1
|
Perotti S, Mantegazza G, Pierallini E, Kirika N, Duncan R, Telesca N, Sarrica A, Guglielmetti S. Human in vivo assessment of the survival and germination of Heyndrickxia coagulans SNZ1969 spores delivered via gummy candies. Curr Res Food Sci 2024; 9:100793. [PMID: 39071473 PMCID: PMC11278553 DOI: 10.1016/j.crfs.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 07/30/2024] Open
Abstract
Confectionary products hold promise as unconventional food carriers for probiotic microorganisms. This study explored the delivery of Heyndrickxia coagulans SNZ1969, a spore-forming probiotic, using gummy candies. In this study, we prepared gummy candies containing bacterial spores with a viable count that remained stable during a 24-month shelf-life period, meeting the label claim of at least one billion CFUs per serving (24 g). Then, we carried out an intervention trial involving 24 healthy adults who consumed one serving per day for two weeks followed by an additional two weeks of follow-up. Fecal samples were collected and analyzed with a protocol that allowed the viable counts of SNZ1969, both in spore and vegetative forms. The obtained results revealed that bacterial spores germinated in all volunteers. SNZ1969 persistence in the gut was monitored for two weeks after the end of gummy candy consumption, indicating its potential for prolonged colonization. These findings highlight the potential of unconventional food carriers for probiotic delivery and suggest that spore-forming probiotics can be metabolically active in the human intestine. These findings provide information for the development of food products containing spore-forming probiotics and their potential benefits in promoting gastrointestinal health.
Collapse
Affiliation(s)
- Susanna Perotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Giacomo Mantegazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Elena Pierallini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | | | - Robin Duncan
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Nicolò Telesca
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | | | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| |
Collapse
|
2
|
Belaouni HA, Yekkour A, Zitouni A, Meklat A. Organization, conservation, and diversity of biosynthetic gene clusters in Bacillus sp. BH32 and its closest relatives in the Bacillus cereus group. FEMS Microbiol Lett 2024; 371:fnae071. [PMID: 39256169 DOI: 10.1093/femsle/fnae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024] Open
Abstract
This study explores the organization, conservation, and diversity of biosynthetic gene clusters (BGCs) among Bacillus sp. strain BH32, a plant-beneficial bacterial endophyte, and its closest nontype Bacillus cereus group strains. BGC profiles were predicted for each of the 17 selected strains using antiSMASH, resulting in the detection of a total of 198 BGCs. We quantitatively compared the BGCs and analysed their conservation, distribution, and evolutionary relationships. The study identified both conserved and singleton BGCs across the studied Bacillus strains, with minimal variation, and discovered two major BGC synteny blocks composed of homologous BGCs conserved within the B. cereus group. The identified BGC synteny blocks provide insight into the evolutionary relationships and diversity of BGCs within this complex group.
Collapse
Affiliation(s)
- Hadj Ahmed Belaouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, 16050, Algeria
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast BT9 5PX, Northern Ireland, United Kingdom
| | - Amine Yekkour
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, 16050, Algeria
| | - Abdelghani Zitouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, 16050, Algeria
| | - Atika Meklat
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, 16050, Algeria
| |
Collapse
|
3
|
Jenull S, Bauer T, Silbermayr K, Dreer M, Stark TD, Ehling-Schulz M. The toxicological spectrum of the Bacillus cereus toxin cereulide points towards niche-specific specialisation. Environ Microbiol 2023; 25:2231-2249. [PMID: 37354053 DOI: 10.1111/1462-2920.16454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Most microbes share their environmental niches with very different forms of life thereby engaging in specialised relationships to enable their persistence. The bacterium Bacillus cereus occurs ubiquitously in the environment with certain strain backgrounds causing foodborne and opportunistic infections in humans. The emetic lineage of B. cereus is capable of producing the toxin cereulide, which evokes emetic illnesses. Although food products favouring the accumulation of cereulide are known, the ecological role of cereulide and the environmental niche of emetic B. cereus remain elusive. To better understand the ecology of cereulide-producing B. cereus, we systematically assayed the toxicological spectrum of cereulide on a variety of organisms belonging to different kingdoms. As cereulide is a potassium ionophore, we further tested the effect of environmental potassium levels on the action of cereulide. We found that adverse effects of cereulide exposure are species-specific, which can be exacerbated with increased environmental potassium. Additionally, we demonstrate that cereulide is produced within an insect cadaver indicating its potential ecological function for a saprophytic lifestyle. Collectively, distinct cereulide susceptibilities of other organisms may reflect its role in enabling competitive niche specialization of emetic B. cereus.
Collapse
Affiliation(s)
- Sabrina Jenull
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tobias Bauer
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katja Silbermayr
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maximilian Dreer
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Timo D Stark
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Freising, Germany
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Taylor-Joyce G, Manoharan S, Brooker TA, Hernández-Rodríguez CS, Baillie L, Oyston PCF, Hapeshi A, Waterfield NR. The influence of extrachromosomal elements in the anthrax "cross-over" strain Bacillus cereus G9241. Front Microbiol 2023; 14:1113642. [PMID: 37213513 PMCID: PMC10196113 DOI: 10.3389/fmicb.2023.1113642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/31/2023] [Indexed: 05/23/2023] Open
Abstract
Bacillus cereus G9241 was isolated from a welder who survived a pulmonary anthrax-like disease. Strain G9241 carries two virulence plasmids, pBCX01 and pBC210, as well as an extrachromosomal prophage, pBFH_1. pBCX01 has 99.6% sequence identity to pXO1 carried by Bacillus anthracis and encodes the tripartite anthrax toxin genes and atxA, a mammalian virulence transcriptional regulator. This work looks at how the presence of pBCX01 and temperature may affect the lifestyle of B. cereus G9241 using a transcriptomic analysis and by studying spore formation, an important part of the B. anthracis lifecycle. Here we report that pBCX01 has a stronger effect on gene transcription at the mammalian infection relevant temperature of 37°C in comparison to 25°C. At 37°C, the presence of pBCX01 appears to have a negative effect on genes involved in cell metabolism, including biosynthesis of amino acids, whilst positively affecting the transcription of many transmembrane proteins. The study of spore formation showed B. cereus G9241 sporulated rapidly in comparison to the B. cereus sensu stricto type strain ATCC 14579, particularly at 37°C. The carriage of pBCX01 did not affect this phenotype suggesting that other genetic elements were driving rapid sporulation. An unexpected finding of this study was that pBFH_1 is highly expressed at 37°C in comparison to 25°C and pBFH_1 expression leads to the production of Siphoviridae-like phage particles in the supernatant of B. cereus G9241. This study provides an insight on how the extrachromosomal genetic elements in B. cereus G9241 has an influence in bacterial phenotypes.
Collapse
Affiliation(s)
- Grace Taylor-Joyce
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Shathviga Manoharan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Thomas A. Brooker
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Les Baillie
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Alexia Hapeshi
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Nicholas R. Waterfield
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- *Correspondence: Nicholas R. Waterfield,
| |
Collapse
|
5
|
A Comparative Analysis of the Core Proteomes within and among the Bacillus subtilis and Bacillus cereus Evolutionary Groups Reveals the Patterns of Lineage- and Species-Specific Adaptations. Microorganisms 2022; 10:microorganisms10091720. [PMID: 36144322 PMCID: PMC9505155 DOI: 10.3390/microorganisms10091720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
By integrating phylogenomic and comparative analyses of 1104 high-quality genome sequences, we identify the core proteins and the lineage-specific fingerprint proteins of the various evolutionary clusters (clades/groups/species) of the Bacillus genus. As fingerprints, we denote those core proteins of a certain lineage that are present only in that particular lineage and absent in any other Bacillus lineage. Thus, these lineage-specific fingerprints are expected to be involved in particular adaptations of that lineage. Intriguingly, with a few notable exceptions, the majority of the Bacillus species demonstrate a rather low number of species-specific fingerprints, with the majority of them being of unknown function. Therefore, species-specific adaptations are mostly attributed to highly unstable (in evolutionary terms) accessory proteomes and possibly to changes at the gene regulation level. A series of comparative analyses consistently demonstrated that the progenitor of the Cereus Clade underwent an extensive genomic expansion of chromosomal protein-coding genes. In addition, the majority (76–82%) of the B. subtilis proteins that are essential or play a significant role in sporulation have close homologs in most species of both the Subtilis and the Cereus Clades. Finally, the identification of lineage-specific fingerprints by this study may allow for the future development of highly specific vaccines, therapeutic molecules, or rapid and low-cost molecular tests for species identification.
Collapse
|
6
|
Lin Y, Xu X, Maróti G, Strube ML, Kovács ÁT. Adaptation and phenotypic diversification of Bacillus thuringiensis biofilm are accompanied by fuzzy spreader morphotypes. NPJ Biofilms Microbiomes 2022; 8:27. [PMID: 35418164 PMCID: PMC9007996 DOI: 10.1038/s41522-022-00292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/19/2022] [Indexed: 11/12/2022] Open
Abstract
Bacillus cereus group (Bacillus cereus sensu lato) has a diverse ecology, including various species that produce biofilms on abiotic and biotic surfaces. While genetic and morphological diversification enables the adaptation of multicellular communities, this area remains largely unknown in the Bacillus cereus group. In this work, we dissected the experimental evolution of Bacillus thuringiensis 407 Cry- during continuous recolonization of plastic beads. We observed the evolution of a distinct colony morphotype that we named fuzzy spreader (FS) variant. Most multicellular traits of the FS variant displayed higher competitive ability versus the ancestral strain, suggesting an important role for diversification in the adaptation of B. thuringiensis to the biofilm lifestyle. Further genetic characterization of FS variant revealed the disruption of a guanylyltransferase gene by an insertion sequence (IS) element, which could be similarly observed in the genome of a natural isolate. The evolved FS and the deletion mutant in the guanylyltransferase gene (Bt407ΔrfbM) displayed similarly altered aggregation and hydrophobicity compared to the ancestor strain, suggesting that the adaptation process highly depends on the physical adhesive forces.
Collapse
Affiliation(s)
- Yicen Lin
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Xinming Xu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, ELKH, 6726, Szeged, Hungary
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
7
|
Abstract
Microorganisms efficiently colonize the external and internal surfaces of the animal body establishing mutually beneficial interactions and forming site- and individual-specific microbiota. The degradation of complex polysaccharides in the animal gut, the production of useful compounds, protection against pathogenic microorganisms and contribution to the development of an efficient immune system are the main beneficial effects of a balanced microbiota. A dysbiosis, an imbalanced composition of the microbiota, has been associated with a large number of diseases from gastro-intestinal or urogenital disorders to allergies, cardiovascular and autoimmune diseases and even to the onset of certain cancers. A growing body of evidence has indicated that probiotic treatments, aimed at maintaining or rebalancing the microbiota, are useful to treat/prevent those illnesses. Lactic Acid Bacteria and Bifidobacteria are the most common microbes used in probiotic preparations; however, other bacteria and yeast cells are also widely used in commercial products. Here we focus on the use of bacterial spore formers as probiotics. Spore formers have been marketed as probiotics for over 50 years and are now extensively used for the treatment of intestinal disorders and as dietary supplements in humans, as growth promoters and competitive exclusion agents in animals.
Collapse
|
8
|
Belousova ME, Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Dissecting the Environmental Consequences of Bacillus thuringiensis Application for Natural Ecosystems. Toxins (Basel) 2021; 13:toxins13050355. [PMID: 34065665 PMCID: PMC8155924 DOI: 10.3390/toxins13050355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Bacillus thuringiensis (Bt), a natural pathogen of different invertebrates, primarily insects, is widely used as a biological control agent. While Bt-based preparations are claimed to be safe for non-target organisms due to the immense host specificity of the bacterium, the growing evidence witnesses the distant consequences of their application for natural communities. For instance, upon introduction to soil habitats, Bt strains can affect indigenous microorganisms, such as bacteria and fungi, and further establish complex relationships with local plants, ranging from a mostly beneficial demeanor, to pathogenesis-like plant colonization. By exerting a direct effect on target insects, Bt can indirectly affect other organisms in the food chain. Furthermore, they can also exert an off-target activity on various soil and terrestrial invertebrates, and the frequent acquisition of virulence factors unrelated to major insecticidal toxins can extend the Bt host range to vertebrates, including humans. Even in the absence of direct detrimental effects, the exposure to Bt treatment may affect non-target organisms by reducing prey base and its nutritional value, resulting in delayed alleviation of their viability. The immense phenotypic plasticity of Bt strains, coupled with the complexity of ecological relationships they can engage in, indicates that further assessment of future Bt-based pesticides' safety should consider multiple levels of ecosystem organization and extend to a wide variety of their inhabitants.
Collapse
Affiliation(s)
- Maria E. Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
9
|
Bacillus anthracis chain length, a virulence determinant, is regulated by membrane localized serine/threonine protein kinase PrkC. J Bacteriol 2021; 203:JB.00582-20. [PMID: 33753466 PMCID: PMC8117516 DOI: 10.1128/jb.00582-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthrax is a zoonotic disease caused by Bacillus anthracis, a spore-forming pathogen that displays a chaining phenotype. It has been reported that the chaining phenotype acts as a virulence factor in B. anthracis In this study, we identify a serine/threonine protein kinase of B. anthracis, PrkC, the only kinase localized at the bacteria-host interface, as a determinant of B. anthracis chain length. In vitro, prkC disruption strain (BAS ΔprkC) grew as shorter chains throughout the bacterial growth cycle. A comparative analysis between the parent strain and BAS ΔprkC indicated that the levels of proteins, BslO and Sap, associated with the regulation of the bacterial chain length, were upregulated in BAS ΔprkC BslO is a septal murein hydrolase that catalyzes daughter cell separation and Sap is an S-layer structural protein required for the septal localization of BslO. PrkC disruption also has a significant effect on bacterial growth, cell wall thickness, and septa formation. Upregulation of ftsZ in BAS ΔprkC was also observed. Altogether, our results indicate that PrkC is required for maintaining optimum growth, cell wall homeostasis and most importantly - for the maintenance of the chaining phenotype.IMPORTANCEChaining phenotype acts as a virulence factor in Bacillus anthracis This is the first study that identifies a 'signal transduction protein' with an ability to regulate the chaining phenotype in Bacillus anthracis We show that the disruption of the lone surface-localized serine/threonine protein kinase, PrkC, leads to the shortening of the bacterial chains. We report upregulation of the de-chaining proteins in the PrkC disruption strain. Apart from this, we also report for the first time that PrkC disruption results in an attenuated cell growth, a decrease in the cell wall thickness and aberrant cell septa formation during the logarithmic phase of growth - a growth phase where PrkC is expressed maximally.
Collapse
|
10
|
Fan X, Baik J, Gurtler JB. Thermal Reduction of Bacillus spp. in Naturally Contaminated Mesquite Flour with Two Different Water Activities. J Food Prot 2021; 84:490-496. [PMID: 33125042 DOI: 10.4315/jfp-20-268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/30/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Mesquite flour with endogenous high sugar content is often contaminated with Bacillus cereus. The purpose of the present study was to evaluate the thermal resistance of Bacillus spp. in naturally contaminated mesquite flour. Flours with and without adjusted water activity (aw) were treated at various temperatures (100 to 140°C) and times (up to 2 h). Total mesophilic bacteria and Bacillus spp. were enumerated using tryptic soy agar and Brilliance Bacillus cereus Agar, respectively. Results revealed that naturally contaminated Bacillus spp. and other mesophilic bacteria in mesquite flour (aw = 0.34) were highly resistant to heat. To reduce the initial populations (4.75 log CFU/g) of Bacillus spp. to nondetectable levels (<1.18 log CFU/g), thermal treatments of 120°C for 2 h were required. D100°C-values for total mesophilic bacteria were 5.6-fold higher than those of Bacillus spp. With increasing treatment temperature, the difference in D-value between total mesophilic bacteria and Bacillus spp. became smaller. When the aw of flour was adjusted from 0.34 to 0.71, the D-values for Bacillus decreased significantly. Treatment at 100°C for 1 h reduced Bacillus spp. populations to nondetectable levels. Our results demonstrate that naturally present Bacillus spp. in flour are highly resistant to heat, whereas increasing the aw increased their heat sensitivity. The high thermal resistance of microbes in mesquite flour warrants further investigations. HIGHLIGHTS
Collapse
Affiliation(s)
- Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0003-1656-7522 [X.F.]; https://orcid.org/0000-0001-5844-7794 [J.B.G.])
| | - Jessica Baik
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0003-1656-7522 [X.F.]; https://orcid.org/0000-0001-5844-7794 [J.B.G.])
| | - Joshua B Gurtler
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0003-1656-7522 [X.F.]; https://orcid.org/0000-0001-5844-7794 [J.B.G.])
| |
Collapse
|
11
|
Guzman J, Vilcinskas A. Bacteria associated with cockroaches: health risk or biotechnological opportunity? Appl Microbiol Biotechnol 2020; 104:10369-10387. [PMID: 33128616 PMCID: PMC7671988 DOI: 10.1007/s00253-020-10973-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Abstract Cockroaches have existed for 300 million years and more than 4600 extant species have been described. Throughout their evolution, cockroaches have been associated with bacteria, and today Blattabacterium species flourish within specialized bacteriocytes, recycling nitrogen from host waste products. Cockroaches can disseminate potentially pathogenic bacteria via feces and other deposits, particularly members of the family Enterobacteriaceae, but also Staphylococcus and Mycobacterium species, and thus, they should be cleared from sites where hygiene is essential, such as hospitals and kitchens. On the other hand, cockroaches also carry bacteria that may produce metabolites or proteins with potential industrial applications. For example, an antibiotic-producing Streptomyces strain was isolated from the gut of the American cockroach Periplaneta americana. Other cockroach-associated bacteria, including but not limited to Bacillus, Enterococcus, and Pseudomonas species, can also produce bioactive metabolites that may be suitable for development as pharmaceuticals or plant protection products. Enzymes that degrade industrially relevant substrates, or that convert biomasses into useful chemical precursors, are also expressed in cockroach-derived bacteria and could be deployed for use in the food/feed, paper, oil, or cosmetics industries. The analysis of cockroach gut microbiomes has revealed a number of lesser-studied bacteria that may form the basis of novel taxonomic groups. Bacteria associated with cockroaches can therefore be dangerous or useful, and this review explores the bacterial clades that may provide opportunities for biotechnological exploitation. Key points • Members of the Enterobacteriaceae are the most frequently cultivated bacteria from cockroaches. • Cultivation-independent studies have revealed a diverse community, led by the phyla Bacteroidetes and Firmicutes. • Although cockroaches may carry pathogenic bacteria, most strains are innocuous and may be useful for biotechnological applications. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-020-10973-6.
Collapse
Affiliation(s)
- Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany.
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany.,Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
12
|
First Report of Segmented Filamentous Bacteria Associated with Rhigonema Sp. (Nematoda: Rhigonematidae) Dwelling in Hindgut of Riukiaria Sp. (Diplopoda: Xystodesmidae). Helminthologia 2019; 56:219-228. [PMID: 31662694 PMCID: PMC6799577 DOI: 10.2478/helm-2019-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
We morphologically and molecularly characterized segmented filamentous bacteria (SFB) associated with Rhigonema sp. nematodes in millipede hindguts. Seventy-three Riukiaria sp. millipedes were collected from a broad-leaf forest in Japan, and nematodes were excised from the millipede’s hindguts. The occurrence rate of SFB associated with nematodes was 24 % (10/41) for males, 47 % (14/30) for females, and 100 % (2/2) for juveniles. Genomic DNA was extracted from four SFB-rich nematode heads, and we obtained 40 bacterial clones via analysis of nearly full-length 16S rDNA gene sequences. At the phylum level, Firmicutes, Proteobacteria, and Verrucomicrobia accounted for 55 %, 40 %, and 5 % of SFB, respectively. In Firmicutes, Clostridiaceae (28 %) and Lachnospiraceae (15 %) were the dominant groups. Our sequences were divided into seven and three subclades between Firmicutes and Proteobacteria in the phylogenetic tree. In the Firmicutes clade, eight sequences were classified as Lachnospiraceae with a bootstrap value >83 %. A phylogenetic tree involving known uncultured Lachnospiraceae sequences characterized the phylogenetic position of SFB associated with nematodes. Our results suggest that the association of SFB with nematode bodies was probably incidental and that SFB are not always present in millipede hindguts. Our bacterial groups corresponded to those of arthropod hindgut, and SFB associated with nematodes were inferred to belong to Lachnospiraceae. Because the Lachnospiraceae sequences obtained in this study showed specific lineages that differed from all the known deposited sequence data, these groups may be unique to Riukiaria sp.
Collapse
|
13
|
Draft Genome Sequences of Three Clinical Strains of Bacillus cereus Isolated from Human Patients in Japan. Microbiol Resour Announc 2019; 8:8/19/e00415-19. [PMID: 31072885 PMCID: PMC6509534 DOI: 10.1128/mra.00415-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus is a common etiological agent of hospital-acquired infections. Here, we report the draft genome sequences of three clinical isolates of B. cereus (GTC2903, GTC2926, and ach14) isolated from three human patients in different hospitals and in different years in Japan. Bacillus cereus is a common etiological agent of hospital-acquired infections. Here, we report the draft genome sequences of three clinical isolates of B. cereus (GTC2903, GTC2926, and ach14) isolated from three human patients in different hospitals and in different years in Japan.
Collapse
|
14
|
Genes under positive selection in the core genome of pathogenic Bacillus cereus group members. INFECTION GENETICS AND EVOLUTION 2018; 65:55-64. [PMID: 30006047 DOI: 10.1016/j.meegid.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 11/24/2022]
Abstract
In this comparative genomics study our aim was to unravel genes under positive selection in the core genome of the Bacillus cereus group. Indeed, the members of this group share close genetic relationships but display a rather large phenotypic and ecological diversity, providing a unique opportunity for studying how genomic changes reflect ecological adaptation during the divergence of a bacterial group. For this purpose, we screened ten completely sequenced genomes of four pathogenic Bacillus species, finding that 254 out of 3093 genes have codon sites with dN/dS (ω) values above one. These results remained unchanged after having disentangled the confounding effects of recombination and selection signature in a Bayesian framework. The presumably adaptive nucleotide polymorphisms are distributed over a wide range of biological functions, such as antibiotic resistance, DNA repair, nutrient uptake, metabolism, cell wall assembly and spore structure. Our results indicate that adaptation to animal hosts, whether as pathogens, saprophytes or symbionts, is the major driving force in the evolution of the Bacillus cereus group. Future work should seek to understand the evolutionary dynamics of both core and accessory genes in an integrative framework to ultimately unravel the key networks involved in host adaptation.
Collapse
|
15
|
Abstract
To survive adverse conditions, some bacterial species are capable of developing into a cell type, the "spore," which exhibits minimal metabolic activity and remains viable in the presence of multiple environmental challenges. For some pathogenic bacteria, this developmental state serves as a means of survival during transmission from one host to another. Spores are the highly infectious form of these bacteria. Upon entrance into a host, specific signals facilitate germination into metabolically active replicating organisms, resulting in disease pathogenesis. In this article, we will review spore structure and function in well-studied pathogens of two genera, Bacillus and Clostridium, focusing on Bacillus anthracis and Clostridium difficile, and explore current data regarding the lifestyles of these bacteria outside the host and transmission from one host to another.
Collapse
|
16
|
Tatu AL, Ionescu MA, Clatici VG, Cristea VC. Bacillus cereus strain isolated from Demodex folliculorum in patients with topical steroid-induced rosaceiform facial dermatitis. An Bras Dermatol 2017; 91:676-678. [PMID: 27828651 PMCID: PMC5087236 DOI: 10.1590/abd1806-4841.20165214] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/11/2016] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to identify Bacillus species from the
Demodex folliculorum of patients with topical
steroidinduced facial rosaceiform dermatitis. Of the 75 patients examined, 20%
had clinical spinulosis, while 18.66% had dermoscopic features of
Demodex: follicular plugs and tails. Of the 17.33% positive
patients identified upon microscopy for Demodex, samples for
bacterial culture were plated on trypticase soy Colombia agar. Identification
was performed by microorganisms grown method mass spectrometry. We identified a
strain of Bacillus cereus.
Collapse
Affiliation(s)
- Alin Laurentiu Tatu
- University Dunarea de Jos - Faculty of Medicine and Pharmacy - Galati, Romania
| | | | | | | |
Collapse
|
17
|
Draft Genome Sequence of Bacillus toyonensis VU-DES13, Isolated from Folsomia candida (Collembola: Entomobryidae). GENOME ANNOUNCEMENTS 2017; 5:5/19/e00287-17. [PMID: 28495769 PMCID: PMC5427204 DOI: 10.1128/genomea.00287-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present here the draft genome of Bacillus toyonensis VU-DES13, which was isolated from the midgut of the soil-living springtail Folsomia candida. Previous research revealed the presence of gene clusters for the biosynthesis of various secondary metabolites, including β-lactam antibiotics, in the host's genome. The genome data are discussed in the light of the antimicrobial properties against fungi and oomycetes and a high level of β-lactam resistance of the isolate.
Collapse
|
18
|
Sánchez-Galván IR, Ferrer J, Galante E, Marcos-García MA. Bacteria and Hoverflies (Diptera: Syrphidae) in Tree Hollows From the Iberian Mediterranean Forest. ENVIRONMENTAL ENTOMOLOGY 2017; 46:137-142. [PMID: 28025224 DOI: 10.1093/ee/nvw158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Saproxylic insect communities inhabiting tree hollows in Mediterranean forests depend on a combination of physical characteristics and interactions occurring between community member species. Despite the need to preserve these organisms, little is known about their interrelationships, in particular those relationships between saproxylic insects and microbiota occurring in these microhabitats. In tree hollows of Quercus rotundifolia Lamark that hold water and contain dead leaves, abundant microbial populations can be found. Developing on them are the larvae of Mallota dusmeti Andréu, 1926 (Diptera: Syrphidae), a vulnerable species (IUCN category: Marcos-García and Quinto 2011). This study provides the first data on the microbiota living inside the gut of the larvae of M. dusmeti, as well as the microbiota in the hollow where these larvae develop. Bacteria were identified by amplification and partial sequencing of the V1-V3 regions and the complete nucleotide sequence of 16S rRNA genes. We found eight species of bacteria living in tree hollows and three species in the gut of M. dusmeti larvae: Bacillus cereus, Bacillus toyonensis, and Lysinibacillus sphaericus. The filter-feeding mechanism characteristic of M. dusmeti larvae is selective in enabling ingestion of bacteria only above 2.1 µm in diameter.
Collapse
Affiliation(s)
- I R Sánchez-Galván
- Centro Iberoamericano de la Biodiversidad CIBIO, Universidad de Alicante, San Vicente del Raspeig s/n, 03690 Alicante, Spain (; ; )
| | - J Ferrer
- Departamento de Agroquímica y Bioquímica, Universidad de Alicante, San Vicente del Raspeig s/n, 03690 Alicante, Spain
| | - E Galante
- Centro Iberoamericano de la Biodiversidad CIBIO, Universidad de Alicante, San Vicente del Raspeig s/n, 03690 Alicante, Spain (; ; )
| | - M A Marcos-García
- Centro Iberoamericano de la Biodiversidad CIBIO, Universidad de Alicante, San Vicente del Raspeig s/n, 03690 Alicante, Spain (; ; )
| |
Collapse
|
19
|
Majed R, Faille C, Kallassy M, Gohar M. Bacillus cereus Biofilms-Same, Only Different. Front Microbiol 2016; 7:1054. [PMID: 27458448 PMCID: PMC4935679 DOI: 10.3389/fmicb.2016.01054] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/23/2016] [Indexed: 12/24/2022] Open
Abstract
Bacillus cereus displays a high diversity of lifestyles and ecological niches and include beneficial as well as pathogenic strains. These strains are widespread in the environment, are found on inert as well as on living surfaces and contaminate persistently the production lines of the food industry. Biofilms are suspected to play a key role in this ubiquitous distribution and in this persistency. Indeed, B. cereus produces a variety of biofilms which differ in their architecture and mechanism of formation, possibly reflecting an adaptation to various environments. Depending on the strain, B. cereus has the ability to grow as immersed or floating biofilms, and to secrete within the biofilm a vast array of metabolites, surfactants, bacteriocins, enzymes, and toxins, all compounds susceptible to act on the biofilm itself and/or on its environment. Within the biofilm, B. cereus exists in different physiological states and is able to generate highly resistant and adhesive spores, which themselves will increase the resistance of the bacterium to antimicrobials or to cleaning procedures. Current researches show that, despite similarities with the regulation processes and effector molecules involved in the initiation and maturation of the extensively studied Bacillus subtilis biofilm, important differences exists between the two species. The present review summarizes the up to date knowledge on biofilms produced by B. cereus and by two closely related pathogens, Bacillus thuringiensis and Bacillus anthracis. Economic issues caused by B. cereus biofilms and management strategies implemented to control these biofilms are included in this review, which also discuss the ecological and functional roles of biofilms in the lifecycle of these bacterial species and explore future developments in this important research area.
Collapse
Affiliation(s)
- Racha Majed
- Micalis Institute, INRA, AgroParisTech, CNRS, Université Paris-SaclayJouy-en-Josas, France; Unité de Recherche Technologies et Valorisation Alimentaire, Laboratoire de Biotechnologie, Université Saint-JosephBeirut, Lebanon
| | - Christine Faille
- UMR UMET: Unité Matériaux et Transformations, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lille Villeneuve d'Ascq, France
| | - Mireille Kallassy
- Unité de Recherche Technologies et Valorisation Alimentaire, Laboratoire de Biotechnologie, Université Saint-Joseph Beirut, Lebanon
| | - Michel Gohar
- Micalis Institute, INRA, AgroParisTech, CNRS, Université Paris-SaclayJouy-en-Josas, France; Unité de Recherche Technologies et Valorisation Alimentaire, Laboratoire de Biotechnologie, Université Saint-JosephBeirut, Lebanon
| |
Collapse
|
20
|
Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4524] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
21
|
Erban T, Rybanska D, Harant K, Hortova B, Hubert J. Feces Derived Allergens of Tyrophagus putrescentiae Reared on Dried Dog Food and Evidence of the Strong Nutritional Interaction between the Mite and Bacillus cereus Producing Protease Bacillolysins and Exo-chitinases. Front Physiol 2016; 7:53. [PMID: 26941650 PMCID: PMC4764834 DOI: 10.3389/fphys.2016.00053] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/04/2016] [Indexed: 12/31/2022] Open
Abstract
Tyrophagus putrescentiae (Schrank, 1781) is an emerging source of allergens in stored products and homes. Feces proteases are the major allergens of astigmatid mites (Acari: Acaridida). In addition, the mites are carriers of microorganisms and microbial adjuvant compounds that stimulate innate signaling pathways. We sought to analyze the mite feces proteome, proteolytic activities, and mite-bacterial interaction in dry dog food (DDF). Proteomic methods comprising enzymatic and zymographic analysis of proteases and 2D-E-MS/MS were performed. The highest protease activity was assigned to trypsin-like proteases; lower activity was assigned to chymotrypsin-like proteases, and the cysteine protease cathepsin B-like had very low activity. The 2D-E-MS/MS proteomic analysis identified mite trypsin allergen Tyr p3, fatty acid-binding protein Tyr p13 and putative mite allergens ferritin (Grp 30) and (poly)ubiquitins. Tyr p3 was detected at different positions of the 2D-E. It indicates presence of zymogen at basic pI, and mature-enzyme form and enzyme fragment at acidic pI. Bacillolysins (neutral and alkaline proteases) of Bacillus cereus symbiont can contribute to the protease activity of the mite extract. The bacterial exo-chitinases likely contribute to degradation of mite exuviae, mite bodies or food boluses consisting of chitin, including the peritrophic membrane. Thus, the chitinases disrupt the feces and facilitate release of the allergens. B. cereus was isolated and identified based on amplification and sequencing of 16S rRNA and motB genes. B. cereus was added into high-fat, high-protein (DDF) and low-fat, low-protein (flour) diets to 1 and 5% (w/w), and the diets palatability was evaluated in 21-day population growth test. The supplementation of diet with B. cereus significantly suppressed population growth and the suppressive effect was higher in the high-fat, high-protein diet than in the low-fat, low-protein food. Thus, B. cereus has to coexist with the mite in balance to be beneficial for the mite. The mite-B. cereus symbiosis can be beneficial-suppressive at some level. The results increase the veterinary and medical importance of the allergens detected in feces. The B. cereus enzymes/toxins are important components of mite allergens. The strong symbiotic association of T. putrescentiae with B. cereus in DDF was indicated.
Collapse
Affiliation(s)
- Tomas Erban
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research Institute Prague, Czech Republic
| | - Dagmar Rybanska
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research InstitutePrague, Czech Republic; Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences PraguePrague, Czech Republic
| | - Karel Harant
- Biology Section, Laboratory of Mass Spectrometry, Service Labs, Faculty of Science, Charles University in Prague Prague, Czech Republic
| | - Bronislava Hortova
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research Institute Prague, Czech Republic
| | - Jan Hubert
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research Institute Prague, Czech Republic
| |
Collapse
|
22
|
Abstract
Endospore formation follows a complex, highly regulated developmental pathway that occurs in a broad range of Firmicutes. Although Bacillus subtilis has served as a powerful model system to study the morphological, biochemical, and genetic determinants of sporulation, fundamental aspects of the program remain mysterious for other genera. For example, it is entirely unknown how most lineages within the Firmicutes regulate entry into sporulation. Additionally, little is known about how the sporulation pathway has evolved novel spore forms and reproductive schemes. Here, we describe endospore and internal offspring development in diverse Firmicutes and outline progress in characterizing these programs. Moreover, comparative genomics studies are identifying highly conserved sporulation genes, and predictions of sporulation potential in new isolates and uncultured bacteria can be made from these data. One surprising outcome of these comparative studies is that core regulatory and some structural aspects of the program appear to be universally conserved. This suggests that a robust and sophisticated developmental framework was already in place in the last common ancestor of all extant Firmicutes that produce internal offspring or endospores. The study of sporulation in model systems beyond B. subtilis will continue to provide key information on the flexibility of the program and provide insights into how changes in this developmental course may confer advantages to cells in diverse environments.
Collapse
|
23
|
Next-Generation Whole-Genome Sequencing of Eight Strains of Bacillus cereus, Isolated from Food. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01480-15. [PMID: 26679589 PMCID: PMC4683234 DOI: 10.1128/genomea.01480-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus cereus can contaminate food and cause emetic and diarrheal foodborne illness. Here, we report whole-genome sequences of eight strains of B. cereus, isolated from different food sources.
Collapse
|
24
|
Fan X, Felker P, Sokorai KJ. Decontamination of Mesquite Pod Flour Naturally Contaminated with Bacillus cereus and Formation of Furan by Ionizing Irradiation. J Food Prot 2015; 78:954-62. [PMID: 25951390 DOI: 10.4315/0362-028x.jfp-14-572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mesquite pod flour produced from nitrogen-fixing trees of the Prosopis species has a unique aroma and flavor that is preferred by some consumers. Due to the presence of wildlife, grazing domestic animals, and insects, the pods have a high potential of being contaminated with human pathogenic bacteria, such as Bacillus cereus. Nonthermal processing technologies are helpful to reduce the population of microorganisms in the flour because heating deteriorates the characteristic flavor. A study was conducted to investigate the efficacy of ionizing radiation in decontaminating two types of mesquite pod flours (Prosopis alba and Prosopis pallida) naturally contaminated with B. cereus and the effects of irradiation on the formation of furan, a possible human carcinogen. Results showed that the populations of B. cereus were 3.8 and 5.4 log CFU/g in nonirradiated P. alba and P. pallida flours, respectively, and populations of microflora, mesophilic spores, B. cereus, and B. cereus spores decreased with increasing radiation doses. At 6 kGy, the populations fell below 1 log CFU/g. Irradiation at 6 kGy had no significant effect on the fructose, glucose, or sucrose content of the flour. Nonirradiated P. alba and P. pallida flours contained 13.0 and 3.1 ng/g of furan, respectively. Furan levels increased with irradiation doses at rates of 2.3 and 2.4 ng/g/kGy in the two flours. The level of 3-methylbutanal was reduced or not affected by irradiation, while the hexanal level was increased. Our results suggested that irradiation was effective in decontaminating contaminated mesquite flour. The significance of furan formation and possible changes in flavor due to irradiation may need to be further examined.
Collapse
Affiliation(s)
- Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA.
| | - Peter Felker
- Casa de Mesquite LLC, 10021 Pacheco Pass Highway, Hollister, California 95023, USA
| | - Kimberly J Sokorai
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| |
Collapse
|
25
|
Brillard J, Dupont CMS, Berge O, Dargaignaratz C, Oriol-Gagnier S, Doussan C, Broussolle V, Gillon M, Clavel T, Bérard A. The Water Cycle, a Potential Source of the Bacterial Pathogen Bacillus cereus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:356928. [PMID: 25918712 PMCID: PMC4395999 DOI: 10.1155/2015/356928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/07/2014] [Indexed: 01/31/2023]
Abstract
The behaviour of the sporulating soil-dwelling Bacillus cereus sensu lato (B. cereus sl) which includes foodborne pathogenic strains has been extensively studied in relation to its various animal hosts. The aim of this environmental study was to investigate the water compartments (rain and soil water, as well as groundwater) closely linked to the primary B. cereus sl reservoir, for which available data are limited. B. cereus sl was present, primarily as spores, in all of the tested compartments of an agricultural site, including water from rain to groundwater through soil. During rain events, leachates collected after transfer through the soil eventually reached the groundwater and were loaded with B. cereus sl. In groundwater samples, newly introduced spores of a B. cereus model strain were able to germinate, and vegetative cells arising from this event were detected for up to 50 days. This first B. cereus sl investigation in the various types of interrelated environments suggests that the consideration of the aquatic compartment linked to soil and to climatic events should provide a better understanding of B. cereus sl ecology and thus be relevant for a more accurate risk assessment of food poisoning caused by B. cereus sl pathogenic strains.
Collapse
Affiliation(s)
- Julien Brillard
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- INRA-Université Montpellier II, UMR 1333 DGIMI, 34095 Montpellier, France
| | - Christian M. S. Dupont
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- CNRS, Université Montpellier II, UMR 5235 DIMNP, 34095 Montpellier, France
- EPIM EA 3647, Université de Versailles St-Quentin-en-Yvelines, 78035 Versailles, France
| | - Odile Berge
- INRA, UR 407 Pathologie Végétale, 84140 Montfavet, France
- CNRS, CEA, Université Aix-Marseille, UMR 7265, 13108 Saint-Paul-lez-Durance, France
| | - Claire Dargaignaratz
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Stéphanie Oriol-Gagnier
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Claude Doussan
- INRA, UMR 1114 EMMAH, 84914 Avignon, France
- Université d'Avignon, UMR 1114 EMMAH, 84914 Avignon, France
| | - Véronique Broussolle
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Marina Gillon
- INRA, UMR 1114 EMMAH, 84914 Avignon, France
- Université d'Avignon, UMR 1114 EMMAH, 84914 Avignon, France
| | - Thierry Clavel
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Annette Bérard
- INRA, UMR 1114 EMMAH, 84914 Avignon, France
- Université d'Avignon, UMR 1114 EMMAH, 84914 Avignon, France
| |
Collapse
|
26
|
New Cyt-like δ-endotoxins from Dickeya dadantii: structure and aphicidal activity. Sci Rep 2015; 5:8791. [PMID: 25740111 PMCID: PMC5390079 DOI: 10.1038/srep08791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/04/2015] [Indexed: 12/11/2022] Open
Abstract
In the track of new biopesticides, four genes namely cytA, cytB, cytC and cytD encoding proteins homologous to Bacillus thuringiensis (Bt) Cyt toxins have been identified in the plant pathogenic bacteria Dickeya dadantii genome. Here we show that three Cyt-like δ-endotoxins from D. dadantii (CytA, CytB and CytC) are toxic to the pathogen of the pea aphid Acyrthosiphon pisum in terms of both mortality and growth rate. The phylogenetic analysis of the comprehensive set of Cyt toxins available in genomic databases shows that the whole family is of limited taxonomic occurrence, though in quite diverse microbial taxa. From a structure-function perspective the 3D structure of CytC and its backbone dynamics in solution have been determined by NMR. CytC adopts a cytolysin fold, structurally classified as a Cyt2-like protein. Moreover, the identification of a putative lipid binding pocket in CytC structure, which has been probably maintained in most members of the Cyt-toxin family, could support the importance of this lipid binding cavity for the mechanism of action of the whole family. This integrative approach provided significant insights into the evolutionary and functional history of D. dadantii Cyt toxins, which appears to be interesting leads for biopesticides.
Collapse
|
27
|
Li Z, Hwang S, Ericson J, Bowler K, Bar-Peled M. Pen and Pal are nucleotide-sugar dehydratases that convert UDP-GlcNAc to UDP-6-deoxy-D-GlcNAc-5,6-ene and then to UDP-4-keto-6-deoxy-L-AltNAc for CMP-pseudaminic acid synthesis in Bacillus thuringiensis. J Biol Chem 2014; 290:691-704. [PMID: 25414257 DOI: 10.1074/jbc.m114.612747] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CMP-pseudaminic acid is a precursor required for the O-glycosylation of flagellin in some pathogenic Gram-negative bacteria, a process known to be critical in bacterial motility and infection. However, little is known about flagellin glycosylation in Gram-positive bacteria. Here, we identified and functionally characterized an operon, named Bti_pse, in Bacillus thuringiensis israelensis ATCC 35646, which encodes seven different enzymes that together convert UDP-GlcNAc to CMP-pseudaminic acid. In contrast, Gram-negative bacteria complete this reaction with six enzymes. The first enzyme, which we named Pen, converts UDP-d-GlcNAc to an uncommon UDP-sugar, UDP-6-deoxy-D-GlcNAc-5,6-ene. Pen contains strongly bound NADP(+) and has distinct UDP-GlcNAc 4-oxidase, 5,6-dehydratase, and 4-reductase activities. The second enzyme, which we named Pal, converts UDP-6-deoxy-D-GlcNAc-5,6-ene to UDP-4-keto-6-deoxy-L-AltNAc. Pal is NAD(+)-dependent and has distinct UDP-6-deoxy-d-GlcNAc-5,6-ene 4-oxidase, 5,6-reductase, and 5-epimerase activities. We also show here using NMR spectroscopy and mass spectrometry that in B. thuringiensis, the enzymatic product of Pen and Pal, UDP-4-keto-6-deoxy-L-AltNAc, is converted to CMP-pseudaminic acid by the sequential activities of a C4″-transaminase (Pam), a 4-N-acetyltransferase (Pdi), a UDP-hydrolase (Phy), an enzyme (Ppa) that adds phosphoenolpyruvate to form pseudaminic acid, and finally a cytidylyltransferase that condenses CTP to generate CMP-pseudaminic acid. Knowledge of the distinct dehydratase-like enzymes Pen and Pal and their role in CMP-pseudaminic acid biosynthesis in Gram-positive bacteria provides a foundation to investigate the role of pseudaminic acid and flagellin glycosylation in Bacillus and their involvement in bacterial motility and pathogenicity.
Collapse
Affiliation(s)
- Zi Li
- From the Department of Plant Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Soyoun Hwang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Jaime Ericson
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Kyle Bowler
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Maor Bar-Peled
- From the Department of Plant Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
28
|
Stiles BG, Pradhan K, Fleming JM, Samy RP, Barth H, Popoff MR. Clostridium and bacillus binary enterotoxins: bad for the bowels, and eukaryotic being. Toxins (Basel) 2014; 6:2626-56. [PMID: 25198129 PMCID: PMC4179152 DOI: 10.3390/toxins6092626] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022] Open
Abstract
Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, 1015 Philadelphia Avenue, Chambersburg, PA 17201, USA.
| | - Kisha Pradhan
- Environmental Science Department, Wilson College, 1015 Philadelphia Avenue, Chambersburg, PA 17201, USA.
| | - Jodie M Fleming
- Department of Biology, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA.
| | - Ramar Perumal Samy
- Venom and Toxin Research Programme, Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge 117597, Singapore.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, Ulm D-89081, Germany.
| | - Michel R Popoff
- Bacteries Anaerobies et Toxines, Institut Pasteur, 28 Rue du Docteur Roux, Paris 75724, France.
| |
Collapse
|
29
|
Abbas AA, Planchon S, Jobin M, Schmitt P. Absence of oxygen affects the capacity to sporulate and the spore properties of Bacillus cereus. Food Microbiol 2014; 42:122-31. [DOI: 10.1016/j.fm.2014.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/28/2014] [Accepted: 03/06/2014] [Indexed: 11/16/2022]
|
30
|
Ganz HH, Turner WC, Brodie EL, Kusters M, Shi Y, Sibanda H, Torok T, Getz WM. Interactions between Bacillus anthracis and plants may promote anthrax transmission. PLoS Negl Trop Dis 2014; 8:e2903. [PMID: 24901846 PMCID: PMC4046938 DOI: 10.1371/journal.pntd.0002903] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/14/2014] [Indexed: 01/06/2023] Open
Abstract
Environmental reservoirs are essential in the maintenance and transmission of anthrax but are poorly characterized. The anthrax agent, Bacillus anthracis was long considered an obligate pathogen that is dormant and passively transmitted in the environment. However, a growing number of laboratory studies indicate that, like some of its close relatives, B. anthracis has some activity outside of its vertebrate hosts. Here we show in the field that B. anthracis has significant interactions with a grass that could promote anthrax spore transmission to grazing hosts. Using a local, virulent strain of B. anthracis, we performed a field experiment in an enclosure within a grassland savanna. We found that B. anthracis increased the rate of establishment of a native grass (Enneapogon desvauxii) by 50% and that grass seeds exposed to blood reached heights that were 45% taller than controls. Further we detected significant effects of E. desvauxii, B. anthracis, and their interaction on soil bacterial taxa richness and community composition. We did not find any evidence for multiplication or increased longevity of B. anthracis in bulk soil associated with grass compared to controls. Instead interactions between B. anthracis and plants may result in increased host grazing and subsequently increased transmission to hosts. Anthrax is a neglected zoonotic disease affecting livestock, wildlife, and humans in developing countries, particularly in Africa and Asia, and it occurs regularly in rural parts of North America. The causative agent of anthrax, Bacillus anthracis is transmitted by spores that persist for long periods of time in the environment. The transmission mechanisms of socioeconomically important and environmentally maintained pathogens are poorly understood, yet essential for understanding disease dynamics and devising appropriate control measures. Recent laboratory studies show that B. anthracis interacts with plants and other soil-dwelling organisms that may affect its survival and transmission. In this paper, we describe the results of a field experiment designed to test whether the interaction of B. anthracis with plants might affect its persistence and potential transmission to grazing hosts. We found that like some of its close relatives, B. anthracis promotes plant growth. Rather than simply lying in wait as a dormant spore in soil, instead B. anthracis may promote plant growth as a way of attracting hosts to graze on infectious material at carcass sites.
Collapse
Affiliation(s)
- Holly H. Ganz
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Wendy C. Turner
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, California, United States of America
| | - Eoin L. Brodie
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, California, United States of America
- Ecology Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | | | - Ying Shi
- Department of Statistics, University of California, Berkeley, California, United States of America
| | - Heniritha Sibanda
- Ministry of Fisheries and Marine Resources, Inland Aquaculture, Katima Mulilo Regional Office, Katima Mulilo, Namibia
| | - Tamas Torok
- Ecology Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Wayne M. Getz
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, California, United States of America
- School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
31
|
Song F, Peng Q, Brillard J, Lereclus D, Nielsen-LeRoux C. An insect gut environment reveals the induction of a new sugar-phosphate sensor system in Bacillus cereus. Gut Microbes 2014; 5:58-63. [PMID: 24256737 PMCID: PMC4049939 DOI: 10.4161/gmic.27092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacteria survive under various conditions by sensing stimuli triggering specific adaptive physiological responses, which are often based on membrane-integrated sensors connected to a cytoplasmic regulator. Recent studies reveal that mucus glycans may act as signal molecules for two-component systems involved in intestinal colonization. Bacillus cereus, a human and insect opportunistic pathogen was used to identify bacterial factors expressed in an insect gut infection model. The screen revealed a promoter involved in the expression of a gene with so far unknown functions. A search for gut-related compounds, inducing its transcription, identified glucose-6-phosphate as an activation signal. The gene is part of a five-gene cluster, including a two-component system. Interestingly such five gene loci are conserved in the pathogenic Bacillus group as well as in various Clostridia bacteria and are with analogy to other multi-component sensor systems in enteropathogenic bacteria, such as E. coli. Thus our results provide insights into the function of two-component and auxiliary sensor systems in host-microbe interactions and opens up possible investigations of such systems in other gut associated bacteria.
Collapse
Affiliation(s)
- Fuping Song
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France,State Key Laboratory for Biology of Plant Diseases and Insect Pests; CAAS; Beijing, China
| | - Qi Peng
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France,State Key Laboratory for Biology of Plant Diseases and Insect Pests; CAAS; Beijing, China
| | - Julien Brillard
- INRA; UMR408 & Université d'Avignon et des Pays de Vaucluse; Avignon, France
| | - Didier Lereclus
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France
| | - Christina Nielsen-LeRoux
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France,Correspondence to: Christina Nielsen-LeRoux,
| |
Collapse
|
32
|
Ceuppens S, Boon N, Uyttendaele M. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol Ecol 2013; 84:433-50. [PMID: 23488744 DOI: 10.1111/1574-6941.12110] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/25/2022] Open
Abstract
Bacillus cereus comprises a highly versatile group of bacteria, which are of particular interest because of their capacity to cause disease. Emetic food poisoning is caused by the toxin cereulide produced during the growth of emetic B. cereus in food, while diarrhoeal food poisoning is the result of enterotoxin production by viable vegetative B. cereus cells in the small intestine, probably in the mucus layer and/or attached to the host's intestinal epithelium. The numbers of B. cereus causing disease are highly variable, depending on diverse factors linked to the host (age, diet, physiology and immunology), bacteria (cellular form, toxin genes and expression) and food (nutritional composition and meal characteristics). Bacillus cereus group strains show impressive ecological diversity, ranging from their saprophytic life cycle in soil to symbiotic (commensal and mutualistic) lifestyles near plant roots and in guts of insects and mammals to various pathogenic ones in diverse insect and mammalian hosts. During all these different ecological lifestyles, their toxins play important roles ranging from providing competitive advantages within microbial communities to inhibition of specific pathogenic organisms for their host and accomplishment of infections by damaging their host's tissues.
Collapse
Affiliation(s)
- Siele Ceuppens
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | | | | |
Collapse
|
33
|
Beeton ML, Atkinson DJ, Waterfield NR. An amoeba phagocytosis model reveals a novel developmental switch in the insect pathogen Bacillus thuringiensis. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:223-231. [PMID: 22750551 DOI: 10.1016/j.jinsphys.2012.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 06/01/2023]
Abstract
The Bacillus cereus group bacteria contain pathogens of economic and medical importance. From security and health perspectives, the lethal mammalian pathogen Bacillus anthracis remains a serious threat. In addition the potent insect pathogen Bacillus thuringiensis is extensively used as a biological control agent for insect pests. This relies upon the industrial scale induction of bacterial spore formation with the associated production of orally toxic Cry-toxins. Understanding the ecology and potential alternative developmental fates of these bacteria is therefore important. Here we describe the use of an amoeba host model to investigate the influence of environmental bactivorous protists on both spores and vegetative cells of these pathogens. We demonstrate that the bacteria can respond to different densities of amoeba by adopting different behaviours and developmental fates. We show that spores will germinate in response to factors excreted by the amoeba, and that the bacteria can grow and reproduce on these factors. We show that in low densities of amoeba, that the bacteria will seek to colonise the surface of the amoeba as micro-colonies, resisting phagocytosis. At high amoeba densities, the bacteria change morphology into long filaments and macroscopic rope-like structures which cannot be ingested due to size exclusion. We suggest these developmental fates are likely to be important both in the ecology of these bacteria and also during animal host colonisation and immune evasion.
Collapse
Affiliation(s)
- M L Beeton
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | | |
Collapse
|
34
|
Szkaradkiewicz A, Chudzicka-Strugała I, Karpiński T, Goslińska-Pawłowska O, Tułecka T, Chudzicki W, Szkaradkiewicz A, Zaba R. Bacillus oleronius and Demodex mite infestation in patients with chronic blepharitis. Clin Microbiol Infect 2012; 18:1020-5. [PMID: 22114987 DOI: 10.1111/j.1469-0691.2011.03704.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Tamschick S, Radek R. Colonization of termite hindgut walls by oxymonad flagellates and prokaryotes in Incisitermes tabogae, I. marginipennis and Reticulitermes flavipes. Eur J Protistol 2012; 49:1-14. [PMID: 22841421 DOI: 10.1016/j.ejop.2012.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/22/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
We studied the colonization of the paunch wall of three lower termites, Reticulitermes flavipes, Incisitermes tabogae, and Incisitermes marginipennis, by light and electron microscopy. In addition to various prokaryotes, oxymonad flagellates were attached to the wall of the paunch in all three species. The prokaryotic layer found in R. flavipes is relatively thin, since most organisms are attached laterally. Large members of the flagellate genus Pyrsonympha protrude into the gut lumen. The prokaryotes are very abundant on the gut wall in I. tabogae and I. marginipennis, forming a thick carpet of mostly vertically attached rods and wavy spirochetes. The adhering oxymonads are relatively small and almost hidden in the thick bacterial biofilm. Three small morphotypes were seen in I. tabogae; two possessing a short rostellum and one amoeboid. The only oxymonad found in I. tabogae so far, Oxymonas clevelandi, is not identical to any of the present oxymonads. I. marginipennis contains a mid-sized oxymonad with ectobiotic spirochetes, probably identical to Oxymonas hubbardi, and a tiny unknown morphotype. The spatial organization of the pro- and eukaryotic microorganisms on the gut wall of the three termites is described and discussed concerning oxygen stress.
Collapse
Affiliation(s)
- Stephanie Tamschick
- Free University of Berlin, Institute of Biology/Zoology, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | | |
Collapse
|
36
|
Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLoS Pathog 2012; 8:e1002629. [PMID: 22511867 PMCID: PMC3325205 DOI: 10.1371/journal.ppat.1002629] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/22/2012] [Indexed: 11/19/2022] Open
Abstract
How pathogenic bacteria infect and kill their host is currently widely investigated. In comparison, the fate of pathogens after the death of their host receives less attention. We studied Bacillus thuringiensis (Bt) infection of an insect host, and show that NprR, a quorum sensor, is active after death of the insect and allows Bt to survive in the cadavers as vegetative cells. Transcriptomic analysis revealed that NprR regulates at least 41 genes, including many encoding degradative enzymes or proteins involved in the synthesis of a nonribosomal peptide named kurstakin. These degradative enzymes are essential in vitro to degrade several substrates and are specifically expressed after host death suggesting that Bt has an active necrotrophic lifestyle in the cadaver. We show that kurstakin is essential for Bt survival during necrotrophic development. It is required for swarming mobility and biofilm formation, presumably through a pore forming activity. A nprR deficient mutant does not develop necrotrophically and does not sporulate efficiently in the cadaver. We report that necrotrophism is a highly regulated mechanism essential for the Bt infectious cycle, contributing to spore spreading.
Collapse
|
37
|
Thompson CL, Vier R, Mikaelyan A, Wienemann T, Brune A. 'Candidatus Arthromitus' revised: segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae. Environ Microbiol 2012; 14:1454-65. [PMID: 22436008 DOI: 10.1111/j.1462-2920.2012.02731.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The name Arthromitus has been applied collectively to conspicuous filamentous bacteria found in the hindguts of termites and other arthropods. First observed by Joseph Leidy in 1849, the identity of these filaments has remained contentious. While Margulis and colleagues declared them to be a life stage of Bacillus cereus, others have assumed them to belong to the same lineage as the segmented filamentous bacteria (SFB) from vertebrate guts, a group that has garnered much attention due to their unique ability to specifically modulate their host's immune response. Both SFB and Arthromitus filaments from arthropod guts were grouped under provisional name 'Candidatus Arthromitus' by Snel and colleagues as they share a striking similarity in terms of their morphology and close contact to the host gut wall. While SFB form a distinct lineage within the family Clostridiaceae, the identity of the filaments from arthropod guts remains elusive. Using whole-genome amplification of single filaments capillary picked from termite guts and fluorescence in situ hybridization of 16S rRNA with group-specific oligonucleotide probes, we show that they represent a monophyletic lineage within the family Lachnospiraceae distinct from that of SFB. Therefore, 'Candidatus Arthromitus' can no longer be used for both groups. Given the historic precedence, we propose to reserve this name for the filaments that were originally described by Leidy. For the SFB from vertebrate guts, we propose the provisional name 'Candidatus Savagella' in honour of the American gut microbiologist Dwayne C. Savage, who was the first to describe that important bacterial group.
Collapse
Affiliation(s)
- Claire L Thompson
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Abstract
Species of Bacillus and related genera have long been troublesome to food producers on account of their resistant endospores. These organisms have undergone huge taxonomic changes in the last 30 years, with numbers of genera and species now standing at 56 and over 545, respectively. Despite this expansion, relatively few new species have been isolated from infections, few are associated with food and no important new agents of foodborne illness have been reported. What has changed is our knowledge of the established agents. Bacillus cereus is well known as a cause of food poisoning, and much more is now understood about its toxins and their involvement in infections and intoxications. Also, although B. licheniformis, B. subtilis and B. pumilus have occasionally been isolated from cases of food-associated illness, their roles were usually uncertain. Much more is now known about the toxins that strains of these species may produce, so that their significances in such episodes are clearer; however, it is still unclear why such cases are so rarely reported. Another important development is the use of aerobic endosporeformers as probiotics, as the potentials of such organisms to cause illness or to be sources of antibiotic resistance need to be borne in mind.
Collapse
Affiliation(s)
- N A Logan
- Department of Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow, UK.
| |
Collapse
|
39
|
Abee T, Wels M, de Been M, den Besten H. From transcriptional landscapes to the identification of biomarkers for robustness. Microb Cell Fact 2011; 10 Suppl 1:S9. [PMID: 21995521 PMCID: PMC3231935 DOI: 10.1186/1475-2859-10-s1-s9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability of microorganisms to adapt to changing environments and gain cell robustness, challenges the prediction of their history-dependent behaviour. Using our model organism Bacillus cereus, a notorious Gram-positive food spoilage and pathogenic spore-forming bacterium, a strategy will be described that allows for identification of biomarkers for robustness. First an overview will be presented of its two-component systems that generally include a transmembrane sensor histidine kinase and its cognate response regulator, allowing rapid and robust responses to fluctuations in the environment. The role of the multisensor hybrid kinase RsbK and the PP2C-type phosphatase RsbY system in activation of the general stress sigma factor σB is highlighted. An extensive comparative analysis of transcriptional landscapes derived from B. cereus exposed to mild stress conditions such as heat, acid, salt and oxidative stress, revealed that, amongst others σB regulated genes were induced in most conditions tested. The information derived from the transcriptome data was subsequently implemented in a framework for identifying and selecting cellular biomarkers at their mRNA, protein and/or activity level, for mild stressinduced microbial robustness towards lethal stresses. Exposure of unstressed and mild stress-adapted cells to subsequent lethal stress conditions (heat, acid and oxidative stress) allowed for quantification of the robustness advantage provided by mild stress pretreatment using the plate-count method. The induction levels of the selected candidate-biomarkers, σB protein, catalase activity and transcripts of certain proteases upon mild stress treatment, were significantly correlated to mild stress-induced enhanced robustness towards lethal thermal, oxidative and acid stresses, and were therefore suitable to predict these adaptive traits. Cellular biomarkers that are quantitatively correlated to adaptive behavior will facilitate our ability to predict the impact of adaptive behavior on cell robustness and will allow to control and/or exploit these adaptive traits. Extrapolation to other species and genera is discussed such as avenues towards mechanism-based design of microbial fitness and robustness.
Collapse
Affiliation(s)
- Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
| | - Michiel Wels
- TI Food and Nutrition, Wageningen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), NCMLS, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- NIZO food research, Ede, The Netherlands
| | - Mark de Been
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), NCMLS, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Heidy den Besten
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
| |
Collapse
|
40
|
|
41
|
Shanchez-Contreras M, Vlisidou I. The diversity of insect-bacteria interactions and its applications for disease control. Biotechnol Genet Eng Rev 2011; 25:203-43. [PMID: 21412357 DOI: 10.5661/bger-25-203] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prokaryotic microorganisms are widespread in all environments on Earth, establishing diverse interactions with many eukaryotic taxa, including insects. These associations may be symbiotic, pathogenic and vectoring. Independently of the type of interaction, each association starts with the adhesion of the microorganism to the host, entry and "invasion" of the host, then progresses to establishment and dissemination within the host, by avoiding host immune responses, and concludes with transmission back to the environment or to a new host. Advances in genomics and genetics have allowed the dissection of these processes and provided important information on the elements driving the shaping of the members of each association. Furthermore, many mechanisms involved in the establishment of the associations have been scrutinised, along with the development of new methods for the management of insect populations.
Collapse
|
42
|
Origin of bacterial spores contaminating foods. Food Microbiol 2011; 28:177-82. [DOI: 10.1016/j.fm.2010.07.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 11/22/2022]
|
43
|
Heyndrickx M. Dispersal of Aerobic Endospore-forming Bacteria from Soil and Agricultural Activities to Food and Feed. SOIL BIOLOGY 2011. [DOI: 10.1007/978-3-642-19577-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
44
|
Klimowicz AK, Benson TA, Handelsman J. A quadruple-enterotoxin-deficient mutant of Bacillus thuringiensis remains insecticidal. Microbiology (Reading) 2010; 156:3575-3583. [DOI: 10.1099/mic.0.039925-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacillus thuringiensis is the leading biopesticide used to control insect pests worldwide. Although they have a long record of safe use, under certain conditions commercial strains of B. thuringiensis have the ability to produce numerous putative enterotoxins that have been associated with food poisoning attributed to Bacillus cereus. Therefore, we designed a strategy to delete the genes encoding these toxins. B. thuringiensis strain VBTS 2477 contained genes encoding NHE, CytK-2 and three homologues of haemolysin BL (HBL, HBLa1 and HBLa2). This is the first report, to our knowledge, of a strain of B. cereus or B. thuringiensis containing three sets of hbl operons. The genes encoding HBLa1 and HBLa2 were 96–97 % identical to each other and 76–84 % identical to those encoding HBL. The hbla2
operon was detected by PCR amplification only after hbla1
was deleted. We used sequential gene replacement to replace the wild-type copies of the NHE and three HBL operons with copies that contained internal deletions that span the three genes in each operon. The insecticidal activity of the quadruple-enterotoxin-deficient mutant was similar to that of the wild-type strain against larvae of Trichoplusia ni, Spodoptera exigua and Plutella xylostella. This demonstrates that the genes for enterotoxins can be deleted, eliminating the possibility of enterotoxin production without compromising the insecticidal efficacy of a strain of B. thuringiensis.
Collapse
Affiliation(s)
- Amy K. Klimowicz
- Departments of Bacteriology and Plant Pathology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI, USA
| | - Terry A. Benson
- Valent BioSciences Corporation, Agricultural Research Station, 6131 RFD Oakwood Road, Long Grove, IL, USA
| | - Jo Handelsman
- Departments of Bacteriology and Plant Pathology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI, USA
| |
Collapse
|
45
|
Husseneder C, Simms DM, Aluko GK, Delatte J. Colony breeding system influences cuticular bacterial load of Formosan subterranean termite (Isoptera: Rhinotermitidae) workers. ENVIRONMENTAL ENTOMOLOGY 2010; 39:1715-1723. [PMID: 22182534 DOI: 10.1603/en09238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The goal of this study was to test whether the breeding system and/or the degree of inbreeding of field colonies of the Formosan subterranean termite, Coptotermes formosanus, Shiraki (Isoptera: Rhinotermitidae) influences bacterial load on the cuticle of foraging workers. We enumerated bacterial load on the cuticle of groups of workers foraging in 20 inground monitoring stations surrounding the French Market in New Orleans, LA, and identified bacteria species using 16S rRNA gene sequencing. We used microsatellite genotyping to assign the 20 worker groups to seven simple family colonies (headed by a single pair of reproductives) and four extended family colonies (headed by multiple inbreeding reproductives) with a wide range of degrees of inbreeding. Workers from extended family colonies had a higher bacterial load than those from simple family colonies; however, bacterial load was not significantly correlated to the degree of inbreeding, possibly because of confounding factors in colony life history, such as age and/or size of colonies. Colonies with high bacterial load did not have a higher proportion of entomopathogens, and thus, bacterial load is not necessarily an indicator for disease risk. The majority of bacteria cultured from the cuticle of termites were soil bacteria with no known pathology against termites.
Collapse
Affiliation(s)
- Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| | | | | | | |
Collapse
|
46
|
Carlin F, Brillard J, Broussolle V, Clavel T, Duport C, Jobin M, Guinebretière MH, Auger S, Sorokine A, Nguyen-Thé C. Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment. Food Res Int 2010. [DOI: 10.1016/j.foodres.2009.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Abstract
Bacillus cereus is a Gram-positive aerobic or facultatively anaerobic, motile, spore-forming, rod-shaped bacterium that is widely distributed environmentally. While B. cereus is associated mainly with food poisoning, it is being increasingly reported to be a cause of serious and potentially fatal non-gastrointestinal-tract infections. The pathogenicity of B. cereus, whether intestinal or nonintestinal, is intimately associated with the production of tissue-destructive exoenzymes. Among these secreted toxins are four hemolysins, three distinct phospholipases, an emesis-inducing toxin, and proteases. The major hurdle in evaluating B. cereus when isolated from a clinical specimen is overcoming its stigma as an insignificant contaminant. Outside its notoriety in association with food poisoning and severe eye infections, this bacterium has been incriminated in a multitude of other clinical conditions such as anthrax-like progressive pneumonia, fulminant sepsis, and devastating central nervous system infections, particularly in immunosuppressed individuals, intravenous drug abusers, and neonates. Its role in nosocomial acquired bacteremia and wound infections in postsurgical patients has also been well defined, especially when intravascular devices such as catheters are inserted. Primary cutaneous infections mimicking clostridial gas gangrene induced subsequent to trauma have also been well documented. B. cereus produces a potent beta-lactamase conferring marked resistance to beta-lactam antibiotics. Antimicrobials noted to be effective in the empirical management of a B. cereus infection while awaiting antimicrobial susceptibility results for the isolate include ciprofloxacin and vancomycin.
Collapse
Affiliation(s)
- Edward J Bottone
- Division of Infectious Diseases, Box 1090, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
48
|
Cutting SM, Hong HA, Baccigalupi L, Ricca E. Oral vaccine delivery by recombinant spore probiotics. Int Rev Immunol 2010; 28:487-505. [PMID: 19954360 DOI: 10.3109/08830180903215605] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the past few decades, advancements in molecular and cell biology have allowed scientists to identify a large number of new antigens from a variety of viral and bacterial pathogens. However, successful development of these antigens into effective vaccines strongly relies on delivery systems able to avoid the rapid loss of biological activity that often impairs antigen efficacy. Various delivery systems have been proposed as alternative vaccine vehicles, from live microorganisms to nanoparticles, and all of them have shown advantages but also drawbacks. The bacterial spore is a quiescent cell form that, as a vaccine vehicle, may conjugate some advantages of live microorganisms with those of synthetic nanoparticles and that has recently been proposed as a potentially powerful tool to deliver antigens to mucosal surfaces. Here we review the use of bacterial spores as a delivery system for mucosal immunizations. We will first analyze the nature of the interaction between wild type spores and the gut-associated lymphoid tissue and then address the immune responses that are induced by oral immunizations with recombinant spores displaying heterologous antigens.
Collapse
Affiliation(s)
- Simon M Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | | | | | | |
Collapse
|
49
|
Del-Pozo J, Turnbull J, Ferguson H, Crumlish M. A comparative molecular study of the presence of "Candidatus arthromitus" in the digestive system of rainbow trout, Oncorhynchus mykiss (Walbaum), healthy and affected with rainbow trout gastroenteritis. JOURNAL OF FISH DISEASES 2010; 33:241-250. [PMID: 19912454 DOI: 10.1111/j.1365-2761.2009.01117.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Observations were made using histopathological techniques in conjunction with a nested polymerase chain reaction (PCR) protocol for the specific detection of "Candidatus arthromitus" on DNA extracted from wax-embedded tissues and fresh digestive contents of rainbow trout. Samples positive for "Candidatus arthromitus" DNA included fish with rainbow trout gastroenteritis (RTGE), clinically normal cohabiting fish, and apparently healthy controls from RTGE positive and RTGE negative sites. The results obtained from the PCR were confirmed by nucleotide sequencing. "Candidatus arthromitus" DNA was found in distal intestine as well as in sections of pyloric caeca, suggesting that both these locations are appropriate for molecular detection of "Candidatus arthromitus" DNA in trout. Furthermore, rainbow trout fry distal intestinal samples from two different hatcheries where RTGE had not been reported were also positive. Differences in "Candidatus arthromitus" DNA detection between paraffin wax-embedded and fresh digestive content samples from the same fish suggested that it may be predominantly epithelium-associated in healthy trout. Parallel histopathological observations indicated that pyloric caeca are the preferred site for visualizing segmented filamentous bacteria (SFB) in trout with RTGE. The results of this study showed that the presence of SFB was not invariably associated with clinical disease and that more information is required to understand the role of these organisms.
Collapse
Affiliation(s)
- J Del-Pozo
- Department of veterinary pathology, Easter Bush Veterinary Centre, Roslin, Midlothian, UK.
| | | | | | | |
Collapse
|
50
|
Schuch R, Fischetti VA. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS One 2009; 4:e6532. [PMID: 19672290 PMCID: PMC2716549 DOI: 10.1371/journal.pone.0006532] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 07/01/2009] [Indexed: 12/31/2022] Open
Abstract
Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities.
Collapse
|