1
|
Angeloni E, Germelli L, Costa B, Martini C, Da Pozzo E. Neurosteroids and Translocator Protein (TSPO) in neuroinflammation. Neurochem Int 2025; 182:105916. [PMID: 39681140 DOI: 10.1016/j.neuint.2024.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Neurosteroids have a crucial role in physiological intrinsic regulations of the Central Nervous System functions. They are derived from peripheral steroidogenic sources and from the de novo neurosteroidogenic capacity of brain cells. Significant alterations of neurosteroid levels have been frequently observed in neuroinflammation and neurodegenerative diseases. Such level fluctuations may be useful for both diagnosis and treatment of these pathological conditions. Beyond steroid administration, enhancing the endogenous production by Translocator Protein (TSPO) targeting has been proposed to restore these altered pathological levels. However, the neurosteroid quantification and the prediction of their final effects are often troublesome, sometimes controversial and context dependent, due to the complexity of neurosteroid biosynthetic pathway and to the low produced amounts. The aim of this review is to report recent advances, and technical limitations, in neurosteroid-related strategies against neuroinflammation.
Collapse
Affiliation(s)
- Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
| |
Collapse
|
2
|
Lin YC, Cheung G, Porter E, Papadopoulos V. The neurosteroid pregnenolone is synthesized by a mitochondrial P450 enzyme other than CYP11A1 in human glial cells. J Biol Chem 2022; 298:102110. [PMID: 35688208 PMCID: PMC9278081 DOI: 10.1016/j.jbc.2022.102110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022] Open
Abstract
Neurosteroids, modulators of neuronal and glial cell functions, are synthesized in the nervous system from cholesterol. In peripheral steroidogenic tissues, cholesterol is converted to the major steroid precursor pregnenolone by the CYP11A1 enzyme. Although pregnenolone is one of the most abundant neurosteroids in the brain, expression of CYP11A1 is difficult to detect. We found that human glial cells produced pregnenolone, detectable by mass spectrometry and ELISA, despite the absence of observable immunoreactive CYP11A1 protein. Unlike testicular and adrenal cortical cells, pregnenolone production in glial cells was not inhibited by CYP11A1 inhibitors DL-aminoglutethimide and ketoconazole. Furthermore, addition of hydroxycholesterols increased pregnenolone synthesis, suggesting desmolase activity that was not blocked by DL-aminoglutethimide or ketoconazole. We explored three different possibilities for an alternative pathway for glial cell pregnenolone synthesis: (1) regulation by reactive oxygen species, (2) metabolism via a different CYP11A1 isoform, and (3) metabolism via another CYP450 enzyme. First, we found oxidants and antioxidants had no significant effects on pregnenolone synthesis, suggesting it is not regulated by reactive oxygen species. Second, overexpression of CYP11A1 isoform b did not alter synthesis, indicating use of another CYP11A1 isoform is unlikely. Finally, we show nitric oxide and iron chelators deferoxamine and deferiprone significantly inhibited pregnenolone production, indicating involvement of another CYP450 enzyme. Ultimately, knockdown of endoplasmic reticulum cofactor NADPH-cytochrome P450 reductase had no effect, while knockdown of mitochondrial CYP450 cofactor ferredoxin reductase inhibited pregnenolone production. These data suggest that pregnenolone is synthesized by a mitochondrial cytochrome P450 enzyme other than CYP11A1 in human glial cells.
Collapse
|
3
|
Yan W. An interview with Dr. Vassilios Papadopoulos. Biol Reprod 2021; 105:1070-1074. [PMID: 34341822 DOI: 10.1093/biolre/ioab137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wei Yan
- The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Lin YC, Papadopoulos V. Neurosteroidogenic enzymes: CYP11A1 in the central nervous system. Front Neuroendocrinol 2021; 62:100925. [PMID: 34015388 DOI: 10.1016/j.yfrne.2021.100925] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 01/08/2023]
Abstract
Neurosteroids, steroid hormones synthesized locally in the nervous system, have important neuromodulatory and neuroprotective effects in the central nervous system. Progress in neurosteroid research has led to the successful translation of allopregnanolone into an approved therapy for postpartum depression. However, there is insufficient evidence to support the assumption that steroidogenesis is exactly the same between the nervous system and the periphery. This review focuses on CYP11A1, the only enzyme currently known to catalyze the first reaction in steroidogenesis to produce pregnenolone, the precursor to all other steroids. Although CYP11A1 mRNA has been found in brain of many mammals, the presence of CYP11A1 protein has been difficult to detect, particularly in humans. Here, we highlight the discrepancies in the current evidence for CYP11A1 in the central nervous system and propose new directions for understanding neurosteroidogenesis, which will be crucial for developing neurosteroid-based therapies for the future.
Collapse
Affiliation(s)
- Yiqi Christina Lin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
5
|
Dhole B, Gupta S, Shekhar S, Kumar A. A Novel Antigonadotropic Role of Thyroid Stimulating Hormone on Leydig Cell-Derived Mouse Leydig Tumor Cells-1 Line. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2020; 56:30-37. [PMID: 32655207 DOI: 10.1055/s-0040-1709091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Subclinical hypothyroid men characterized by a rise in only thyroid stimulating hormone (TSH) levels and normal thyroid hormone levels showed a fall in their serum progesterone and testosterone levels. This suggested a role of TSH in regulating Leydig cell steroidogenesis. Therefore, we investigated the direct role of TSH on steroid production and secretion using a mouse Leydig tumour cell line, MLTC-1. MLTC-1 cells were treated with different doses of TSH isolated from porcine pituitary as well as recombinant TSH. Steroid secretion was measured by radioimmunoassay. The mRNA levels of steroidogenic enzymes were quantitated by real time PCR whereas the corresponding protein levels were determined by Western blot. In MLTC-1 cells, pituitary TSH as well as recombinant TSH inhibited progesterone and testosterone secretion in a dose dependent manner. The inhibitory action of TSH on steroid secretion was unique and not mimicked by other anterior pituitary hormones including FSH and ACTH. Recombinant TSH showed no effect on StAR and CYP11A1, the enzymes catalysing the non-steroidogenic and steroidogenic rate-limiting steps of steroid synthesis respectively. Recombinant TSH was shown to inhibit steroidogenesis in MLTC-1 cells by inhibiting the 3β hydroxy steroid dehydrogenase mRNA and protein levels, the enzyme that catalyses the conversion of pregnenolone to progesterone. This inhibitory effect of TSH is probably direct as both mRNA and protein of the TSH receptor were shown to be present in the MLTC-1 cells.
Collapse
Affiliation(s)
- Bodhana Dhole
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi- 110029, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi- 110029, India
| | - Skand Shekhar
- Section on Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi- 110029, India
| |
Collapse
|
6
|
Schverer M, Lanfumey L, Baulieu EE, Froger N, Villey I. Neurosteroids: non-genomic pathways in neuroplasticity and involvement in neurological diseases. Pharmacol Ther 2018; 191:190-206. [PMID: 29953900 DOI: 10.1016/j.pharmthera.2018.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurosteroids are neuroactive brain-born steroids. They can act through non-genomic and/or through genomic pathways. Genomic pathways are largely described for steroid hormones: the binding to nuclear receptors leads to transcription regulation. Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone have no corresponding nuclear receptor identified so far whereas some of their non-genomic targets have been identified. Neuroplasticity is the capacity that neuronal networks have to change their structure and function in response to biological and/or environmental signals; it is regulated by several mechanisms, including those that involve neurosteroids. In this review, after a description of their biosynthesis, the effects of Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone on their targets will be exposed. We then shall highlight that neurosteroids, by acting on these targets, can regulate neurogenesis, structural and functional plasticity. Finally, we will discuss the therapeutic potential of neurosteroids in the pathophysiology of neurological diseases in which alterations of neuroplasticity are associated with changes in neurosteroid levels.
Collapse
Affiliation(s)
- Marina Schverer
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France
| | - Laurence Lanfumey
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France.
| | - Etienne-Emile Baulieu
- MAPREG SAS, Le Kremlin-Bicêtre, France; Inserm UMR 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | | | | |
Collapse
|
7
|
Cascio C, Deidda I, Russo D, Guarneri P. The estrogenic retina: The potential contribution to healthy aging and age-related neurodegenerative diseases of the retina. Steroids 2015; 103:31-41. [PMID: 26265586 DOI: 10.1016/j.steroids.2015.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022]
Abstract
These last two decades have seen an explosion of clinical and epidemiological research, and basic research devoted to envisage the influence of gender and hormonal fluctuations in the retina/ocular diseases. Particular attention has been paid to age-related disorders because of the overlap of endocrine and neuronal dysfunction with aging. Hormonal withdrawal has been considered among risk factors for diseases such as glaucoma, diabetic retinopathy and age-related macular disease (AMD), as well as, for Alzheimer's disease, Parkinson's disease, or other neurodegenerative disorders. Sex hormones and aging have been also suggested to drive the incidence of ocular surface diseases such as dry eye and cataract. Hormone therapy has been approached in several clinical trials. The discovery that the retina is another CNS tissue synthesizing neurosteroids, among which neuroactive steroids, has favored these studies. However, the puzzling data emerged from clinical, epidemiological and experimental studies have added several dimensions of complexity; the current landscape is inherently limited to the weak information on the influence and interdependence of endocrine, paracrine and autocrine regulation in the retina, but also in the brain. Focusing on the estrogenic retina, we here review our knowledge on local 17β-oestradiol (E2) synthesis from cholesterol-based neurosteroidogenic path and testosterone aromatization, and presence of estrogen receptors (ERα and ERβ). The first cholesterol-limiting step and the final aromatase-limiting step are discussed as possible check-points of retinal functional/dysfunctional E2. Possible E2 neuroprotection is commented as a group of experimental evidence on excitotoxic and oxidative retinal paradigms, and models of retinal neurodegenerative diseases, such as glaucoma, diabetic retinopathy and AMD. These findings may provide a framework to support clinical studies, although further basic research is needed.
Collapse
Affiliation(s)
- Caterina Cascio
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy
| | - Irene Deidda
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy
| | - Domenica Russo
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy
| | - Patrizia Guarneri
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy.
| |
Collapse
|
8
|
Soma KK, Rendon NM, Boonstra R, Albers HE, Demas GE. DHEA effects on brain and behavior: insights from comparative studies of aggression. J Steroid Biochem Mol Biol 2015; 145:261-72. [PMID: 24928552 DOI: 10.1016/j.jsbmb.2014.05.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022]
Abstract
Historically, research on the neuroendocrinology of aggression has been dominated by the paradigm that the brain receives sex steroid hormones, such as testosterone (T), from the gonads, and then these gonadal hormones modulate behaviorally relevant neural circuits. While this paradigm has been extremely useful for advancing the field, recent studies reveal important alternatives. For example, most vertebrate species are seasonal breeders, and many species show aggression outside of the breeding season, when the gonads are regressed and circulating levels of gonadal steroids are relatively low. Studies in diverse avian and mammalian species suggest that adrenal dehydroepiandrosterone (DHEA), an androgen precursor and prohormone, is important for the expression of aggression when gonadal T synthesis is low. Circulating DHEA can be converted into active sex steroids within the brain. In addition, the brain can synthesize sex steroids de novo from cholesterol, thereby uncoupling brain steroid levels from circulating steroid levels. These alternative mechanisms to provide sex steroids to specific neural circuits may have evolved to avoid the costs of high circulating T levels during the non-breeding season. Physiological indicators of season (e.g., melatonin) may allow animals to switch from one neuroendocrine mechanism to another across the year. DHEA and neurosteroids are likely to be important for the control of multiple behaviors in many species, including humans. These studies yield fundamental insights into the regulation of DHEA secretion, the mechanisms by which DHEA affects behavior, and the brain regions and neural processes that are modulated by DHEA. It is clear that the brain is an important site of DHEA synthesis and action. This article is part of a Special Issue entitled 'Essential role of DHEA'.
Collapse
Affiliation(s)
- Kiran K Soma
- Departments of Psychology and Zoology, Graduate Program in Neuroscience, and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | - Nikki M Rendon
- Department of Biology, Program in Neuroscience, and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Rudy Boonstra
- Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada M1C 1A4
| | - H Elliott Albers
- Neuroscience Institute, and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Gregory E Demas
- Department of Biology, Program in Neuroscience, and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
9
|
Stárka L, Dušková M, Hill M. Dehydroepiandrosterone: a neuroactive steroid. J Steroid Biochem Mol Biol 2015; 145:254-60. [PMID: 24704258 DOI: 10.1016/j.jsbmb.2014.03.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfate bound form (DHEAS) are important steroids of mainly adrenal origin. They are produced also in gonads and in the brain. Dehydroepiandrosterone easily crosses the brain-blood barrier and in part is also produced locally in the brain tissue. In the brain, DHEA exerts its effects after conversion to either testosterone and dihydrotestosterone or estradiol via androgen and estrogen receptors present in the most parts of the human brain, through mainly non-genomic mechanisms, or eventually indirectly via the effects of its metabolites formed locally in the brain. As a neuroactive hormone, DHEA in co-operation with other hormones and transmitters significantly affects some aspects of human mood, and modifies some features of human emotions and behavior. It has been reported that its administration can increase feelings of well-being and is useful in ameliorating atypical depressive disorders. It has neuroprotective and antiglucocorticoid activity and modifies immune reactions, and some authors have also reported its role in degenerative brain diseases. Here we present a short overview of the possible actions of dehydroepiandrosterone and its sulfate in the brain, calling attention to various mechanisms of their action as neurosteroids and to prospects for the knowledge of their role in brain disorders.
Collapse
Affiliation(s)
- Luboslav Stárka
- Institute of Endocrinology, Národní 8, 11694 Prague, Czech Republic.
| | - Michaela Dušková
- Institute of Endocrinology, Národní 8, 11694 Prague, Czech Republic.
| | - Martin Hill
- Institute of Endocrinology, Národní 8, 11694 Prague, Czech Republic.
| |
Collapse
|
10
|
Rey M, Kruse MS, Alvarez LD, Ghini AA, Veleiro AS, Burton G, Coirini H. Neuroprotective action of synthetic steroids with oxygen bridge. Activity on GABAA receptor. Exp Neurol 2013; 249:49-58. [DOI: 10.1016/j.expneurol.2013.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/24/2013] [Accepted: 07/27/2013] [Indexed: 11/16/2022]
|
11
|
Papadopoulos V. Implications of a new diagnostic blood test for Alzheimer’s disease on future disease management. Neurodegener Dis Manag 2011. [DOI: 10.2217/nmt.11.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal General Hospital & Departments of Medicine, Biochemistry & Pharmacology & Therapeutics, McGill University, 1650 Cedar Avenue, C10–148, Montreal, Quebec H3G 1A4, Canada
| |
Collapse
|
12
|
Luchetti S, Huitinga I, Swaab DF. Neurosteroid and GABA-A receptor alterations in Alzheimer's disease, Parkinson's disease and multiple sclerosis. Neuroscience 2011; 191:6-21. [PMID: 21514366 DOI: 10.1016/j.neuroscience.2011.04.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/03/2011] [Accepted: 04/05/2011] [Indexed: 01/17/2023]
Abstract
Steroid hormones (e.g. estrogens, androgens, progestagens) which are synthesized de novo or metabolized within the CNS are called neurosteroids. There is substantial evidence from animal studies suggesting that these steroids can affect brain function by modulating neurotransmission, and influence neuronal survival, neuronal and glial differentiation and myelination in the CNS by regulating gene expression of neurotrophic factors and anti-inflammatory molecules. Indeed, evidence is emerging that expression of the enzymes responsible for the synthesis of neurosteroids changes in neurodegenerative diseases. Some of these changes may contribute to the pathology, while others, conversely, may represent an attempted rescue program in the diseased brain. Here we review the data on changes in neurosteroid levels and neurosteroid synthesis pathways in the human brain in three neurodegenerative conditions, Alzheimers's (AD) and Parkinson's (PD) diseases and Multiple Sclerosis (MS) and the extent to which these findings may implicate protective or pathological roles for neurosteroids in the course of these diseases.Some neurosteroids can modulate neurotransmitter activity, for example, the pregnane steroids allopregnanolone and 3α5α-tetrahydro-deoxycorticosterone which are potent positive allosteric modulators of ionotropic GABA-A receptors. Therefore, neurosteroid-modulated GABA-A receptor subunit alterations found in AD and PD will also be discussed. These data imply an involvement of neurosteroid changes in the neurodegenerative and neuroinflammatory processes and suggest that they may deserve further investigation as potential therapeutic agents in AD, PD and MS. Finally, suggestions for therapeutic strategies will be included. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain.
Collapse
Affiliation(s)
- S Luchetti
- Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
13
|
Rammouz G, Lecanu L, Papadopoulos V. Oxidative Stress-Mediated Brain Dehydroepiandrosterone (DHEA) Formation in Alzheimer's Disease Diagnosis. Front Endocrinol (Lausanne) 2011; 2:69. [PMID: 22654823 PMCID: PMC3356139 DOI: 10.3389/fendo.2011.00069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/19/2011] [Indexed: 02/06/2023] Open
Abstract
Neurosteroids are steroids made by brain cells independently of peripheral steroidogenic sources. The biosynthesis of most neurosteroids is mediated by proteins and enzymes similar to those identified in the steroidogenic pathway of adrenal and gonadal cells. Dehydroepiandrosterone (DHEA) is a major neurosteroid identified in the brain. Over the years we have reported that, unlike other neurosteroids, DHEA biosynthesis in rat, bovine, and human brain is mediated by an oxidative stress-mediated mechanism, independent of the cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) enzyme activity found in the periphery. This alternative pathway is induced by pro-oxidant agents, such as Fe(2+) and β-amyloid peptide. Neurosteroids are involved in many aspects of brain function, and as such, are involved in various neuropathologies, including Alzheimer's disease (AD). AD is a progressive, yet irreversible neurodegenerative disease for which there are limited means for ante-mortem diagnosis. Using brain tissue specimens from control and AD patients, we provided evidence that DHEA is formed in the AD brain by the oxidative stress-mediated metabolism of an unidentified precursor, thus depleting levels of the precursor in the blood stream. We tested for the presence of this DHEA precursor in human serum using a Fe(2+)-based reaction and determined the amounts of DHEA formed. Fe(2+) treatment of the serum resulted in a dramatic increase in DHEA levels in control patients, whereas only a moderate or no increase was observed in AD patients. The DHEA variation after oxidation correlated with the patients' cognitive and mental status. In this review, we present the cumulative evidence for oxidative stress as a natural regulator of DHEA formation and the use of this concept to develop a blood-based diagnostic tool for neurodegenerative diseases linked to oxidative stress, such as AD.
Collapse
Affiliation(s)
- Georges Rammouz
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill UniversityMontreal, QC, Canada
| | - Laurent Lecanu
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill UniversityMontreal, QC, Canada
| | - Vassilios Papadopoulos
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill UniversityMontreal, QC, Canada
- Department of Biochemistry, McGill UniversityMontreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill UniversityMontreal, QC, Canada
- *Correspondence: Vassilios Papadopoulos, The Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, C10-148, Montreal, QC, Canada H3G 1A4. e-mail:
| |
Collapse
|
14
|
Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 2009; 30:259-301. [PMID: 19505496 DOI: 10.1016/j.yfrne.2009.05.006] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/12/2009] [Accepted: 05/21/2009] [Indexed: 01/09/2023]
Abstract
Neuroactive steroids synthesized in neuronal tissue, referred to as neurosteroids, are implicated in proliferation, differentiation, activity and survival of nerve cells. Neurosteroids are also involved in the control of a number of behavioral, neuroendocrine and metabolic processes such as regulation of food intake, locomotor activity, sexual activity, aggressiveness, anxiety, depression, body temperature and blood pressure. In this article, we summarize the current knowledge regarding the existence, neuroanatomical distribution and biological activity of the enzymes responsible for the biosynthesis of neurosteroids in the brain of vertebrates, and we review the neuronal mechanisms that control the activity of these enzymes. The observation that the activity of key steroidogenic enzymes is finely tuned by various neurotransmitters and neuropeptides strongly suggests that some of the central effects of these neuromodulators may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 413, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu Y, Pocivavsek A, Papadopoulos V. Dehydroepiandrosterone formation is independent of cytochrome P450 17alpha-hydroxylase/17, 20 lyase activity in the mouse brain. J Steroid Biochem Mol Biol 2009; 115:86-90. [PMID: 19500726 DOI: 10.1016/j.jsbmb.2009.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 02/28/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
Cytochrome P450 17alpha-hydroxylase/17, 20 lyase (CYP17) is a microsomal enzyme reported to have two distinct catalytic activities, 17alpha-hydroxylase and 17, 20 lyase, that are essential for the biosynthesis of peripheral androgens such as dehydroepiandrosterone (DHEA). Paradoxically, DHEA is present and plays a role in learning and memory in the adult rodent brain, while CYP17 activity and protein are undetectable. To determine if CYP17 is required for DHEA formation and function in the adult rodent brain, we generated CYP17 chimeric mice that had reduced circulating testosterone levels. There were no detectable differences in cognitive spatial learning between CYP17 chimeric and wild-type mice. In addition, while CYP17 mRNA levels were reduced in CYP17 chimeric compared to wild-type mouse brain, the levels of brain DHEA levels were comparable. To determine if adult brain DHEA is formed by an alternative Fe(2+)-dependent pathway, brain microsomes were isolated from wild-type and CYP17 chimeric mice and treated with FeSO(4). Fe(2+) caused comparable levels of DHEA production by both wild-type and CYP17 chimeric mouse brain microsomes; DHEA production was not reduced by a CYP17 inhibitor. Taken together these in vivo studies suggest that in the adult mouse brain DHEA is formed via a Fe(2+)-sensitive CYP17-independent pathway.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biochemistry & Molecular and Cellular Biology, Washington, DC 20057, USA
| | | | | |
Collapse
|
16
|
Liere P, Pianos A, Eychenne B, Cambourg A, Bodin K, Griffiths W, Schumacher M, Baulieu EE, Sjövall J. Analysis of pregnenolone and dehydroepiandrosterone in rodent brain: cholesterol autoxidation is the key. J Lipid Res 2009; 50:2430-44. [PMID: 19506304 DOI: 10.1194/jlr.m900162-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pregnenolone (PREG) and dehydroepiandrosterone (DHEA), and their respective sulfated forms PREGS and DHEAS, were among the first steroids to be identified in rodent brain. However, unreliable steroid isolation and solvolysis procedures resulted in errors, particularly in the case of brain steroid sulfates analyzed by radioimmunology or GC-MS of liberated free steroids. By using a solid-phase extraction recycling/elution procedure, allowing the strict separation of sulfated, free, and fatty acid esters of PREG and DHEA, PREGS and DHEAS, unlike free PREG, were not detected in rat and mouse brain and plasma. Conversely, considerable amounts of PREG and DHEA were released from unknown precursor(s) present in the lipoidal fraction, distinct from fatty acid ester conjugates. Chromatographic and mass spectrometric studies of the nature of the precursor(s) showed that autoxidation of brain cholesterol (CHOL) was responsible for the release of PREG and DHEA from the lipoidal fraction. When inappropriate protocols were used, CHOL was also the precursor of PREG and DHEA obtained from the fraction assumed to contain sulfated steroids. In contrast, free PREG was definitely confirmed as an endogenous steroid in rat brain. Our study shows that an early removal of CHOL from brain extracts coupled to well-validated extraction and fractionation procedures are prerequisites for reliable measurements of free and conjugated PREG and DHEA by GC-MS or other indirect methods.
Collapse
Affiliation(s)
- Philippe Liere
- Unité Mixte de Recherche 788, INSERM, University Paris-Sud 11, 94276 Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cascio C, Russo D, Drago G, Galizzi G, Passantino R, Guarneri R, Guarneri P. 17beta-estradiol synthesis in the adult male rat retina. Exp Eye Res 2007; 85:166-72. [PMID: 17466975 DOI: 10.1016/j.exer.2007.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 01/31/2007] [Accepted: 02/04/2007] [Indexed: 11/21/2022]
Abstract
17beta-Estradiol (E2) exerts neurotrophic and neuroprotective effects in the retina as well as in other CNS structures, independently of sex. Retinal effects, however, have not been supported by evidence on local synthesis, and whether CNS 17beta-estradiol is formed in a neurosteroidogenic pathway starting from cholesterol conversion into pregnenolone is a question still left unanswered. In the adult male rat retina, we have previously showed localization and activity of the P450 side chain cleavage (P450scc) enzyme, which is involved in pregnenolone synthesis. Here, we demonstrate both the mRNA and protein expression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD), P450aromatase and also of P450scc, but only the protein expression of P450 17alpha-hydroxylase/lyase (P450c17). Using radiolabeled pregnenolone and testosterone as precursors, in the isolated and intact retina of adult male rats, E2 is produced in a large amount by each precursor within 1-4h, suggesting a highly active metabolic pathway towards its formation. The immunolocalization pattern shows enzymes and estrogen receptor subtypes (ERalpha, ERbeta) scattered in the retina with different intensities throughout the layers. The results point to the adult male rat retina as a neurosteroidogenic structure where E2 synthesis via a progesterone pathway and the presence of estrogen receptors provide important clues for understanding the neurotrophic and neuroprotective effects of the steroid hormone.
Collapse
Affiliation(s)
- C Cascio
- Istituto di Biomedicina e Immunologia Molecolare, IBIM - CNR, Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Do Rego JL, Tremblay Y, Luu-The V, Repetto E, Castel H, Vallarino M, Bélanger A, Pelletier G, Vaudry H. Immunohistochemical localization and biological activity of the steroidogenic enzyme cytochrome P450 17α-hydroxylase/C17, 20-lyase (P450C17) in the frog brain and pituitary. J Neurochem 2007; 100:251-68. [PMID: 17076760 DOI: 10.1111/j.1471-4159.2006.04209.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It is now clearly established that the brain has the capability of synthesizing various biologically active steroids including 17-hydroxypregnenolone (17OH-Delta(5)P), 17-hydroxyprogesterone (17OH-P), dehydroepiandrosterone (DHEA) and androstenedione (Delta(4)). However, the presence, distribution and activity of cytochrome P450 17alpha-hydroxylase/C17, 20-lyase (P450(C17)), a key enzyme required for the conversion of pregnenolone (Delta(5)P) and progesterone (P) into these steroids, are poorly documented. Here, we show that P450(C17)-like immunoreactivity is widely distributed in the frog brain and pituitary. Prominent populations of P450(C17)-containing cells were observed in a number nuclei of the telencephalon, diencephalon, mesencephalon and metencephalon, as well as in the pars distalis and pars intermedia of the pituitary. In the brain, P450(C17)-like immunoreactivity was almost exclusively located in neurons. In several hypothalamic nuclei, P450(C17)-positive cell bodies also contained 3beta-hydroxysteroid dehydrogenase-like immunoreactivity. Incubation of telencephalon, diencephalon, mesencephalon, metencephalon or pituitary explants with [(3)H]Delta(5)P resulted in the formation of several tritiated steroids including 17OH-Delta(5)P, 17OH-P, DHEA and Delta(4). De novo synthesis of C(21) 17-hydroxysteroids and C(19) ketosteroids was reduced in a concentration-dependent manner by ketoconazole, a P450(C17) inhibitor. This is the first detailed immunohistochemical mapping of P450(C17) in the brain and pituitary of any vertebrate. Altogether, the present data provide evidence that CNS neurons and pituitary cells can synthesize androgens.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tagawa N, Sugimoto Y, Yamada J, Kobayashi Y. Strain differences of neurosteroid levels in mouse brain. Steroids 2006; 71:776-84. [PMID: 16797626 DOI: 10.1016/j.steroids.2006.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/28/2006] [Accepted: 05/15/2006] [Indexed: 01/01/2023]
Abstract
Neurosteroids, pregnenolone (Preg), dehydroepiandrosterone (DHEA) and their sulfates (PregS and DHEAS) are reported to exert their modulatory effects of neuronal excitability and synaptic plasticity via amino acid receptors, which affect and regulate the learning and memory process, mood, and depression. Although the brain levels of these steroids have been reported in rodents, the strain differences of the levels of these steroids have not been demonstrated. We examined the concentrations of Preg, 17-OH-Preg, DHEA, androstenediol (ADIOL) and their sulfates in whole brains from DBA/2, C57BL/6, BALB/c, ddY and ICR mice, the genetic backgrounds of which are different. No differences in the brain levels of Preg and DHEA were found among the strains. In contrast, PregS levels in DBA/2 were significantly lower than in the others, while DHEAS concentrations in DBA/2 were significantly higher than those in other strains. Strain differences were found in 17-OH-Preg, ADIOL and 17-OH-PregS but not in ADIOLS levels. The ranges of Preg and PregS levels were the highest among the steroids studied. Further, we measured serum these steroid levels. Although strain differences were also found in serum steroids, correlation study between brain and serum levels revealed that brain neurosteroids studied may not come from peripheral circulation. In conclusion, this is the first report of demonstrating mammalian brain levels of 17-OH-Preg, ADIOL, 17-OH-PregS and ADIOLS and the strain differences in neurosteroid levels in mice brains. The differences in levels may involve the strain differences in their behavior, e.g. aggression, adaptation to stress or learning, in mice.
Collapse
Affiliation(s)
- Noriko Tagawa
- Department of Medical Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Kobe 658-8558, Japan
| | | | | | | |
Collapse
|
20
|
Kibaly C, Patte-Mensah C, Mensah-Nyagan AG. Molecular and neurochemical evidence for the biosynthesis of dehydroepiandrosterone in the adult rat spinal cord. J Neurochem 2005; 93:1220-30. [PMID: 15934942 DOI: 10.1111/j.1471-4159.2005.03113.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Various studies have indicated that exogenous dehydroepiandrosterone (DHEA) modulates several mechanisms in the CNS of rodents. As adult rodent glands do not secrete significant amounts of DHEA, its role as endogenous modulator of the CNS remains possible only if DHEA is produced by nerve cells. Therefore, the last decade has been marked by diverse unsuccessful investigations aiming to demonstrate the activity of cytochrome P450c17 (P450c17), the key DHEA-synthesizing enzyme, in adult rodent CNS. Here, we combined molecular, anatomical, cellular and neurochemical approaches to provide the first demonstration of the existence of P450c17 and bioactivity in adult rat spinal cord (SC). Real-time RT-PCR revealed P450c17 gene expression in all SC segments. Western blot analyses allowed identification of a specific P450c17 protein in the SC and immunohistochemical studies localized P450c17 in neurones and glial cells. Pulse-chase experiments combined with HPLC and radioactive steroid detection showed that SC slices converted [3H]pregnenolone into [3H]DHEA, a conversion markedly reduced by ketoconazole, a P450c17 inhibitor. Kinetics studies revealed accumulation of [3H]DHEA newly synthesized by SC slices in the incubation medium as its amount declined slowly. This first cellular mapping of an active P450c17 in adult rodent SC suggests that endogenous DHEA synthesized in spinal neural networks may control various spinally-mediated activities.
Collapse
Affiliation(s)
- Cherkaouia Kibaly
- Laboratoire de Neurophysiologie Cellulaire et Intégrée, Unité Mixte de Recherche 7519-Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
21
|
Maayan R, Touati-Werner D, Ram E, Galdor M, Weizman A. Is brain dehydroepiandrosterone synthesis modulated by free radicals in mice? Neurosci Lett 2004; 377:130-5. [PMID: 15740851 DOI: 10.1016/j.neulet.2004.11.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 11/11/2004] [Accepted: 11/26/2004] [Indexed: 11/27/2022]
Abstract
Dehydroepiandrosterone (DHEA) is a neurosteroid synthesized de novo in the brain, in addition to the periphery, modulating some membrane, ion-gated channel neurotransmitter receptors. P450-17alpha-hydroxylase activity converting pregnenolone to DHEA, has not yet been identified in the brain of rodents. Studies in brain-derived primary cultures and cell lines, suggest a possible alternative pathway for DHEA synthesis involving oxygenated hydroxyperoxides. We investigated DHEA synthesis in the brains of castrated male mice before and after treatment with N-acetylcysteine amide (AD4) (a newly developed brain penetrating antioxidant). We found a significant increase in brain DHEA level 24 h after castration, which was totally blocked by AD4. This blockade of castration-induced increased brain DHEA synthesis, supports the assumption that this synthesis may also be affected by free radicals. This is the first in vivo study indicating the possible existence of an in-brain oxidative stress-related pathway leading to brain DHEA production.
Collapse
Affiliation(s)
- Rachel Maayan
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petah Tikva 49100, Israel.
| | | | | | | | | |
Collapse
|
22
|
Chen H, Liu J, Luo L, Zirkin BR. Dibutyryl cyclic adenosine monophosphate restores the ability of aged Leydig cells to produce testosterone at the high levels characteristic of young cells. Endocrinology 2004; 145:4441-6. [PMID: 15231695 DOI: 10.1210/en.2004-0639] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The wealth of knowledge about the function and regulation of adult Leydig cells, the cells within the mammalian testis that produce testosterone, make these cells ideal for studying principles and mechanisms of aging. A hallmark of mammalian aging is decreased serum testosterone concentration. In the Brown Norway rat, this has been shown to be associated with the reduced ability of aged Leydig cells to produce testosterone in response to LH. Herein, we demonstrate that culturing the aged cells with dibutyryl cAMP, a membrane-permeable cAMP agonist that bypasses the LH receptor-adenlyly cyclase cascade, restores testosterone production to levels comparable to those of young cells and also restores steroidogenic acute regulatory protein and P450scc, the proteins involved in the rate-limiting steps of steroidogenesis. These results strongly suggest that signal transduction deficits are responsible for reduced steroidogenesis by aged Leydig cells and that bypassing signal transduction reverses the steroidogenic decline by the aged cells.
Collapse
Affiliation(s)
- Haolin Chen
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
23
|
Liere P, Pianos A, Eychenne B, Cambourg A, Liu S, Griffiths W, Schumacher M, Sjövall J, Baulieu EE. Novel lipoidal derivatives of pregnenolone and dehydroepiandrosterone and absence of their sulfated counterparts in rodent brain. J Lipid Res 2004; 45:2287-302. [PMID: 15342680 DOI: 10.1194/jlr.m400244-jlr200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A new sample preparation method coupled to GC-MS analysis was developed and validated for quantification of sulfate esters of pregnenolone (PREG-S) and dehydroepiandrosterone (DHEA-S) in rat brain. Using a solid-phase extraction recycling protocol, the results show that little or no PREG-S and DHEA-S (<1 pmol/g) is present in rat and mouse brain. These data are in agreement with studies in which steroid sulfates were analyzed without deconjugation. We suggest that the discrepancies between analyses with and without deconjugation are caused by internal contamination of brain extract fractions, supposed to contain steroid sulfates, by lipoidal forms of PREG and DHEA (L-PREG and L-DHEA, respectively). These derivatives can be acylated very efficiently with heptafluorobutyric anhydride and triethylamine, and their levels in rodent brain (approximately 1 nmol/g) are much higher than those of their unconjugated counterparts. They are distinct from fatty acid esters, and preliminary data do not favor structures such as sulfolipids or sterol peroxides. Noncovalent interactions between steroids and proteolipidic elements, such as lipoproteins, could account for some experimental data. Given their abundance in rodent brain, the structural characterization and biological functions of L-PREG and L-DHEA in the central nervous system merit considerable attention.
Collapse
Affiliation(s)
- Philippe Liere
- Institut National de la Santé et de la Recherche Médicale U488, 94276 Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Maayan R, Yoran-Hegesh R, Strous R, Nechmad A, Averbuch E, Weizman A, Spivak B. Three-month treatment course of methylphenidate increases plasma levels of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEA-S) in attention deficit hyperactivity disorder. Neuropsychobiology 2004; 48:111-5. [PMID: 14586159 DOI: 10.1159/000073626] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Methylphenidate is considered by many to be the treatment of choice for attention deficit hyperactivity disorder (ADHD). Methylphenidate exerts its therapeutic effects through the dopaminergic, serotonergic and noradrenergic systems, however its effects on other neurophysiological systems, such as the neurosteroidal system, remain unknown. Dehydroepiandrosterone (DHEA) and its sulfate ester (DHEA-S) are neuroactive steroids with effects on several neurophysiological and behavioral processes. The purpose of the present study was to determine the effect of 3 months of treatment with methylphenidate on circulatory DHEA, DHEA-S, and cortisol in children with ADHD. The study population consisted of 15 boys (aged 11.5 +/- 1.6 years) with ADHD, combined type. Subjects were evaluated before and after methylphenidate treatment with a specific rating scale for the assessment of inattention and impulsivity in ADHD. Results show that treatment led to significant clinical improvement in all subjects. Furthermore, following 3 months of treatment, there was a significant increase in serum levels of DHEA and DHEA-S but not in circulatory levels of cortisol. The mean rate of increase in DHEA levels was 23 and 53.6% in DHEA-S. Our findings suggest that DHEA and DHEA-S may play a role in the therapeutic effects of methylphenidate. Several mechanisms to explain this action are proposed, including involvement of the serotonergic, GABA-ergic and noradrenergic pathways.
Collapse
Affiliation(s)
- Rachel Maayan
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petah Tiqva, Israel
| | | | | | | | | | | | | |
Collapse
|
25
|
Diallo S, Lecanu L, Greeson J, Papadopoulos V. A capillary gas chromatography/mass spectrometric method for the quantification of hydroxysteroids in human plasma. Anal Biochem 2004; 324:123-30. [PMID: 14654054 DOI: 10.1016/j.ab.2003.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A specific and sensitive methodology for the quantitative determination of hydroxysteroids dehydroepiandrosterone and pregnenolone and their main metabolites in human plasma is described. Hydroxysteroids were extracted using methanol and steroids were further separated by reverse-phase high-performance liquid chromatography, allowing for minimization of the possible chromatographic interferences. Eluted fractions were collected, pooled, and analyzed by gas chromatography-mass spectrometry as trimethylsilyl ether derivatives. The quantification was performed with single-ion monitoring of the highly abundant m/z 129 or m/z 358 fragments. The combination of the chromatographic characteristics to the specific fragments ensured the selectivity and specificity of the method. Under these conditions the method was linear (typical R2 is superior to 0.98 for all hydroxysteroids studied) over the concentration range of 2 x 10(-9) to 10(-6)M with good precision and accuracy.
Collapse
Affiliation(s)
- S Diallo
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Aggressive behavior can serve important adaptive functions in social species. However, if it exceeds the species-typical pattern, it may become maladaptive. Very high or escalated levels of aggressive behavior can be induced in laboratory rodents by pharmacological (alcohol-heightened aggression), environmental (social instigation), or behavioral (frustration-induced aggression) means. These various forms of escalated aggressive behavior may be useful in further elucidating the neurochemical control over aggression and violence. One neurochemical system most consistently linked with escalated aggression is the GABAergic system, in conjunction with other amines and peptides. Although direct stimulation of GABA receptors generally suppresses aggression, a number of studies have found that positive allosteric modulators of GABAA receptors can cause increases in aggressive behavior. For example, alcohol, benzodiazepines, and many neurosteroids are all positive modulators of the GABAA receptor and all can cause increased levels of aggressive behavior. These effects are dose-dependent and higher doses of these compounds generally shift from heightening aggressive behavior to being sedative and anti-aggressive. In addition, these modulators interact with each other and can have additive effects on the GABAA receptor and on behavior, including aggression. The GABAA receptor is a heteropentameric protein that can be constituted from various subunits. It has been shown that subunit composition can affect sensitivity of the receptor to some modulators and that subunit composition differentially affects the sedative vs anxiolytic actions of benzodiazepines. Initial studies targeting alpha subunits of the GABAA receptor point to their significant role in the aggression-heightening effects of alcohol, benzodiazepines, and neurosteroids.
Collapse
Affiliation(s)
- Klaus A Miczek
- Department of Psychology, Tufts University, Medford and Boston, MA 02155, USA.
| | | | | |
Collapse
|
27
|
Racchi M, Balduzzi C, Corsini E. Dehydroepiandrosterone (DHEA) and the aging brain: flipping a coin in the "fountain of youth". CNS DRUG REVIEWS 2003; 9:21-40. [PMID: 12595910 PMCID: PMC6741703 DOI: 10.1111/j.1527-3458.2003.tb00242.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The physiological role of dehydroepiandrosterone (DHEA) and its sulphated ester DHEA(S) has been studied for nearly 2 decades and still eludes final clarification. The major interest in DHEA derives from its unique pattern of activity. Its levels exhibit a dramatic age-related decline that supports significant involvement of DHEA(S) in the aging process. Particularly relevant to the aging process is the functional decline that involves memory and cognitive abilities. DHEA is derived mainly from synthesis in the adrenal glands and gonads. It can also be detected in the brain where it is derived from a synthesis that is independent from peripheral steroid sources. For this reason DHEA and other steroid molecules have been named "neurosteroids." Pharmacological studies on animals provided evidence that neurosteroids could be involved in learning and memory processes because they can display memory-enhancing properties in aged rodents. However, human studies have reported contradictory results that so far do not directly support the use of DHEA in aging-related conditions. As such, it is important to remember that plasma levels of DHEA(S) may not reflect levels in the central nervous system (CNS), due to intrinsic ability of the brain to produce neurosteroids. Thus, the importance of neurosteroids in the memory process and in age-related cognitive impairment should not be dismissed. Furthermore, the fact that the compound is sold in most countries as a health food supplement is hampering the rigorous scientific evaluation of its potential. We will describe the effect of neurosteroids, in particular DHEA, on neurochemical mechanism involved in memory and learning. We will focus on a novel effect on a signal transduction mechanism involving a classical "cognitive kinase" such as protein kinase C. The final objective is to provide additional tools to understand the physiological role and therapeutic potentials of neurosteroids in normal and/or pathological aging, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Marco Racchi
- Department of Experimental and Applied Pharmacology, University of Pavia, Italy.
| | | | | |
Collapse
|
28
|
Marwah A, Marwah P, Lardy H. High-performance liquid chromatographic analysis of dehydroepiandrosterone. J Chromatogr A 2001; 935:279-96. [PMID: 11762780 DOI: 10.1016/s0021-9673(01)01268-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Qualitative and quantitative analysis of dehydroepiandrosterone and its conjugates in biological matrices and establishment of their relationships with physiological functions is a very active field. This review article discusses methods of separation and quantification of dehydroepiandrosterone and its conjugates using high-performance liquid chromatographic techniques.
Collapse
Affiliation(s)
- A Marwah
- Institute for Enzyme Research, Department of Biochemistry University of Wisconsin at Madison, 53705, USA
| | | | | |
Collapse
|
29
|
Plassart-Schiess E, Baulieu EE. Neurosteroids: recent findings. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:133-40. [PMID: 11744081 DOI: 10.1016/s0165-0173(01)00113-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The term neurosteroid applies to those steroids that are synthesized in the nervous system, from cholesterol or other blood-borne steroidal precursors, and that accumulate in the nervous system to levels that are at least in part independent from steroidogenic gland secretion. Both glial cells and neurons participate in neurosteroid biosynthesis and metabolism. Several neurosteroids are involved in auto/paracrine mechanisms involving regulation of target gene expression and/or effects on membrane receptors (particularly those for neurotransmitters). An additional unexpected mechanism of steroid action is reported here: pregnenolone binds to neural microtubule-associated protein of type 2 (MAP2) and increases both the rate and extent of tubulin polymerization, forming microtubules of normal electron microscopic appearance. This novel mechanism may play a role in regulating microtubule formation and dynamics and thus neuronal plasticity and function.
Collapse
Affiliation(s)
- E Plassart-Schiess
- INSERM U488 and Collège de France, Bat Grégory Pincus, Hôpital du 94276, Kremlin-Bicêtre, France
| | | |
Collapse
|
30
|
Lieberman S, Warne PA. 17-Hydroxylase: an evaluation of the present view of its catalytic role in steroidogenesis. J Steroid Biochem Mol Biol 2001; 78:299-312. [PMID: 11717000 DOI: 10.1016/s0960-0760(01)00105-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This survey analyses the evidence that has led to the belief that the catalytic role of 17-hydroxylase in the biosynthesis of cortisol, estradiol, testosterone and dehydroepiandrosterone is confined to two chemical reactions: pregnenolone-->17-hydroxypregnenolone-->dehydroepiandrosterone. This analysis suggests that the evidence supporting this view is not compelling enough to accept it unquestioningly. Different interpretations of the data can suggest other catalytic roles for 17-hydroxylase that are worthy of consideration. One such alternative is proposed.
Collapse
Affiliation(s)
- S Lieberman
- Department of Obstetrics and Gynecology, The St. Luke's-Roosevelt Institute for Health Sciences, New York, NY 10019, USA
| | | |
Collapse
|
31
|
Matsunaga M, Ukena K, Tsutsui K. Expression and localization of cytochrome P450 17 alpha-hydroxylase/c17,20-lyase in the avian brain. Brain Res 2001; 899:112-22. [PMID: 11311872 DOI: 10.1016/s0006-8993(01)02217-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Steroids synthesized de novo from cholesterol in the brain are generally called neurosteroids. We have recently demonstrated, using biochemical and molecular biological methods, that certain structures in the quail brain possess cytochrome P450 side-chain cleavage enzyme (P450scc) and 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4)-isomerase (3beta-HSD) and produce pregnenolone, pregnenolone sulfate and progesterone. To clarify the biosynthetic pathway of neurosteroids in the avian brain, therefore, we examined the expression of messenger RNA (mRNA) encoding for the enzyme cytochrome P450 17alpha-hydroxylase/c17,20-lyase (P450(17alpha,lyase)), which converts pregnenolone to dehydroepiandrosterone via 17alpha-hydroxypregnenolone or progesterone to androstenedione via 17alpha-hydroxyprogesterone. RT-PCR analysis followed by Southern hybridization indicated the expression of P450(17alpha,lyase) mRNA in the brain of sexually mature birds without a clear-cut sex difference. Employing biochemical techniques combined with HPLC analysis, the conversion of progesterone to 17alpha-hydroxyprogesterone was also found in brain slices of the mature male. P450(17alpha,lyase) mRNA was detected in various brain regions, but there was a clear regional difference in the expression. The expressions of P450(17alpha,lyase) mRNA in the diencephalon and mesencephalon were significantly higher than those in the cerebrum and cerebellum, unlike 3beta-HSD mRNA, which showed no regional difference in the expression. In situ hybridization revealed the cellular localization of P450(17alpha,lyase) mRNA. The cells expressing P450(17alpha,lyase) mRNA were detected several diencephalic and mesencephalic regions, such as the preoptic area, the anterior hypothalamus, the dorsolateral thalamus, the optic tectum and the ventral midbrain. The expression was also localized in the septum, the hyperstriatum accessorium, and the ventral portions of the archistriatum in the telencephalon. Cerebellar Purkinje cells also expressed P450(17alpha,lyase) mRNA. These results suggest that the avian brain possesses P450(17alpha,lyase) as well as P450scc and 3beta-HSD in both sexes. The expression of P450(17alpha,lyase) in the avian brain may be region-dependent.
Collapse
Affiliation(s)
- M Matsunaga
- Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima University, 739-8521, Higashi-Hiroshima, Japan
| | | | | |
Collapse
|
32
|
Baulieu ÉÉ. Neurostéroïdes, leur rôle dans le fonctionnement du cerveau : neurotrophicité, mémoire, vieillissement... BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2001. [DOI: 10.1016/s0001-4079(19)34562-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Cascio C, Brown RC, Liu Y, Han Z, Hales DB, Papadopoulos V. Pathways of dehydroepiandrosterone formation in rat brain glia. J Steroid Biochem Mol Biol 2000; 75:177-86. [PMID: 11226834 DOI: 10.1016/s0960-0760(00)00163-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In peripheral steroidogenic tissues, dehydroepiandrosterone (D) is formed from pregnenolone (P) by the microsomal cytochrome P450c17 enzyme. Although some steroidogenic P450s have been found in brain tissue, no enzyme has been shown to possess P450c17 activity. We recently demonstrated the presence of an alternative, Fe(2+)-dependent pathway responsible for D formation from alternative precursors in rat glioma cells. We and others could not find P450c17 mRNA and protein in rat brain, but demonstrate herein the presence of Fe(2+)-dependent alternative pathway for D formation in rat brain cortex microsomes. Using primary cultures of differentiating rat glial cells, we observed that P450c17 mRNA and protein were present in O-2A oligodendrocyte precursors and mature oligodendrocytes. In the presence of P, O-2A and mature oligodendrocytes formed D. Addition of Fe(2+) together with submaximal concentrations of P increased D formation by these cells. Treatment of oligodendrocytes with the P450c17 inhibitor SU 10603 in the presence or absence of P failed to inhibit D production. These data suggest that D formation in oligodendrocytes occurs independently of the P450c17 protein present in the cells. In isolated type I astrocytes we did not find neither P450c17 mRNA nor protein. These cells responded to Fe(2+) by producing D and addition of P together with Fe(2+) further increased D synthesis. SU 10603 failed to inhibit D formation by astrocytes. Taken together these results suggest that in differentiating rat brain oligodendrocytes and astrocytes D is formed via a P450c17-independent and oxidative stress-dependent alternative pathway.
Collapse
Affiliation(s)
- C Cascio
- Division of Hormone Research, Department of Cell Biology, Georgetown University Medical Center, 3900 Reservoir Road, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
34
|
Baulieu E, Schumacher M. Progesterone as a neuroactive neurosteroid, with special reference to the effect of progesterone on myelination. Steroids 2000; 65:605-12. [PMID: 11108866 DOI: 10.1016/s0039-128x(00)00173-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Some steroids are synthesized within the central and peripheral nervous system, mostly by glial cells. These are known as neurosteroids. In the brain, certain neurosteroids have been shown to act directly on membrane receptors for neurotransmitters. For example, progesterone inhibits the neuronal nicotinic acetylcholine receptor, whereas its 3alpha,5alpha-reduced metabolite 3alpha, 5alpha-tetrahydroprogesterone (allopregnanolone) activates the type A gamma-aminobutyric acid receptor complex. Besides these effects, neurosteroids also regulate important glial functions, such as the synthesis of myelin proteins. Thus, in cultures of glial cells prepared from neonatal rat brain, progesterone increases the number of oligodendrocytes expressing the myelin basic protein (MBP) and the 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase). An important role for neurosteroids in myelin repair has been demonstrated in the rodent sciatic nerve, where progesterone and its direct precursor pregnenolone are synthesized by Schwann cells. After cryolesion of the male mouse sciatic nerve, blocking the local synthesis or action of progesterone impairs remyelination of the regenerating axons, whereas administration of progesterone to the lesion site promotes the formation of new myelin sheaths.
Collapse
Affiliation(s)
- E Baulieu
- INSERM U 488, 80 rue du Général Leclerc, 94276, Le Kremlin-Bic etre, France.
| | | |
Collapse
|
35
|
Gyomorey S, Gupta S, Lye SJ, Gibb W, Labrie F, Challis JR. Temporal expression of prostaglandin H synthase type 2 (PGHS-2) and P450(C17)in ovine placentomes with the natural onset of labour. Placenta 2000; 21:478-86. [PMID: 10940197 DOI: 10.1053/plac.1999.0503] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Labour in the sheep is preceded by increased tissue and plasma prostaglandin (PG) concentrations, and PGs could potentially contribute to the regulation of P450(C17)in placental tissue. Therefore, we determined the cellular localization and temporal pattern of expression of P450(C17)and prostaglandin H synthase type 2 (PGHS-2), the primary PG synthetic enzyme, in intrauterine tissues from three groups of pregnant ewes at term; animals not in labour (NIL;n=5; 140-145 days of gestation), animals in early labour (EL;n=6; 143-149 days) and animals in active labour (L;n=6; 145-149 days). Allocation of animals into the three groups was based on continuous monitoring and assessment of myometrial contractile activity (EMG) and changes in the intrauterine pressure (IUP). Levels of mRNA encoding PGHS-2 and P450C17 were determined by in situ hybridization. Localization and levels of immunoreactive (ir-) P450(C17)and ir-PGHS-2 protein were determined by immunohistochemistry and Western blotting. PGHS-2 mRNA and ir-PGHS-2 were already elevated in placentomes of NIL animals and did not increase further with the progression of labour, whereas P450C17 mRNA increased progressively with labour, and ir-P450C17 rose significantly only in animals in active labour. The rise in P450C17 expression corresponded temporally to a progressive increase in maternal plasma concentration of oestradiol. We suggest that the temporal relationship and subsequent co-localization of PGHS-2 and P450(C17)proteins in the uninucleate trophoblast cells of the placentomes are consistent with the possibility that placental PGs could act to enhance placental output of oestrogen leading to labour and delivery.
Collapse
Affiliation(s)
- S Gyomorey
- MRC Group in Fetal and Neonatal Health and Development, Department of Physiology and Ob/Gyn, University of Toronto, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Neuroactive steroid 3alpha-hydroxy-5alpha-pregnan-20-one modulates electrophysiological and behavioral actions of ethanol. J Neurosci 2000. [PMID: 10684899 DOI: 10.1523/jneurosci.20-05-01982.2000] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuroactive steroids are synthesized de novo in brain, yet their physiological significance remains elusive. We provide biochemical, electrophysiological, and behavioral evidence that several specific actions of alcohol (ethanol) are mediated by the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP; allopregnanolone). Systemic alcohol administration elevates 3alpha, 5alpha-THP levels in the cerebral cortex to pharmacologically relevant concentrations. The elevation of 3alpha,5alpha-THP is dose- and time-dependent. Furthermore, there is a significant correlation between 3alpha,5alpha-THP levels in cerebral cortex and the hypnotic effect of ethanol. Blockade of de novo biosynthesis of 5alpha-reduced steroids using the 5alpha-reductase inhibitor finasteride prevents several effects of ethanol. Pretreatment with finasteride causes no changes in baseline bicuculline-induced seizure threshold but reverses the anticonvulsant effect of ethanol. Finasteride pretreatment also reverses ethanol inhibition of spontaneous neural activity in medial septal/diagonal band of Broca neurons while having no direct effect on spontaneous firing rates. Thus, elevation of 3alpha,5alpha-THP levels by acute ethanol administration represents a novel mechanism of ethanol action as well as an important modulatory role for neurosteroids in the CNS.
Collapse
|
38
|
VanDoren MJ, Matthews DB, Janis GC, Grobin AC, Devaud LL, Morrow AL. Neuroactive steroid 3alpha-hydroxy-5alpha-pregnan-20-one modulates electrophysiological and behavioral actions of ethanol. J Neurosci 2000; 20:1982-9. [PMID: 10684899 PMCID: PMC6772919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Neuroactive steroids are synthesized de novo in brain, yet their physiological significance remains elusive. We provide biochemical, electrophysiological, and behavioral evidence that several specific actions of alcohol (ethanol) are mediated by the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP; allopregnanolone). Systemic alcohol administration elevates 3alpha, 5alpha-THP levels in the cerebral cortex to pharmacologically relevant concentrations. The elevation of 3alpha,5alpha-THP is dose- and time-dependent. Furthermore, there is a significant correlation between 3alpha,5alpha-THP levels in cerebral cortex and the hypnotic effect of ethanol. Blockade of de novo biosynthesis of 5alpha-reduced steroids using the 5alpha-reductase inhibitor finasteride prevents several effects of ethanol. Pretreatment with finasteride causes no changes in baseline bicuculline-induced seizure threshold but reverses the anticonvulsant effect of ethanol. Finasteride pretreatment also reverses ethanol inhibition of spontaneous neural activity in medial septal/diagonal band of Broca neurons while having no direct effect on spontaneous firing rates. Thus, elevation of 3alpha,5alpha-THP levels by acute ethanol administration represents a novel mechanism of ethanol action as well as an important modulatory role for neurosteroids in the CNS.
Collapse
Affiliation(s)
- M J VanDoren
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA
| | | | | | | | | | | |
Collapse
|
39
|
Brown RC, Cascio C, Papadopoulos V. Pathways of neurosteroid biosynthesis in cell lines from human brain: regulation of dehydroepiandrosterone formation by oxidative stress and beta-amyloid peptide. J Neurochem 2000; 74:847-59. [PMID: 10646538 DOI: 10.1046/j.1471-4159.2000.740847.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurosteroids in rodents can originate from peripheral tissues or be locally synthesized in specific brain areas. There is, as yet, no information about the synthesis and regulation of neurosteroids in human brain. We examined the ability of human brain cells to synthesize steroids from a radiolabeled precursor and the mRNA and protein expression of key components of peripheral steroidogenic machinery. Oligodendrocytes are the source of pregnenolone in human brain. Human astrocytes do not synthesize radiolabeled pregnenolone, nor do human neurons. There is potential for all three cell types to metabolize pregnenolone to other neurosteroids, including dehydroepiandrosterone. mRNA and protein for cytochrome P450 17alpha-hydroxylase were found in all cell types, although no activity could be demonstrated. We examined the ability of the cells to make dehydroepiandrosterone via an alternative pathway induced by treatment with Fe2+. Oligodendrocytes and astrocytes make dehydroepiandrosterone via this pathway, but neurons do not. In searching for a natural regulator of dehydroepiandrosterone formation, we observed that treating oligodendrocytes with beta-amyloid, which increases reactive oxygen species, also increased dehydroepiandrosterone formation. These effects of beta-amyloid were blocked by vitamin E. These results indicate that human brain makes steroids in a cell-specific manner and suggest that dehydroepiandrosterone synthesis can be regulated by intracellular free radicals.
Collapse
Affiliation(s)
- R C Brown
- Interdisciplinary Program in Neuroscience, Division of Hormone Research, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
40
|
Abstract
Over the past decade, it has become clear that the brain is a steroidogenic organ. The steroids synthesized by the brain and nervous system, given the name neurosteroids, have a wide variety of diverse functions. In general, they mediate their actions, not through classic steroid hormone nuclear receptors, but through ion-gated neurotransmitter receptors. This paper summarizes what is known about the biosynthesis of neurosteroids, the enzymes mediating these reactions, their localization during development and in the adult, and their function and mechanisms of action in the developing and adult central and peripheral nervous systems. The expression of the steroidogenic enzymes is developmentally regulated, with some enzymes being expressed only during development, while others are expressed during development and in the adult. These enzymes are expressed in both neurons and glia, suggesting that these two cell types must work in concert to produce the appropriate active neurosteroid. The functions attributed to specific neurosteroids include modulation of GABA(A) and NMDA function, modulation of sigma receptor function, regulation of myelinization, neuroprotection, and growth of axons and dendrites. Neurosteroids have also been shown to modulate expression of particular subunits of GABA(A) and NMDA receptors, providing additional sites at which these compounds can regulate neural function. The pharmacological properties of specific neurosteroids are described, and potential uses of neurosteroids in specific neuropathologies and during normal aging in humans are also discussed.
Collapse
Affiliation(s)
- N A Compagnone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, 94143-0556, USA
| | | |
Collapse
|
41
|
Baulieu EE. Neuroactive neurosteroids: dehydroepiandrosterone (DHEA) and DHEA sulphate. ACTA PAEDIATRICA (OSLO, NORWAY : 1992). SUPPLEMENT 1999; 88:78-80. [PMID: 10626550 DOI: 10.1111/j.1651-2227.1999.tb14408.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulphate ester (DHEAS) are neuroactive and are both imported into the brain from the circulation and produced in the nervous system. These neurosteroids have neurotrophic and excitatory effects, and further study is needed to delineate their physiological and pathological functions.
Collapse
Affiliation(s)
- E E Baulieu
- College de France et Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France.
| |
Collapse
|
42
|
Wolf OT, Kirschbaum C. Actions of dehydroepiandrosterone and its sulfate in the central nervous system: effects on cognition and emotion in animals and humans. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:264-88. [PMID: 10567728 DOI: 10.1016/s0165-0173(99)00021-1] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfate ester, DHEAS, exert multiple effects in the rodent central nervous system (CNS). Most of them seem to be mediated through their non-genomic action on several neurotransmitter receptors. DHEA(S) increases neuronal excitability, enhances neuronal plasticity and also has neuroprotective properties. In line with these observations DHEA(S) treatment in rodents enhances memory in several paradigms. Even more studies show antiamnestic effects of the steroids. However, DHEA(S) has also anxiolytic and anti-aggressive properties. In humans cross-sectional and longitudinal studies suggest that DHEAS might be associated with global measures of well-being and functioning; however, a relationship with cognition could not be detected to date. Moreover, studies investigating DHEAS levels in neurodegenerative diseases have produced conflicting results. Experimental studies in elderly humans have revealed preliminary evidence for mood enhancing and antidepressant effects of DHEA treatment, while positive effects on measures of memory and attention could not be found. However, electrophysiological studies demonstrated that DHEA treatment has effects on the human CNS. Several reasons for the discrepancy between data obtained in rodents and humans are discussed and research perspectives are outlined which might help to improve interpretation of results obtained in the two species.
Collapse
Affiliation(s)
- O T Wolf
- Neuroimaging Laboratory, Department of Psychiatry, NYU School of Medicine, New York, USA.
| | | |
Collapse
|
43
|
Maurice T, Phan VL, Urani A, Kamei H, Noda Y, Nabeshima T. Neuroactive neurosteroids as endogenous effectors for the sigma1 (sigma1) receptor: pharmacological evidence and therapeutic opportunities. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 81:125-55. [PMID: 10591471 DOI: 10.1254/jjp.81.125] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neuroactive neurosteroids, including progesterone, allopregnanolone, pregnenolone and dehydroepiandrosterone, represent steroid hormones synthesized de novo in the brain and acting locally on nervous cells. Neurosteroids modulate several neurotransmitter systems such as gamma-aminobutyric acid type A (GABA(A)), N-methyl-D-aspartate (NMDA) and acetylcholine receptors. As physiologic consequences, they are involved in neuronal plasticity, learning and memory processes, aggression and epilepsy, and they modulate the responses to stress, anxiety and depression. The sigma1-receptor protein was recently purified and its cDNA was cloned in several species. The amino-acid sequences are structurally unrelated to known mammalian proteins, but shared homology with a fungal sterol C8-C7 isomerase. The sigma1-receptor ligands exert a potent neuromodulation on excitatory neurotransmitter systems, including the glutamate and cholinergic systems. Consequently, selective sigma1 agonists show neuroprotective properties and beneficial effects in memory processes, stress and depression. The evidence of a direct interaction between neurosteroids and sigma1 receptors was first suggested by the ability of several steroids to inhibit the binding of sigma1-receptor radioligands in vitro and in vivo. A crossed pharmacology between neurosteroids and sigma1-receptor ligands was described in several physiological tests and behavioral responses. This review will detail the recent evidence for a common mechanism of action between neurosteroids and sigma1-receptor ligands and focus on the potential therapeutic interests of such interaction in the physiopathology of learning and memory impairments, stress, depression and neuroprotection.
Collapse
Affiliation(s)
- T Maurice
- INSERM U. 336, Behavioral Neuropharmacology Group, ENSCM, Montpellier, France
| | | | | | | | | | | |
Collapse
|
44
|
Pazirandeh A, Xue Y, Rafter I, Sjövall J, Jondal M, Okret S. Paracrine glucocorticoid activity produced by mouse thymic epithelial cells. FASEB J 1999; 13:893-901. [PMID: 10224232 DOI: 10.1096/fasebj.13.8.893] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous data have suggested that glucocorticoids (GCs) are involved in the differentiation of thymocytes into mature T cells. In this report we demonstrate that the mouse thymic epithelial cells (TEC) express the cytochrome P450 hydroxylases Cyp11A1, Cyp21, and Cyp11B1. These enzymes, in combination with 3beta-hydroxysteroid dehydrogenase (3betaHSD), convert cholesterol into corticosterone, the major GC in rodents. In addition, when TEC were cocultured with 'reporter cells' containing the glucocorticoid receptor (GR) and a GR-dependent reporter gene, a specific induction of reporter gene activity was observed. Induction of reporter gene activity was blocked when the TEC and reporter cells were incubated in the presence of the Cyp11B1 inhibitor metyrapone or the 3betaHSD inhibitor trilostane, as well as by the GR antagonist RU486. Coculturing of TEC with thymocytes induced apoptosis in the latter, which was partially blocked by the enzyme inhibitors and RU486. We conclude that TEC secrete a GC hormone activity and suggest a paracrine role for this in thymocyte development.
Collapse
Affiliation(s)
- A Pazirandeh
- Department of Medical Nutrition, Karolinska Institutet, Huddinge University Hospital, Novum F-60, SE-141 86 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Dehydroepiandrosterone (DHEA) is abundantly found in brain tissues of several species, including human. However, the cellular origin and pathway by which DHEA is synthesized in brain are not yet known. We have, therefore, initiated pilot experiments to explore gene expression of cytochrome P450 17alpha-hydroxylase (P450c17), the key steroidogenic enzyme for androgen synthesis, and evaluate DHEA production by highly purified astrocytes, oligodendrocytes, and neurons. Using RT-PCR, we have demonstrated for the first time that astrocytes and neurons in the cerebral cortex of neonatal rat brain express P450c17. The presence of P450c17 in astrocytes and neurons was supported by the ability of these cells to metabolize pregnenolone to DHEA in a dose-dependent manner as determined by RIA. These data were further confirmed by production of androstenedione by astrocytes using progesterone as a substrate. However, cortical neurons express a low transcript of P450c17 messenger RNA and produce low levels of DHEA and androstenedione compared with astrocytes. Oligodendrocytes neither express the messenger RNA nor produce DHEA. The production of DHEA by astrocytes is not limited to cerebral cortex, as hypothalamic astrocytes produce DHEA at a level 3 times higher than that produced by cortical astrocytes. Cortical and hypothalamic astrocytes also have the capacity to metabolize DHEA to testosterone and estradiol in a dose-dependent manner. However, hypothalamic astrocytes were 3 times more active than cortical astrocytes in the metabolism of DHEA to estradiol. In conclusion, our data presented evidence that astrocytes and neurons express P450c17 and synthesize DHEA from pregnenolone. Astrocytes also have the capacity to metabolize DHEA into sex steroid hormones. These data suggest that as in gonads and adrenal, DHEA is biosynthesized in the brain by a P450c17-dependent mechanism.
Collapse
Affiliation(s)
- I H Zwain
- Department of Reproductive Medicine, University of California-San Diego School of Medicine, La Jolla 92093-0633, USA.
| | | |
Collapse
|
46
|
Azuma T, Nagai Y, Saito T, Funauchi M, Matsubara T, Sakoda S. The effect of dehydroepiandrosterone sulfate administration to patients with multi-infarct dementia. J Neurol Sci 1999; 162:69-73. [PMID: 10064172 DOI: 10.1016/s0022-510x(98)00295-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We measured cerebrospinal fluid (CSF) levels of dehydroepiandrosterone sulfate (DHEAS) by radioimmunoassay in seven patients with multi-infarct dementia (MID), fourteen age- and gender-matched non-demented patients with a history of cerebral infarction and fifteen age- and gender-matched patients without neurological disorders. The levels of DHEAS in CSF of patients with MID were significantly lower than those in non-demented patients with a history of cerebral infarction or those in patients without neurological disorders. Daily intravenous administration of 200 mg DHEAS for 4 weeks markedly increased serum and CSF levels of DHEAS in seven MID patients, improved decrease of daily activities and emotional disturbances in three patients and EEG abnormalities in two patients. The DHEAS therapy may provide a beneficial effect on MID patients.
Collapse
Affiliation(s)
- T Azuma
- The Second Department of Internal Medicine, Osaka Medical Center for Cancer and Cardiovascular Diseases, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Neuroactive Neurosteroids as Endogenous Effectors for the Sigma1 (σ1) Receptor: Pharmacological Evidence and Therapeutic Opportunities. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0021-5198(19)30781-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Abstract
The hyperandrogenism of polycystic ovary syndrome (PCOS) appears to be due to dysregulation of steroidogenesis within the ovaries and adrenal glands. P450c17 is the key enzyme that regulates androgen synthesis. It is the only enzyme known to have the capacity to convert C21-precursors to the androgen pre-hormones, the 17-ketosteroids. It is a single enzyme with two activities, 17-hydroxylase and 17,20-lyase. Thus, its regulation is a significant factor in the expression of hyperandrogenism. Androgen secretion is LH-dependent in the ovary and ACTH-dependent in the adrenal glands. The androgenic response to each of these tropic hormones seems to be modulated by intra-ovarian or intra-adrenal autocrine and paracrine mechanisms. This modulation serves to regulate steroid hormone secretion in tissue-specific ways. Insulin, IGFs and inhibin are among the many growth factors capable of augmenting the response to LH and ACTH. The insulin/IGF system stimulates P450c17 mRNA expression and activities in the ovaries and adrenal glands. An integrating link between insulin resistance and hyperandrogenemia may be serine phosphorylation, which inhibits activity of the insulin receptor and promotes the 17,20-lyase activity of P450c17. However, it must be kept in mind that there is some evidence for the existence of P450c17-independent pathways of androgen biosynthesis.
Collapse
Affiliation(s)
- K N Qin
- The University of Chicago, Pritzker School of Medicine, The University of Chicago Children's Hospital, IL 60637-1470, USA
| | | |
Collapse
|
49
|
Baulieu EE, Robel P. Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) as neuroactive neurosteroids. Proc Natl Acad Sci U S A 1998; 95:4089-91. [PMID: 9539693 PMCID: PMC34265 DOI: 10.1073/pnas.95.8.4089] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- E E Baulieu
- Institut National de la Santé et de la Recherche Médicale, U 488, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêatre Cedex, France
| | | |
Collapse
|