1
|
Gu B, Ferreira LMR, Herrera S, Brown L, Lieberman J, Sherwood RI, Meissner TB, Strominger JL. The TEA domain transcription factors TEAD1 and TEAD3 and WNT signaling determine HLA-G expression in human extravillous trophoblasts. Proc Natl Acad Sci U S A 2025; 122:e2425339122. [PMID: 40096597 PMCID: PMC11962456 DOI: 10.1073/pnas.2425339122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Maternal-fetal immune tolerance guarantees a successful pregnancy throughout gestation. HLA-G, a nonclassical human leukocyte antigen (HLA) molecule exclusively expressed in extravillous trophoblasts (EVT), is a crucial factor in establishing maternal-fetal immune tolerance by interacting with inhibitory receptors on various maternal immune cells residing in the uterus. While trophoblast-specific cis-regulatory elements impacting HLA-G transcription have been described, the identity of trans-acting factors controlling HLA-G expression in EVT remains poorly understood. Utilizing a genome-wide CRISPR-Cas9 knockout screen, we find that the WNT signaling pathway negatively regulates HLA-G expression in EVT. In addition, we identified two trophoblast-specific transcription factors, TEAD1 and TEAD3, required for HLA-G transcription in EVT in a Yes-associated protein-independent manner. Altogether, we systematically elucidated essential genes and pathways underlying HLA-G expression in EVT, shedding light on the mechanisms of maternal-fetal tolerance and potentially providing insights into controlling HLA-G expression beyond EVT to protect allogeneic cells from immune rejection.
Collapse
Affiliation(s)
- Bowen Gu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Program in Cellular and Molecular Medicine Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC29425
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC29425
- Cancer Biology and Immunology Program, Hollings Cancer Center, Charleston, SC29425
| | - Sebastian Herrera
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Lara Brown
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Boston, MA02115
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Boston, MA02115
| | - Torsten B. Meissner
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA02215
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Jack L. Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Zemni I, Bortolotti D, Dhouioui S, Baroudi S, Ferjani M, Nasri I, Zenzri Y, Rahman MA, Harrath AH, Rizzo R, Boujelbene N, Zidi I. Associations of HLA-G 3'UTR polymorphisms and increased HLA-G expression with gastric cancer susceptibility and prognosis. Immunobiology 2025; 230:152864. [PMID: 39693801 DOI: 10.1016/j.imbio.2024.152864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/02/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Gastric cancer (GC) remains a serious health concern and is characterized by a multifactorial etiology involving both genetic and epigenetic factors. The aim of the current study was to examine the relationship between Human leukocyte antigen (HLA)-G 3'UTR polymorphisms and the expression of HLA-G in both tumor tissues and plasma samples from patients with GC in the Tunisian population. METHODS HLA-G 3'UTR polymorphisms (14pb Insertion/deletion and + 3142C/G) were identified by polymerase chain reaction (PCR) or Sanger sequencing. Plasma levels of sHLA-G (total sHLA-G, shed HLA-G1 and HLA-G5) were determined. Immunohistochemistry was used to evaluate the expression of HLA-G in tumor tissues. RESULTS The Del/Del genotype and Del allele frequencies were different between GC patients and healthy donors (HD) (OR [95 % CI] = 2.483 [1.070-5.410], p = 0.025 vs. OR [95 % CI] = 1.537 [0.924-2.584], p = 0.099; respectively). The C/C genotype and C allele frequencies were significantly greater in GC patients than in HD (OR [95 % CI] = 2.269[0.1.070-4.904], p = 0.033 vs. OR [95 % CI] = 1.746[1.045-2.878], p = 0.034; respectively). Interestingly, the Del/Del genotype and Del allele were significantly associated with an increased risk of GC in patients aged ≥55 years at diagnosis. HLA-G was highly expressed in GC tissues, particularly in tissues with advanced tumor invasion (T3 + T4). Compared with HD, GC patients had higher soluble HLA-G, shed HLA-G1 and HLA-G5 levels (Mann-Whitney: p = 0.001, p = 0.001 and p = 0.643, respectively). Assessment of patients' survival by Kaplan-Meier analysis indicated that the Del allele was significantly associated with reduced overall survival (OS) in GC patients at advanced stages III + IV (p = 0.043). CONCLUSIONS These results suggest that HLA-G 3'UTR polymorphisms are associated with GC susceptibility in Tunisian population. The expression of HLA-G in both the tissue and plasma may play an important role in the development and progression of GC. Therefore, the current study supported the recommendation of investigating HLA-G 3'UTR polymorphisms in GC and indicated that HLA-G molecules could serve as promising therapeutic targets in GC.
Collapse
Affiliation(s)
- Ines Zemni
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia; Department of Surgical Oncology, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, Ferrara, Italy
| | - Sabrine Dhouioui
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sana Baroudi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Malek Ferjani
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Inès Nasri
- Department of Pathology, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yosr Zenzri
- Department of Oncology, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Abdel Halim Harrath
- King Saud University, College of Science, Department of Zoology, 11451 Riyadh, Saudi Arabia
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, Ferrara, Italy
| | - Nadia Boujelbene
- Department of Pathology, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Inès Zidi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
3
|
Benitez Fuentes JD, Bartolome Arcilla J, Mohamed Mohamed K, Lopez de Sa A, de Luna Aguilar A, Guevara-Hoyer K, Ballestin Martinez P, Lazaro Sanchez AD, Carosella ED, Ocaña A, Sánchez-Ramon S. Targeting of Non-Classical Human Leukocyte Antigens as Novel Therapeutic Strategies in Cancer. Cancers (Basel) 2024; 16:4266. [PMID: 39766165 PMCID: PMC11675049 DOI: 10.3390/cancers16244266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Human leukocyte antigens (HLAs) are essential regulators of immune responses against cancer, with classical HLAs well-documented for their role in tumor recognition and immune surveillance. In recent years, non-classical HLAs-including HLA-E, HLA-F, HLA-G, and HLA-H-have emerged as critical players in the immune landscape of cancer due to their diverse and less conventional functions in immune modulation. These molecules exhibit unique mechanisms that enable tumors to escape immune detection, promote tumor progression, and contribute to therapeutic resistance. This review provides a comprehensive examination of the current understanding of non-classical HLAs in solid cancers, focusing on their specific roles in shaping the tumor microenvironment and influencing immune responses. By analyzing how HLA-E, HLA-F, HLA-G, and HLA-H modulate interactions with immune cells, such as T cells, natural killer cells, and antigen-presenting cells, we highlight key pathways through which these molecules contribute to immune evasion and metastasis. Additionally, we review promising therapeutic strategies aimed at targeting non-classical HLAs, including emerging immunotherapies that could potentially enhance cancer treatment outcomes by reversing immune suppression within tumors. Understanding the influence of these non-classical HLAs in solid cancers may offer new insights into cancer immunology and may lead to the development of innovative and more effective immunotherapeutic approaches. This review underscores the importance of non-classical HLAs as potential therapeutic targets, providing a necessary foundation for future studies in the evolving field of cancer immunotherapy.
Collapse
Affiliation(s)
| | - Jorge Bartolome Arcilla
- Department of Medical Oncology, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.B.A.); (A.L.d.S.); (P.B.M.)
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Kauzar Mohamed Mohamed
- Department of Immunology, IML and IdISSC, Hospital Clinico San Carlos, 28040 Madrid, Spain; (K.M.M.); (K.G.-H.); (S.S.-R.)
| | - Alfonso Lopez de Sa
- Department of Medical Oncology, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.B.A.); (A.L.d.S.); (P.B.M.)
| | - Alicia de Luna Aguilar
- Department of Medical Oncology, Hospital General Universitario Morales Meseguer, 30008 Murcia, Spain;
| | - Kissy Guevara-Hoyer
- Department of Immunology, IML and IdISSC, Hospital Clinico San Carlos, 28040 Madrid, Spain; (K.M.M.); (K.G.-H.); (S.S.-R.)
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
| | - Pablo Ballestin Martinez
- Department of Medical Oncology, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.B.A.); (A.L.d.S.); (P.B.M.)
- Department of Medical Oncology, Hospital 12 de Octubre, 28041 Madrid, Spain
| | | | - Edgardo D. Carosella
- CEA, DRF-Institut de Biologie François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, 75010 Paris, France;
- U976 HIPI Unit, IRSL, Université Paris, 75006 Paris, France
| | - Alberto Ocaña
- Department of Medical Oncology, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.B.A.); (A.L.d.S.); (P.B.M.)
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, 28040 Madrid, Spain
| | - Silvia Sánchez-Ramon
- Department of Immunology, IML and IdISSC, Hospital Clinico San Carlos, 28040 Madrid, Spain; (K.M.M.); (K.G.-H.); (S.S.-R.)
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
4
|
Knabl J, Ye Y, Desoye G, Jeschke U. HLA-G - evolvement from a trophoblast specific marker to a checkpoint molecule in cancer, a narrative review about the specific role in breast- and gynecological cancer. J Reprod Immunol 2024; 166:104385. [PMID: 39432974 DOI: 10.1016/j.jri.2024.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Human leukocyte antigen G (HLA-G) is known as a non-classical molecule of the major histocompatibility complex class Ib and downregulates the mother's immune response against the fetus during pregnancy, thereby generating immune tolerance. Due to the latter effect, HLA-G is also referred to as an immune checkpoint molecule. Originally identified on extravillous trophoblasts, HLA-G is already known to induce immune tolerance at various stages of the immune response, for example through cell differentiation and proliferation, cytolysis and cytokine secretion. Because of these functions, HLA-G is involved in various processes of cancer progression, but a comprehensive review of the role of HLA-G in gynecologic cancers is lacking. Therefore, this review focuses on the existing knowledge of HLA-G in ovarian cancer, endometrial cancer, cervical cancer and breast cancer. HLA-G is predominantly expressed in cancer tissues adjacent to the extravillous trophoblast. Therefore, modulating its expression in the cancer target tissues of cancer patients could be a potential therapeutic approach to treat these diseases.
Collapse
Affiliation(s)
- Julia Knabl
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistr.15, Munich 81377 , Germany; Department of Obstetrics, Klinik Hallerwiese, St.-Johannis Mühlgasse 19, Nürnberg 90419, Germany
| | - Yao Ye
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University Graz, Auenbruggerplatz 14, Graz A-8036, Austria
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstr. 2, Augsburg 86156, Germany.
| |
Collapse
|
5
|
Tronik-Le Roux D, Daouya M, Poras I, Desgrandchamps F, Carosella ED. HLA-G neo-expression modifies genetic programs governing tumor cell lines. Cancer Immunol Immunother 2024; 73:247. [PMID: 39358558 PMCID: PMC11447172 DOI: 10.1007/s00262-024-03768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 10/04/2024]
Abstract
The development of immunotherapies has proved to be clinically encouraging to re-establish the immune function modified by the expression of immune inhibitory molecules in tumors. However, there are still patients with poor survival rates following treatment. The elucidation of molecular mechanisms triggered by the neo-expression of particular IC in tumors would constitute a major step toward better understanding tumor evolution and would help to design future clinical protocols. To this end, we investigate the modifications triggered by the neo-expression of the immune checkpoints HLA-G in ccRCC tumor cells. We demonstrate, for the first time, that HLA-G modifies key genes implicated mainly in tumor development, angiogenesis, calcium flow and mitochondria dynamics. The involvement of HLA-G on the expression of genes belonging to these pathways such as ADAM-12, NCAM1 and NRP1 was confirmed by the CRISPR/Cas9-mediated edition of HLA-G. The data reveal multifaceted roles of HLA-G in tumor cells which are far beyond the well-known function of HLA-G in the immune anti-tumor response. This warrants further investigation of HLA-G and these new partners in tumors of different origin so as to propose future new treatments to improve health patient's outcome.
Collapse
Affiliation(s)
- Diana Tronik-Le Roux
- CEA Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives/Atomic Energy and Alternative Energies Agency, HIRD Hematology and Immunology Research Division, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France.
- UMRS Unité Mixte de Recherche Et de Service 976HIPI, Human Immunology Pathophysiology Immunotherapie Unit, IRSL Institut de Recherche Saint Louis, University of Paris, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France.
| | - Marina Daouya
- CEA Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives/Atomic Energy and Alternative Energies Agency, HIRD Hematology and Immunology Research Division, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France
- UMRS Unité Mixte de Recherche Et de Service 976HIPI, Human Immunology Pathophysiology Immunotherapie Unit, IRSL Institut de Recherche Saint Louis, University of Paris, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Isabelle Poras
- CEA Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives/Atomic Energy and Alternative Energies Agency, HIRD Hematology and Immunology Research Division, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France
- UMRS Unité Mixte de Recherche Et de Service 976HIPI, Human Immunology Pathophysiology Immunotherapie Unit, IRSL Institut de Recherche Saint Louis, University of Paris, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - François Desgrandchamps
- CEA Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives/Atomic Energy and Alternative Energies Agency, HIRD Hematology and Immunology Research Division, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France
- Department of Urology, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Edgardo D Carosella
- CEA Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives/Atomic Energy and Alternative Energies Agency, HIRD Hematology and Immunology Research Division, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France.
- UMRS Unité Mixte de Recherche Et de Service 976HIPI, Human Immunology Pathophysiology Immunotherapie Unit, IRSL Institut de Recherche Saint Louis, University of Paris, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France.
| |
Collapse
|
6
|
Norul Hajar CG, Zefarina Z, Md Riffin NS, Mohammad THT, Hassan MN, Syed-Hassan SNRK, Aziz MY, Nur Haslindawaty AR, Chambers GK, Edinur HA. Human Leukocyte Antigen-G Gene Polymorphism in Peninsular Malaysia: A Preliminary Report. Genet Test Mol Biomarkers 2024; 28:393-401. [PMID: 39279581 DOI: 10.1089/gtmb.2023.0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Introduction: Expression of the nonclassical human leukocyte antigen (HLA)-G gene is upregulated in placenta during pregnancy. In other cells, HLA-G is upregulated during parasitic infections and allergic reactions. Polymorphism at the HLA-G gene locus has been reported for many populations, but so far not for any ethnic groups in Malaysia. In this survey, we screened for genetic variation in HLA-G genes from representative Malay, Chinese, and Indian individuals living in Peninsular Malaysia. Materials and Methods: Blood samples were obtained with informed consent, and ethnicity classes were assigned based on self-declared pedigree information. Exons 2, 3, and 4 of the HLA-G gene were amplified by polymerase chain reaction and subjected to Sanger sequencing. Results: The most common genotype in Malays and Indians was found to be HLA-G*01:01:01:01/01:01:01:01 with frequencies of 0.206 and 0.167, respectively, whereas the HLA-G*01:01:03:01/01:01:01:01 genotype was the one most frequently observed in Chinese (0.221). Based on this study, HLA-G*01:01:01:01 (0.427-0.448) is the most frequent HLA-G allele in the all three ethnic groups. In contrast, HLA-G*01:01:02:01 (0.186) was observed as the second most frequent HLA-G allele in Malays and HLA-G*01:04:01 in Chinese and Indians, (0.188-0.198, respectively). Several minor HLA-G alleles were detected at low frequency in Malays, Chinese, or Indians (HLA-G*01:01:05, 01:01:09, 01:04:02, and 01:04:03). These have only rarely, if ever, been reported in other population groups. Subsequent statistical analysis including using principal coordinate data mapping showed the Malays, Chinese, and Indians are distinct but quite closely related to one another as compared with other population groups from across Europe and Africa. Conclusion: The HLA-G population data collected in this study showed that the ancestrally unrelated Malays, Chinese, and Indians are genetically distinct. This new database provides a foundation for further studies to capture HLA-G allelic diversity in uncharacterized populations of Malaysia and for future attempts to identify their roles in disease resistance and susceptibility.
Collapse
Affiliation(s)
- Che Ghazali Norul Hajar
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Zulkafli Zefarina
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
- School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | | | - Mohd Nazri Hassan
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
- School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Mohd Yusmaidie Aziz
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Malaysia
| | - Abd Rashid Nur Haslindawaty
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Hisham Atan Edinur
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
7
|
Barzegari A, Salemi F, Kamyab A, Aratikatla A, Nejati N, Valizade M, Eltouny E, Ebrahimi A. The efficacy and applicability of chimeric antigen receptor (CAR) T cell-based regimens for primary bone tumors: A comprehensive review of current evidence. J Bone Oncol 2024; 48:100635. [PMID: 39381633 PMCID: PMC11460493 DOI: 10.1016/j.jbo.2024.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Primary bone tumors (PBT), although rare, could pose significant mortality and morbidity risks due to their high incidence of lung metastasis. Survival rates of patients with PBTs may vary based on the tumor type, therapeutic interventions, and the time of diagnosis. Despite advances in the management of patients with these tumors over the past four decades, the survival rates seem not to have improved significantly, implicating the need for novel therapeutic interventions. Surgical resection with wide margins, radiotherapy, and systemic chemotherapy are the main lines of treatment for PBTs. Neoadjuvant and adjuvant chemotherapy, along with emerging immunotherapeutic approaches such as chimeric antigen receptor (CAR)-T cell therapy, have the potential to improve the treatment outcomes for patients with PBTs. CAR-T cell therapy has been introduced as an option in hematologic malignancies, with FDA approval for several CD19-targeting CAR-T cell products. This review aims to highlight the potential of immunotherapeutic strategies, specifically CAR T cell therapy, in managing PBTs.
Collapse
Affiliation(s)
| | - Fateme Salemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Adarsh Aratikatla
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, County Dublin, Ireland
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Iran
| | - Mojgan Valizade
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehab Eltouny
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alireza Ebrahimi
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Durmanova V, Tedla M, Rada D, Bandzuchova H, Kuba D, Suchankova M, Ocenasova A, Bucova M. Analysis of HLA-G 14 bp Insertion/Deletion Polymorphism and HLA-G, ILT2 and ILT4 Expression in Head and Neck Squamous Cell Carcinoma Patients. Diseases 2024; 12:34. [PMID: 38391781 PMCID: PMC10888050 DOI: 10.3390/diseases12020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
HLA-G is the checkpoint molecule involved in the suppression of the immune response. Increased expression of HLA-G and its ILTs receptors have been correlated with tumor progression in various cancer types. In head and neck squamous cell carcinoma (HNSCC) tumors, the effect of HLA-G, ILT2 and ILT4 expression on cancer development has to be explained. The 34 HNSCC patients and 98 controls were genotyped for the HLA-G 14 bp ins/del polymorphism. In HNSCC lesions, HLA-G, ILT2 and ILT4 mRNA expression was analysed using real-time PCR. The association between HLA-G, ILT2 and ILT4 mRNA expression and clinical variables (age at onset, TNM staging system and p16 positivity) was also evaluated. No genetic association between the HLA-G 14 bp ins/del and HNSCC risk was detected (p > 0.05). However, in the non-metastatic HNSCC group, a significantly higher HLA-G mRNA expression was noted in tumors in the T4 stage compared to those in the T1 and T2 stages (p = 0.0289). ILT2 mRNA expression was significantly increased in non-metastatic vs. metastatic tumors (p = 0.0269). Furthermore, a significantly higher ILT4 mRNA expression was noted in tumors in the T1+T2 stage compared to those in the T3 stage (p = 0.0495). Our results suggest that the HLA-G molecule creates an immunological microenvironment involved in HNSCC development.
Collapse
Affiliation(s)
- Vladimira Durmanova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Miroslav Tedla
- Department of Ears, Nose and Throat and Head and Neck Surgery, Faculty of Medicine, University Hospital Bratislava, Comenius University in Bratislava, 851 07 Bratislava, Slovakia
| | - Dusan Rada
- Department of Ears, Nose and Throat and Head and Neck Surgery, Faculty of Medicine, University Hospital Bratislava, Comenius University in Bratislava, 851 07 Bratislava, Slovakia
| | | | - Daniel Kuba
- National Transplant Organisation, 831 01 Bratislava, Slovakia
| | - Magda Suchankova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Agata Ocenasova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Maria Bucova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| |
Collapse
|
9
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
10
|
Zhang Y, He S, Yu L, Shi C, Zhang Y, Tang S. Prognostic significance of HLA-G in patients with colorectal cancer: a meta-analysis and bioinformatics analysis. BMC Cancer 2023; 23:1024. [PMID: 37875821 PMCID: PMC10594707 DOI: 10.1186/s12885-023-11522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
PURPOSE Human leukocyte antigen-G (HLA-G) has been reported to be aberrantly expressed in colorectal cancer (CRC); however, its prognostic value remains controversial. Hence, our meta-analysis aims to assess the prognostic value of HLA-G in CRC patients based on published literature and The Cancer Genome Atlas (TCGA) datasets. METHODS A systematic search was conducted on relevant studies retrieved from four electronic databases including PubMed, Embase, Web of Science and Cochrane Library. Hazard ratios (HRs) with 95% confidence intervals (CIs) were recorded to be applied as effective values. Fixed-effects models or random-effects models were applied on the basis of the value of heterogeneity (I 2). Publication bias was analyzed by Begg's and Egger's tests. In addition, the results were validated by using TCGA datasets. RESULTS Thirteen studies comprising 3896 patients were incorporated into this meta-analysis. The pooled results showed that HLA-G expression was significantly associated with poor overall survival (OS) in both the univariate analysis (HR = 1.44, 95% CI: 1.14-1.83, P = 0.002) and the multivariate analysis (HR = 1.55, 95% CI: 1.23-1.95, P < 0.001). Nevertheless, the expression of HLA-G is not related to age, sex, tumor type, tumor differentiation, TNM stage, or distant metastasis but lymph node metastasis. Notably, the prognosis of colorectal cancer was not consistent with the analysis result from TCGA data. CONCLUSION HLA-G expression was significantly related to poor OS in CRC according to the results of our meta-analysis. However, we found that the prognostic significance was inconsistent with our results according to the TCGA data in CRC. Hence, more research is still needed to further illustrate the prognostic role of HLA-G in CRC.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China.
| | - Siying He
- Department of clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Lisha Yu
- Department of clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chao Shi
- Department of clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yanyue Zhang
- Department of clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shiyue Tang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
11
|
Mao J, Feng Y, Zhu X, Ma F. The Molecular Mechanisms of HLA-G Regulatory Function on Immune Cells during Early Pregnancy. Biomolecules 2023; 13:1213. [PMID: 37627278 PMCID: PMC10452754 DOI: 10.3390/biom13081213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Human leukocyte antigen-G (HLA-G) is a non-classical human major histocompatibility complex (MHC-I) molecule with the membrane-bound and soluble types. HLA-G is primarily expressed by extravillous cytotrophoblast cells located at the maternal-fetal interface during pregnancy and is essential in establishing immune tolerance. This review provides a comprehensive understanding of the multiple molecular mechanisms by which HLA-G regulates the immune function of NK cells. It highlights that HLA-G binds to microRNA to suppress NK cell cytotoxicity and stimulate the secretion of growth factors to support fetal growth. The interactions between HLA-G and NK cells also activate senescence signaling, promoting spiral artery remodeling and maintaining the balance of maternal-fetal immune responses. In addition, HLA-G can inhibit the function of decidual T cells, dendritic cells, and macrophages. Overall, the interaction between trophoblast cells and immune cells mediated by HLA-G plays a crucial role in understanding immune regulation at the maternal-fetal interface and offers insights into potential treatments for pregnancy-related diseases.
Collapse
Affiliation(s)
- Jia Mao
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy and Cancer Center, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ying Feng
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China;
| | - Xiaofeng Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy and Cancer Center, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Bartolome J, Molto C, Benitez-Fuentes JD, Fernandez-Hinojal G, Manzano A, Perez-Segura P, Mittal A, Tamimi F, Amir E, Ocana A. Prognostic value of human leukocyte antigen G expression in solid tumors: a systematic review and meta-analysis. Front Immunol 2023; 14:1165813. [PMID: 37275862 PMCID: PMC10232772 DOI: 10.3389/fimmu.2023.1165813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Identification of modulators of the immune response with inhibitory properties that could be susceptible for therapeutic intervention is a key goal in cancer research. An example is the human leukocyte antigen G (HLA-G), a nonclassical major histocompatibility complex (MHC) class I molecule, involved in cancer progression. Methods In this article we performed a systematic review and meta-analysis on the association between HLA-G expression and outcome in solid tumors. This study was performed in accordance with PRISMA guidelines and registered in PROSPERO. Results A total of 25 studies met the inclusion criteria. These studies comprised data from 4871 patients reporting overall survival (OS), and 961 patients, reporting disease free survival (DFS). HLA-G expression was associated with worse OS (HR 2.09, 95% CI = 1.67 to 2.63; P < .001), that was higher in gastric (HR = 3.40; 95% CI = 1.64 to 7.03), pancreatic (HR = 1.72; 95% CI = 0.79 to 3.74) and colorectal (HR = 1.55; 95% CI = 1.16 to 2.07) cancer. No significant differences were observed between the most commonly utilized antibody (4H84) and other methods of detection. HLA-G expression was associated with DFS which approached but did not meet statistical significance. Discussion In summary, we describe the first meta-analysis associating HLA-G expression and worse survival in a variety of solid tumors. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022311973.
Collapse
Affiliation(s)
- Jorge Bartolome
- Experimental Therapeutics Unit, Department of Medical Oncology, Hospital Clinico San Carlos and Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Madrid, Spain
| | - Consolacion Molto
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada
| | | | | | - Aranzazu Manzano
- Experimental Therapeutics Unit, Department of Medical Oncology, Hospital Clinico San Carlos and Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Madrid, Spain
| | - Pedro Perez-Segura
- Experimental Therapeutics Unit, Department of Medical Oncology, Hospital Clinico San Carlos and Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Madrid, Spain
| | - Abhenil Mittal
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada
| | - Faris Tamimi
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada
| | - Eitan Amir
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada
| | - Alberto Ocana
- Experimental Therapeutics Unit, Department of Medical Oncology, Hospital Clinico San Carlos and Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
13
|
Yu Y. The Function of NK Cells in Tumor Metastasis and NK Cell-Based Immunotherapy. Cancers (Basel) 2023; 15:cancers15082323. [PMID: 37190251 DOI: 10.3390/cancers15082323] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic tumors cause the most deaths in cancer patients. Treating metastasis remains the primary goal of current cancer research. Although the immune system prevents and kills the tumor cells, the function of the immune system in metastatic cancer has been unappreciated for decades because tumors are able to develop complex signaling pathways to suppress immune responses, leading them to escape detection and elimination. Studies showed NK cell-based therapies have many advantages and promise for fighting metastatic cancers. We here review the function of the immune system in tumor progression, specifically focusing on the ability of NK cells in antimetastasis, how metastatic tumors escape the NK cell attack, as well as the recent development of effective antimetastatic immunotherapies.
Collapse
Affiliation(s)
- Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Parra LM, Sartori BGC, Fernandes DR, Fachin LRV, Nogueira MRS, Belone AFF, Nunes AJF, Souza-Santana FC. HLA-G expression in Merkel cell carcinoma and the correlation with Merkel cell polyomavirus infection. Immunogenetics 2023; 75:81-89. [PMID: 36229691 DOI: 10.1007/s00251-022-01279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare aggressive neuroendocrine cutaneous carcinoma with a high mortality rate. The MCC etiology is not fully understood. Merkel cell-associated polyomavirus (MCPyV) was found in MCC patients, indicating a risk factor for the tumor. Caucasian, elderly, and immunocompromised individuals are more likely to develop this tumor. HLA-G consists of a non-classical class I (Ib) HLA molecule with an immunoregulatory function and was associated with tumor escape in different types of tumors, nonetheless, never been studied in MCC. The purpose of this study was to evaluate the HLA-G expression and also to detect the MCPyV in MCC patients and correlate it with the clinical course of the disease. Forty-five MCC patients were included in a retrospective study. Formalin-fixed paraffin-embedded cutaneous skin biopsies were used by immunohistochemistry and RT-PCR to verify the HLA-G expression and MCPyV infection. HLA-G expression was found in 7 (15.6%), while the presence of MCPyV was detected in 28 (62.2%) of the studied patients. No significant association was found between HLA-G expression and MCPyV infection (p = 0.250). The presence of MCPyV was associated with areas of low sunlight exposure (p = 0.042) and the HLA-G expression with progression to death (p = 0.038). HLA-G expression was detected in MCC patients, as well as the MCPyV presence was confirmed. These markers could represent factors with a possible impact on patient survival; however, further studies with a greater number of patients are needed, to better elucidate the possible role in disease progression.
Collapse
Affiliation(s)
- L M Parra
- Clinical Laboratory, Amaral Carvalho Hospital-Jaú, Dona Silvéria, 150 - Chácara Braz Miraglia, São Paulo, 17210-070, Brazil.
| | - B G C Sartori
- Molecular Biology Laboratory, Lauro de Souza Lima Institute, Bauru, São Paulo, Brazil
| | - D R Fernandes
- Pathological Anatomy Laboratory, Lauro de Souza Lima Institute, Bauru, São Paulo, Brazil
| | - L R V Fachin
- Molecular Biology Laboratory, Lauro de Souza Lima Institute, Bauru, São Paulo, Brazil
| | - M R S Nogueira
- Biology Laboratory, Lauro de Souza Lima Institute, Bauru, São Paulo, Brazil
| | - A F F Belone
- Pathological Anatomy Laboratory, Lauro de Souza Lima Institute, Bauru, São Paulo, Brazil
| | - A J F Nunes
- Pathological Anatomy Laboratory, Lauro de Souza Lima Institute, Bauru, São Paulo, Brazil
- Pathological Anatomy Department, Amaral Carvalho Hospital, Jaú, São Paulo, Brazil
| | - F C Souza-Santana
- Immunology Laboratory, Lauro de Souza Lima Institute, Bauru, São Paulo, Brazil
| |
Collapse
|
15
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
16
|
Almeida RS, Gomes TT, Araújo FS, de Oliveira SAV, Santos JF, Donadi EA, Lucena-Silva N. Differentially Expressed Bone Marrow microRNAs Are Associated With Soluble HLA-G Bone Marrow Levels in Childhood Leukemia. Front Genet 2022; 13:871972. [PMID: 35774498 PMCID: PMC9237524 DOI: 10.3389/fgene.2022.871972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/15/2022] [Indexed: 11/15/2022] Open
Abstract
HLA-G is a nonclassical histocompatibility class I molecule that plays a role in immune vigilance in cancer and infectious diseases. We previously reported that highly soluble HLA-G (sHLA-G) levels in the bone marrow were associated with a high blood cell count in T-acute lymphoblastic leukemia, a marker associated with a poor prognosis. To understand the posttranscriptional HLA-G gene regulation in leukemia, we evaluated the bone marrow microRNA profile associated with the HLA-G bone marrow mRNA expression and sHLA-G bone marrow levels in children exhibiting acute leukemia (B-ALL, T-ALL, and AML) using massively parallel sequencing. Ten differentially expressed miRNAs were associated with high sHLA-G bone marrow levels, and four of them (hsa-miR-4516, hsa-miR-486-5p, hsa-miR-4488, and hsa-miR-5096) targeted HLA-G, acting at distinct HLA-G gene segments. For qPCR validation, these miRNA expression levels (ΔCt) were correlated with HLA-G5 and RREB1 mRNA expressions and sHLA-G bone marrow levels according to the leukemia subtype. The hsa-miR-4488 and hsa-miR-5096 expression levels were lower in B-ALL than in AML, while that of hsa-miR-486-5p was lower in T-ALL than in AML. In T-ALL, hsa-miR-5096 correlated positively with HLA-G5 and negatively with sHLA-G. In addition, hsa-miR-4516 correlated negatively with sHLA-G levels. In AML, hsa-miR-4516 and hsa-miR-4488 correlated positively with HLA-G5 mRNA, but the HLA-G5 negatively correlated with sHLA-G. Our findings highlight the need to validate the findings of massively parallel sequencing since the experiment generally uses few individuals, and the same type of leukemia can be molecularly quite variable. We showed that miRNA's milieu in leukemia's bone marrow environment varies according to the type of leukemia and that the regulation of sHLA-G expression exerted by the same miRNA may act by a distinct mechanism in different types of leukemia.
Collapse
Affiliation(s)
- Renata Santos Almeida
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Thailany Thays Gomes
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Felipe Souza Araújo
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Sávio Augusto Vieira de Oliveira
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Jair Figueredo Santos
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Eduardo Antônio Donadi
- Clinical Immunology Division, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Norma Lucena-Silva
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
- Laboratory of Molecular Biology, Pediatric Oncology Service, IMIP Hospital, Recife, Brazil
| |
Collapse
|
17
|
Effect of HLA-G5 Immune Checkpoint Molecule on the Expression of ILT-2, CD27, and CD38 in Splenic B cells. J Immunol Res 2022; 2022:4829227. [PMID: 35600048 PMCID: PMC9119744 DOI: 10.1155/2022/4829227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022] Open
Abstract
The human leukocyte antigen G (HLA-G) is an immune checkpoint molecule with a complex network of interactions with several inhibitory receptors. Although the effect of HLA-G on T cells and NK cells is well studied, the effect of HLA-G on B cells is still largely elusive. B cells are of particular interest in the context of the HLA-G-ILT-2 interaction because the ILT-2 receptor is constitutively expressed on most B cells, whereas it is only present on some subsets of T and NK cells. To characterize the effect of HLA-G5 molecules on B cells, we studied splenic B cells derived from cytomegalovirus (CMV) sero-positive donors after CMV stimulation with antigens in the presence and absence of soluble HLA-G5. In the presence of HLA-G5, increased expression of the ITIM-bearing Ig-like transcript (ILT-2) was observed on B cells, but its expression was not affected by stimulation with CMV antigens. Moreover, it became evident that HLA-G5 exposure resulted in a decreased expression of CD27 and CD38 and, accordingly, in lower proportions of CD19+CD27+CD38+ and higher proportions of CD19+CD27-CD38- B cells. Taken together, our in vitro findings demonstrate that soluble HLA-G5 suppresses markers of B cell activation, suggesting that HLA-G5 has an impact on splenic B cell differentiation and activation. Based on these results, further investigation regarding the role of HLA-G as a prognostic factor and a potential therapeutic agent with respect to B cell function appears reasonable.
Collapse
|
18
|
Mercier R, LaPointe P. The role of cellular proteostasis in anti-tumor immunity. J Biol Chem 2022; 298:101930. [PMID: 35421375 PMCID: PMC9108985 DOI: 10.1016/j.jbc.2022.101930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint blockade therapy is perhaps the most important development in cancer treatment in recent memory. It is based on decades of investigation into the biology of immune cells and the role of the immune system in controlling cancer growth. While the molecular circuitry that governs the immune system in general - and anti-tumor immunity in particular - is intensely studied, far less attention has been paid to the role of cellular stress in this process. Proteostasis, intimately linked to cell stress responses, refers to the dynamic regulation of the cellular proteome and is maintained through a complex network of systems that govern the synthesis, folding, and degradation of proteins in the cell. Disruption of these systems can result in the loss of protein function, altered protein function, the formation of toxic aggregates, or pathologies associated with cell stress. However, the importance of proteostasis extends beyond its role in maintaining proper protein function; proteostasis governs how tolerant cells may be to mutations in protein coding genes and the overall half-life of proteins. Such gene expression changes may be associated with human diseases including neurodegenerative diseases, metabolic disease, and cancer and manifest at the protein level against the backdrop of the proteostasis network in any given cellular environment. In this review, we focus on the role of proteostasis in regulating immune responses against cancer as well the role of proteostasis in determining immunogenicity of cancer cells.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
19
|
Zheng G, Jia L, Yang AG. Roles of HLA-G/KIR2DL4 in Breast Cancer Immune Microenvironment. Front Immunol 2022; 13:791975. [PMID: 35185887 PMCID: PMC8850630 DOI: 10.3389/fimmu.2022.791975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Human leukocyte antigen (HLA)-G is a nonclassical MHC Class I molecule, which was initially reported as a mediator of immune tolerance when expressed in extravillous trophoblast cells at the maternal-fetal interface. HLA-G is the only known ligand of killer cell immunoglobulin-like receptor 2DL4 (KIR2DL4), an atypical family molecule that is widely expressed on the surface of NK cells. Unlike other KIR receptors, KIR2DL4 contains both an arginine–tyrosine activation motif in its transmembrane region and an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic tail, suggesting that KIR2DL4 may function as an activating or inhibitory receptor. The immunosuppressive microenvironment exemplified by a rewired cytokine network and upregulated immune checkpoint proteins is a hallmark of advanced and therapy-refractory tumors. Accumulating evidence has shown that HLA-G is an immune checkpoint molecule with specific relevance in cancer immune escape, although the role of HLA-G/KIR2DL4 in antitumor immunity is still uncharacterized. Our previous study had shown that HLA-G was a pivotal mediator of breast cancer resistance to trastuzumab, and blockade of the HLA-G/KIR2DL4 interaction can resensitize breast cancer to trastuzumab treatment. In this review, we aim to summarize and discuss the role of HLA-G/KIR2DL4 in the immune microenvironment of breast cancer. A better understanding of HLA-G is beneficial to identifying novel biomarker(s) for breast cancer, which is important for precision diagnosis and prognostic assessment. In addition, it is also necessary to unravel the mechanisms underlying HLA-G/KIR2DL4 regulation of the immune microenvironment in breast cancer, hopefully providing a rationale for combined HLA-G and immune checkpoints targeting for the effective treatment of breast cancer.
Collapse
Affiliation(s)
- Guoxu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
Jin Z, Kang J, Yu T. Feature selection and classification over the network with missing node observations. Stat Med 2022; 41:1242-1262. [PMID: 34816464 PMCID: PMC9773124 DOI: 10.1002/sim.9267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/14/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Jointly analyzing transcriptomic data and the existing biological networks can yield more robust and informative feature selection results, as well as better understanding of the biological mechanisms. Selecting and classifying node features over genome-scale networks has become increasingly important in genomic biology and genomic medicine. Existing methods have some critical drawbacks. The first is they do not allow flexible modeling of different subtypes of selected nodes. The second is they ignore nodes with missing values, very likely to increase bias in estimation. To address these limitations, we propose a general modeling framework for Bayesian node classification (BNC) with missing values. A new prior model is developed for the class indicators incorporating the network structure. For posterior computation, we resort to the Swendsen-Wang algorithm for efficiently updating class indicators. BNC can naturally handle missing values in the Bayesian modeling framework, which improves the node classification accuracy and reduces the bias in estimating gene effects. We demonstrate the advantages of our methods via extensive simulation studies and the analysis of the cutaneous melanoma dataset from The Cancer Genome Atlas.
Collapse
Affiliation(s)
| | - Jian Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Tianwei Yu
- School of Data Science and Warshel Institute, The Chinese University of Hong Kong - Shenzhen, and Shenzhen Research Institute of Big Data, Shenzhen, China
| |
Collapse
|
21
|
Darbeheshti F. The Immunogenetics of Melanoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:383-396. [DOI: 10.1007/978-3-030-92616-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Motofei IG. Nobel Prize for immune checkpoint inhibitors, understanding the immunological switching between immunosuppression and autoimmunity. Expert Opin Drug Saf 2021; 21:599-612. [PMID: 34937484 DOI: 10.1080/14740338.2022.2020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are a revolutionary form of immunotherapy in cancer. However, the percentage of patients responding to therapy is relatively low, while adverse effects occur in a large number of patients. In addition, the therapeutic mechanisms of ICIs are not yet completely described. AREAS COVERED The initial view (articles published in PubMed, Scopus, Web of Science, etc.) was that ICIs increase tumor-specific immunity. Recent data (collected from the same databases) suggest that the ICIs pharmacotherapy actually extends beyond the topic of immune reactivity, including additional immune pathways, such as disrupting immunosuppression and increasing tumor-specific autoimmunity. Unfortunately, there is no clear delimitation between these specific autoimmune reactions that are therapeutically beneficial, and nonspecific autoimmune reactions/toxicity that can be extremely severe side effects. EXPERT OPINION Immune checkpoint mechanisms perform a non-selective immune regulation, maintaining a dynamic balance between immunosuppression and autoimmunity. By blocking these mechanisms, ICIs actually perform an immunological reset, decreasing immunosuppression and increasing tumor-specific immunity and predisposition to autoimmunity. The predisposition to autoimmunity induces both side effects and beneficial autoimmunity. Consequently, further studies are necessary to maximize the beneficial tumor-specific autoimmunity, while reducing the counterproductive effect of associated autoimmune toxicity.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Surgery/ Oncology, Carol Davila University, Bucharest, Romania.,Department of Surgery/ Oncology, St. Pantelimon Hospital, Bucharest, Romania
| |
Collapse
|
23
|
Mestrallet G, Rouas-Freiss N, LeMaoult J, Fortunel NO, Martin MT. Skin Immunity and Tolerance: Focus on Epidermal Keratinocytes Expressing HLA-G. Front Immunol 2021; 12:772516. [PMID: 34938293 PMCID: PMC8685247 DOI: 10.3389/fimmu.2021.772516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
Although the role of epidermal cells in skin regeneration has been extensively documented, their functions in immunity and tolerance mechanisms are largely underestimated. The aim of the present review was to outline the state of knowledge on resident immune cells of hematopoietic origin hosted in the epidermis, and then to focus on the involvement of keratinocytes in the complex skin immune networks acting in homeostasis and regeneration conditions. Based on this knowledge, the mechanisms of immune tolerance are reviewed. In particular, strategies based on immunosuppression mediated by HLA-G are highlighted, as recent advances in this field open up perspectives in epidermis-substitute bioengineering for temporary and permanent skin replacement strategies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| | - Nathalie Rouas-Freiss
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France.,Université de Paris, UMR-S 976 HIPI Unit, Paris, France
| | - Joel LeMaoult
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France.,Université de Paris, UMR-S 976 HIPI Unit, Paris, France
| | - Nicolas O Fortunel
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| | - Michele T Martin
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| |
Collapse
|
24
|
Li P, Wang N, Zhang Y, Wang C, Du L. HLA-G/sHLA-G and HLA-G-Bearing Extracellular Vesicles in Cancers: Potential Role as Biomarkers. Front Immunol 2021; 12:791535. [PMID: 34868081 PMCID: PMC8636042 DOI: 10.3389/fimmu.2021.791535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022] Open
Abstract
As a non-classic major histocompatibility complex (MHC) class I molecule, human leukocyte antigen G (HLA-G) is expressed in fetal-maternal interface and immunoprivileged site only in healthy condition, and in pathological conditions such as cancer, it can be de novo expressed. It is now widely accepted that HLA-G is a key molecule in the process of immune escape of cancer cells, which is ubiquitously expressed in the tumor environment. This raises the possibility that it may play an adverse role in tumor immunity. The expression level of HLA-G has been demonstrated to be highly correlated with clinical parameters in many tumors, and its potential significance in the diagnosis and prognosis of cancer has been postulated. However, because HLA-G itself has up to seven different subtypes, and for some subtypes, detected antibodies are few or absent, it is hard to evaluate the actual expression of HLA-G in tumors. In the present work, we described (a) the structure and three main forms of HLA-G, (b) summarized the mechanism of HLA-G in the immune escape of tumor cells, (c) discussed the potential role of HLA-G as a tumor marker, and reviewed (d) the methods for detecting and quantifying HLA-G.
Collapse
Affiliation(s)
- Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection , Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Nan Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yi Zhang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection , Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection , Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| |
Collapse
|
25
|
Salerno-Gonçalves R, Rezwan T, Luo D, Tettelin H, Sztein MB. B Cells Control Mucosal-Associated Invariant T Cell Responses to Salmonella enterica Serovar Typhi Infection Through the CD85j HLA-G Receptor. Front Immunol 2021; 12:728685. [PMID: 34659215 PMCID: PMC8517411 DOI: 10.3389/fimmu.2021.728685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an innate-like population of T cells that display a TCR Vα7.2+ CD161+ phenotype and are restricted by the nonclassical MHC-related molecule 1 (MR1). Although B cells control MAIT cell development and function, little is known about the mechanisms underlying their interaction(s). Here, we report, for the first time, that during Salmonella enterica serovar Typhi (S. Typhi) infection, HLA-G expression on B cells downregulates IFN-γ production by MAIT cells. In contrast, blocking HLA-G expression on S. Typhi-infected B cells increases IFN-γ production by MAIT cells. After interacting with MAIT cells, kinetic studies show that B cells upregulate HLA-G expression and downregulate the inhibitory HLA-G receptor CD85j on MAIT cells resulting in their loss. These results provide a new role for HLA-G as a negative feedback loop by which B cells control MAIT cell responses to antigens.
Collapse
Affiliation(s)
- Rosângela Salerno-Gonçalves
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tasmia Rezwan
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - David Luo
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Hervé Tettelin
- Department of Microbiology and Immunology and Institute for Genome Sciences (IGS), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
26
|
Bai Y, Liu W, Xie Y, Liang J, Wang F, Li C. Human leukocyte antigen-G (HLA-G) expression plays an important role in the diagnosis and grading of endometrial cancer. J OBSTET GYNAECOL 2021; 42:641-647. [PMID: 34382498 DOI: 10.1080/01443615.2021.1920007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The research aimed to investigate the expression of human leukocyte antigen G (HLA-G) in cancer tissues and normal endometrium and the expression of HLA-G in the three different grades of Endometrial cancer, to determine if HLA-G expression is related with the diagnosis and grading of endometrial cancer. The expression of HLA-G protein was analysed in the primary tumour in 97 tissue samples obtained from endometrial cancer, in which 30 samples were at pathological Grade 1; 37 samples were at Grade 2; 27 samples were at Grade 3; and the other 5 samples were obtained from normal endometrium. The HLA-G protein level was measured by immunohistochemical method and analysed according to the clinicopathological parameters of patients. A statistically significant difference (p < .05) was observed in HLA-G expression between the cancerous tissue and the normal endometrium (p = .0007), and the histochemistry score (H-score) of the negative control was 0.05 ± 0.03 (mean ± SD). Statistically significant correlations were also observed between samples of pathological Grade 1 and Grade 2 (p = .0126), Grade 2 and Grade 3 (p = .0359), Grade 1 and Grade 3 (p = .0001). Endometrial cancer cells express higher levels of HLA-G probably to escape immune surveillance, and HLA-G expression level is related with the pathological grade of endometrial cancer. Therefore, HLA-G detecting and quantifying could possibly help diagnosing, grading and treatment of endometrial cancer.Impact statementWhat is already known on this subject? The expression of a member of the non-classical HLA antigens, HLA-G, is one of the main ways for tumour immune escape and progression. The significance of HLA-G in tumour biology has been intensively investigated (Carosella et al. 2015), and now it is widely acknowledged that HLA-G expression in tumours is highly linked with immune suppressive microenvironments, advanced tumour stage, poor therapeutic responses and prognosis (Lin and Yan, 2018). However, to our knowledge, no research has been conducted on the correlation between HLA-G expression and pathological grades of endometrial cancer.What do the results of this study add? Our study demonstrated that the expression of HLA-G plays an important role in the pathological grading of endometrial cancer.What are the implications of these findings for clinical practice and/or further research? Measuring the level of HLA-G expression to help pathological grading of endometrial cancer is important in determining the treatment of patients with endometrial cancer and studying the underlying mechanisms of the development of endometrial cancer, while proving or finding new targeted therapies inhibiting or modifying these processes still requires further investigation.
Collapse
Affiliation(s)
- Yixuan Bai
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wei Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yunkai Xie
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Junhui Liang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Fei Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
27
|
Xu HH, Gan J, Xu DP, Li L, Yan WH. Comprehensive Transcriptomic Analysis Reveals the Role of the Immune Checkpoint HLA-G Molecule in Cancers. Front Immunol 2021; 12:614773. [PMID: 34276642 PMCID: PMC8281136 DOI: 10.3389/fimmu.2021.614773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Human leukocyte antigen G (HLA-G) is known as a novel immune checkpoint molecule in cancer; thus, HLA-G and its receptors might be targets for immune checkpoint blockade in cancer immunotherapy. The aim of this study was to systematically identify the roles of checkpoint HLA-G molecules across various types of cancer. ONCOMINE, GEPIA, CCLE, TRRUST, HAP, PrognoScan, Kaplan-Meier Plotter, cBioPortal, LinkedOmics, STRING, GeneMANIA, DAVID, TIMER, and CIBERSORT were utilized. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. In this study, we comprehensively analysed the heterogeneous expression of HLA-G molecules in various types of cancer and focused on genetic alterations, coexpression patterns, gene interaction networks, HLA-G interactors, and the relationships between HLA-G and pathological stage, prognosis, and tumor-infiltrating immune cells. We first identified that the mRNA expression levels of HLA-G were significantly upregulated in both most tumor tissues and tumor cell lines on the basis of in-depth analysis of RNAseq data. The expression levels of HLA-G were positively associated with those of the other immune checkpoints PD-1 and CTLA-4. Abnormal expression of HLA-G was significantly correlated with the pathological stage of some but not all tumor types. There was a significant difference between the high and low HLA-G expression groups in terms of overall survival (OS) or disease-free survival (DFS). The results showed that HLA-G highly expressed have positive associations with tumor-infiltrating immune cells in the microenvironment in most types of tumors (P<0.05). Additionally, we identified the key transcription factor (TF) targets in the regulation of HLA-G expression, including HIVEP2, MYCN, CIITA, MYC, and IRF1. Multiple mutations (missense, truncating, etc.) and the methylation status of the HLA-G gene may explain the differential expression of HLA-G across different tumors. Functional enrichment analysis showed that HLA-G was primarily related to T cell activation, T cell regulation, and lymphocyte-mediated immunity. The data may provide novel insights for blockade of the HLA-G/ILT axis, which holds potential for the development of more effective antitumour treatments.
Collapse
Affiliation(s)
- Hui-Hui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Jun Gan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Dan-Ping Xu
- Reproductive Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Lu Li
- Pediatrics, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China
| |
Collapse
|
28
|
Lin A, Yan WH. HLA-G/ILTs Targeted Solid Cancer Immunotherapy: Opportunities and Challenges. Front Immunol 2021; 12:698677. [PMID: 34276691 PMCID: PMC8278316 DOI: 10.3389/fimmu.2021.698677] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 12/04/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have become a promising immunotherapy for cancers. Human leukocyte antigen-G (HLA-G), a neoantigen, its biological functions and clinical relevance have been extensively investigated in malignancies, and early clinical trials with “anti-HLA-G strategy” are being launched for advance solid cancer immunotherapy. The mechanism of HLA-G as a new ICI is that HLA-G can bind immune cell bearing inhibitory receptors, the immunoglobulin-like transcript (ILT)-2 and ILT-4. HLA-G/ILT-2/-4 (HLA-G/ILTs) signaling can drive comprehensive immune suppression, promote tumor growth and disease progression. Though clinical benefits could be expected with application of HLA-G antibodies to blockade the HLA-G/ILTs signaling in solid cancer immunotherapy, major challenges with the diversity of HLA-G isoforms, HLA-G/ILTs binding specificity, intra- and inter-tumor heterogeneity of HLA-G, lack of isoform-specific antibodies and validated assay protocols, which could dramatically affect the clinical efficacy. Clinical benefits of HLA-G-targeted solid cancer immunotherapy may be fluctuated or even premature unless major challenges are addressed.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Wei-Hua Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China.,Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
29
|
HLA-G and HLA-E Immune Checkpoints Are Widely Expressed in Ewing Sarcoma but Have Limited Functional Impact on the Effector Functions of Antigen-Specific CAR T Cells. Cancers (Basel) 2021; 13:cancers13122857. [PMID: 34201079 PMCID: PMC8227123 DOI: 10.3390/cancers13122857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Solid cancers can effectively counteract immune attack by inhibitory checkpoints in the tumor microenvironment. Blockade of relevant immune checkpoints could be a useful tool for enhancing the efficacy of antitumor T cell therapies. Here, we studied the capacity of two nonclassical HLA molecules with known immunosuppressive function, HLA-G and HLA-E, to prevent antigen-specific immune effector functions of gene-engineered T cells against Ewing sarcoma. Inflammatory conditions and interactions of Ewing sarcoma cells with antitumor T cells reliably induced upregulation of the two molecules on the tumor cells. Moreover, as previously shown for HLA-G, HLA-E was detected in a high proportion of human Ewing sarcoma biopsies. However, artificial expression of either of the two molecules on Ewing sarcoma cells failed to reduce cytolytic and activation responses of antigen-specific T cells. We conclude that blockade of HLA-G and HLA-E immune checkpoints is not a promising strategy for enhancing T cell therapies in Ewing sarcoma. Abstract Immune-inhibitory barriers in the tumor microenvironment of solid cancers counteract effective T cell therapies. Based on our finding that Ewing sarcomas (EwS) respond to chimeric antigen receptor (CAR) gene-modified effector cells through upregulation of human leukocyte antigen G (HLA-G), we hypothesized that nonclassical HLA molecules, HLA-G and HLA-E, contribute to immune escape of EwS. Here, we demonstrate that HLA-G isotype G1 expression on EwS cells does not directly impair cytolysis by GD2-specific CAR T cells (CART), whereas HLA-G1 on myeloid bystander cells reduces CART degranulation responses against EwS cells. HLA-E was induced in EwS cells by IFN-γ stimulation in vitro and by GD2-specific CART treatment in vivo and was detected on tumor cells or infiltrating myeloid cells in a majority of human EwS biopsies. Interaction of HLA-E-positive EwS cells with GD2-specific CART induced upregulation of HLA-E receptor NKG2A. However, HLA-E expressed by EwS tumor cells or by myeloid bystander cells both failed to reduce antitumor effector functions of CART. We conclude that non-classical HLA molecules are expressed in EwS under inflammatory conditions, but have limited functional impact on antigen-specific T cells, arguing against a relevant therapeutic benefit from combining CART therapy with HLA-G or HLA-E checkpoint blockade in this cancer.
Collapse
|
30
|
Mestrallet G, Auvré F, Schenowitz C, Carosella ED, LeMaoult J, Martin MT, Rouas-Freiss N, Fortunel NO. Human Keratinocytes Inhibit CD4 + T-Cell Proliferation through TGFB1 Secretion and Surface Expression of HLA-G1 and PD-L1 Immune Checkpoints. Cells 2021; 10:cells10061438. [PMID: 34201301 PMCID: PMC8227977 DOI: 10.3390/cells10061438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
Human skin protects the body against infection and injury. This protection involves immune and epithelial cells, but their interactions remain largely unknown. Here, we show that cultured epidermal keratinocytes inhibit allogenic CD4+ T-cell proliferation under both normal and inflammatory conditions. Inhibition occurs through the secretion of soluble factors, including TGFB1 and the cell-surface expression of HLA-G1 and PD-L1 immune checkpoints. For the first time, we here describe the expression of the HLA-G1 protein in healthy human skin and its role in keratinocyte-driven tissue immunomodulation. The overexpression of HLA-G1 with an inducible vector increased the immunosuppressive properties of keratinocytes, opening up perspectives for their use in allogeneic settings for cell therapy.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Frédéric Auvré
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Chantal Schenowitz
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
| | - Edgardo D. Carosella
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
| | - Joel LeMaoult
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| | - Michèle T. Martin
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| | - Nathalie Rouas-Freiss
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| | - Nicolas O. Fortunel
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| |
Collapse
|
31
|
Adolf IC, Almars A, Dharsee N, Mselle T, Akan G, Nguma IJ, Nateri AS, Atalar F. HLA-G and single nucleotide polymorphism (SNP) associations with cancer in African populations: Implications in personal medicine. Genes Dis 2021; 9:1220-1233. [PMID: 35873024 PMCID: PMC9293715 DOI: 10.1016/j.gendis.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/15/2021] [Accepted: 06/05/2021] [Indexed: 11/30/2022] Open
Abstract
The immune system plays an important role in protecting the body against malignancy. During cancer immunoediting, the immune system can recognize and keep checking the tumor cells by down-expression of some self-molecules or by increasing expression of some novel molecules. However, the microenvironment created in the course of cancer development hampers the immune ability to recognize and destroy the transforming cells. Human Leukocyte Antigen G (HLA-G) is emerging as immune checkpoint molecule produced more by cancer cells to weaken the immune response against them. HLA-G is a non-classical HLA class I molecule which is normally expressed in immune privileged tissues as a soluble or membrane-bound protein. HLA-G locus is highly polymorphic in the non-coding 3′ untranslated region (UTR) and in the 5′ upstream regulatory region (5′ URR). HLA-G expression is controlled by polymorphisms located in these regions, and several association studies between these polymorphic sites and disease predisposition, response to therapy, and/or HLA-G protein expression have been reported. Various polymorphisms are demonstrated to modulate its expression and this is increasingly finding more significance in cancer biology. This review focuses on the relevance of the HLA-G gene and its polymorphisms in cancer development. We highlight population genetics of HLA-G as evidence to espouse the need and importance of exploring potential utility of HLA-G in cancer diagnosis, prognosis and immunotherapy in the currently understudied African population.
Collapse
Affiliation(s)
- Ismael Chatita Adolf
- Mbeya College of Health and Allied Sciences, University of Dar es Salaam, Mbeya, P.O Box 608, Tanzania
| | - Amany Almars
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nazima Dharsee
- Ocean Road Cancer Institute, Department of Oncology, Dar es Salaam, P.O Box 3592, Tanzania
| | - Teddy Mselle
- Muhimbili University of Health and Allied Sciences, MUHAS Genetic Laboratory, Department of Biochemistry, Dar es Salaam, P.O Box 65001, Tanzania
| | - Gokce Akan
- Muhimbili University of Health and Allied Sciences, MUHAS Genetic Laboratory, Department of Biochemistry, Dar es Salaam, P.O Box 65001, Tanzania
| | - Irene Jeremiah Nguma
- Clinical Oncology Department, Mbeya Zonal Referral Hospital (MZRH), Mbeya P.O Box 419, Tanzania
| | - Abdolrahman S. Nateri
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Corresponding author.
| | - Fatmahan Atalar
- Muhimbili University of Health and Allied Sciences, MUHAS Genetic Laboratory, Department of Biochemistry, Dar es Salaam, P.O Box 65001, Tanzania
- Child Health Institute, Department of Rare Diseases, Istanbul University, Istanbul 34093, Turkey
- Corresponding author. Muhimbili University of Health and Allied Sciences, MUHAS Genetic Laboratory, Department of Biochemistry, P.O Box 65001, Dar es Salaam, Tanzania.
| |
Collapse
|
32
|
Xie Q, Ding J, Chen Y. Role of CD8 + T lymphocyte cells: Interplay with stromal cells in tumor microenvironment. Acta Pharm Sin B 2021; 11:1365-1378. [PMID: 34221857 PMCID: PMC8245853 DOI: 10.1016/j.apsb.2021.03.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
CD8+ T lymphocytes are pivotal cells in the host response to antitumor immunity. Tumor-driven microenvironments provide the conditions necessary for regulating infiltrating CD8+ T cells in favor of tumor survival, including weakening CD8+ T cell activation, driving tumor cells to impair immune attack, and recruiting other cells to reprogram the immune milieu. Also in tumor microenvironment, stromal cells exert immunosuppressive skills to avoid CD8+ T cell cytotoxicity. In this review, we explore the universal function and fate decision of infiltrated CD8+ T cells and highlight their antitumor response within various stromal architectures in the process of confronting neoantigen-specific tumor cells. Thus, this review provides a foundation for the development of antitumor therapy based on CD8+ T lymphocyte manipulation.
Collapse
Affiliation(s)
- Qin Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310012, China
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai HaiHe Pharmaceutical Co., Ltd., Shanghai 201203, China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Peng Y, Xiao J, Li W, Li S, Xie B, He J, Liu C. Prognostic and Clinicopathological Value of Human Leukocyte Antigen G in Gastrointestinal Cancers: A Meta-Analysis. Front Oncol 2021; 11:642902. [PMID: 34055611 PMCID: PMC8149900 DOI: 10.3389/fonc.2021.642902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The prognostic value of human leukocyte antigen G (HLA-G) expression in gastrointestinal (GI) cancers remains controversial. Thus, this meta-analysis aimed to summarize available evidence from case-control or cohort studies that evaluated this association. METHODS The PubMed, EMBASE, Cochrane Library, and Web of Science databases were searched to identify relevant studies written in English published up to April 1, 2021, and with no initial date. Furthermore, the Google Scholar and Google databases were also searched manually for gray literature. The protocol for this meta-analysis was registered at PROSPERO (CRD42020213411). Pooled hazard ratios (HRs) or odds ratios (ORs) and 95% confidence intervals (CIs) were estimated for end points using fixed- and random-effects statistical models to account for heterogeneity. Publication bias was evaluated using a funnel plot, Begg's and Egger's tests, and the "trim and fill" method. RESULTS A total of 30 eligible articles with 5737 unique patients, including 12 studies on colorectal cancer (CRC), 6 on gastric cancer (GC), 5 on esophageal cancer (ESCC), 5 on hepatocellular carcinoma (HCC), and 2 on pancreatic adenocarcinoma (PC), were retrieved. Both univariate (HR = 2.01, 95% CI: 1.48 ~ 2.72) and multivariate (HR = 2.69, 95% CI: 2.03 ~ 3.55) analyses revealed that HLA-G expression was significantly correlated with poor overall survival (OS), regardless of the cancer type or antibody used. Subgroup analysis stratified by antibody showed that the 4H84 (I2 = 45.8%, P = 0.101) antibodies could be trustworthy and reliable for detecting HLA-G expression in GI cancers. In addition, HLA-G expression was found to be correlated with adverse clinicopathological parameters such as clinical stage, nodal status, metastasis, and histological grade but not tumor status. CONCLUSION Elevated HLA-G expression indicates a poor prognosis for GI cancer patients, and screening for this marker could allow for the early diagnosis and treatment of GI cancers to improve survival rates.
Collapse
Affiliation(s)
- Yongjia Peng
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - Jian Xiao
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenyun Li
- Department of Statistics, School of Medicine, Jinan University, Guangzhou, China
| | - Shuna Li
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - Binbin Xie
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - Jiang He
- Department of Mathematics and Physics, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
34
|
Nam SW, Lee KS, Yang JW, Ko Y, Eisenhut M, Lee KH, Shin JI, Kronbichler A. Understanding the genetics of systemic lupus erythematosus using Bayesian statistics and gene network analysis. Clin Exp Pediatr 2021; 64:208-222. [PMID: 32683804 PMCID: PMC8103040 DOI: 10.3345/cep.2020.00633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
The publication of genetic epidemiology meta-analyses has increased rapidly, but it has been suggested that many of the statistically significant results are false positive. In addition, most such meta-analyses have been redundant, duplicate, and erroneous, leading to research waste. In addition, since most claimed candidate gene associations were false-positives, correctly interpreting the published results is important. In this review, we emphasize the importance of interpreting the results of genetic epidemiology meta-analyses using Bayesian statistics and gene network analysis, which could be applied in other diseases.
Collapse
Affiliation(s)
- Seoung Wan Nam
- Department of Rheumatology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kwang Seob Lee
- Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Younhee Ko
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Korea
| | - Michael Eisenhut
- Department of Pediatrics, Luton & Dunstable University Hospital NHS Foundation Trust, Luton, UK
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.,Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, Korea.,Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.,Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, Korea.,Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
35
|
Anna F, Bole-Richard E, LeMaoult J, Escande M, Lecomte M, Certoux JM, Souque P, Garnache F, Adotevi O, Langlade-Demoyen P, Loustau M, Caumartin J. First immunotherapeutic CAR-T cells against the immune checkpoint protein HLA-G. J Immunother Cancer 2021; 9:e001998. [PMID: 33737343 PMCID: PMC7978334 DOI: 10.1136/jitc-2020-001998] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CAR-T cells immunotherapy is a breakthrough in the treatment of hematological malignancies such as acute lymphoblastic leukemia (ALL) and B-cell malignancies. However, CAR-T therapies face major hurdles such as the lack of tumor-specific antigen (TSA), and immunosuppressive tumor microenvironment sometimes caused by the tumorous expression of immune checkpoints (ICPs) such as HLA-G. Indeed, HLA-G is remarkable because it is both a potent ICP and a TSA. HLA-G tumor expression causes immune escape by impairing innate and adaptive immune responses and by inducing a suppressive microenvironment. Yet, to date, no immunotherapy targets it. METHODS We have developed two anti-HLA-G third-generation CARs based on new anti-HLA-G monoclonal antibodies. RESULTS Anti-HLA-G CAR-T cells were specific for immunosuppressive HLA-G isoforms. HLA-G-activated CAR-T cells polarized toward T helper 1, and became cytotoxic against HLA-G+ tumor cells. In vivo, anti-HLA-G CAR-T cells were able to control and eliminate HLA-G+ tumor cells. The interaction of tumor-HLA-G with interleukin (IL)T2-expressing T cells is known to result in effector T cell functional inhibition, but anti-HLA-G CAR-T cells were insensitive to this inhibition and still exerted their function even when expressing ILT2. Lastly, we show that anti-HLA-G CAR-T cells differentiated into long-term memory effector cells, and seemed not to lose function even after repeated stimulation by HLA-G-expressing tumor cells. CONCLUSION We report for the first time that HLA-G, which is both a TSA and an ICP, constitutes a valid target for CAR-T cell therapy to specifically target and eliminate both tumor cells and HLA-G+ suppressive cells.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antigens, CD/metabolism
- Cell Differentiation
- Coculture Techniques
- Cytotoxicity, Immunologic
- HLA-G Antigens/immunology
- HLA-G Antigens/metabolism
- Humans
- Immunologic Memory
- Immunotherapy, Adoptive
- K562 Cells
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/immunology
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/therapy
- Leukocyte Immunoglobulin-like Receptor B1/metabolism
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Memory T Cells/transplantation
- Mice, Inbred NOD
- Mice, SCID
- Phenotype
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Time Factors
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- François Anna
- Preclinical Department, Invectys, Paris, France
- Molecular Virology and Vaccinology Unit, Virology Department, Pasteur Institute, Paris, Île-de-France, France
| | - Elodie Bole-Richard
- INSERM UMR1098 RIGHT Interactions hôte-greffon-tumeur - Ingénierie Cellulaire et Génique, Besancon, Franche-Comté, France
- Université Bourgogne Franche-Comté, Besançon, France
- Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | - Joel LeMaoult
- Service de Recherche en Hémato-Immunologie (SRHI), CEA, Paris, France
- Université de Paris, Paris, Île-de-France, France
| | | | | | - Jean-Marie Certoux
- INSERM UMR1098 RIGHT Interactions hôte-greffon-tumeur - Ingénierie Cellulaire et Génique, Besancon, Franche-Comté, France
- Université Bourgogne Franche-Comté, Besançon, France
- Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | - Philippe Souque
- Molecular Virology and Vaccinology Unit, Virology Department, Pasteur Institute, Paris, Île-de-France, France
| | - Francine Garnache
- INSERM UMR1098 RIGHT Interactions hôte-greffon-tumeur - Ingénierie Cellulaire et Génique, Besancon, Franche-Comté, France
- Université Bourgogne Franche-Comté, Besançon, France
- Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | - Olivier Adotevi
- INSERM UMR1098 RIGHT Interactions hôte-greffon-tumeur - Ingénierie Cellulaire et Génique, Besancon, Franche-Comté, France
- Université Bourgogne Franche-Comté, Besançon, France
- Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | | | | | | |
Collapse
|
36
|
Parmiani G, Maccalli C. The early antitumor immune response is necessary for tumor growth: Re-visiting Prehn's hypothesis in the human melanoma system. Oncoimmunology 2021; 1:930-934. [PMID: 23162761 PMCID: PMC3489749 DOI: 10.4161/onci.21455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Early events responsible of tumor growth in patients with a normal immune system are poorly understood. Here, we discuss, in the context of human melanoma, the Prehn hypothesis according to which a weak antitumor immune response may be required for tumor growth before weakly or non-immunogenic tumor cell subpopulations are selected by the immune system.
Collapse
Affiliation(s)
- Giorgio Parmiani
- Unit of Immuno-Biotherapy of Melanoma and Solid Tumors; Program of Immmuno-Biotherapy of Cancer; San Raffaele Hospital; Milano, Italy
| | | |
Collapse
|
37
|
Fregni G, Perier A, Avril MF, Caignard A. NK cells sense tumors, course of disease and treatments: Consequences for NK-based therapies. Oncoimmunology 2021; 1:38-47. [PMID: 22720210 PMCID: PMC3376977 DOI: 10.4161/onci.1.1.18312] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recent findings on NK activation indicate that these cells are important antitumor effectors. NK cells participate in the graft-vs.-leukemia effect to control the relapse in leukemic patients transplanted with allogeneic hematopoietic stem cells. In various tumors, correlation between NK cell infiltrates and prognosis were reported. However, tumor-infiltrating NK cells are yet poorly characterized. We here summarize our results and the recent studies of the literature on tumor-infiltrating NK cells, and discuss the impact of these novel insights into NK cell responses against tumors for the design of NK cell-based therapies.
Collapse
Affiliation(s)
- Giulia Fregni
- Institut Cochin-INSERM U06; CNRS UMR 804; Université Paris Descartes; Paris, France
| | | | | | | |
Collapse
|
38
|
Marletta S, Girolami I, Munari E, Pantanowitz L, Bernasconi R, Torresani E, Brunelli M, Eccher A. HLA-G expression in melanomas. Int Rev Immunol 2021; 40:330-343. [PMID: 33426980 DOI: 10.1080/08830185.2020.1869732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Human leukocyte antigen G (HLA-G) is a non-classical HLA class I molecule involved in inducing tolerance at the feto-maternal interface and in escape of immune response by tumor cells. The aim of the study is to review the published literature on the expression of HLA-G in malignant melanomas and its clinicopathological and prognostic correlates. METHODS A systematic search was carried out in electronic databases. Studies dealing with HLA-G expression in surgically-removed human samples were retrieved and analyzed. RESULTS Of 1737 retrieved articles, 16 were included. The main themes regarded HLA-G expression in malignant melanocytic lesions, assessed by immunohistochemistry (IHC), soluble or molecular techniques, and its relationship with clinicopathological features, such as tumor thickness and malignant behavior. Overall significant HLA-G expression was found in 460/843 tumors (55%), and specifically in 251/556 melanomas (45%) evaluated with IHC, in 208/250 cases (83%) examined with soluble methods and in 13/23 melanoma lesions (57%) tested with polymerase chain reaction. Despite the correlation with parameters indicating an aggressive behavior, no studies demonstrated any prognostic value of HLA-G expression. Furthermore, uveal melanomas were constantly negative for this biomarker. CONCLUSION Overall, published data indicate that while HLA-G is involved in the interactions between melanomas and the immune system, it is unlikely to be the only factor to play such a role, therefore making it difficult to designate it as a prognostically relevant molecule. Evidence further suggests that HLA-G is not implicated in the immunobiology of uveal melanomas.
Collapse
Affiliation(s)
- Stefano Marletta
- Department of Pathology and Diagnostics, Section of Pathology, University Hospital of Verona, Verona, Italy
| | | | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Liron Pantanowitz
- Department of Pathology & Clinical Labs, University of Michigan, Ann Arbor, MI, USA
| | - Riccardo Bernasconi
- Department of Pathology and Diagnostics, Section of Pathology, University Hospital of Verona, Verona, Italy
| | - Evelin Torresani
- Department of Pathology and Diagnostics, Section of Pathology, University Hospital of Verona, Verona, Italy
| | - Matteo Brunelli
- Department of Pathology and Diagnostics, Section of Pathology, University Hospital of Verona, Verona, Italy
| | - Albino Eccher
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
39
|
Kumano S, Okushi Y, Fujimoto K, Adachi H, Furuichi K, Yokoyama H. Role and expression of non-classical human leukocyte antigen-G in renal transplanted allografts. Clin Exp Nephrol 2021; 25:428-438. [PMID: 33398603 DOI: 10.1007/s10157-020-01999-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND The non-classical class I molecule human leukocyte antigen-G (HLA-G) has great potential to modulate the immune response. However, the mechanism underlying HLA-G induction remains unknown. Therefore, this study aimed to determine the factors that induce HLA-G expression on proximal tubular epithelial cells (pTECs) in renal transplanted allografts in vivo and in vitro. METHODS This study included 40 adult Japanese patients with renal allografts (35 and five patients with kidneys from living and deceased donors, respectively) who survived for at least 1 year. We evaluated HLA-G1/5 expression using an immunofluorescence method and investigated the induction of HLA-G expression in primary cultured human pTECs by cytokines and immunosuppressants. RESULTS The HLA-G expression was identified in the perinuclear region or on the basement membrane of pTECs of renal biopsy tissue in 12 (30%) of 40 patients at 2-4 weeks and at 1 year following transplantation. A reduction of 30% in the estimated glomerular filtration rate was lower in the HLA-G-positive group than that of the negative group (p = 0.016). Cox proportional hazard models also demonstrated that HLA-G1/5 expression on pTECs was an independent predictor of improved renal allograft function (hazard ratio, 0.189; 95% CI 0.041-0.850, p = 0.030). Interferon-beta was the most powerful inducer of HLA-G expression in vitro, whereas the immunosuppressants everolimus, tacrolimus, cyclosporin, and dexamethasone did not induce any expression. CONCLUSION Unlike immunosuppressants, acquired HLA-G expression might confer long-term renal preservation effects in renal transplanted allografts.
Collapse
Affiliation(s)
- Sho Kumano
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan.
| | - Yuki Okushi
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Keiji Fujimoto
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroki Adachi
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Kengo Furuichi
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Hitoshi Yokoyama
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan.
| |
Collapse
|
40
|
Zhang X, Lin A, Han QY, Zhang JG, Chen QY, Ye YH, Zhou WJ, Xu HH, Gan J, Yan WH. Intratumor Heterogeneity of HLA-G Expression in Cancer Lesions. Front Immunol 2020; 11:565759. [PMID: 33329527 PMCID: PMC7717930 DOI: 10.3389/fimmu.2020.565759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/27/2020] [Indexed: 01/05/2023] Open
Abstract
Signaling pathway between human leukocyte antigen (HLA)-G and immune inhibitory receptors immunoglobulin-like transcript (ILT)-2/4 has been acknowledged as one of immune checkpoints, and as a potential target for cancer immunotherapy. Like other immune checkpoints, inter- and even intratumor heterogeneity of HLA-G could render a rather complexity for HLA-G-target immunotherapy. However, little information for intratumor heterogeneity of HLA-G is available. In this study, HLA-G expression in a serial section of colorectal cancer (CRC) lesions from three CRC patients (each sample with serial section of 50 slides, 10 randomized slides for each antibody), three different locations within a same sample (five CRC), and three case-matched blocks that each includes 36 esophageal cancer samples, were evaluated with immunohistochemistry using anti-HLA-G antibodies (mAbs 4H84, MEM-G/1 and MEM-G/2 probing for all denatured HLA-G isoforms, 5A6G7, and 2A12 probing for denatured HLA-G5 and HLA-G6 isoforms). Our results revealed that, in addition to the frequently observed inter-tumor heterogeneity, intratumor heterogeneous expression of HLA-G is common in different areas within a tumor in CRC and esophageal cancer samples included in this study. Moreover, percentage of HLA-G expression probed with different anti-HLA-G antibodies also varies dramatically within a tumor. Given HLA-G has been considered as an important immune checkpoint, intratumor heterogeneity of HLA-G expression, and different specificity of anti-HLA-G antibodies being used among studies, interpretation and clinical significance of HLA-G expression in cancers should be with caution.
Collapse
Affiliation(s)
- Xia Zhang
- Biological Resource Center, TaiZhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), LinHai, China
| | - Aifen Lin
- Biological Resource Center, TaiZhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), LinHai, China
| | - Qiu-Yue Han
- Biological Resource Center, TaiZhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), LinHai, China
| | - Jian-Gang Zhang
- Biological Resource Center, TaiZhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), LinHai, China
| | - Qiong-Yuan Chen
- Biological Resource Center, TaiZhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), LinHai, China
| | - Yao-Han Ye
- Biological Resource Center, TaiZhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), LinHai, China
| | - Wen-Jun Zhou
- Biological Resource Center, TaiZhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), LinHai, China
| | - Hui-Hui Xu
- Medical Research Center, TaiZhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), LinHai, China
| | - Jun Gan
- Medical Research Center, TaiZhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), LinHai, China
| | - Wei-Hua Yan
- Medical Research Center, TaiZhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), LinHai, China
| |
Collapse
|
41
|
Arns T, Antunes DA, Abella JR, Rigo MM, Kavraki LE, Giuliatti S, Donadi EA. Structural Modeling and Molecular Dynamics of the Immune Checkpoint Molecule HLA-G. Front Immunol 2020; 11:575076. [PMID: 33240264 PMCID: PMC7677236 DOI: 10.3389/fimmu.2020.575076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/13/2020] [Indexed: 02/01/2023] Open
Abstract
HLA-G is considered to be an immune checkpoint molecule, a function that is closely linked to the structure and dynamics of the different HLA-G isoforms. Unfortunately, little is known about the structure and dynamics of these isoforms. For instance, there are only seven crystal structures of HLA-G molecules, being all related to a single isoform, and in some cases lacking important residues associated to the interaction with leukocyte receptors. In addition, they lack information on the dynamics of both membrane-bound HLA-G forms, and soluble forms. We took advantage of in silico strategies to disclose the dynamic behavior of selected HLA-G forms, including the membrane-bound HLA-G1 molecule, soluble HLA-G1 dimer, and HLA-G5 isoform. Both the membrane-bound HLA-G1 molecule and the soluble HLA-G1 dimer were quite stable. Residues involved in the interaction with ILT2 and ILT4 receptors (α3 domain) were very close to the lipid bilayer in the complete HLA-G1 molecule, which might limit accessibility. On the other hand, these residues can be completely exposed in the soluble HLA-G1 dimer, due to the free rotation of the disulfide bridge (Cys42/Cys42). In fact, we speculate that this free rotation of each protomer (i.e., the chains composing the dimer) could enable alternative binding modes for ILT2/ILT4 receptors, which in turn could be associated with greater affinity of the soluble HLA-G1 dimer. Structural analysis of the HLA-G5 isoform demonstrated higher stability for the complex containing the peptide and coupled β2-microglobulin, while structures lacking such domains were significantly unstable. This study reports for the first time structural conformations for the HLA-G5 isoform and the dynamic behavior of HLA-G1 molecules under simulated biological conditions. All modeled structures were made available through GitHub (https://github.com/KavrakiLab/), enabling their use as templates for modeling other alleles and isoforms, as well as for other computational analyses to investigate key molecular interactions.
Collapse
Affiliation(s)
- Thais Arns
- Department of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dinler A. Antunes
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Jayvee R. Abella
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Maurício M. Rigo
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Lydia E. Kavraki
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eduardo A. Donadi
- Department of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
42
|
Understanding HLA-G driven journey from HPV infection to cancer cervix: Adding missing pieces to the jigsaw puzzle. J Reprod Immunol 2020; 142:103205. [PMID: 33099242 DOI: 10.1016/j.jri.2020.103205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022]
Abstract
Human Papillomavirus (HPV) is a vital risk-factor for cancer cervix. However, persistent HPV infection results in cervical cancer in only a minority. Probably, HPV subdues the host immune response for persistence, which includes augmentation of HLA-G and plausibly aids in progression to cervical cancer. HLA-G, which comprises of membrane and soluble form, downregulates the host's immune response and generate tolerance. The current study aimed to analyze both forms of HLA-G in fresh tissue and plasma of women with HPV-infected and uninfected cervix and cancer cervix using Western blot and ELISA. The study cohort included 30 women with cervical carcinoma and equal number with normal cervix and 6 with HPV infected cervix. We observed a significant upregulation of membranous HLA-G expression in HPV infected cervix and cervical carcinoma (P < 0.001). Interestingly, the pairwise comparison of HLA-G tissue protein expression of the normal cervix and cervical carcinoma, as well as the normal cervix with HPV infected cervix, was significant (P < 0.001). Levels of soluble HLA-G were significantly raised in carcinoma cervix. We observed a progressive increase in HLA-G protein expression in HPV infected cervix and cervical carcinoma. These findings compel us to hypothesize that the upregulation of HLA-G expression favors the persistence of HPV in a microenvironment of a submissive host response. This progressive upregulation further leads to cervical cancer. Thus elimination of HPV infection seems to be a desirable proposition to prevent cervical cancer. In the absence of antiviral therapy for HPV, exploration of HLA-G antibody-based therapeutic strategies appear promising.
Collapse
|
43
|
Loustau M, Anna F, Dréan R, Lecomte M, Langlade-Demoyen P, Caumartin J. HLA-G Neo-Expression on Tumors. Front Immunol 2020; 11:1685. [PMID: 32922387 PMCID: PMC7456902 DOI: 10.3389/fimmu.2020.01685] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
HLA-G is known to modulate the immune system activity in tissues where physiological immune-tolerance is necessary (i.e., maternal-fetal interface, thymus, and cornea). However, the frequent neo-expression of HLA-G in many cancer types has been previously and extensively described and is correlated with a bad prognosis. Despite being an MHC class I molecule, HLA-G is highly present in tumor context and shows unique characteristics of tissue restriction of a Tumor Associated Antigen (TAA), and potent immunosuppressive activity of an Immune CheckPoint (ICP). Consequently, HLA-G appears to be an excellent molecular target for immunotherapy. Although the relevance of HLA-G in cancer incidence and development has been proven in numerous tumors, its neo-expression pattern is still difficult to determine. Indeed, the estimation of HLA-G's actual expression in tumor tissue is limited, particularly concerning the presence and percentage of the new non-canonical isoforms, for which detection antibodies are scarce or inexistent. Here, we summarize the current knowledge about HLA-G neo-expression and implication in various tumor types, pointing out the need for the development of new tools to analyze in-depth the HLA-G neo-expression patterns, opening the way for the generation of new monoclonal antibodies and cell-based immunotherapies.
Collapse
Affiliation(s)
| | - François Anna
- Invectys, Paris, France
- Molecular Virology and Vaccinology Unit, Virology Department, Institut Pasteur & CNRS URA 3015, Paris, France
| | - Raphaelle Dréan
- Invectys, Paris, France
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, Paris, France
| | | | | | | |
Collapse
|
44
|
Xu HH, Yan WH, Lin A. The Role of HLA-G in Human Papillomavirus Infections and Cervical Carcinogenesis. Front Immunol 2020; 11:1349. [PMID: 32670296 PMCID: PMC7330167 DOI: 10.3389/fimmu.2020.01349] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Human leukocyte antigen (HLA)-G, a non-classical HLA-class I molecule, has a low polymorphism frequency, restricted tissue distribution and immunoinhibitory property. HLA-G expression in tumor cells and cells chronically infected with virus may enable them to escape from host immune surveillance. It is well-known that the HLA-G molecule is a novel biomarker and potential therapeutic target that is relevant in various types of cancers, but its role in cervical cancer has not been fully explored. In this review, we aim to summarize and discuss the immunologic role of the HLA-G molecule in the context of HPV infections and the process of cervical cancer carcinogenesis. A better understanding of the potential impact of HLA-G on the clinical course of persistent HPV infections, cervical epithelial cell transformation, tumor growth, recurrence and metastasis is needed to identify a novel diagnostic/prognostic biomarker for cervical cancer, which is critical for cervical cancer risk screening. In addition, it is also necessary to identify HLA-G-driven immune mechanisms involved in the interactions between host and virus to explore novel immunotherapy strategies that target HLA-G/immunoglobulin-like transcript (ILT) immune checkpoints.
Collapse
Affiliation(s)
- Hui-Hui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
45
|
MED15, transforming growth factor beta 1 (TGF-β1), FcγRIII (CD16), and HNK-1 (CD57) are prognostic biomarkers of oral squamous cell carcinoma. Sci Rep 2020; 10:8475. [PMID: 32439976 PMCID: PMC7242386 DOI: 10.1038/s41598-020-65145-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Owing to the high incidence and mortality of oral squamous cell carcinoma (OSCC), knowledge of its diagnostic and prognostic factors is of significant value. The biomarkers 'CD16, CD57, transforming growth factor beta 1 (TGF-β1), and MED15' can play crucial roles in tumorigenesis, and hence might contribute to diagnosis, prognosis, and treatment. Since there was no previous study on MED15 in almost all cancers, and since the studies on diagnostic/prognostic values of the other three biomarkers were a few in OSCC (if any) and highly controversial, this study was conducted. Biomarker expressions in all OSCC tissues and their adjacent normal tissues available at the National Tumor Bank (n = 4 biomarkers × [48 cancers + 48 controls]) were estimated thrice using qRT-PCR. Diagnostic values of tumors were assessed using receiver-operator characteristic (ROC) curves. Factors contributing to patients' survival over 10 years were assessed using multiple Cox regressions. ROC curves were used to estimate cut-off points for significant prognostic variables (α = 0.05). Areas under the curve pertaining to diagnostic values of all markers were non-significant (P > 0.15). Survival was associated positively with tumoral upregulation of TGF-β1 and downregulation of CD16, CD57, and MED15. It was also associated positively with younger ages, lower histological grades, milder Jacobson clinical TNM stages (and lower pathological Ns), smaller and thinner tumors, and surgery cases not treated with incisional biopsy (Cox regression, P < 0.05). The cut-off point for clinical stage -as the only variable with a significant area under the curve- was between the stages 2 and 3. Increased TGF-β1 and reduced CD16, CD57, and MED15 expressions in the tumor might independently favor the prognosis. Clinical TNM staging might be one of the most reliable prognostic factors, and stages above 2 can predict a considerably poorer prognosis.
Collapse
|
46
|
Roles and mechanisms of alternative splicing in cancer - implications for care. Nat Rev Clin Oncol 2020; 17:457-474. [PMID: 32303702 DOI: 10.1038/s41571-020-0350-x] [Citation(s) in RCA: 447] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Removal of introns from messenger RNA precursors (pre-mRNA splicing) is an essential step for the expression of most eukaryotic genes. Alternative splicing enables the regulated generation of multiple mRNA and protein products from a single gene. Cancer cells have general as well as cancer type-specific and subtype-specific alterations in the splicing process that can have prognostic value and contribute to every hallmark of cancer progression, including cancer immune responses. These splicing alterations are often linked to the occurrence of cancer driver mutations in genes encoding either core components or regulators of the splicing machinery. Of therapeutic relevance, the transcriptomic landscape of cancer cells makes them particularly vulnerable to pharmacological inhibition of splicing. Small-molecule splicing modulators are currently in clinical trials and, in addition to splice site-switching antisense oligonucleotides, offer the promise of novel and personalized approaches to cancer treatment.
Collapse
|
47
|
Yi M, Xu L, Jiao Y, Luo S, Li A, Wu K. The role of cancer-derived microRNAs in cancer immune escape. J Hematol Oncol 2020; 13:25. [PMID: 32222150 PMCID: PMC7103070 DOI: 10.1186/s13045-020-00848-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
During malignant transformation, accumulated somatic mutations endow cancer cells with increased invasiveness and immunogenicity. Under selective pressure, these highly immunogenic cancer cells develop multiple strategies to evade immune attack. It has been well established that cancer cells could downregulate the expression of major histocompatibility complex, acquire alterations in interferon pathway, and upregulate the activities of immune checkpoint pathways. Besides, cancer cells secret numerous cytokines, exosomes, and microvesicles to regulate the functions and abundances of components in the tumor microenvironment including immune effector cells and professional antigen presentation cells. As the vital determinant of post-transcriptional regulation, microRNAs (miRNAs) not only participate in cancer initiation and progression but also regulate anti-cancer immune response. For instance, some miRNAs affect cancer immune surveillance and immune escape by interfering the expression of immune attack-associated molecules. A growing body of evidence indicated that cancer-derived immune modulatory miRNAs might be promising targets to counteract cancer immune escape. In this review, we summarized the role of some miRNAs in cancer immune escape and discussed their potential clinical application as treatment targets.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
48
|
Mesenchymal Stem Cells from Human Exfoliated Deciduous Teeth and the Orbicularis Oris Muscle: How Do They Behave When Exposed to a Proinflammatory Stimulus? Stem Cells Int 2020; 2020:3670412. [PMID: 32184831 PMCID: PMC7060870 DOI: 10.1155/2020/3670412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/04/2020] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been studied as a promising type of stem cell for use in cell therapies because of their ability to regulate the immune response. Although they are classically isolated from the bone marrow, many studies have sought to isolate MSCs from noninvasive sources. The objective of this study was to evaluate how MSCs isolated from the dental pulp of human exfoliated deciduous teeth (SHED) and fragments of the orbicularis oris muscle (OOMDSCs) behave when treated with an inflammatory IFN-γ stimulus, specifically regarding their proliferative, osteogenic, and immunomodulatory potentials. The results demonstrated that the proliferation of SHED and OOMDSCs was inhibited by the addition of IFN-γ to their culture medium and that treatment with IFN-γ at higher concentrations resulted in a greater inhibition of the proliferation of these cells than treatment with IFN-γ at lower concentrations. SHED and OOMDSCs maintained their osteogenic differentiation potential after stimulation with IFN-γ. Additionally, SHED and OOMDSCs have been shown to have low immunogenicity because they lack expression of HLA-DR and costimulatory molecules such as CD40, CD80, and CD86 before and after IFN-γ treatment. Last, SHED and OOMDSCs expressed the immunoregulatory molecule HLA-G, and the expression of this antigen increased after IFN-γ treatment. In particular, an increase in intracellular HLA-G expression was observed. The results obtained suggest that SHED and OOMDSCs lack immunogenicity and have immunomodulatory properties that are enhanced when they undergo inflammatory stimulation with IFN-γ, which opens new perspectives for the therapeutic use of these cells.
Collapse
|
49
|
Furukawa A, Meguro M, Yamazaki R, Watanabe H, Takahashi A, Kuroki K, Maenaka K. Evaluation of the Reactivity and Receptor Competition of HLA-G Isoforms toward Available Antibodies: Implications of Structural Characteristics of HLA-G Isoforms. Int J Mol Sci 2019; 20:ijms20235947. [PMID: 31779209 PMCID: PMC6928721 DOI: 10.3390/ijms20235947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022] Open
Abstract
The human leucocyte antigen (HLA)-G, which consists of seven splice variants, is a tolerogenic immune checkpoint molecule. It plays an important role in the protection of the fetus from the maternal immune response by binding to inhibitory receptors, including leukocyte Ig-like receptors (LILRs). Recent studies have also revealed that HLA-G is involved in the progression of cancer cells and the protection from autoimmune diseases. In contrast to its well characterized isoform, HLA-G1, the binding activities of other major HLA-G isoforms, such as HLA-G2, toward available anti-HLA-G antibodies are only partially understood. Here, we investigate the binding specificities of anti-HLA-G antibodies by using surface plasmon resonance. MEM-G9 and G233 showed strong affinities to HLA-G1, with a nM range for their dissociation constants, but did not show affinities to HLA-G2. The disulfide-linker HLA-G1 dimer further exhibited significant avidity effects. On the other hand, 4H84 and MEM-G1, which can be used for the Western blotting of HLA-G isoforms, can bind to native HLA-G2, while MEM-G9 and G233 cannot. These results reveal that HLA-G2 has a partially intrinsically disordered structure. Furthermore, MEM-G1, but not 4H84, competes with the LILRB2 binding of HLA-G2. These results provide novel insight into the functional characterization of HLA-G isoforms and their detection systems.
Collapse
Affiliation(s)
- Atsushi Furukawa
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.F.); (M.M.); (R.Y.); (H.W.); (A.T.); (K.K.)
| | - Manami Meguro
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.F.); (M.M.); (R.Y.); (H.W.); (A.T.); (K.K.)
| | - Rika Yamazaki
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.F.); (M.M.); (R.Y.); (H.W.); (A.T.); (K.K.)
| | - Hiroshi Watanabe
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.F.); (M.M.); (R.Y.); (H.W.); (A.T.); (K.K.)
| | - Ami Takahashi
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.F.); (M.M.); (R.Y.); (H.W.); (A.T.); (K.K.)
| | - Kimiko Kuroki
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.F.); (M.M.); (R.Y.); (H.W.); (A.T.); (K.K.)
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.F.); (M.M.); (R.Y.); (H.W.); (A.T.); (K.K.)
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence: ; Tel.: +81-011-706-3970
| |
Collapse
|
50
|
Rohn H, Schwich E, Tomoya Michita R, Schramm S, Dolff S, Gäckler A, Korth J, Heinemann FM, Wilde B, Trilling M, Horn PA, Kribben A, Witzke O, Rebmann V. HLA-G 3' untranslated region gene variants are promising prognostic factors for BK polyomavirus replication and acute rejection after living-donor kidney transplant. Hum Immunol 2019; 81:141-146. [PMID: 31679637 DOI: 10.1016/j.humimm.2019.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 01/26/2023]
Abstract
The immunosuppressive non-classical human leukocyte antigen-G (HLA-G) promotes transplant tolerance as well as viral immune escape. HLA-G expression is associated with regulatory elements targeting certain single nucleotide polymorphisms (SNPs) in the HLA-G 3' untranslated region (UTR). Thus, we evaluated the impact of HLA-G 3'UTR polymorphisms as surrogate markers for BK polyomavirus (BKPyV) replication or nephropathy (PyVAN) and acute cellular and antibody mediated rejection (ACR/AMR) in 251 living-donor kidney-transplant recipient pairs. After sequencing of the HLA-G 3'UTR, fourteen SNPs between +2960 and +3227 and the 14 bp insertion/deletion polymorphism, which arrange as UTR haplotypes, were identified. The UTR-4 haplotype in donors and recipients was associated with occurrence of BKPyV/PyVAN compared to the other UTR haplotypes. While the UTR-4 recipient haplotype provided protection against AMR, the UTR-2 donor haplotype was deleteriously associated with ACR/AMR. Deduction of the UTR-2/4 haplotypes to specific SNPs revealed that the +3003C variant (unique for UTR-4) in donors as well as in recipients is responsible for BKPyV/PyVAN and also provides protection against AMR; whereas the +3196G variant (unique for UTR-2) promotes allograft rejection. Thus, HLA-G 3'UTR variants are promising genetic predisposition markers both in donors and recipients that may help to predict susceptibility to either viral infectious complication of BKPyV or allograft rejection.
Collapse
Affiliation(s)
- Hana Rohn
- Department of Infectious Diseases, West German Centre for Infectious Diseases (WZI), University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Esther Schwich
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rafael Tomoya Michita
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany; Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue 9500, Campus do Vale, Porto Alegre, RS CEP 91501970, Brazil
| | - Sabine Schramm
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre for Infectious Diseases (WZI), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Gäckler
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Johannes Korth
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre for Infectious Diseases (WZI), University Hospital Essen, University Duisburg-Essen, Essen, Germany; Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|