells. A fundamental question is how Ca2+, a simple cation, encodes complex information with high specificity. Extensive research has established a two-step process (encoding and decoding) that governs the specificity of Ca2+ signals. While the encoding mechanism entails a complex array of channels and transporters, the decoding process features a number of Ca2+ sensors and effectors that convert Ca2+ signals into cellular effects. Along this general paradigm, some signalling components may be highly conserved, but others are divergent among different organisms. In plant cells, Ca2+ participates in numerous signalling processes, and here we focus on the latest discoveries on Ca2+-encoding mechanisms in development and biotic interactions. In particular, we use examples such as polarized cell growth of pollen tube and root hair in which tip-focused Ca2+ oscillations specify the signalling events for rapid cell elongation. In plant-microbe interactions, Ca2+ spiking and oscillations hold the key to signalling specificity: while pathogens elicit cytoplasmic spiking, symbiotic microorganisms trigger nuclear Ca2+ oscillations. Herbivore attacks or mechanical wounding can trigger Ca2+ waves traveling a long distance to transmit and convert the local signal to a systemic defence program in the whole plant. What channels and transporters work together to carve out the spatial and temporal patterns of the Ca2+ fluctuations? This question has remained enigmatic for decades until recent studies uncovered Ca2+ channels that orchestrate specific Ca2+ signatures in each of these processes. Future work will further expand the toolkit for Ca2+-encoding mechanisms and place Ca2+ signalling steps into larger signalling networks.
Collapse
Affiliation(s)
- Wang Tian
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- School of Life Sciences, Northwest University, Xi'an, China
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Qifei Gao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- School of Life Sciences, Northwest University, Xi'an, China
| | - Legong Li
- School of Life Sciences, Capital Normal University, Beijing, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
32
|
Fujikura U, Ezaki K, Horiguchi G, Seo M, Kanno Y, Kamiya Y, Lenhard M, Tsukaya H. Suppression of class I compensated cell enlargement by xs2 mutation is mediated by salicylic acid signaling. PLoS Genet 2020; 16:e1008873. [PMID: 32584819 PMCID: PMC7343186 DOI: 10.1371/journal.pgen.1008873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/08/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
The regulation of leaf size has been studied for decades. Enhancement of post-mitotic cell expansion triggered by impaired cell proliferation in Arabidopsis is an important process for leaf size regulation, and is known as compensation. This suggests a key interaction between cell proliferation and cell expansion during leaf development. Several studies have highlighted the impact of this integration mechanism on leaf size determination; however, the molecular basis of compensation remains largely unknown. Previously, we identified extra-small sisters (xs) mutants which can suppress compensated cell enlargement (CCE) via a specific defect in cell expansion within the compensation-exhibiting mutant, angustifolia3 (an3). Here we revealed that one of the xs mutants, namely xs2, can suppress CCE not only in an3 but also in other compensation-exhibiting mutants erecta (er) and fugu2. Molecular cloning of XS2 identified a deleterious mutation in CATION CALCIUM EXCHANGER 4 (CCX4). Phytohormone measurement and expression analysis revealed that xs2 shows hyper activation of the salicylic acid (SA) response pathway, where activation of SA response can suppress CCE in compensation mutants. All together, these results highlight the regulatory connection which coordinates compensation and SA response. Leaves are determinate organ and size of leaves are determined by intrinsic and extrinsic cues. Cell proliferation and post-mitotic cell expansion should be coordinated during leaf morphogenesis to develop appropriate size depending on its developmental programs. Recent studies highlighted the existence of integrated mechanism which coordinates cell proliferation and cell expansion during leaf development. Compensation, which is enhanced post-mitotic cell expansion accompanied by a significant decrease in cell number during leaf organogenesis, is one of the clues for such coordination. However, the molecular mechanisms linking cell proliferation and cell expansion are still poorly understood. Previously, we reported extra-small sisters 2 (xs2) mutation caused specific defect in cell expansion and it suppressed increased post-mitotic cell enlargement in angustifolia3 (an3) mutant, which exhibits typical compensation. Here we identify the affected gene of xs2 mutant encodes a member of cation calcium exchanger which is believed to be involved in cation homeostasis within cells. Loss of function of this protein causes hyper accumulation of salicylic acid (SA) and increased expression of pathogen related genes. Physiological and genetic studies revealed activated SA signal transduction reduced cell size. It suppressed post-mitotic cell expansion in several compensation mutants not only an3 but partially suppressed in another type of compensation mutant which increases size of mitotic cells. This finding suggests post-mitotic cell expansion pathway is regulated in common by SA-dependent signaling and by compensation signaling during leaf development.
Collapse
Affiliation(s)
- Ushio Fujikura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
- * E-mail:
| | - Kazune Ezaki
- Graduate School of Science, The University of Tokyo, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, Japan
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam-Golm, Germany
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Japan
- Okazaki Institute for Integrative Bioscience, Japan
| |
Collapse
|
33
|
Abstract
Pathogen recognition by the plant immune system leads to defense responses that are often accompanied by a form of regulated cell death known as the hypersensitive response (HR). HR shares some features with regulated necrosis observed in animals. Genetically, HR can be uncoupled from local defense responses at the site of infection and its role in immunity may be to activate systemic responses in distal parts of the organism. Recent advances in the field reveal conserved cell death-specific signaling modules that are assembled by immune receptors in response to pathogen-derived effectors. The structural elucidation of the plant resistosome-an inflammasome-like structure that may attach to the plasma membrane on activation-opens the possibility that HR cell death is mediated by the formation of pores at the plasma membrane. Necrotrophic pathogens that feed on dead tissue have evolved strategies to trigger the HR cell death pathway as a survival strategy. Ectopic activation of immunomodulators during autoimmune reactions can also promote HR cell death. In this perspective, we discuss the role and regulation of HR in these different contexts.
Collapse
Affiliation(s)
- Eugenia Pitsili
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Barcelona, Spain
| | - Ujjal J Phukan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Barcelona, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
34
|
Wang D, Wang B, Wang J, Wang S, Wang W, Niu Y. Exogenous Application of Harpin Protein Hpa1 onto Pinellia ternata Induces Systemic Resistance Against Tobacco Mosaic Virus. PHYTOPATHOLOGY 2020; 110:1189-1198. [PMID: 32141384 DOI: 10.1094/phyto-12-19-0463-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The harpin protein Hpa1 has various beneficial effects in plants, such as promoting plant growth and inducing pathogen resistance. Our previous study found that Hpa1 could significantly alleviate the mosaic symptoms of tobacco mosaic virus (TMV) in Pinellia ternata, indicating that Hpa1 can effectively stimulate resistance. Here, the potential mechanism of disease resistance and field applicability of Hpa1 against TMV in P. ternata were further investigated. The results showed that 15 µg ml-1 Hpa1 had stronger antiviral activity than the control, and its protective effect was better than its curative effect. Furthermore, Hpa1 could significantly induce an increase in defense-related enzyme activity, including polyphenol oxidase, peroxidase, catalase, and superoxide dismutase, as well as increase the expression of disease resistance-related genes (PR1, PR3, PR5, and PDF1.2). Concurrently, Hpa1 significantly increased the content of some disease resistance-related substances, including hydrogen peroxide, phenolics, and callose, whereas the content of malondialdehyde was reduced. In addition, field application analysis demonstrated that Hpa1 could effectively elicit a defense response against TMV in P. ternata. Our findings propose a mechanism by which Hpa1 can prevent TMV infection in Pinellia by inducing systemic resistance, thereby providing an environmentally friendly approach for the use of Hpa1 in large-scale applications to improve TMV resistance in Pinellia.
Collapse
Affiliation(s)
- Defu Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Baoxia Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jiangran Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Shuting Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Weiyu Wang
- Rongcheng Plant Protection Station, Rongcheng 264300, Shandong, China
| | - Yanbing Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| |
Collapse
|
35
|
Noman A, Aqeel M, Qari SH, Al Surhanee AA, Yasin G, Alamri S, Hashem M, M Al-Saadi A. Plant hypersensitive response vs pathogen ingression: Death of few gives life to others. Microb Pathog 2020; 145:104224. [PMID: 32360524 DOI: 10.1016/j.micpath.2020.104224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
The hypersensitive response (HR) is a defense action against pathogen ingression. Typically, HR is predictable with the appearance of the dead, brown cells along with visible lesions. Although death during HR can be limited to the cells in direct contact with pathogens, yet cell death can also spread away from the infection site. The variety in morphologies of plant cell death proposes involvement of different pathways for triggering HR. It is considered that, despite the differences, HR in plants performs the resembling functions like that of animal programmed cell death (PCD) for confining pathogen progression. HR, in fact, crucially initiates systemic signals for activation of defense in distal plant parts that ultimately results in systemic acquired resistance (SAR). Therefore, HR can be separated from other local immune actions/responses at the infection site. HR comprises of serial events inclusive of transcriptional reprograming, Ca2+ influx, oxidative bursts and phyto-hormonal signaling. Although a lot of work has been done on HR in plants but many questions regarding mechanisms and consequences of HRs remain unaddressed.We have summarized the mechanistic roles and cellular events of plant cells during HR in defense regulation. Roles of different genes during HR have been discussed to clarify genetic control of HR in plants. Generally existing ambiguities about HR and programmed cell death at the reader level has been addressed.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan.
| | - Muhammad Aqeel
- School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Sameer Hasan Qari
- Biology Department, Al-jumum University College, Umm Al Qura University, Makkah, Saudi Arabia
| | - Ameena A Al Surhanee
- Biology Department, College of Science, Jouf University, Sakaka, 2014, Saudi Arabia
| | - Ghulam Yasin
- Institute of Pure and Applied Biology, Bahau ud din Zakria University, Multan, Pakistan
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research center for advance materials science (RCAMS), King Khalid University, PO Box 9004 Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Assuit University, Botany and Microbiology department, Assuit. 71516, Egypt
| | | |
Collapse
|
36
|
Liu X, Cai WJ, Yin X, Yang D, Dong T, Feng YQ, Wu Y. Two SLENDER AND CRINKLY LEAF dioxygenases play an essential role in rice shoot development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1387-1401. [PMID: 31701152 PMCID: PMC7031069 DOI: 10.1093/jxb/erz501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
It is clear that 2-oxoglutarate-dependent dioxygenases have critical functions in salicylic acid (SA) metabolism in plants, yet their role in SA biosynthesis is poorly understood. Here, we report that two dioxygenase-encoding genes, SLENDER AND CRINKLY LEAF1 (SLC1) and SLC2, play essential roles in shoot development and SA production in rice. Overexpression of SLC1 (SLC1-OE) or SLC2 (SLC2-OE) in rice produced infertile plants with slender and crinkly leaves. Disruption of SLC1 or SLC2 led to dwarf plants, while simultaneous down-regulation of SLC1 and SLC2 resulted in a severe defect in early leaf development. Enhanced SA levels in SLC1-OE plants and decreased SA levels in slc1 and slc2 mutants were observed. Accordingly, these lines all showed altered expression of a set of SA-related genes. We demonstrated that SLC1 interacts with homeobox1 (OSH1), and that either the knotted1-like homeobox (KNOX1) or glutamate, leucine, and lysine (ELK) domain of OSH1 is sufficient for accomplishing this interaction. Collectively, our data reveal the importance of SLC1 and SLC2 in rice shoot development.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen-Jing Cai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Di Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tian Dong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Zhou H, Bai S, Wang N, Sun X, Zhang Y, Zhu J, Dong C. CRISPR/Cas9-Mediated Mutagenesis of MdCNGC2 in Apple Callus and VIGS-Mediated Silencing of MdCNGC2 in Fruits Improve Resistance to Botryosphaeria dothidea. FRONTIERS IN PLANT SCIENCE 2020; 11:575477. [PMID: 33240293 PMCID: PMC7680757 DOI: 10.3389/fpls.2020.575477] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/05/2020] [Indexed: 05/12/2023]
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) have been reported to be involved in multiple plant physiological processes. Their involvement in plant immunity has been studied in several herbal plant species. It remains unclear whether CNGCs in woody plants play a similar role in plant immunity. In the present study, we identified an apple CNGC (designated as MdCNGC2), which is the homolog of Arabidopsis CNGC2. Analysis of tissue distribution revealed that MdCNGC2 was expressed in all tested tissues. Abundant transcripts of MdCNGC2 were observed in leaves and shoot bark. Low expression was observed in fruits and roots. MdCNGC2 expression was induced in apple callus and shoot bark by Botryosphaeria dothidea. The induction of MdCNGC2 was significantly higher in susceptible cultivars "Fuji," "Ralls Janet," and "Gala" compared to the resistant cultivar "Jiguan," suggesting that MdCNGC2 may be a negative regulator of resistance to B. dothidea. MdCNGC2 mutagenesis mediated by gene editing based on the CRISPR/Cas9 system led to constitutive accumulation of SA in apple callus. A culture filtrate of B. dothidea (BCF) induced the expression of several defense-related genes including MdPR1, MdPR2, MdPR4, MdPR5, MdPR8, and MdPR10a. Moreover, the induction of these genes was significantly higher in mdcngc2 mutant (MUT) callus than in wild type (WT) callus. Further analysis showed that the spread of B. dothidea was significantly lower on MUT callus than on WT callus. Knockdown of the MdCNGC2 gene reduced lesions caused by B. dothidea in apple fruits. These results collectively indicate that MdCNGC2 is a negative regulator of resistance to B. dothidea in apple callus.
Collapse
Affiliation(s)
- Huijuan Zhou
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao, China
| | - Suhua Bai
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao, China
| | - Nan Wang
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao, China
| | - Xiaohong Sun
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
| | - Yugang Zhang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jun Zhu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chaohua Dong
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao, China
- *Correspondence: Chaohua Dong, ;
| |
Collapse
|
38
|
Lee M, Jeon HS, Kim SH, Chung JH, Roppolo D, Lee H, Cho HJ, Tobimatsu Y, Ralph J, Park OK. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO J 2019; 38:e101948. [PMID: 31559647 PMCID: PMC6885736 DOI: 10.15252/embj.2019101948] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/10/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Pathogenic bacteria invade plant tissues and proliferate in the extracellular space. Plants have evolved the immune system to recognize and limit the growth of pathogens. Despite substantial progress in the study of plant immunity, the mechanism by which plants limit pathogen growth remains unclear. Here, we show that lignin accumulates in Arabidopsis leaves in response to incompatible interactions with bacterial pathogens in a manner dependent on Casparian strip membrane domain protein (CASP)-like proteins (CASPLs). CASPs are known to be the organizers of the lignin-based Casparian strip, which functions as a diffusion barrier in roots. The spread of invading avirulent pathogens is prevented by spatial restriction, which is disturbed by defects in lignin deposition. Moreover, the motility of pathogenic bacteria is negatively affected by lignin accumulation. These results suggest that the lignin-deposited structure functions as a physical barrier similar to the Casparian strip, trapping pathogens and thereby terminating their growth.
Collapse
Affiliation(s)
| | | | - Seu Ha Kim
- Department of Life SciencesKorea UniversitySeoulKorea
| | | | - Daniele Roppolo
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
European Society for Clinical Microbiology and Infectious DiseaseBaselSwitzerland
| | - Hye‐Jung Lee
- Department of Life SciencesKorea UniversitySeoulKorea
| | - Hong Joo Cho
- Department of Life SciencesKorea UniversitySeoulKorea
- Present address:
Cutigen Research InstituteTegoscience Inc.SeoulKorea
| | - Yuki Tobimatsu
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiKyotoJapan
| | - John Ralph
- Department of Biochemistry, and US Department of Energy's Great Lakes Bioenergy Research CenterThe Wisconsin Energy InstituteUniversity of WisconsinMadisonWIUSA
| | - Ohkmae K Park
- Department of Life SciencesKorea UniversitySeoulKorea
| |
Collapse
|
39
|
Duszyn M, Świeżawska B, Szmidt-Jaworska A, Jaworski K. Cyclic nucleotide gated channels (CNGCs) in plant signalling-Current knowledge and perspectives. JOURNAL OF PLANT PHYSIOLOGY 2019; 241:153035. [PMID: 31491601 DOI: 10.1016/j.jplph.2019.153035] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 05/22/2023]
Abstract
Cell signaling is an evolutionarily conserved mechanism that responds and adapts to various internal and external factors. Generally, a signal is mediated by various signaling molecules and is transferred to a cascade of effector proteins. To date, there is significant evidence that cyclic nucleotides (cNMPs), e.g., adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP), may represent important elements of many signaling pathways in plants. However, in contrast to the impressive progress made in understanding cyclic nucleotide signaling in mammalian hosts, only few studies have investigated this topic in plants. Existing evidence indicates that cNMPs participate in growth and developmental processes, as well as the response to various stresses. Once synthesized by adenylyl or guanylyl cyclases, these signals are transduced by acting through a number of cellular effectors. The regulatory effects of cNMPs in eukaryotes can be mediated via various downstream effector proteins, such as protein kinases, Exchange Protein directly Activated by cAMP (EPAC), and Cyclic Nucleotide-Gated ion Channels (CNGC). These proteins sense changes in intracellular cNMP levels and regulate numerous cellular responses. Moreover, the amplitude of cNMP levels and the duration of its signal in the cell is also governed by phosphodiesterases (PDEs), enzymes that are responsible for the breakdown of cNMPs. Data collected in recent years strongly suggest that cyclic nucleotide gated channels are the main cNMP effectors in plant cells. These channels are important cellular switches that transduce changes in intracellular concentrations of cyclic nucleotides into changes in membrane potential and ion concentrations. Structurally, these channels belong to the superfamily of pore-loop cation channels. In this review, we provide an overview of the molecular properties of CNGC structure, regulation and ion selectivity, and subcellular localization, as well as describing the signal transduction pathways in which these channels are involved. We will also summarize recent insights into the role of CNGC proteins in plant growth, development and response to stressors.
Collapse
Affiliation(s)
- Maria Duszyn
- Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Brygida Świeżawska
- Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Adriana Szmidt-Jaworska
- Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Krzysztof Jaworski
- Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| |
Collapse
|
40
|
Nakano M, Mukaihara T. The type III effector RipB from Ralstonia solanacearum RS1000 acts as a major avirulence factor in Nicotiana benthamiana and other Nicotiana species. MOLECULAR PLANT PATHOLOGY 2019; 20:1237-1251. [PMID: 31218811 PMCID: PMC6715614 DOI: 10.1111/mpp.12824] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ralstonia solanacearum is the causal agent of bacterial wilt in solanaceous crops. This pathogen injects approximately 70 effector proteins into plant cells via the Hrp type III secretion system in an early stage of infection. To identify an as-yet-unidentified avirulence factor possessed by the Japanese tobacco-avirulent strain RS1000, we transiently expressed RS1000 effectors in Nicotiana benthamiana leaves and monitored their ability to induce effector-triggered immunity (ETI). The expression of RipB strongly induced the production of reactive oxygen species and the expressions of defence-related genes in N. benthamiana. The ripB mutant of RS1002, a nalixidic acid-resistant derivative of RS1000, caused wilting symptoms in N. benthamiana. A pathogenicity test using R. solanacearum mutants revealed that the two already known avirulence factors RipP1 and RipAA contribute in part to the avirulence of RS1002 in N. benthamiana. The Japanese tobacco-virulent strain BK1002 contains mutations in ripB and expresses a C-terminal-truncated RipB that lost the ability to induce ETI in N. benthamiana, indicating a fine-tuning of the pathogen effector repertoire to evade plant recognition. RipB shares homology with Xanthomonas XopQ, which is recognized by the resistance protein Roq1. The RipB-induced resistance against R. solanacearum was abolished in Roq1-silenced plants. These findings indicate that RipB acts as a major avirulence factor in N. benthamiana and that Roq1 is involved in the recognition of RipB.
Collapse
Affiliation(s)
- Masahito Nakano
- Research Institute for Biological Sciences, Okayama (RIBS)Yoshikawa, Kibichuo‐choOkayama716‐1241Japan
| | - Takafumi Mukaihara
- Research Institute for Biological Sciences, Okayama (RIBS)Yoshikawa, Kibichuo‐choOkayama716‐1241Japan
| |
Collapse
|
41
|
A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res 2019; 29:820-831. [PMID: 31444468 DOI: 10.1038/s41422-019-0219-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/01/2019] [Indexed: 01/17/2023] Open
Abstract
The transient elevation of cytoplasmic calcium is essential for pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). However, the calcium channels responsible for this process have remained unknown. Here, we show that rice CDS1 (CELL DEATH and SUSCEPTIBLE to BLAST 1) encoding OsCNGC9, a cyclic nucleotide-gated channel protein, positively regulates the resistance to rice blast disease. We show that OsCNGC9 mediates PAMP-induced Ca2+ influx and that this event is critical for PAMPs-triggered ROS burst and induction of PTI-related defense gene expression. We further show that a PTI-related receptor-like cytoplasmic kinase OsRLCK185 physically interacts with and phosphorylates OsCNGC9 to activate its channel activity. Our results suggest a signaling cascade linking pattern recognition to calcium channel activation, which is required for initiation of PTI and disease resistance in rice.
Collapse
|
42
|
Tian W, Hou C, Ren Z, Wang C, Zhao F, Dahlbeck D, Hu S, Zhang L, Niu Q, Li L, Staskawicz BJ, Luan S. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 2019; 572:131-135. [PMID: 31316205 DOI: 10.1038/s41586-019-1413-y] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/25/2019] [Indexed: 11/09/2022]
Abstract
Pathogen-associated molecular patterns (PAMPs) activate innate immunity in both animals and plants. Although calcium has long been recognized as an essential signal for PAMP-triggered immunity in plants, the mechanism of PAMP-induced calcium signalling remains unknown1,2. Here we report that calcium nutrient status is critical for calcium-dependent PAMP-triggered immunity in plants. When calcium supply is sufficient, two genes that encode cyclic nucleotide-gated channel (CNGC) proteins, CNGC2 and CNGC4, are essential for PAMP-induced calcium signalling in Arabidopsis3-7. In a reconstitution system, we find that the CNGC2 and CNGC4 proteins together-but neither alone-assemble into a functional calcium channel that is blocked by calmodulin in the resting state. Upon pathogen attack, the channel is phosphorylated and activated by the effector kinase BOTRYTIS-INDUCED KINASE1 (BIK1) of the pattern-recognition receptor complex, and this triggers an increase in the concentration of cytosolic calcium8-10. The CNGC-mediated calcium entry thus provides a critical link between the pattern-recognition receptor complex and calcium-dependent immunity programs in the PAMP-triggered immunity signalling pathway in plants.
Collapse
Affiliation(s)
- Wang Tian
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Congcong Hou
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Zhijie Ren
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Fugeng Zhao
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Douglas Dahlbeck
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Songping Hu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Liying Zhang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Qi Niu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
43
|
DNA Methylation Analysis of the Citrullus lanatus Response to Cucumber Green Mottle Mosaic Virus Infection by Whole-Genome Bisulfite Sequencing. Genes (Basel) 2019; 10:genes10050344. [PMID: 31067797 PMCID: PMC6562589 DOI: 10.3390/genes10050344] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 01/11/2023] Open
Abstract
DNA methylation is an important epigenetic mark associated with plant immunity, butlittle is known about its roles in viral infection of watermelon. We carried out whole-genomebisulfite sequencing of watermelon leaves at 0 h (ck), 48 h, and 25 days post-inoculation withCucumber green mottle mosaic virus (CGMMV). The number of differentially methylated regions(DMRs) increased during CGMMV infection and 2788 DMR-associated genes (DMGs) werescreened out among three libraries. Most DMRs and DMGs were obtained under the CHH context.These DMGs were significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG)pathways of secondary biosynthesis and metabolism, plant-pathogen interactions, Toll-likereceptor signaling, and ABC transporters. Additionally, DMGs encoding PR1a, CaMs, calciumbindingprotein, RIN4, BAK1, WRKYs, RBOHs, STKs, and RLPs/RLKs were involved in thewatermelon-CGMMV interaction and signaling. The association between DNA methylation andgene expression was analyzed by RNA-seq and no clear relationship was detected. Moreover,downregulation of genes in the RdDM pathway suggested the reduced RdDM-directed CHHmethylation plays an important role in antiviral defense in watermelon. Our findings providegenome-wide DNA methylation profiles of watermelon and will aid in revealing the molecularmechanism in response to CGMMV infection at the methylation level.
Collapse
|
44
|
Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, Yang Y, Ding P, Jones JDG. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. THE NEW PHYTOLOGIST 2019; 222:966-980. [PMID: 30582759 DOI: 10.1111/nph.15659] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/13/2018] [Indexed: 05/09/2023]
Abstract
Most land plant genomes carry genes that encode RPW8-NLR Resistance (R) proteins. Angiosperms carry two RPW8-NLR subclasses: ADR1 and NRG1. ADR1s act as 'helper' NLRs for multiple TIR- and CC-NLR R proteins in Arabidopsis. In angiosperm families, NRG1 co-occurs with TIR-NLR Resistance (R) genes. We tested whether NRG1 is required for signalling of multiple TIR-NLRs. Using CRISPR mutagenesis, we obtained an nrg1a-nrg1b double mutant in two Arabidopsis accessions, and an nrg1 mutant in Nicotiana benthamiana. These mutants are compromised in signalling of all TIR-NLRs tested, including WRR4A, WRR4B, RPP1, RPP2, RPP4 and the pairs RRS1/RPS4, RRS1B/RPS4B, CHS1/SOC3 and CHS3/CSA1. In Arabidopsis, NRG1 is required for the hypersensitive cell death response (HR) and full oomycete resistance, but not for salicylic acid induction or bacterial resistance. By contrast, nrg1 loss of function does not compromise the CC-NLR R proteins RPS5 and MLA. RPM1 and RPS2 (CC-NLRs) function is slightly compromised in an nrg1 mutant. Thus, NRG1 is required for full TIR-NLR function and contributes to the signalling of some CC-NLRs. Some NRG1-dependent R proteins also signal partially via the NRG1 sister clade, ADR1. We propose that some NLRs signal via NRG1 only, some via ADR1 only and some via both or neither.
Collapse
Affiliation(s)
- Baptiste Castel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Pok-Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Volkan Cevik
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Amey Redkar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- Department of Genetics, University of Córdoba, Córdoba, 14071, Spain
| | - Dae-Sung Kim
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Yang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- Center for Plant Science Innovation, Beadle Center, University of Lincoln-Nebraska, Lincoln, NE, 68588, USA
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
45
|
Moeder W, Phan V, Yoshioka K. Ca 2+ to the rescue - Ca 2+channels and signaling in plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:19-26. [PMID: 30709488 DOI: 10.1016/j.plantsci.2018.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 05/03/2023]
Abstract
Ca2+ is a universal second messenger in many signaling pathways in all eukaryotes including plants. Transient changes in [Ca2+]cyt are rapidly generated upon a diverse range of stimuli such as drought, heat, wounding, and biotic stresses (infection by pathogenic and symbiotic microorganisms), as well as developmental cues. It has been known for a while that [Ca2+]cyt transient signals play crucial roles to activate plant immunity and recently significant progresses have been made in this research field. However the identity and regulation of ion channels that are involved in defense related Ca2+ signals are still enigmatic. Members of two ligand gated ion channel families, glutamate receptor-like channels (GLRs) and cyclic nucleotide-gated channels (CNGCs) have been implicated in immune responses; nevertheless more precise data to understand their direct involvement in the creation of Ca2+ signals during immune responses is necessary. Furthermore, the study of other ion channel groups is also required to understand the whole picture of the intra- and inter-cellular Ca2+ signalling network. In this review we summarize Ca2+ signals in plant immunity from an ion channel point of view and discuss future challenges in this exciting research field.
Collapse
Affiliation(s)
- Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Van Phan
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada; Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|
46
|
Saur IML, Bauer S, Lu X, Schulze-Lefert P. A cell death assay in barley and wheat protoplasts for identification and validation of matching pathogen AVR effector and plant NLR immune receptors. PLANT METHODS 2019; 15:118. [PMID: 31666804 PMCID: PMC6813131 DOI: 10.1186/s13007-019-0502-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/14/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant disease resistance to host-adapted pathogens is often mediated by host nucleotide-binding and leucine-rich repeat (NLR) receptors that detect matching pathogen avirulence effectors (AVR) inside plant cells. AVR-triggered NLR activation is typically associated with a rapid host cell death at sites of attempted infection and this response constitutes a widely used surrogate for NLR activation. However, it is challenging to assess this cell death in cereal hosts. RESULTS Here we quantify cell death upon NLR-mediated recognition of fungal pathogen AVRs in mesophyll leaf protoplasts of barley and wheat. We provide measurements for the recognition of the fungal AVRs AvrSr50 and AVR a1 by their respective cereal NLRs Sr50 and Mla1 upon overexpression of the AVR and NLR pairs in mesophyll protoplast of both, wheat and barley. CONCLUSIONS Our data demonstrate that the here described approach can be effectively used to detect and quantify death of wheat and barley cells induced by overexpression of NLR and AVR effectors or AVR effector candidate genes from diverse fungal pathogens within 24 h.
Collapse
Affiliation(s)
- Isabel M. L. Saur
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Saskia Bauer
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Xunli Lu
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present Address: Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Thor K. Calcium-Nutrient and Messenger. FRONTIERS IN PLANT SCIENCE 2019; 10:440. [PMID: 31073302 PMCID: PMC6495005 DOI: 10.3389/fpls.2019.00440] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/22/2019] [Indexed: 05/19/2023]
Abstract
Calcium is an essential element needed for growth and development of plants under both non-stressed and stress conditions. It thereby fulfills a dual function, being not only an important factor for cell wall and membrane stability, but also serving as a second messenger in many developmental and physiological processes, including the response of plants to biotic stress. The perception of non-self hereby induces an influx of calcium ions (Ca2+) into the cytosol, which is decoded into downstream responses ultimately leading to defense. Maintaining intracellular Ca2+ homeostasis is crucial for the ability to generate this signal. This review will describe the current knowledge of the mechanisms involved in uptake and transport of calcium as well as cellular homeostasis and signal generation, describing known genes involved and discussing possible implications the plant's nutritional status with regard to calcium might have on immunity.
Collapse
|
48
|
Gruner K, Zeier T, Aretz C, Zeier J. A critical role for Arabidopsis MILDEW RESISTANCE LOCUS O2 in systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1064-1082. [PMID: 29660188 DOI: 10.1111/tpj.13920] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Members of the MILDEW RESISTANCE LOCUS O (MLO) gene family confer susceptibility to powdery mildews in different plant species, and their existence therefore seems to be disadvantageous for the plant. We recognized that expression of the Arabidopsis MLO2 gene is induced after inoculation with the bacterial pathogen Pseudomonas syringae, promoted by salicylic acid (SA) signaling, and systemically enhanced in the foliage of plants exhibiting systemic acquired resistance (SAR). Importantly, distinct mlo2 mutant lines were unable to systemically increase resistance to bacterial infection after inoculation with P. syringae, indicating that the function of MLO2 is necessary for biologically induced SAR in Arabidopsis. Our data also suggest that the close homolog MLO6 has a supportive but less critical role in SAR. In contrast to SAR, basal resistance to bacterial infection was not affected in mlo2. Remarkably, SAR-defective mlo2 mutants were still competent in systemically increasing the levels of the SAR-activating metabolites pipecolic acid (Pip) and SA after inoculation, and to enhance SAR-related gene expression in distal plant parts. Furthermore, although MLO2 was not required for SA- or Pip-inducible defense gene expression, it was essential for the proper induction of disease resistance by both SAR signals. We conclude that MLO2 acts as a critical downstream component in the execution of SAR to bacterial infection, being required for the translation of elevated defense responses into disease resistance. Moreover, our data suggest a function for MLO2 in the activation of plant defense priming during challenge by P. syringae.
Collapse
Affiliation(s)
- Katrin Gruner
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Tatyana Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Christina Aretz
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| |
Collapse
|
49
|
Qin P, Fan S, Deng L, Zhong G, Zhang S, Li M, Chen W, Wang G, Tu B, Wang Y, Chen X, Ma B, Li S. LML1, Encoding a Conserved Eukaryotic Release Factor 1 Protein, Regulates Cell Death and Pathogen Resistance by Forming a Conserved Complex with SPL33 in Rice. PLANT & CELL PHYSIOLOGY 2018; 59:887-902. [PMID: 29566164 DOI: 10.1093/pcp/pcy056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Lesion mimic mutants are powerful tools for unveiling the molecular connections between cell death and pathogen resistance. Various proteins responsible for lesion mimics have been identified; however, the mechanisms underlying lesion formation and pathogen resistance are still unknown. Here, we identify a lesion mimic mutant in rice, lesion mimic leaf 1 (lml1). The lml1 mutant exhibited abnormal cell death and resistance to both bacterial blight and rice blast. LML1 is expressed in all types of leaf cells, and encodes a novel eukaryotic release factor 1 (eRF1) protein located in the endoplasmic reticulum. Protein sequences of LML1 orthologs are conserved in yeast, animals and plants. LML1 can partially rescue the growth delay phenotype of the LML1 yeast ortholog mutant, dom34. Both lml1 and mutants of AtLML1 (the LML1 Arabidopsis ortholog) exhibited a growth delay phenotype like dom34. This indicates that LML1 and its orthologs are functionally conserved. LML1 forms a functional complex with a eukaryotic elongation factor 1A (eEF1A)-like protein, SPL33/LMM5.1, whose mutant phenotype was similar to the lml1 phenotype. This complex was conserved between rice and yeast. Our work provides new insight into understanding the mechanism of cell death and pathogen resistance, and also lays a good foundation for studying the fundamental molecular function of Pelota/DOM34 and its orthologs in plants.
Collapse
Affiliation(s)
- Peng Qin
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Shijun Fan
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Luchang Deng
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Guangrong Zhong
- Hybrid Rice Research Center of Neijiang Academy of Agricultural, Neijiang, Sichuan 641000, China
| | - Siwei Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Meng Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Weilan Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Geling Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Bin Tu
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Yuping Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Xuewei Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Bingtian Ma
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Shigui Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| |
Collapse
|
50
|
Zhang W, Dong C, Zhang Y, Zhu J, Dai H, Bai S. An apple cyclic nucleotide-gated ion channel gene highly responsive to Botryosphaeria dothidea infection enhances the susceptibility of Nicotiana benthamiana to bacterial and fungal pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:94-105. [PMID: 29606221 DOI: 10.1016/j.plantsci.2018.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 05/26/2023]
Abstract
Apple ring rot caused by the fungus Botryosphaeria dothidea is one of the devastating diseases. Up to date, the responsive mechanism of apple plant to this disease remains unclear. In the present study, an apple CNGC gene (designated as MdCNGC1) was found among highly expressed genes responding to B. dothidea infection. The expression of MdCNGC1 was different among apple cultivars with different resistance to B. dothidea. Intriguingly, MdCNGC1 expression was not induced by other two apple pathogens, Marssonina coronaria and Valsa ceratosperma. Ectopic overexpression of MdCNGC1 in Nicotiana benthamiana conferred elevated susceptibility to bacterial and fungal pathogens. Notably, overexpression of MdCNGC1 reduced salicylic acid (SA) accumulation induced by Alternaria alternata or Pseudomonas syringae. Decreased induction of pathogenesis-related (PR) genes and ROS accumulation were also observed in MdCNGC1-overexpressing plants. Up-regulated scavenging systems as indicated by enhanced expressions of CAT, APX, SOD genes and activities of antioxidative enzymes may in part contribute to reduced ROS accumulation. MdCNGC1 expression in N. benthamiana also decreased flg22 and chitosan-induced callose deposition and lowered the expression of NbPMR4, an ortholog of Arabidopsis callose synthase gene PMR4. These combined results suggested that MdCNGC1 might be a negative factor to plant resistance to bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Weiwei Zhang
- College of Life Sciences, Key Laboratory of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China; College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Chaohua Dong
- College of Life Sciences, Key Laboratory of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China
| | - Yugang Zhang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China; College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Zhu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China; College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongyi Dai
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China; College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Suhua Bai
- College of Life Sciences, Key Laboratory of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|