1
|
Newton L, Necochea R, Palm D, Taylor J, Barr L, Patel H, Nathan A, Gerrard J, Sylla L, Brown B, Dubé K. Revisiting the ‘sterilising cure’ terminology: a call for more patient-centred perspectives on HIV cure-related research. J Virus Erad 2019. [DOI: 10.1016/s2055-6640(20)30054-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
2
|
Newton L, Necochea R, Palm D, Taylor J, Barr L, Patel H, Nathan A, Gerrard J, Sylla L, Brown B, Dubé K. Revisiting the 'sterilising cure' terminology: a call for more patient-centred perspectives on HIV cure-related research. J Virus Erad 2019; 5:122-124. [PMID: 31191916 PMCID: PMC6543486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The literature on HIV therapeutics research is rife with terminology associating 'sterilisation' with HIV cure. We find connotations of the word 'sterilising' problematic for the HIV cure research field. In this viewpoint, we review associations of sterilising with concepts of disinfection or cleansing, as well as coerced sterilisation. We discuss emerging findings from socio-behavioural research that show aversion from people living with HIV towards the 'sterilising cure' nomenclature. We call for more collaborations with people with HIV as partners to help define what would be a more acceptable terminology for describing an HIV cure.
Collapse
Affiliation(s)
- Luke Newton
- UNC Gillings School of Global Public Health,
Chapel Hill,
NC,
USA
| | - Raúl Necochea
- Department of Social Medicine,
UNC School of Medicine,
Chapel Hill,
NC,
USA
| | - David Palm
- Global HIV Prevention and Treatment Unit Clinical Trials Community Advisory Board,
University of North Carolina at Chapel Hill,
NC,
USA
- Collaboratory of AIDS Researchers for Eradication (CARE) Community Advisory Board,
University of North Carolina at Chapel Hill,
Chapel Hill,
NC,
USA
| | - Jeff Taylor
- Collaboratory of AIDS Researchers for Eradication (CARE) Community Advisory Board,
University of North Carolina at Chapel Hill,
Chapel Hill,
NC,
USA
- HIV + Aging Research Project – Palm Springs (HARP-PS),
Palm Springs,
CA,
USA
| | - Liz Barr
- AIDS Clinical Trials Group (ACTG) Scientific Sub-Committee Representative,
John Hopkins University,
Baltimore,
MD,
USA
| | - Hursch Patel
- UNC Gillings School of Global Public Health,
Chapel Hill,
NC,
USA
| | - Anshula Nathan
- UNC Gillings School of Global Public Health,
Chapel Hill,
NC,
USA
| | - Jo Gerrard
- University of California Riverside School of Medicine,
Riverside,
CA,
USA
| | - Laurie Sylla
- defeatHIV Community Advisory Board,
Seattle,
WA,
USA
| | - Brandon Brown
- Center for Healthy Communities,
Department of Social Medicine, Population and Public Health,
University of California Riverside School of Medicine,
Riverside,
CA,
USA
| | - Karine Dubé
- UNC Gillings School of Global Public Health,
Chapel Hill,
NC,
USA
| |
Collapse
|
3
|
Increased, Durable B-Cell and ADCC Responses Associated with T-Helper Cell Responses to HIV-1 Envelope in Macaques Vaccinated with gp140 Occluded at the CD4 Receptor Binding Site. J Virol 2017; 91:JVI.00811-17. [PMID: 28701402 PMCID: PMC5599767 DOI: 10.1128/jvi.00811-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
Strategies are needed to improve the immunogenicity of HIV-1 envelope (Env) antigens (Ag) for more long-lived, efficacious HIV-1 vaccine-induced B-cell responses. HIV-1 Env gp140 (native or uncleaved molecules) or gp120 monomeric proteins elicit relatively poor B-cell responses which are short-lived. We hypothesized that Env engagement of the CD4 receptor on T-helper cells results in anergic effects on T-cell recruitment and consequently a lack of strong, robust, and durable B-memory responses. To test this hypothesis, we occluded the CD4 binding site (CD4bs) of gp140 by stable cross-linking with a 3-kDa CD4 miniprotein mimetic, serving to block ligation of gp140 on CD4+ T cells while preserving CD4-inducible (CDi) neutralizing epitopes targeted by antibody-dependent cellular cytotoxicity (ADCC) effector responses. Importantly, immunization of rhesus macaques consistently gave superior B-cell (P < 0.001) response kinetics and superior ADCC (P < 0.014) in a group receiving the CD4bs-occluded vaccine compared to those of animals immunized with gp140. Of the cytokines examined, Ag-specific interleukin-4 (IL-4) T-helper enzyme-linked immunosorbent spot (ELISpot) assays of the CD4bs-occluded group increased earlier (P = 0.025) during the inductive phase. Importantly, CD4bs-occluded gp140 antigen induced superior B-cell and ADCC responses, and the elevated B-cell responses proved to be remarkably durable, lasting more than 60 weeks postimmunization. IMPORTANCE Attempts to develop HIV vaccines capable of inducing potent and durable B-cell responses have been unsuccessful until now. Antigen-specific B-cell development and affinity maturation occurs in germinal centers in lymphoid follicles through a critical interaction between B cells and T follicular helper cells. The HIV envelope binds the CD4 receptor on T cells as soluble shed antigen or as antigen-antibody complexes, causing impairment in the activation of these specialized CD4-positive T cells. We proposed that CD4-binding impairment is partly responsible for the relatively poor B-cell responses to HIV envelope-based vaccines. To test this hypothesis, we blocked the CD4 binding site of the envelope antigen and compared it to currently used unblocked envelope protein. We found superior and durable B-cell responses in macaques vaccinated with an occluded CD4 binding site on the HIV envelope antigen, demonstrating a potentially important new direction in future design of new HIV vaccines.
Collapse
|
4
|
Abstract
The appalling toll on the populations of developing countries as a result of the HIV epidemic shows no signs of abatement. While costly drug therapies are effective in developed nations, the sheer scale of the epidemic elsewhere makes the need for a vaccine an ever more urgent goal. The prevalent DNA prime-viral boost strategy aims to elicit cytotoxic lymphocytes (CTL) against HIV, but this approach is undermined by the rapid mutation of HIV, which thereby escapes CTL control. Alloimmunity has been found to be protective in vertical transmission from infected mothers to their babies, in alloimmunization of women with their partners’ mononuclear cells, and in monkeys immunized with SIV grown in human T-cells. Vaginal mucosal immunization, as a result of unprotected sex with a regular partner, induced in vitro protection against HIV infection, and this was confirmed in macaques. The second type of natural protection is found in persons with the homozygous Δ32 CCR5 mutation, a 32-base-pair deletion of the CCR5 gene, which results in a lack of cell-surface expression of CCR5, which is associated with an increase in CC chemokines and the development of CCR5 antibodies. These two ‘experiments of nature’ have been used to develop vaccine strategies—first, in vaginal immunization of macaques with CCR5 peptides, in addition to HIV envelope (env) and SIV core (gag) antigens, all of which were linked to the 70-kD heat-shock protein (HSP70); and second, in mucosal allo-immunization of macaques, which also gave rise to in vitro protection from infection. Immunization with this vaccine elicited serum and vaginal IgG and IgA antibodies, IFNγ- and IL-12-producing cells, and increased concentrations of CCL-3 and CCL-4. Vaginal challenge with a simian immunodeficiency virus engineered to carry a human envelope protein (SHIV 89.6) showed significant clearance of SHIV in the immunized macaques. This platform strategy will now be developed to activate the co-stimulatory pathways with the aim of enhancing the primary allogeneic and CCR5-directed responses which are involved in natural protection against HIV infection. Abbreviations: IFN-γ, gamma interferon; IL-12, interleukin 12; MIP-1 α,β, Macrophage inflammatory protein-1; RANTES, Regulated on activation normal T-cell expressed and secreted; SDF-1, stromal-derived factor 1; SIV, simian immunodeficiency virus; and SHIV, engineered SIV carrying a human envelope protein.
Collapse
Affiliation(s)
- L A Bergmeier
- Mucosal Immunology Unit, Guy's King's and St Thomas' Medical and Dental School, Kings College London, London SE1 9RT, UK.
| | | |
Collapse
|
5
|
Berenjian S, Hu K, Abedi-Valugerdi M, Hassan M, Bashir Hassan S, Morein B. The nanoparticulate Quillaja saponin KGI exerts anti-proliferative effects by down-regulation of cell cycle molecules in U937 and HL-60 human leukemia cells. Leuk Lymphoma 2013; 55:1618-24. [PMID: 24138332 DOI: 10.3109/10428194.2013.853301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cancer cells are characterized by uncontrolled replication involving loss of control of cyclin dependent kinases (CDKs) and cyclins, and by abolished differentiation. In this study we introduce KGI, which is a nanoparticle with a Quillaja saponin as an active molecule. By the use of RNA array analysis and confirmation at the protein level, we show that KGI affects myeloid leukemia cells (in particular, the U937 monoblast cancer cell) by the following mechanisms: (A) ceasing cell replication via proteasome degradation, (B) down-regulation of key molecules at check points between G1/S and G2/M phases, (C) reduction of thymidine kinase activity, followed by (D) exit to differentiation and production of interleukin-8 (IL-8), eventually leading to apoptosis. Leukemia cell lines (U937 and HL-60 cells) were exposed to KGI for 8 h, after which the drug was removed. The cancer cells did not revert to replication over the following 10 days. Thus our findings suggest that the nanoparticle KGI inhibits proliferation and promotes differentiation in leukemic cells by interfering with the cell cycle process.
Collapse
|
6
|
Davis D, Koornstra W, Mortier D, Fagrouch Z, Verschoor EJ, Heeney JL, Bogers WMJM. Protection in macaques immunized with HIV-1 candidate vaccines can be predicted using the kinetics of their neutralizing antibodies. PLoS One 2011; 6:e28974. [PMID: 22216149 PMCID: PMC3247218 DOI: 10.1371/journal.pone.0028974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 11/17/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A vaccine is needed to control the spread of human immunodeficiency virus type 1 (HIV-1). An in vitro assay that can predict the protection induced by a vaccine would facilitate the development of such a vaccine. A potential candidate would be an assay to quantify neutralization of HIV-1. METHODS AND FINDINGS We have used sera from rhesus macaques that have been immunized with HIV candidate vaccines and subsequently challenged with simian human immunodeficiency virus (SHIV). We compared neutralization assays with different formats. In experiments with the standardized and validated TZMbl assay, neutralizing antibody titers against homologous SHIV(SF162P4) pseudovirus gave a variable correlation with reductions in plasma viremia levels. The target cells used in the assays are not just passive indicators of virus infection but are actively involved in the neutralization process. When replicating virus was used with GHOST cell assays, events during the absorption phase, as well as the incubation phase, determine the level of neutralization. Sera that are associated with protection have properties that are closest to the traditional concept of neutralization: the concentration of antibody present during the absorption phase has no effect on the inactivation rate. In GHOST assays, events during the absorption phase may inactivate a fixed number, rather than a proportion, of virus so that while complete neutralization can be obtained, it can only be found at low doses particularly with isolates that are relatively resistant to neutralization. CONCLUSIONS Two scenarios have the potential to predict protection by neutralizing antibodies at concentrations that can be induced by vaccination: antibodies that have properties close to the traditional concept of neutralization may protect against a range of challenge doses of neutralization sensitive HIV isolates; a window of opportunity also exists for protection against isolates that are more resistant to neutralization but only at low challenge doses.
Collapse
Affiliation(s)
- David Davis
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
7
|
Balla-Jhagjhoorsingh SS, Willems B, Heyndrickx L, Heyndrickx L, Vereecken K, Janssens W, Seaman MS, Corti D, Lanzavecchia A, Davis D, Vanham G. Characterization of neutralizing profiles in HIV-1 infected patients from whom the HJ16, HGN194 and HK20 mAbs were obtained. PLoS One 2011; 6:e25488. [PMID: 22016769 PMCID: PMC3189917 DOI: 10.1371/journal.pone.0025488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/06/2011] [Indexed: 11/18/2022] Open
Abstract
Several new human monoclonal antibodies (mAbs) with a neutralizing potential across different subtypes have recently been described. Three mAbs, HJ16, HGN194 and HK20, were obtained from patients within the HIV-1 cohort of the Institute of Tropical Medicine (ITM). Our aim was to generate immunization antibodies equivalent to those seen in plasma. Here, we describe the selection and characterization of patient plasma and their mAbs, using a range of neutralization assays, including several peripheral blood mononuclear cell (PBMC) based assays and replicating primary viruses as well as cell line based assays and pseudoviruses (PV). The principal criterion for selection of patient plasma was the activity in an 'extended incubation phase' PBMC assay. Neutralizing Abs, derived from their memory B cells, were then selected by ELISA with envelope proteins as solid phase. MAbs were subsequently tested in a high-throughput HOS-PV assay to assess functional neutralization. The present study indicates that the strong profiles in the patients' plasma were not solely due to antibodies represented by the newly isolated mAbs. Although results from the various assays were divergent, they by and large indicate that neutralizing Abs to other epitopes of the HIV-1 envelope are present in the plasma and synergy between Abs may be important. Thus, the spectrum of the obtained mAbs does not cover the range of cross-reactivity seen in plasma in these carefully selected patients irrespective of which neutralization assay is used. Nevertheless, these mAbs are relevant for immunogen discovery because they bind to the recombinant glycoproteins to which the immune response needs to be targeted in vivo. Our observations illustrate the remaining challenges required for successful immunogen design and development.
Collapse
|
8
|
Molecular evolution analysis of the human immunodeficiency virus type 1 envelope in simian/human immunodeficiency virus-infected macaques: implications for challenge dose selection. J Virol 2011; 85:10332-45. [PMID: 21795341 DOI: 10.1128/jvi.05290-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the demonstration that almost 80% of human immunodeficiency virus type 1 (HIV-1) infections result from the transmission of a single variant from the donor, biological features similar to those of HIV mucosal transmission have been reported for macaques inoculated with simian immunodeficiency virus (SIV). Here we describe the early diversification events and the impact of challenge doses on viral kinetics and on the number of variants transmitted in macaques infected with the chimeric simian/human immunodeficiency virus SHIV(sf162p4). We show that there is a correlation between the dose administered and the number of variants transmitted and that certain inoculum variants are preferentially transmitted. This could provide insight into the viral determinants of transmission and could aid in vaccine development. Challenge through the mucosal route with high doses results in the transmission of multiple variants in all the animals. Such an unrealistic scenario could underestimate potential intervention measures. We thus propose the use of molecular evolution analysis to aid in the determination of challenge doses that better mimic the transmission dynamics seen in natural HIV-1 infection.
Collapse
|
9
|
Yu M, Vajdy M. Mucosal HIV transmission and vaccination strategies through oral compared with vaginal and rectal routes. Expert Opin Biol Ther 2010; 10:1181-95. [PMID: 20624114 DOI: 10.1517/14712598.2010.496776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE OF THE FIELD There are currently over thirty million people infected with HIV and there are no vaccines available to prevent HIV infections or disease. The genitourinary, rectal and oral mucosa are the mucosal HIV transmission routes. An effective vaccine that can induce both systemic and local mucosal immunity is generally accepted as a major means of protection against mucosal HIV transmission and AIDS. WHAT THE READER WILL GAIN Structure and cells that comprise the oral, vaginal and rectal mucosa pertaining to HIV transmission and vaccination strategies through each mucosal route to prevent mucosal and systemic infection will be discussed. AREAS COVERED IN THIS REVIEW Covering publications from 1980s through 2010, mucosal transmission of HIV and current and previous approaches to vaccinations are discussed. TAKE HOME MESSAGE Although oral transmission of HIV is far less common than vaginal and rectal transmissions, infections through this route do occur through oral sex as well as vertically from mother to child. Mucosal vaccination strategies against oral and other mucosal HIV transmissions are under intensive research but the lack of consensus on immune correlates of protection and lack of safe and effective mucosal adjuvants and delivery systems hamper progress towards a licensed vaccine.
Collapse
Affiliation(s)
- Mingke Yu
- EpitoGenesis, Inc., Walnut Creek, CA 94598, USA
| | | |
Collapse
|
10
|
Koopman G, Bogers WMJM, van Gils M, Koornstra W, Barnett S, Morein B, Lehner T, Heeney JL. Comparison of intranasal with targeted lymph node immunization using PR8-Flu ISCOM adjuvanted HIV antigens in macaques. J Med Virol 2007; 79:474-82. [PMID: 17385685 DOI: 10.1002/jmv.20860] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The rapidly spreading HIV epidemic requires a vaccine that elicits potent mucosal immunity to halt or slow transmission. Induction of these responses will depend on the use of appropriate adjuvants and targeting of the mucosal immune system. Previously, immune stimulating complexes (ISCOM) have shown great potency as adjuvant in the induction of mucosal responses in mice and systemic responses in non-human primates. In this study, HIV formulated in PR8-Flu ISCOM adjuvant was applied to immunize rhesus macaques against HIV; targeting the mucosa either via intranasal (IN) application or via targeted lymph node immunization (TLNI). While, strong systemic, HIV specific, cytokine, lymphoproliferative, and antibody responses were induced via the TLNI route, the IN application generated only low responses. Furthermore, all four animals immunized via TLNI developed vaginal IgA antibodies against gp120. In conclusion, in contrast to what has been demonstrated in mice, the IN application of PR8-Flu ISCOM did not induce strong immune responses in rhesus macaques unlike those immunized by the TLNI route.
Collapse
Affiliation(s)
- G Koopman
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Tiemessen CT, Kuhn L. CC chemokines and protective immunity: insights gained from mother-to-child transmission of HIV. Nat Immunol 2007; 8:219-22. [PMID: 17304227 PMCID: PMC1866187 DOI: 10.1038/ni0307-219] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Maternal-infant transmission provides a useful model for the study of immune factors associated with protection against the acquisition of human immunodeficiency virus and has emphasized the importance of CCL3 in protective immunity to this virus.
Collapse
Affiliation(s)
- Caroline T Tiemessen
- AIDS Virus Research Unit, National Institute for Communicable Diseases and University of the Witwatersand, Sandringham 2131, South Africa.
| | | |
Collapse
|
12
|
Rodriguez SK, Sarr AD, MacNeil A, Thakore-Meloni S, Gueye-Ndiaye A, Traoré I, Dia MC, Mboup S, Kanki PJ. Comparison of heterologous neutralizing antibody responses of human immunodeficiency virus type 1 (HIV-1)- and HIV-2-infected Senegalese patients: distinct patterns of breadth and magnitude distinguish HIV-1 and HIV-2 infections. J Virol 2007; 81:5331-8. [PMID: 17301136 PMCID: PMC1900200 DOI: 10.1128/jvi.02789-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutralizing antibody responses against heterologous isolates in human immunodeficiency virus type 1 (HIV-1) and HIV-2 infections were compared, and their relationships with established clinical markers of progression were examined. Neutralizing responses against 7 heterologous primary isolates and 1 laboratory strain were compared between 32 untreated HIV-1-infected subjects and 35 untreated HIV-2-infected subjects using a pseudotyped reporter virus assay. The breadth of the neutralizing response, defined as the proportion of panel viruses positively neutralized by patient plasma, was significantly greater among HIV-2-infected subjects than among HIV-1-infected subjects. Notably, for fully one-third of HIV-2 subjects, all viruses were effectively neutralized in our panel. Magnitudes of responses, defined as reciprocal 50% inhibitory concentration (IC(50)) titers for positive reactions, were significantly greater among HIV-1-infected subjects than among HIV-2-infected subjects. When plasma samples from HIV-1 patients were tested for cross-neutralization of HIV-2 and vice versa, we found that these intertype responses are very rare and their prevalences comparable in both HIV-1 and HIV-2 infection. The significantly higher magnitude of heterologous responses for HIV-1 compared to HIV-2 prompted us to examine associations with viremia, which is known to be significantly higher in HIV-1 infection. Importantly, there was a significant positive correlation between the IC(50) titer and viral load within both the HIV-1 and HIV-2 groups, suggesting heterologous antibodies may be driven by viral replication. We conclude that HIV-2 infection is characterized by a broad, low-magnitude intratype neutralization response, while HIV-1 is characterized by a narrower but higher-magnitude intratype response and that a significant positive association between the IC(50) titer and viremia is common to both HIV-1 and HIV-2 infections.
Collapse
Affiliation(s)
- Shaun K Rodriguez
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shimizu Y, Inaba K, Kaneyasu K, Ibuki K, Himeno A, Okoba M, Goto Y, Hayami M, Miura T, Haga T. A genetically engineered live-attenuated simian-human immunodeficiency virus that co-expresses the RANTES gene improves the magnitude of cellular immunity in rhesus macaques. Virology 2006; 361:68-79. [PMID: 17157892 DOI: 10.1016/j.virol.2006.10.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 08/22/2006] [Accepted: 10/28/2006] [Indexed: 11/18/2022]
Abstract
Regulated-on-activation-normal-T-cell-expressed-and-secreted (RANTES), a CC-chemokine, enhances antigen-specific T helper (Th) type-1 responses against HIV-1. To evaluate the adjuvant effects of RANTES against HIV vaccine candidate in SHIV-macaque models, we genetically engineered a live-attenuated SHIV to express the RANTES gene (SHIV-RANTES) and characterized the virus's properties in vivo. After the vaccination, the plasma viral loads were same in the SHIV-RANTES-inoculated monkeys and the parental nef-deleted SHIV (SHIV-NI)-inoculated monkeys. SHIV-RANTES provided some immunity in monkeys by remarkably increasing the antigen-specific CD4+ Th cell-proliferative response and by inducing an antigen-specific IFN-gamma ELISpot response. The magnitude of the immunity in SHIV-RANTES-immunized animals, however, failed to afford greater protection against a heterologous pathogenic SHIV (SHIV-C2/1) challenge compared to control SHIV-NI-immunized animals. SHIV-RANTES immunized monkeys, elicited robust cellular CD4+ Th responses and IFN-gamma ELISpot responses after SHIV-C2/1 challenge. These findings suggest that the chemokine RANTES can augment vaccine-elicited, HIV-specific CD4+ T cell responses.
Collapse
Affiliation(s)
- Yuya Shimizu
- Department of Veterinary Microbiology, University of Miyazaki, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Meddows-Taylor S, Donninger SL, Paximadis M, Schramm DB, Anthony FS, Gray GE, Kuhn L, Tiemessen CT. Reduced ability of newborns to produce CCL3 is associated with increased susceptibility to perinatal human immunodeficiency virus 1 transmission. J Gen Virol 2006; 87:2055-2065. [PMID: 16760409 PMCID: PMC2365885 DOI: 10.1099/vir.0.81709-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of CC chemokines in protection against mother-to-child human immunodeficiency virus type 1 (HIV-1) transmission is not well understood. It was observed that mitogen-induced production of CCL3 and CCL4 by cord-blood mononuclear cells was increased among infants born to HIV-positive compared with HIV-negative mothers, and that a deficiency in production of CCL3 was associated with increased susceptibility to intrapartum HIV-1 infection. CCL3-L1 gene copy number was associated with CCL3 production and with vertical transmission. However, at equivalent CCL3-L1 gene copy numbers, infants who acquired HIV-1 infection relative to their exposed but uninfected counterparts had lower production of CCL3, suggesting that they may harbour some non-functional copies of this gene. Nucleotide changes that may influence CCL3 production were evident in the CCL3 and CCL3-L1 genes upstream of exon 2. Our findings suggest that infants who display a deficient-production phenotype of CCL3 are at increased risk of acquiring HIV-1, indicating that this chemokine in particular plays an essential role in protective immunity.
Collapse
Affiliation(s)
- Stephen Meddows-Taylor
- AIDS Virus Research Unit, National Institute for Communicable Diseases, and Department of Virology, University of the Witwatersrand, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | - Samantha L. Donninger
- AIDS Virus Research Unit, National Institute for Communicable Diseases, and Department of Virology, University of the Witwatersrand, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | - Maria Paximadis
- AIDS Virus Research Unit, National Institute for Communicable Diseases, and Department of Virology, University of the Witwatersrand, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | - Diana B. Schramm
- AIDS Virus Research Unit, National Institute for Communicable Diseases, and Department of Virology, University of the Witwatersrand, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | - Fiona S. Anthony
- AIDS Virus Research Unit, National Institute for Communicable Diseases, and Department of Virology, University of the Witwatersrand, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | - Glenda E. Gray
- Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, Soweto, South Africa
| | - Louise Kuhn
- Gertrude H. Sergievsky Centre, College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | - Caroline T. Tiemessen
- AIDS Virus Research Unit, National Institute for Communicable Diseases, and Department of Virology, University of the Witwatersrand, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| |
Collapse
|
15
|
Preclinical primate studies of HIV-1-envelope-based vaccines: towards human clinical trials. Curr Opin HIV AIDS 2006; 1:336-43. [DOI: 10.1097/01.coh.0000232350.61650.f0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Goonetilleke N, Moore S, Dally L, Winstone N, Cebere I, Mahmoud A, Pinheiro S, Gillespie G, Brown D, Loach V, Roberts J, Guimaraes-Walker A, Hayes P, Loughran K, Smith C, De Bont J, Verlinde C, Vooijs D, Schmidt C, Boaz M, Gilmour J, Fast P, Dorrell L, Hanke T, McMichael AJ. Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes. J Virol 2006; 80:4717-28. [PMID: 16641265 PMCID: PMC1472051 DOI: 10.1128/jvi.80.10.4717-4728.2006] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A double-blind randomized phase I trial was conducted in human immunodeficiency virus type 1 (HIV-1)-negative subjects receiving vaccines vectored by plasmid DNA and modified vaccinia virus Ankara (MVA) expressing HIV-1 p24/p17 gag linked to a string of CD8(+) T-cell epitopes. The trial had two groups. One group received either two doses of MVA.HIVA (2x MVA.HIVA) (n=8) or two doses of placebo (2x placebo) (n=4). The second group received 2x pTHr.HIVA followed by one dose of MVA.HIVA (n=8) or 3x placebo (n=4). In the pTHr.HIVA-MVA.HIVA group, HIV-1-specific T-cell responses peaked 1 week after MVA.HIVA vaccination in both ex vivo gamma interferon (IFN-gamma) ELISPOT (group mean, 210 spot-forming cells/10(6) cells) and proliferation (group mean stimulation index, 37), with assays detecting positive responses in four out of eight and five out of eight subjects, respectively. No HIV-1-specific T-cell responses were detected in either assay in the 2x MVA.HIVA group or subjects receiving placebo. Using a highly sensitive and reproducible cultured IFN-gamma ELISPOT assay, positive responses mainly mediated by CD4(+) T cells were detected in eight out of eight vaccinees in the pTHr.HIVA-MVA.HIVA group and four out of eight vaccinees in the 2x MVA.HIVA group. Importantly, no false-positive responses were detected in the eight subjects receiving placebo. Of the 12 responders, 11 developed responses to previously identified immunodominant CD4(+) T-cell epitopes, with 6 volunteers having responses to more than one epitope. Five out of 12 responders also developed CD8(+) T-cell responses to the epitope string. Induced T cells produced a variety of anti-viral cytokines, including tumor necrosis factor alpha and macrophage inflammatory protein 1 beta. These data demonstrate that prime-boost vaccination with recombinant DNA and MVA vectors can induce multifunctional HIV-1-specific T cells in the majority of vaccinees.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Amino Acid Sequence
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Cells, Cultured
- Double-Blind Method
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Genetic Vectors
- HIV Infections/prevention & control
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunization, Secondary
- Lymphocyte Activation/immunology
- Molecular Sequence Data
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- Nilu Goonetilleke
- Centre for Clinical Vaccinology and Tropical Medicine and MRC Human Immunology Unit, University of Oxford, Oxford OX3 7LJ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Vertical exposure to HIV occurs at a time when functional capacity of the infant's immune system is attenuated through immaturity. Immune response capability is rooted in host genetic makeup, and the broad and fine specificity of innate and adaptive immune responses, respectively, shape the outcomes of HIV encounter in some instances and imprint viral changes through selective immune pressure in others. Findings from recent studies have profound implications for understanding immune pathogenesis of pediatric HIV infection and, in particular, highlight the importance of host genetics of both mother and child in determining whether an exposed child acquires HIV infection or not and, if infected, the rate of disease progression. This review focuses on the key host molecules, the CC chemokine CCL3 and HLA, which have taken center stage in these new developments.
Collapse
Affiliation(s)
- CAROLINE T. TIEMESSEN
- C.T. Tiemessen, AIDS Virus Research Unit, National Institute for Communicable Diseases and University of the Witwatersand, Private Bag X4, Sandringham, 2131, South Africa. Phone: (+27-11) 386-6366/6400; Fax: (+27-11) 386-6465 E-mail:
| | - LOUISE KUHN
- L. Kuhn, Gertrude H. Sergievsky Centre, College of Physicians and Surgeons; and Department of Epidemiology, Mailman School of Public Health, Columbia University, 630 West 168 Street, New York, NY 10032. Phone: (212) 305-2398; Fax: (212) 305-2426 E-mail;
| |
Collapse
|
18
|
Shimizu Y, Okoba M, Yamazaki N, Goto Y, Miura T, Hayami M, Hoshino H, Haga T. Construction and in vitro characterization of a chimeric simian and human immunodeficiency virus with the RANTES gene. Microbes Infect 2006; 8:105-13. [PMID: 16203167 DOI: 10.1016/j.micinf.2005.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 05/31/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
Chimeric simian-human immunodeficiency virus (SHIV) containing the env gene of HIV-1 infects macaque monkeys and provides basic information that is useful for the development of HIV-1 vaccines. Regulated-on-activation-normal-T-cell-expressed-and-secreted (RANTES), a CC-chemokine, enhances antigen-specific T helper type-1 responses against HIV-1. With the final goal of testing the adjuvant effects of RANTES in SHIV-macaque models, we constructed a SHIV having the RANTES gene (SHIV-RANTES) and characterized its properties in vitro. SHIV-RANTES replicated both in human and monkey T cell lines. Along with SHIV-RANTES replication, RANTES was detected in the supernatant of human and monkey cell cultures, at maximal levels of 98.5 and 4.1 ng/ml, respectively. A flow cytometric analysis showed that the expressed RANTES down-modulated CC-chemokine receptor 5 (CCR5) on PM1 cells, which was restored by adding anti-RANTES antibody. UV-irradiated culture supernatants from the SHIV-RANTES-infected cells suppressed replication of CCR5-tropic HIV-1 BaL in PM-1 cells. Differentiating real-time RT-PCR showed that pre-infection of SHIV-RANTES in C8166 cells expressing CCR5 suppressed the replication of HIV-1 BaL. Biological activity of the expressed RANTES and the inserted RANTES gene in SHIV-RANTES remained stable after 10 passages. These results suggest that SHIV-RANTES is worth testing in macaque models.
Collapse
Affiliation(s)
- Yuya Shimizu
- Department of Veterinary Microbiology, University of Miyazaki, 1-1 Kibanadai Nishi, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Miller CJ, Abel K. Immune mechanisms associated with protection from vaginal SIV challenge in rhesus monkeys infected with virulence-attenuated SHIV 89.6. J Med Primatol 2005; 34:271-81. [PMID: 16128922 DOI: 10.1111/j.1600-0684.2005.00125.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although live-attenuated human immunodeficiency virus-1 (HIV) vaccines may never be used clinically, these vaccines have provided the most durable protection from intravenous (IV) challenge in the simian immunodeficiency virus (SIV)/rhesus macaque model. Systemic infection with virulence attenuated-simian-human immunodeficiency virus (SHIV) 89.6 provides protection against vaginal SIV challenge. This paper reviews the findings related to the innate and adaptive immune responses and the role of inflammation associated with protection in the SHIV 89.6/SIVmac239 model. By an as yet undefined mechanism, most monkeys vaccinated with live-attenuated SHIV 89.6 mounted effective anti-viral CD8+ T cell responses while avoiding the self-destructive inflammatory cycle found in the lymphoid tissues of unprotected and unvaccinated monkeys.
Collapse
|
20
|
|
21
|
Gupta S, Janani R, Bin Q, Luciw P, Greer C, Perri S, Legg H, Donnelly J, Barnett S, O'Hagan D, Polo JM, Vajdy M. Characterization of human immunodeficiency virus Gag-specific gamma interferon-expressing cells following protective mucosal immunization with alphavirus replicon particles. J Virol 2005; 79:7135-45. [PMID: 15890953 PMCID: PMC1112144 DOI: 10.1128/jvi.79.11.7135-7145.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A safe, replication-defective viral vector that can induce mucosal and systemic immune responses and confer protection against many infectious pathogens, such as human immunodeficiency virus type 1 (HIV-1), may be an ideal vaccine platform. Accordingly, we have generated and tested alphavirus replicon particles encoding HIV-1 Gag from Sindbis virus (SIN-Gag) and Venezuelan equine encephalitis virus (VEE-Gag), as well as chimeras between the two (VEE/SIN-Gag). Following intramuscular (i.m.), intranasal (i.n.), or intravaginal (IVAG) immunization with VEE/SIN-Gag and an IVAG challenge with vaccinia virus encoding HIV Gag (VV-Gag), a larger number of Gag-specific CD8+ intracellular gamma interferon-expressing cells (iIFNEC) were detected in iliac lymph nodes (ILN), which drain the vaginal/uterine mucosa (VUM), than were observed after immunizations with SIN-Gag. Moreover, a single i.n. or IVAG immunization with VEE/SIN-Gag induced a larger number of cells expressing HIV Gag in ILN, and immunizations with VEE/SIN-Gag through any route induced better protective responses than immunizations with SIN-Gag. In VUM, a larger percentage of iIFNEC expressed alpha4beta7 or alpha(Ebeta)7 integrin than expressed CD62L integrin. However, in spleens (SP), a larger percentage of iIFNEC expressed alpha4beta7 or CD62L than expressed alpha(Ebeta)7. Moreover, a larger percentage of iIFNEC expressed the chemokine receptor CCR5 in VUM and ILN than in SP. These results demonstrate a better induction of cellular and protective responses following immunizations with VEE/SIN-Gag than that following immunizations with SIN-Gag and also indicate a differential expression of homing and chemokine receptors on iIFNEC in mucosal effector and inductive sites versus systemic lymphoid tissues.
Collapse
Affiliation(s)
- Soumi Gupta
- Department of Pathology and Center for Comparative Medicine, University of California, Davis, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Quinnan GV, Yu XF, Lewis MG, Zhang PF, Sutter G, Silvera P, Dong M, Choudhary A, Sarkis PTN, Bouma P, Zhang Z, Montefiori DC, Vancott TC, Broder CC. Protection of rhesus monkeys against infection with minimally pathogenic simian-human immunodeficiency virus: correlations with neutralizing antibodies and cytotoxic T cells. J Virol 2005; 79:3358-69. [PMID: 15731230 PMCID: PMC1075715 DOI: 10.1128/jvi.79.6.3358-3369.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the capacity of active immunization of rhesus monkeys with HIV-1 envelope protein (Env) to induce primary virus cross-reactive neutralizing antibodies to prevent infection following intravenous challenge with simian-human immunodeficiency virus (SHIV). Monkeys were immunized with the human immunodeficiency type 1 (HIV-1) strain R2 Env. Initially, the Env was expressed in vivo by an alphavirus replicon particle system, and then it was administered as soluble oligomeric gp140. Concurrently, groups of monkeys received expression vectors that encoded either simian immunodeficiency virus (SIV) gag/pol genes or no SIV genes in vivo to test the additional protective benefit of concurrent induction of virus-specific cell-mediated immune (CMI) responses. Groups of control monkeys received either the gag/pol regimen or sham immunizations. The antibodies induced by the Env immunization regimen neutralized diverse primary HIV-1 strains. Similarly, potent CMI responses were induced by the gag/pol regimen, as measured by gamma interferon enzyme-linked immunospot assays. Differences in the responses among groups of monkeys strongly suggested that there was interference between the Env and gag/pol immunization regimens. Complete protection of some of the monkeys against infection after intravenous challenge with the partially pathogenic SHIV(DH12R (Clone 7)) was associated independently with both neutralizing antibody and CMI responses. Protection was associated with SHIV(DH12 (Clone 7)) serum neutralizing antibody titers of > or =1:80 or with cellular immune responses corresponding to >2,000 spot forming cells per 10(6) peripheral blood mononuclear cells. Immunization was also associated with a reduction in the magnitude and duration of virus load. Induction of cross-reactive, primary HIV-1-neutralizing antibodies is feasible and, when potent, may result in complete protection against infection with a heterologous challenge virus strain.
Collapse
Affiliation(s)
- Gerald V Quinnan
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The immunostimulating complex or 'iscom' was first described 20 years ago as an antigen delivery system with powerful immunostimulating activity. Iscoms are cage-like structures, typically 40 nm in diameter, that are comprised of antigen, cholesterol, phospholipid and saponin. ISCOM-based vaccines have been shown to promote both antibody and cellular immune responses in a variety of experimental animal models. This review focuses on the evaluation of ISCOM-based vaccines in animals over the past 10 years, as well as examining the progress that has been achieved in the development of human vaccines based on ISCOM adjuvant technology.
Collapse
Affiliation(s)
- Megan T Sanders
- Department of Microbiology and Immunology, The University of Melbourne, Australia
| | | | | | | |
Collapse
|
24
|
Waterman PM, Kitabwalla M, Hatfield GS, Evans PS, Lu Y, Tikhonov I, Bryant JL, Pauza CD. Effects of virus burden and chemokine expression on immunity to SHIV in nonhuman primates. Viral Immunol 2005; 17:545-57. [PMID: 15671751 DOI: 10.1089/vim.2004.17.545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
HIV-1 vaccine candidates are designed to elicit Type 1 immune responses, including cytotoxic T cells and neutralizing antibodies. The type of immune response is influenced by many factors, including the levels of antigen expression and production of cytokines or chemokines; we designed a nonhuman primate study to evaluate the influence of these factors on protective immunity. Recombinant SHIV were engineered to express macrophage inflammatory protein-1 alpha (MIP-1alpha), regulated upon activation, normal T-cell expressed and secreted (RANTES), or Lymphotactin (Ltn) in place of nef in SHIV(89.6) (SHIV(89.6-MIP-1), SHIV(89.6-RANTES), SHIV(89.6-Ltn)). The parental virus SHIV(89.6) was included because it replicates to higher titer while still not causing disease. Control groups included animals that received a recombinant SHIV with a truncated chemokine construct (SHIV(89.6-dLtn)) and unvaccinated macaques. After pathogenic challenge with SHIV(89.6pd), animals from groups that received recombinant (nef-deleted) viruses had peak viremia levels three orders of magnitude lower than unvaccinated controls and increased survival times. Animals that received the original SHIV(89.6) (nef+) were highly resistant to both intrarectal and intravenous challenge with SHIV(89.6PD), and showed no signs of disease. There were no differences in survival times comparing unvaccinated and SHIV(89.6-dLtn) (control) groups, indicating that nef deleted viruses did not provide durable protection in this model. Strongest protection was seen in animals with the highest replicating virus (SHIV(89.6)), and the lower effect on survival after SHIV(89.6) nef-deleted vaccination, likely reflects differences in replication capacity. The protective effect of nef-deleted virus was partly restored by expressing Type 1 chemokines to augment viral immunity.
Collapse
Affiliation(s)
- Paul M Waterman
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Innate immunity represents the first line of defence to pathogens besides the physical barrier and seems to play a role in protection against HIV/SIV infection and disease progression. High production of beta-chemokines and CD8+ T cell anti-viral factors in naive as well as in vaccinated macaques has been associated with complete or partial protection against SIV infection indicating that genetic or environmental factors may influence their production. This innate immunity may help in generating HIV/SIV-specific responses upon the first exposure to HIV/SIV. SIV subunit vaccines given by the targeted iliac lymph node route have been shown to induce an increased production of CD8+ T cell suppressor factors and beta-chemokines. Only a few vaccine studies have focused on enhancing the innate immune response against HIV/SIV. The use of unmethylated CpG motifs, HSP and GM-CSF as adjuvants in SIV vaccines has been shown to induce production of HIV/SIV-inhibiting cytokines and beta-chemokines, which seem to be important in modulating and steering the adaptive immune responses. HSP has also been shown to induce gammadelta+ T cells, which contribute to the innate immunity. More knowledge about the interplay between the innate and adaptive immune responses is important to develop new HIV/SIV vaccine strategies.
Collapse
Affiliation(s)
- Raija K S Ahmed
- Swedish Institute for Infectious Disease Control and Microbiology and Tumorbiology Centre, Karolinska Institute, SE-171 82 Solna, Sweden.
| | | | | |
Collapse
|
26
|
Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ, Murthy KK, Rovin BH, Bradley W, Clark RA, Anderson SA, O'connell RJ, Agan BK, Ahuja SS, Bologna R, Sen L, Dolan MJ, Ahuja SK. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 2005; 307:1434-40. [PMID: 15637236 DOI: 10.1126/science.1101160] [Citation(s) in RCA: 829] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Segmental duplications in the human genome are selectively enriched for genes involved in immunity, although the phenotypic consequences for host defense are unknown. We show that there are significant interindividual and interpopulation differences in the copy number of a segmental duplication encompassing the gene encoding CCL3L1 (MIP-1alphaP), a potent human immunodeficiency virus-1 (HIV-1)-suppressive chemokine and ligand for the HIV coreceptor CCR5. Possession of a CCL3L1 copy number lower than the population average is associated with markedly enhanced HIV/acquired immunodeficiency syndrome (AIDS) susceptibility. This susceptibility is even greater in individuals who also possess disease-accelerating CCR5 genotypes. This relationship between CCL3L1 dose and altered HIV/AIDS susceptibility points to a central role for CCL3L1 in HIV/AIDS pathogenesis and indicates that differences in the dose of immune response genes may constitute a genetic basis for variable responses to infectious diseases.
Collapse
Affiliation(s)
- Enrique Gonzalez
- Veterans Administration Research Center for AIDS and HIV-1 Infection, South Texas Veterans Health Care System, and Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Omori M, Pu R, Tanabe T, Hou W, Coleman JK, Arai M, Yamamoto JK. Cellular immune responses to feline immunodeficiency virus (FIV) induced by dual-subtype FIV vaccine. Vaccine 2004; 23:386-98. [PMID: 15530685 DOI: 10.1016/j.vaccine.2004.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 05/10/2004] [Accepted: 05/13/2004] [Indexed: 10/26/2022]
Abstract
Vaccine-induced T cell responses to FIV were assessed by measuring FIV-specific cytokine and cytotoxic-effector molecule production. A total of 22 cats at 10-12 weeks of age received either dual-subtype FIV vaccine (n=12), uninfected cell lysate (n=5) consisting of cells used to produce vaccine viruses, or no immunization (n=5). Significant increases in mRNA and protein production of T-helper 1 (Th1) cytokines (IL-2, IFNgamma), mRNA production of a cytotoxic-effector molecule (perforin), and lymphoproliferation response were observed in peripheral blood mononuclear cells (PBMC) from dual-subtype FIV-vaccinated cats after in vitro stimulation with inactivated FIV. In contrast, no statistically significant increase in FIV-stimulated mRNA production of Th2 cytokines (IL-4, IL-6) or other cytotoxic-effector molecules (TNFalpha, FasL) was observed in the PBMC from dual-subtype vaccinated cats. Moreover, no FIV-specific increases in the IFNgamma, IL-2, and perforin mRNA productions and in the IFNgamma bioactivity and lymphoproliferation responses were observed in the PBMC from cell-immunized cats. These observations suggest that IFNgamma induction, lymphoproliferation, and significant portion of IL-2 and perforin productions in the PBMC from dual-subtype vaccinated cats are clearly specific for viral antigens. Overall, dual-subtype FIV vaccine elicited strong Th1 response (IFN(, IL-2), which may contribute to the vaccine protection by enhancing the perforin-mediated cytotoxic-cell activity against FIV.
Collapse
Affiliation(s)
- M Omori
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Bogers WMJM, Bergmeier LA, Oostermeijer H, ten Haaft P, Wang Y, Kelly CG, Singh M, Heeney JL, Lehner T. CCR5 targeted SIV vaccination strategy preventing or inhibiting SIV infection. Vaccine 2004; 22:2974-84. [PMID: 15356916 DOI: 10.1016/j.vaccine.2004.02.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell-surface CCR5 is a major coreceptor with CD4 glycoprotein, mediating cellular entry of CCR5 strains of HIV-1 or SIV. We targeted the SIV CCR5 coreceptor in a combined CCR5-SIV antigen immunization strategy. Rhesus macaques were immunized i.m. with the 70 kDa heat shock protein (HSP70) covalently linked to the CCR5 peptides, SIV gpl20 and p27. Intravenous challenge with SIV mac 8980 prevented SIV infection or decreased the viral load with the CCR5-SIV combined vaccine. CC chemokines and antibodies which block and downmodulateCCR5 were induced, as well as immune responses to the subunit SIV antigens. This novel vaccination strategy complements cognate immunity to SIV with innate immunity to the CCR5 coreceptor of SIV.
Collapse
Affiliation(s)
- W M J M Bogers
- Department of Virology, Biomedical Research Primate Centre, Rijswik, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Morein B, Hu KF, Abusugra I. Current status and potential application of ISCOMs in veterinary medicine. Adv Drug Deliv Rev 2004; 56:1367-82. [PMID: 15191787 DOI: 10.1016/j.addr.2004.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2003] [Accepted: 02/18/2004] [Indexed: 12/15/2022]
Abstract
The immune stimulating complex (ISCOM) is a 40 nm nanoparticle used as a delivery system for vaccine antigens, targeting the immune system both after parenteral and mucosal administration. The ISCOM is made up of saponin, lipids and antigen usually held together by hydrophobic interaction between these three components. The compulsory elements to form the ISCOM structure are cholesterol and saponin. When the antigen is omitted the ISCOM-MATRIX is formed. There are a number of saponins that can form ISCOMs, and many other substances (including antigens, targeting and immuno-modulating molecules) can be incorporated into the ISCOM provided they are hydrophobic or rendered to be hydrophobic. Thus, it is possible to create ISCOM particles with different properties. After parenteral immunisation of the ISCOM, the T cell response is first detected in the draining lymph node. Subsequently, the T cell response is localised to the spleen, while the B cell response is first found both in the draining lymph nodes and in the spleen. Up to 50 days later, the majority of the antibody producing cells is found in the bone marrow (BM). In contrast, antigens that have been adjuvanted in an oil emulsion, limit the T cell response to the draining lymph nodes while the B cell response is found in the draining lymph nodes and spleen, but not in the BM. The ISCOM efficiently evokes CD8+, MHC class 1 restricted T cell response. The deposit of antigens both to the endosomal vesicles and to the cytosol of antigen presenting cells (APCs) explains why both T helper cells (vesicles) and cytotoxic T lymphocytes (cytosol) are efficiently induced by ISCOMs. The T helper (Th) cell response is balanced in the sense that both Th1 and Th2 cells are induced. Prominent IL-12 production by cells in the innate system is a characteristic reaction induced by ISCOMs, promoting the development of a strong Th1 response. After mucosal administration by the intranasal or the intestinal routes, the ISCOM induces strong specific mucosal IgA responses in local and remote mucosal surfaces. Also T cell responses are evoked by the mucosal administration. A large number of experimental ISCOM vaccines have been tested and protection has been induced against a number of pathogens in various species including chronic and persistent infections exemplified by human immune deficiency virus 1 (HIV-1), and 2 (HIV-2) and simian immune deficiency virus (SIV) in primates, and various herpes virus infections in several species. In contrast to a conventional rabies virus vaccine the ISCOM rabies formulation protected mice after exposure to the virulent virus. Recently, experimental ISCOM vaccines were shown to efficiently induce immune response in newborns of murine and bovine species in the presence of maternal antibodies, while conventional vaccines have failed. ISCOM vaccines are on the market for horses and cattle and several other ISCOM vaccines are under development. Since the ISCOM and the ISCOM-MATRIX can be blended with live attenuated vaccine antigens without hampering the proliferation of the live vaccine antigens, it opens the possibility to use the ISCOM adjuvant system in a mixture of live and killed vaccine antigens.
Collapse
Affiliation(s)
- Bror Morein
- ISCONOVA AB, Uppsala Science Park, Dag Hammarskjölds väg 54 A, 75183 Uppsala, Sweden.
| | | | | |
Collapse
|
30
|
DeVico AL, Gallo RC. Control of HIV-1 infection by soluble factors of the immune response. Nat Rev Microbiol 2004; 2:401-13. [PMID: 15100693 DOI: 10.1038/nrmicro878] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Anthony L DeVico
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA.
| | | |
Collapse
|
31
|
Davis D, Donners H, Willems B, Lövgren-Bengtsson K, Akerblom L, Vanham G, Barnett S, Morein B, Heeney JL, van der Groen G. Neutralization of primary HIV-1 SF13 can be detected in extended incubation phase assays with sera from monkeys immunized with recombinant HIV-1 SF2 gp120. Vaccine 2004; 22:747-54. [PMID: 14741168 DOI: 10.1016/j.vaccine.2003.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phase III efficacy trials of recombinant human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins were postponed. In Phase I and II trials these candidate vaccines had failed to induce neutralizing antibodies against virus which had been isolated by co-culture with human peripheral blood mononuclear cells (PBMC). The aim of the present study was to determine assay conditions for detecting neutralization of primary HIV-1 isolates with sera from immunized individuals. We show that in two immunogenicity trials in rhesus macaques, recombinant HIV-1 SF2 gp120 induced antibodies which neutralized the primary HIV-1 SF13 isolate. Statistically significant in vitro neutralization required assays in which the incubation phase was extended. Sterile immunity was only seen with the highest level of neutralization, induced by a recombinant prime, peptide boost strategy. We recommend that neutralization assays with extended incubation phases should be used to monitor Phase III efficacy trials.
Collapse
Affiliation(s)
- David Davis
- Laboratory of Virology, Department of Microbiology, Institute of Tropical Medicine, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mooij P, Nieuwenhuis IG, Knoop CJ, Doms RW, Bogers WMJM, Ten Haaft PJF, Niphuis H, Koornstra W, Bieler K, Köstler J, Morein B, Cafaro A, Ensoli B, Wagner R, Heeney JL. Qualitative T-helper responses to multiple viral antigens correlate with vaccine-induced immunity to simian/human immunodeficiency virus infection. J Virol 2004; 78:3333-42. [PMID: 15016855 PMCID: PMC371051 DOI: 10.1128/jvi.78.7.3333-3342.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence is accumulating that CD4(+) T-helper (Th) responses play a critical role in facilitating effector responses which are capable of controlling and even preventing human immunodeficiency virus (HIV) infection. The present work was undertaken to determine whether immunization with multiple antigens influenced individual Th responses and increased protection relative to a single antigen. Rhesus macaques were primed with DNA and boosted (immune-stimulating complex-formulated protein) with a combination of regulatory and structural antigens (Tat-Env-Gag) or with Tat alone. Immunization with combined antigens reduced the magnitude of the responses to Tat compared to the single-antigen immunization. Interestingly, the Th immune responses to the individual antigens were noticeably different. To determine whether the qualitative differences in vaccine-induced Th responses correlated with vaccine efficacy, animals were challenged intravenously with simian/human immunodeficiency virus (strain SHIV(89.6p)) 2 months following the final immunization. Animals that developed combined Th1- and Th2-like responses to Gag and Th2 dominant Env-specific responses were protected from disease progression. Interestingly, one animal that was completely protected from infection had the strongest IFN-gamma and interleukin-2 (IL-2) responses prior to challenge, in addition to very strong IL-4 responses to Gag and Env. In contrast, animals with only a marked vaccine-induced Tat-specific Th2 response (no IFN-gamma) were not protected from infection or disease. These data support the rationale that effective HIV vaccine-induced immunity requires a combination of potent Th1- and Th2-like responses best directed to multiple antigens.
Collapse
Affiliation(s)
- Petra Mooij
- Department of Virology, Biomedical Primate Research Center, 2280 GH Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Izumi Y, Ami Y, Matsuo K, Someya K, Sata T, Yamamoto N, Honda M. Intravenous inoculation of replication-deficient recombinant vaccinia virus DIs expressing simian immunodeficiency virus gag controls highly pathogenic simian-human immunodeficiency virus in monkeys. J Virol 2004; 77:13248-56. [PMID: 14645581 PMCID: PMC296093 DOI: 10.1128/jvi.77.24.13248-13256.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To be effective, a vaccine against human immunodeficiency virus type 1 (HIV-1) must induce virus-specific T-cell responses and it must be safe for use in humans. To address these issues, we developed a recombinant vaccinia virus DIs vaccine (rDIsSIVGag), which is nonreplicative in mammalian cells and expresses the full-length gag gene of simian immunodeficiency virus (SIV). Intravenous inoculation of 10(6) PFU of rDIsSIVGag in cynomologus macaques induced significant levels of gamma interferon (IFN-gamma) spot-forming cells (SFC) specific for SIV Gag. Antigen-specific lymphocyte proliferative responses were also induced and were temporally associated with the peak of IFN-gamma SFC activity in each macaque. In contrast, macaques immunized with a vector control (rDIsLacZ) showed no significant induction of antigen-specific immune responses. After challenge with a highly pathogenic simian-human immunodeficiency virus (SHIV), CD4(+) T lymphocytes were maintained in the peripheral blood and lymphoid tissues of the immunized macaques. The viral set point in plasma was also reduced in these animals, which may be related to the enhancement of virus-specific intracellular IFN-gamma(+) CD8(+) cell numbers and increased antibody titers after SHIV challenge. These results demonstrate that recombinant DIs has potential for use as an HIV/AIDS vaccine.
Collapse
Affiliation(s)
- Yasuyuki Izumi
- AIDS Research Center. Division of Experimental Animal Research. Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640. Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Davis D, Donners H, Willems B, Vermoesen T, Heyndrickx L, Colebunders R, van der Groen G. Epitopes corresponding to the envelope genetic subtype are present on the surface of free virions of HIV-1 group M primary isolates and can be detected in neutralization assays with extended incubation phases. J Med Virol 2003; 71:332-42. [PMID: 12966537 DOI: 10.1002/jmv.10490] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The hypothesis is that there are neutralizing epitopes on the surface of free virions of human immunodeficiency virus type 1 (HIV-1) that correspond to the genetic subtype of the envelope glycoprotein. Assays with extended incubation and reduced absorption phases are required to demonstrate neutralization with antibodies to these epitopes. These assays quantify virus infectivity, rather than reductions in release of antigen into culture supernatants. Neutralizing antibodies reduce virus infectivity by at least 80%, as scored by the presence/absence of antigen released after 14 days in culture of mitogen-transformed peripheral blood mononuclear cells (PBMCs). The epitopes are shared within different subtypes of group M, but not group O, isolates. Individual plasma, selected from three, independent panels of seropositive individuals, cross-neutralize within each subtype as well as the combinations of A with C, B with D or G, and C with CRF01_AE. Isolates within subtype B show the greatest variation in their resistance to neutralization, ranging from highly sensitive to highly resistant. No highly sensitive subtype D isolates were identified. Isolates from subtypes A, C, and CRF01_AE were all resistant. The strategic implication for vaccine design is that antibodies to a limited number of epitopes can neutralize more than 90% of the HIV-1 isolates that are circulating currently in the world. Also, since only antibodies that produce an all-or-nothing loss in virus infectivity can reasonably be expected to prevent the viremic phase after in vivo infection, assays with extended incubation, and culture phases should be used to monitor current efficacy trials.
Collapse
Affiliation(s)
- David Davis
- Department of Microbiology, Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
35
|
Waterman PM, Kitabwalla M, Tikhonov I, Pauza CD. Simian/human immunodeficiency virus(89.6) expressing the chemokine genes MIP-1alpha, RANTES, or lymphotactin. Viral Immunol 2003; 16:35-44. [PMID: 12725687 DOI: 10.1089/088282403763635438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We constructed replication competent, attenuated, nef-deleted SHIV(89.6) that express the rhesus macaque chemokine genes MIP-1alpha, RANTES, or LTN from the nef region. The chemokine inserts were stable during several passages in CEMx174 cells and the viruses grew well in activated rhesus PBMC. Expression of virally encoded MIP-1alpha, RANTES, or LTN was detected in culture fluids from infected HOS CD4(+) CXCR4(+) cells, that were used because they have a low background production of these chemokines. The in vitro growth kinetics of all nef-deleted SHIV(89.6) were slower than the parental strain in both CEMx174 cells and rhesus PBMC. Rhesus macaques were susceptible to SHIV(89.6-MIP-1alpha), SHIV(89.6-RANTES), SHIV(89.6-LTN), and nef-deleted control SHIV(89.6-dLTN) infection via the intrarectal route using standard virus doses, and intact viruses were reisolated from infected animals throughout the interval of acute infection. SHIV expressing the chemokine genes MIP-1alpha, RANTES, or LTN may help determine the in vivo roles for these chemokines in modulating virus replication and disease.
Collapse
Affiliation(s)
- Paul M Waterman
- Institute of Human Virology, University of Maryland, Biotechnology Institute, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
36
|
Abel K, Compton L, Rourke T, Montefiori D, Lu D, Rothaeusler K, Fritts L, Bost K, Miller CJ. Simian-human immunodeficiency virus SHIV89.6-induced protection against intravaginal challenge with pathogenic SIVmac239 is independent of the route of immunization and is associated with a combination of cytotoxic T-lymphocyte and alpha interferon responses. J Virol 2003; 77:3099-118. [PMID: 12584336 PMCID: PMC149756 DOI: 10.1128/jvi.77.5.3099-3118.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Attenuated primate lentivirus vaccines provide the most consistent protection against challenge with pathogenic simian immunodeficiency virus (SIV). Thus, they provide an excellent model to examine the influence of the route of immunization on challenge outcome and to study vaccine-induced protective anti-SIV immune responses. In the present study, rhesus macaques were immunized with live nonpathogenic simian-human immunodeficiency virus (SHIV) 89.6 either intravenously or mucosally (intranasally or intravaginally) and then challenged intravaginally with pathogenic SIVmac239. The route of immunization did not affect mucosal challenge outcome after a prolonged period of systemic infection with the nonpathogenic vaccine virus. Further, protection from the SIV challenge was associated with the induction of multiple host immune effector mechanisms. A comparison of immune responses in vaccinated-protected and vaccinated-unprotected animals revealed that vaccinated-protected animals had higher frequencies of SIV Gag-specific cytotoxic T lymphocytes and gamma interferon (IFN-gamma)-secreting cells during the acute phase postchallenge. Vaccinated-protected animals also had a more pronounced increase in peripheral blood mononuclear cell IFN-alpha mRNA levels than did the vaccinated-unprotected animals in the first few weeks after challenge. Thus, innate as well as cellular anti-SIV immune responses appeared to contribute to the SHIV89.6-induced protection against intravaginal challenge with pathogenic SIVmac239.
Collapse
Affiliation(s)
- Kristina Abel
- Center for Comparative Medicine, California National Primate Research Center, School of Veterinary Medicine, University of California-Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zanotto C, Elli V, Basavecchia V, Brivio A, Paganini M, Pinna D, Vicenzi E, De Giuli Morghen C, Radaelli A. Evaluation in rabbits of different anti-SHIV vaccine strategies based on DNA/fowlpox priming and virus-like particle boosting. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2003; 35:59-65. [PMID: 12589958 DOI: 10.1111/j.1574-695x.2003.tb00649.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two different prime-boost immunization protocols were tested in rabbits and their immune response was evaluated and compared with the final aim of defining a vaccine strategy that might be able to protect non-human primates from infection with the pathogenic simian/human immunodeficiency virus, SHIV(89.6P). The two regimens were based on three priming immunizations with either an expression plasmid plus a fowlpox (FP) recombinant vector or with two FP recombinant vectors, each one expressing either the SIV(mac239) gag/pol or the HIV-1env(89.6P) genes. In both protocols, priming immunizations were followed by two boosts with SHIV-mimicking virus-like particles (VLP). A complete SHIV-specific response was observed in all animals. Interestingly, the DNA vaccine was three to 10 times more efficient than the FP recombinant in inducing an anti-gag humoral response. Real-time PCR confirmed the memory effect on T-cell subsets secreting interleukin-4 and interferon-gamma, as a consequence of stimulation of both arms of the immune system. Although both protocols were almost equally effective in eliciting homologous neutralizing antibodies and highlighted the efficacy of VLP administration for boosting, protocol A seemed to be more effective in promoting a balanced T-cell memory immune response and appears more promising for vaccine purposes.
Collapse
Affiliation(s)
- Carlo Zanotto
- Department of Medical Pharmacology, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bergmeier LA, Wang Y, Lehner T. The role of immunity in protection from mucosal SIV infection in macaques. Oral Dis 2002; 8 Suppl 2:63-8. [PMID: 12164663 DOI: 10.1034/j.1601-0825.2002.00014.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The need for an effective vaccine against HIV has prompted a refocusing of attention on mucosal immunity. More than 75% of all infections are acquired across a mucosal surface. It is therefore a prerequisite for a vaccine to target directly the mucosal tissues or indirectly the regional lymph nodes in order to prevent or control viral replication. Although mucosal immunization has induced responses at the genital or rectal surfaces, immune mechanisms alone have not been shown to be sufficient to contain infections in macaques. A growing body of evidence suggests that a dual mechanism may be required for effective mucosal protection, mediated by specific CD4 and CD8 T cell and antibody responses to the immunizing agents, plus innate antiviral factors and beta chemokines that down-regulate CCR5 coreceptors. Targeted iliac lymph node immunization with SIV gp 120 and p27 in alum prevents SIV infection or significantly decreases the viral load when immunized macaques were challenged with SIV by the rectal route. Indeed, in addition to specific immunity, including significant SIgA antibody secreting cells in the iliac lymph nodes, CD8-suppressor factor and the 3beta chemokines (RANTES, MIP-1alpha and MIP-1beta) are significantly associated with protection against rectal mucosal SIV infection.
Collapse
Affiliation(s)
- L A Bergmeier
- Division of Oral Medicine, Pathology, Microbiology and Immunology, Guy's Kings and St Thomas Hospitals and Schools of Medicine and Dentistry, London, UK.
| | | | | |
Collapse
|
39
|
Verrier B, Le Grand R, Ataman-Onal Y, Terrat C, Guillon C, Durand PY, Hurtrel B, Aubertin AM, Sutter G, Erfle V, Girard M. Evaluation in rhesus macaques of Tat and rev-targeted immunization as a preventive vaccine against mucosal challenge with SHIV-BX08. DNA Cell Biol 2002; 21:653-8. [PMID: 12396607 DOI: 10.1089/104454902760330183] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent evidence suggests that a CD8-mediated cytotoxic T-cell response against the regulatory proteins of human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) may control infection after pathogenic virus challenge. Here, we evaluated whether vaccination with Tat or Tat and Rev could significantly reduce viral load in nonhuman primates. Rhesus macaques were primed with Semliki forest Virus (SFV) expressing HIV-1 tat (SFV-tat) and HIV-1 rev (SFV-rev) and boosted with modified vaccinia virus Ankara (MVA) expressing tat and rev. A second group of monkey was primed with SFV-tat only and boosted with MVA-tat. A third group received a tat and rev DNA/MVA prime-boost vaccine regimen. Monitoring of anti-Tat and anti-Rev antibody responses or antigen-specific IFN-gamma production, as measured by enzyme-linked immunospot assays revealed no clear differences between the three groups. These results suggest that priming with either DNA or SFV seemed to be equivalent, but the additive or synergistic effect of a rev vaccine could not be clearly established. The animals were challenged by the rectal route 9 weeks after the last booster immunization, using 10 MID(50) of a SHIV-BX08 stock. Postchallenge follow-up of the monkeys included testing seroconversion to Gag and Env antigens, measuring virus infectivity in PBMC by cocultivation with noninfected human cells, and monitoring of plasma viral load. None of the animals was protected from infection as assessed by PCR, but peak viremia was reduced more than 200-fold compared to sham controls in one third (6/18) of vaccinated macaques, whatever the vaccine regimen they received. Interestingly, among these six protected animals four did not seroconvert. Altogether, these results clearly indicated that the addition of early HIV proteins like Tat and Rev in a multicomponent preventive vaccine including structural proteins like Env or Gag may be beneficial in preventive vaccinal strategies.
Collapse
|
40
|
Ahmed RKS, Makitalo B, Karlen K, Nilsson C, Biberfeld G, Thorstensson R. Spontaneous production of RANTES and antigen-specific IFN-gamma production in macaques vaccinated with SHIV-4 correlates with protection against SIVsm challenge. Clin Exp Immunol 2002; 129:11-8. [PMID: 12100017 PMCID: PMC1906430 DOI: 10.1046/j.1365-2249.2002.01894.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The beta-chemokines, RANTES, MIP-1alpha and MIP-1beta, have been implicated as being some of the protective factors in the immune response against human immunodeficiency virus (HIV) infection. We have presented data previously indicating that these chemokines also play a role in protective immunity against HIV/SIV infection in macaques. The aim of this study was to investigate the production of beta-chemokines in eight cynomolgus macaques vaccinated with non-pathogenic SHIV-4 in relation to protection against pathogenic SIVsm challenge. Four control animals were also included in the study. Two of the vaccinated monkeys were completely protected and one was partially protected against the challenge virus. The monkeys that resisted infectious SIVsm virus challenge showed higher spontaneous beta-chemokine production by peripheral blood mononuclear cells and had higher numbers of antigen-induced IFN-gamma secreting cells compared to the non-protected animals. Our observations support our previous findings that the genetic background of the host and/or environmental factors are involved in the chemokine production and that beta-chemokines contribute to protection against HIV/SIV infection.
Collapse
Affiliation(s)
- R K S Ahmed
- Swedish Institute for Infectious Disease Control and Microbiology and Tumorbiology Centre, Karolinska Institute, Solna, Sweden.
| | | | | | | | | | | |
Collapse
|
41
|
Lehner T. The role of CCR5 chemokine ligands and antibodies to CCR5 coreceptors in preventing HIV infection. Trends Immunol 2002; 23:347-51. [PMID: 12103354 DOI: 10.1016/s1471-4906(02)02252-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Thomas Lehner
- Peter Gorer Department of Immunobiology, Guy's, King's & St Thomas' School of Medicine, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
42
|
Babaahmady K, Bergmeier LA, Whittall T, Singh M, Wang Y, Lehner T. A comparative investigation of CC chemokines and SIV suppressor factors generated by CD8+ and CD4+ T cells and CD14+ monocytes. J Immunol Methods 2002; 264:1-10. [PMID: 12191503 DOI: 10.1016/s0022-1759(02)00002-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The capacity of CD8+ and CD4+ T cells and CD14+ monocytes to generate the CC chemokines, RANTES, MIP-1alpha and MIP-1beta, and SIV suppressor factors were studied using cells separated from PBMC of macaques immunized with the 70-kDa heat shock protein (HSP70). Unimmunized macaques showed low levels of the three CC chemokines and SIV-SF, and they showed little variation between PBMC and the two subsets of T cells stimulated with PHA. Immunization with HSP70 elicited an increase in the in vitro concentration of each of the three CC chemokines and SF. This was found with PBMC, CD4+ and CD8+ T cells and to a lesser extent with monocytes, when conventionally separated enriched cell subsets were examined from the same PBMC. However, the concentrations of the three CC chemokines derived from highly purified cell-sorted populations (>95%) were greatly increased, as compared with the enriched cell subsets. The concentration of each of the three chemokines was highest for CD8+ T cells, decreased with CD4+ T cells and was lowest with the CD14+ monocytes, but the latter were not stimulated. Neutralization assays with antibodies to the three CC chemokines showed that the antiviral activity generated by the four populations of cells could be largely accounted for by the three CC chemokines. The results of this comparative study suggests that CD8+ as well as CD4+ T cells and CD14+ monocytes generate the three CC chemokines and SIV-SF when stimulated with a mitogen, and that the baseline innate level can be upregulated by adaptive immune responses to a specific antigen.
Collapse
Affiliation(s)
- Kaboutar Babaahmady
- Peter Gorer Department of Immunobiology, Guy's, King's and St. Thomas' Hospital Medical Schools, London, UK
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Vaccine-induced immunity to HIV/AIDS is a world wide health priority and a necessity in order to prevent or curb the transmission of this infection in the different human populations at risk. Failing to prevent infection, it would be desirable to generate sufficient immunity to control viremia in individuals which become infected, given that this would provide sufficient protection to prevent progression to AIDS. From several different pre-clinical settings data revealed that although CTL or neutralising antibodies were necessary immune responses for protection from infection, they were alone or together insufficient for providing solid protective immunity. What was invariably necessary was a strong specific CD4(+) T-cell response. Protective T-helper responses were not skewed towards an IFN-gamma (Th1) or IL-4 (Th2) type response, but were balanced and characterised by the presence of a strong Ag-specific IL-2 response.
Collapse
Affiliation(s)
- Jonathan Luke Heeney
- Department of Virology, Biomedical Primate Research Centre, P.O. Box 3306, 2280-GH Rijswijk, The Netherlands.
| |
Collapse
|
44
|
Iosef C, Van Nguyen T, Jeong KI, Bengtsson K, Morein B, Kim Y, Chang KO, Azevedo MSP, Yuan L, Nielsen P, Saif LJ. Systemic and intestinal antibody secreting cell responses and protection in gnotobiotic pigs immunized orally with attenuated Wa human rotavirus and Wa 2/6-rotavirus-like-particles associated with immunostimulating complexes. Vaccine 2002; 20:1741-53. [PMID: 11906761 DOI: 10.1016/s0264-410x(02)00031-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The undesirable side effects and variable efficacy of some oral live rotavirus vaccines in infants have necessitated alternative vaccine approaches. We evaluated a recombinant RFVP2/WaVP6 rotavirus-like-particle (2/6VLP) oral vaccine, using an immunostimulating complex (ISCOM) matrix as adjuvant, in a gnotobiotic (Gn) pig model of human rotavirus (HRV) disease. The 2/6VLPs adhered to the ISCOM-matrix (2/6VLP-ISCOM ) and were antigenic, but they failed to induce protection. However, when combined with attenuated (Att) HRV for oral priming, the 2/6VLP-ISCOM vaccine was effective as a booster and induced partial protection against virulent Wa HRV. The 250 microg 2/6VLP dose was more effective than 100 microg. The highest mean numbers of IgA antibody secreting cells evaluated by ELISPOT in intestinal lymphoid tissues were in pigs receiving AttHRV+2/6VLP-ISCOM or three doses of AttHRV and were associated with the highest protection rates.
Collapse
Affiliation(s)
- Cristiana Iosef
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691-4096, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mooij P, Heeney JL. Rational development of prophylactic HIV vaccines based on structural and regulatory proteins. Vaccine 2001; 20:304-21. [PMID: 11672892 DOI: 10.1016/s0264-410x(01)00373-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The severity of the AIDS epidemic clearly emphasises the urgent need to expedite HIV vaccine candidates into clinical trials. Prophylactic HIV vaccine candidates have been evaluated in non-human primates. Based on specific proof of principle studies the first phase III clinical studies have recently begun in humans. However, a truly effective HIV vaccine is not yet at hand and many problems related to specific properties of the virus remain to be overcome. Previously proven empirical approaches have largely failed and now rational thinking based on an understanding of immunity to lentiviral infections is needed. This review addresses the scientific problems and complications facing the development of an HIV vaccine as well as the possible strategies currently available to overcome these problems. Recent attention has focussed on identifying the immune correlates and mechanisms of protection from either HIV infection or protection from disease progression. Based on these observations, the logic and rational behind the development of multiple component vaccine strategies are highlighted.
Collapse
Affiliation(s)
- P Mooij
- Department of Virology, Biomedical Primate Research Centre, P.O. Box 3306, 2288 Rijswijk, The Netherlands
| | | |
Collapse
|
46
|
Kamin-Lewis R, Abdelwahab SF, Trang C, Baker A, DeVico AL, Gallo RC, Lewis GK. Perforin-low memory CD8+ cells are the predominant T cells in normal humans that synthesize the beta -chemokine macrophage inflammatory protein-1beta. Proc Natl Acad Sci U S A 2001; 98:9283-8. [PMID: 11470920 PMCID: PMC55412 DOI: 10.1073/pnas.161298998] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The synthesis of antiviral beta-chemokines has joined cytolysis as a potential mechanism for the control of HIV-1 infection by CD8(+) T cells. Recent evidence suggests that these two effector functions can diverge in some individuals infected with HIV-1; however, little is known about the CD8(+) T cell subsets in normal individuals that synthesize antiviral beta-chemokines. In this report, we have used mutliparameter flow cytometry to characterize the T cell subsets that secrete the antiviral beta-chemokine macrophage inflammatory protein (MIP)-1beta. These studies have shown: (i) CD8(+) cells are the predominant T cell subset that synthesizes MIP-1beta; (ii) MIP-1beta and IFN-gamma are synthesized congruently in most CD8(+) T cells; however, significant numbers of these cells synthesize only one of these effector molecules; (iii) approximately 60% of the CD8(+) T cells that synthesize MIP-1beta lack perforin; (iv) MIP-1beta is synthesized with approximately equal frequency by CD28(+) and CD28(-) subpopulations of CD8(+) T cells; (v) MIP-1beta is synthesized by three distinct CD8(+) T cell subsets defined by the expression of CD45R0 and CD62L; and (vi) MIP-1beta is not synthesized in short-term cultures of naive CD8(+) T cells. These results demonstrate substantial subset heterogeneity of MIP-1beta synthesis among CD8(+) T cells and suggest that these subsets should be evaluated as correlates of protective immunity against HIV-1.
Collapse
Affiliation(s)
- R Kamin-Lewis
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Davis D, Trischmann H, Stephens DM, Lachmann PJ. Antibodies raised to short synthetic peptides with sequences derived from HIV-1 SF2 gp120 can both neutralize and enhance HIV-1 SF13: a later variant isolated from the same host. J Med Virol 2001; 64:207-16. [PMID: 11424106 DOI: 10.1002/jmv.1038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
HIV-1 SF13 emerged in a patient with immunity to HIV-1 SF2. This study determined the effect of antibodies raised to HIV-1 SF2 on the replication of the later variant. Antisera in rats were raised previously to a complete set of overlapping, synthetic 15mer peptides following the sequence of HIV-1 SF2 gp120. These sera have now been used in neutralization and enhancement assays against viruses derived from molecular clones of both variants. The sets of peptides inducing neutralizing antibodies to the two variants overlap. Antibodies to the third variable region of HIV-1 SF2 only neutralize the homologous virus whereas those to the second and fourth variable regions neutralize both variants. In contrast, the sets of major epitopes involved in enhancement do not overlap. Epitopes for both variants form two clusters when superimposed on the conformation of the conserved regions. To determine if antibodies with the potential to enhance or neutralize HIV-1 SF2 change over time in infected individuals sera from chimpanzees were used because no material was still available from the original patient. Antibodies to HIV-1 SF2 neutralizing epitopes and HIV-1 SF13 enhancing epitopes were present in the circulation of chimpanzees infected with HIV-1 SF2. Once antibodies to the neutralizing epitopes were induced they persisted whereas antibodies to the enhancing epitopes varied with time after infection. Conditions may therefore exist within individual hosts where not only neutralizing but also enhancing antibodies have the potential to contribute to the selection pressure operating on the circulating population of polymorphic variants.
Collapse
Affiliation(s)
- D Davis
- Molecular Immunopathology Unit, MRC Centre, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
48
|
Scharf O, Golding H, King LR, Eller N, Frazier D, Golding B, Scott DE. Immunoglobulin G3 from polyclonal human immunodeficiency virus (HIV) immune globulin is more potent than other subclasses in neutralizing HIV type 1. J Virol 2001; 75:6558-65. [PMID: 11413323 PMCID: PMC114379 DOI: 10.1128/jvi.75.14.6558-6565.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Passive antibody prophylaxis against human immunodeficiency virus type 1 (HIV-1) has been accomplished in primates, suggesting that this strategy may prove useful in humans. While antibody specificity is crucial for neutralization, other antibody characteristics, such as subclass, have not been explored. Our objective was to compare the efficiencies of immunoglobulin G (IgG) subclasses from polyclonal human HIV immune globulin (HIVIG) in the neutralization of HIV-1 strains differing in coreceptor tropism. IgG1, IgG2, and IgG3 were enriched from HIVIG by using protein A-Sepharose. All three subclasses bound major HIV-1 proteins, as shown by Western blot assay and enzyme-linked immunosorbent assay. In HIV-1 fusion assays using X4, R5, or X4R5 envelope-expressing effector cells, IgG3 more efficiently blocked fusion. In neutralization assays with cell-free viruses using X4 (LAI, IIIB), R5 (BaL), and X4R5 (DH123), a similar hierarchy of neutralization was found: IgG3 > IgG1 > IgG2. IgG3 has a longer, more flexible hinge region than the other subclasses. To test whether this is important, IgG1 and IgG3 were digested with pepsin to generate F(ab')(2) fragments or with papain to generate Fab fragments. IgG3 F(ab')(2) fragments were still more efficient in neutralization than F(ab')(2) of IgG1. However, Fab fragments of IgG3 and IgG1 demonstrated equivalent neutralization capacities and the IgG3 advantage was lost. These results suggest that the IgG3 hinge region confers enhanced HIV-neutralizing ability. Enrichment and stabilization of IgG3 may therefore lead to improved HIVIG preparations. The results of this study have implications for the improvement of passive immunization with polyclonal or monoclonal antibodies and suggest that HIV-1 vaccines which induce high-titer IgG3 responses could be advantageous.
Collapse
Affiliation(s)
- O Scharf
- Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Zaitseva M, King LR, Manischewitz J, Dougan M, Stevan L, Golding H, Golding B. Human peripheral blood T cells, monocytes, and macrophages secrete macrophage inflammatory proteins 1alpha and 1beta following stimulation with heat-inactivated Brucella abortus. Infect Immun 2001; 69:3817-26. [PMID: 11349047 PMCID: PMC98399 DOI: 10.1128/iai.69.6.3817-3826.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat-killed Brucella abortus (HBa) has been proposed as a carrier for therapeutic vaccines for individuals with immunodeficiency, due to its abilities to induce interleukin-2 (IL-2) and gamma interferon (IFN-gamma) in both CD4(+) and CD8(+) T cells and to upregulate antigen-presenting cell functions (including IL-12 production). In the current study, we investigated the ability of HBa or lipopolysaccharide isolated from HBa (LPS-Ba) to elicit beta-chemokines, known to bind to the human immunodeficiency virus type 1 (HIV-1) coreceptor CCR5 and to block viral cell entry. It was found that human peripheral blood mononuclear cells secreted beta-chemokines following stimulation with HBa, and this effect could not be blocked by anti-IFN-gamma neutralizing antibodies. Among purified T cells, macrophage inflammatory protein 1alpha and 1beta (MIP-1alpha and MIP-1beta, respectively) secretion was observed primarily in human CD8(+) T cells. The kinetics of beta-chemokine induction in T cells were slow (3 to 4 days). The majority of beta-chemokine-producing CD8(+) T cells also produced IFN-gamma following HBa stimulation, as determined by triple-color intracellular staining. A significant number of CD8(+) T cells contained stored MIP-1beta that was released after HBa stimulation. Both HBa and LPS-Ba stimulated high levels of MIP-1alpha and MIP-1beta production in elutriated monocytes and even higher levels in macrophages. In these cells, beta-chemokine mRNA was upregulated within 30 min and proteins were secreted within 4 h of stimulation. The monocyte- and macrophage-derived beta-chemokines were sufficient to block CCR5-dependent HIV-1 envelope-mediated cell fusion. These data suggest that, in addition to the ability of HBa to elicit antigen-specific humoral and cellular immune responses, HBa-conjugated HIV-1 proteins or peptides would also generate innate chemokines with antiviral activity that could limit local viral spread during vaccination in vivo.
Collapse
Affiliation(s)
- M Zaitseva
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Sjölander A, Drane D, Maraskovsky E, Scheerlinck JP, Suhrbier A, Tennent J, Pearse M. Immune responses to ISCOM formulations in animal and primate models. Vaccine 2001; 19:2661-5. [PMID: 11257406 DOI: 10.1016/s0264-410x(00)00497-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ISCOMs are typically 40 nm cage-like structures comprising antigen, saponin, cholesterol and phospholipid. ISCOMs have been shown to induce antibody responses and activate T helper cells and cytolytic T lymphocytes in a number of animal species, including non-human primates. Recent clinical studies have demonstrated that ISCOMs are also able to induce antibody and cellular immune responses in humans. This review describes the current understanding of the ability of ISCOMs to induce immune responses and the mechanisms underlying this property. Recent progress in the characterisation and manufacture of ISCOMs will also be discussed.
Collapse
Affiliation(s)
- A Sjölander
- CSL Limited, Immunology Department, 45 Poplar Road, Parkville, Victoria 3052, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|