1
|
Lu Y, Yang S, Chen W, Xie H, Xu C. Advances in Migratory Plant Endoparasitic Nematode Effectors. Int J Mol Sci 2024; 25:6435. [PMID: 38928141 PMCID: PMC11203926 DOI: 10.3390/ijms25126435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Unlike sedentary plant-parasitic nematodes, migratory plant endoparasitic nematodes (MPENs) are unable to establish permanent feeding sites, and all developmental stages (except eggs) can invade and feed on plant tissues and can be easily overlooked because of the unspecific symptoms. They cause numerous economic losses in agriculture, forestry, and horticulture. In order to understand the pathogenetic mechanism of MPENs, here we describe research on functions and host targets focused on currently identified effectors from six MPENs, namely Radopholus similis, Pratylenchus spp., Ditylenchus destructor, Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Hirschmanniella oryzae. This information will provide valuable insights into understanding MPEN effectors and for future fostering advancements in plant protection.
Collapse
Affiliation(s)
| | | | | | | | - Chunling Xu
- Research Center of Nematodes of Plant Quarantine, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Gajda Ł, Daszkowska-Golec A, Świątek P. Trophic Position of the White Worm ( Enchytraeus albidus) in the Context of Digestive Enzyme Genes Revealed by Transcriptomics Analysis. Int J Mol Sci 2024; 25:4685. [PMID: 38731903 PMCID: PMC11083476 DOI: 10.3390/ijms25094685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
To assess the impact of Enchytraeidae (potworms) on the functioning of the decomposer system, knowledge of the feeding preferences of enchytraeid species is required. Different food preferences can be explained by variations in enzymatic activities among different enchytraeid species, as there are no significant differences in the morphology or anatomy of their alimentary tracts. However, it is crucial to distinguish between the contribution of microbial enzymes and the animal's digestive capacity. Here, we computationally analyzed the endogenous digestive enzyme genes in Enchytraeus albidus. The analysis was based on RNA-Seq of COI-monohaplotype culture (PL-A strain) specimens, utilizing transcriptome profiling to determine the trophic position of the species. We also corroborated the results obtained using transcriptomics data from genetically heterogeneous freeze-tolerant strains. Our results revealed that E. albidus expresses a wide range of glycosidases, including GH9 cellulases and a specific digestive SH3b-domain-containing i-type lysozyme, previously described in the earthworm Eisenia andrei. Therefore, E. albidus combines traits of both primary decomposers (primary saprophytophages) and secondary decomposers (sapro-microphytophages/microbivores) and can be defined as an intermediate decomposer. Based on assemblies of publicly available RNA-Seq reads, we found close homologs for these cellulases and i-type lysozymes in various clitellate taxa, including Crassiclitellata and Enchytraeidae.
Collapse
Affiliation(s)
| | | | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland; (Ł.G.); (A.D.-G.)
| |
Collapse
|
3
|
Matuszkiewicz M, Sobczak M. Syncytium Induced by Plant-Parasitic Nematodes. Results Probl Cell Differ 2024; 71:371-403. [PMID: 37996687 DOI: 10.1007/978-3-031-37936-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Plant-parasitic nematodes from the genera Globodera, Heterodera (cyst-forming nematodes), and Meloidogyne (root-knot nematodes) are notorious and serious pests of crops. They cause tremendous economic losses between US $80 and 358 billion a year. Nematodes infect the roots of plants and induce the formation of specialised feeding structures (syncytium and giant cells, respectively) that nourish juveniles and adults of the nematodes. The specialised secretory glands enable nematodes to synthesise and secrete effectors that facilitate migration through root tissues and alter the morphogenetic programme of host cells. The formation of feeding sites is associated with the suppression of plant defence responses and deep reprogramming of the development and metabolism of plant cells.In this chapter, we focus on syncytia induced by the sedentary cyst-forming nematodes and provide an overview of ultrastructural changes that occur in the host roots during syncytium formation in conjunction with the most important molecular changes during compatible and incompatible plant responses to infection with nematodes.
Collapse
Affiliation(s)
- Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
4
|
Zhao N, Zhu L, Liu M, He L, Xu H, Jia J. Enzyme-Responsive Lignin Nanocarriers for Triggered Delivery of Abamectin to Control Plant Root-Knot Nematodes ( Meloidogyne incognita). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3790-3799. [PMID: 36800495 DOI: 10.1021/acs.jafc.2c07466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intelligently responsive nanoparticles can improve insecticidal activity against target organisms and reduce the use of pesticides in agriculture. In this study, enzymatic hydrolysis lignin (EHL) nanocarriers with enzyme responsiveness were successfully prepared by electrostatic interaction, and abamectin (Abm)-loaded EHL-based nanoparticles (Abm@L-CL) were investigated. The release behavior of Abm@L-CL nanoparticles showed that Abm was released rapidly in the presence of cellulase and pectinase but slowly under natural conditions. The insecticidal activity of Abm@L-CL treatment (LC50 = 0.68 μg/mL) against nematodes (Meloidogyne incognita) was significantly more effective than that of original Abm treatment (LC50 = 1.32 μg/mL). The mortality rate of Abm@L-CL was more than 90% by applying the same dose of Abm after 12 h. The bioactivity of Abm@L-CL against root-knot nematodes was 1.7-fold greater than that of Abm. The result of fluorescence indicated that nanoparticles could enter the intestinal tract through the oral cavity of nematodes and achieve obvious gastric toxicity. Furthermore, the enzyme-controlled lignin-based Abm nanocarriers could penetrate the tomato root near the elongation zone. This study provided intelligent enzyme-responsive nanocarriers for efficient management of soil-borne diseases and pests in green agricultural inputs.
Collapse
Affiliation(s)
- Ning Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Li Zhu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Meichen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Liangheng He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Jinliang Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Siddique S, Coomer A, Baum T, Williamson VM. Recognition and Response in Plant-Nematode Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:143-162. [PMID: 35436424 DOI: 10.1146/annurev-phyto-020620-102355] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant-parasitic nematodes spend much of their lives inside or in contact with host tissue, and molecular interactions constantly occur and shape the outcome of parasitism. Eggs of these parasites generally hatch in the soil, and the juveniles must locate and infect an appropriate host before their stored energy is exhausted. Components of host exudate are evaluated by the nematode and direct its migration to its infection site. Host plants recognize approaching nematodes before physical contact through molecules released by the nematodes and launch a defense response. In turn, nematodes deploy numerous mechanisms to counteract plant defenses. This review focuses on these early stages of the interaction between plants and nematodes. We discuss how nematodes perceive and find suitable hosts, how plants perceive and mount a defense response against the approaching parasites, and how nematodes fight back against host defenses.
Collapse
Affiliation(s)
- Shahid Siddique
- Department of Entomology and Nematology, University of California, Davis, California, USA;
| | - Alison Coomer
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Thomas Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
6
|
Dodueva IE, Lebedeva MA, Lutova LA. Phytopathogens and Molecular Mimicry. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Zarlenga D, Thompson P, Mitreva M, Rosa BA, Hoberg E. Horizontal gene transfer provides insights into the deep evolutionary history and biology of Trichinella. Food Waterborne Parasitol 2022; 27:e00155. [PMID: 35542181 PMCID: PMC9079694 DOI: 10.1016/j.fawpar.2022.e00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Evolution involves temporal changes in the characteristics of a species that are subsequently propagated or rejected through natural selection. In the case of parasites, host switching also plays a prominent role in the evolutionary process. These changes are rooted in genetic variation and gene flow where genes may be deleted, mutated (sequence), duplicated, rearranged and/or translocated and then transmitted through vertical gene transfer. However, the introduction of new genes is not driven only by Mendelian inheritance and mutation but also by the introduction of DNA from outside a lineage in the form of horizontal gene transfer between donor and recipient organisms. Once introduced and integrated into the biology of the recipient, vertical inheritance then perpetuates the newly acquired genetic factor, where further functionality may involve co-option of what has become a pre-existing physiological capacity. Upon sequencing the Trichinella spiralis (Clade I) genome, a cyanate hydratase (cyanase) gene was identified that is common among bacteria, fungi, and plants, but rarely observed among other eukaryotes. The sequence of the Trichinella cyanase gene clusters with those derived from the Kingdom Plantae in contrast to the genes found in some Clade III and IV nematodes that cluster with cyanases of bacterial origin. Phylogenetic analyses suggest that the Trichinella cyanase was acquired during the Devonian period and independently from those of other nematodes. These data may help inform us of the deep evolutionary history and ecological connectivity of early ancestors within the lineage of contemporary Trichinella. Further, in many extant organisms, cyanate detoxification has been largely superseded by energy requirements for metabolism. Thus, deciphering the function of Trichinella cyanase may provide new avenues for treatment and control.
Collapse
Affiliation(s)
- Dante Zarlenga
- U.S. Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, B1180 BARC-East Beltsville, MD 20705, USA
| | - Peter Thompson
- U.S. Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, B1180 BARC-East Beltsville, MD 20705, USA
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnel Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Bruce A. Rosa
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnel Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Eric Hoberg
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
8
|
Joshi I, Kohli D, Pal A, Chaudhury A, Sirohi A, Jain PK. Host delivered-RNAi of effector genes for imparting resistance against root-knot and cyst nematodes in plants. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2022; 118:101802. [DOI: 10.1016/j.pmpp.2022.101802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
9
|
Nguyê˜n PV, Biện TLT, Tôn LB, Lê ÐÐ, Wright MK, Mantelin S, Petitot AS, Fernandez D, Bellafiore S. Meloidogyne-SP4 effector gene silencing reduces reproduction of root-knot nematodes in rice (Oryza sativa). NEMATOLOGY 2022. [DOI: 10.1163/15685411-bja10152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
The root-knot nematodes (RKN) Meloidogyne graminicola and M. incognita are responsible for rice yield losses worldwide, particularly in Asia and Africa. Previous studies demonstrated that nematode-secreted proteins are crucial for root invasion and establishment in the host. We present some characteristics of a pioneer effector, M. incognita-secreted protein 4 (Mi-SP4), which is conserved in RKN and required for infection in compatible rice-RKN interactions. In situ hybridisation assays revealed Mi-SP4 expression in the dorsal pharyngeal gland of M. incognita second-stage juveniles (J2). Meloidogyne-SP4 transcripts strongly accumulated in pre-parasitic J2 and decreased in later parasitic stages of M. incognita and M. graminicola. Transient expression of the nematode effector gene in Nicotiana benthamiana leaves and onion cells indicated that GFP-tagged Mi-SP4 was present in the cytoplasm and accumulated in the nucleus of the plant cells. In vitro RNA interference (RNAi) gene silencing, obtained by soaking J2 with small-interfering (si)RNA si4-1, decreased Mi -SP4 expression in J2 by 35% and significantly reduced M. incognita reproduction in rice by at least 30%. Similarly, host-mediated gene silencing of the nematode SP4 effector candidate gene in transgenic rice plants significantly reduced M. graminicola reproduction by 26% to 47%. The data obtained demonstrate that Mi -SP4 is a pioneer virulence effector, which plays an essential role in both M. incognita and M. graminicola pathogenicity on rice.
Collapse
Affiliation(s)
- Phong V. Nguyê˜n
- Faculty of Biological Sciences, Nông Lâm University, Hô` Chí Minh City, Vietnam
| | - Thanh LT. Biện
- Faculty of Biological Sciences, Nông Lâm University, Hô` Chí Minh City, Vietnam
| | - Linh B. Tôn
- Faculty of Biological Sciences, Nông Lâm University, Hô` Chí Minh City, Vietnam
| | - Ðôn Ð. Lê
- Faculty of Biological Sciences, Nông Lâm University, Hô` Chí Minh City, Vietnam
| | | | - Sophie Mantelin
- INRAE UMR 1355 Institute Sophia Agrobiotech, 400 route des Chappes, BP 167, 06903 Sophia Antipolis-Cedex, France
| | - Anne-Sophie Petitot
- PHIM Plant Health Institute, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Diana Fernandez
- PHIM Plant Health Institute, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Stéphane Bellafiore
- PHIM Plant Health Institute, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| |
Collapse
|
10
|
Han Z, Sieriebriennikov B, Susoy V, Lo WS, Igreja C, Dong C, Berasategui A, Witte H, Sommer RJ. Horizontally Acquired Cellulases Assist the Expansion of Dietary Range in Pristionchus Nematodes. Mol Biol Evol 2022; 39:msab370. [PMID: 34978575 PMCID: PMC8826503 DOI: 10.1093/molbev/msab370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Horizontal gene transfer (HGT) enables the acquisition of novel traits via non-Mendelian inheritance of genetic material. HGT plays a prominent role in the evolution of prokaryotes, whereas in animals, HGT is rare and its functional significance is often uncertain. Here, we investigate horizontally acquired cellulase genes in the free-living nematode model organism Pristionchus pacificus. We show that these cellulase genes 1) are likely of eukaryotic origin, 2) are expressed, 3) have protein products that are secreted and functional, and 4) result in endo-cellulase activity. Using CRISPR/Cas9, we generated an octuple cellulase mutant, which lacks all eight cellulase genes and cellulase activity altogether. Nonetheless, this cellulase-null mutant is viable and therefore allows a detailed analysis of a gene family that was horizontally acquired. We show that the octuple cellulase mutant has associated fitness costs with reduced fecundity and slower developmental speed. Furthermore, by using various Escherichia coli K-12 strains as a model for cellulosic biofilms, we demonstrate that cellulases facilitate the procurement of nutrients from bacterial biofilms. Together, our analysis of cellulases in Pristionchus provides comprehensive evidence from biochemistry, genetics, and phylogeny, which supports the integration of horizontally acquired genes into the complex life history strategy of this soil nematode.
Collapse
Affiliation(s)
- Ziduan Han
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Vladislav Susoy
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Wen-Sui Lo
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Catia Igreja
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Chuanfu Dong
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | | | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| |
Collapse
|
11
|
Jagdale S, Rao U, Giri AP. Effectors of Root-Knot Nematodes: An Arsenal for Successful Parasitism. FRONTIERS IN PLANT SCIENCE 2021; 12:800030. [PMID: 35003188 PMCID: PMC8727514 DOI: 10.3389/fpls.2021.800030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 05/13/2023]
Abstract
Root-knot nematodes (RKNs) are notorious plant-parasitic nematodes first recorded in 1855 in cucumber plants. They are microscopic, obligate endoparasites that cause severe losses in agriculture and horticulture. They evade plant immunity, hijack the plant cell cycle, and metabolism to modify healthy cells into giant cells (GCs) - RKN feeding sites. RKNs secrete various effector molecules which suppress the plant defence and tamper with plant cellular and molecular biology. These effectors originate mainly from sub-ventral and dorsal oesophageal glands. Recently, a few non-oesophageal gland secreted effectors have been discovered. Effectors are essential for the entry of RKNs in plants, subsequently formation and maintenance of the GCs during the parasitism. In the past two decades, advanced genomic and post-genomic techniques identified many effectors, out of which only a few are well characterized. In this review, we provide molecular and functional details of RKN effectors secreted during parasitism. We list the known effectors and pinpoint their molecular functions. Moreover, we attempt to provide a comprehensive insight into RKN effectors concerning their implications on overall plant and nematode biology. Since effectors are the primary and prime molecular weapons of RKNs to invade the plant, it is imperative to understand their intriguing and complex functions to design counter-strategies against RKN infection.
Collapse
Affiliation(s)
- Shounak Jagdale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ashok P. Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
van Steenbrugge JJM, van den Elsen S, Holterman M, Sterken MG, Thorpe P, Goverse A, Smant G, Helder J. Comparative genomics of two inbred lines of the potato cyst nematode Globodera rostochiensis reveals disparate effector family-specific diversification patterns. BMC Genomics 2021; 22:611. [PMID: 34380421 PMCID: PMC8359618 DOI: 10.1186/s12864-021-07914-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Potato cyst nematodes belong to the most harmful pathogens in potato, and durable management of these parasites largely depends on host-plant resistances. These resistances are pathotype specific. The current Globodera rostochiensis pathotype scheme that defines five pathotypes (Ro1 - Ro5) is both fundamentally and practically of limited value. Hence, resistant potato varieties are used worldwide in a poorly informed manner. RESULTS We generated two novel reference genomes of G. rostochiensis inbred lines derived from a Ro1 and a Ro5 population. These genome sequences comprise 173 and 189 scaffolds respectively, marking a ≈ 24-fold reduction in fragmentation as compared to the current reference genome. We provide copy number variations for 19 effector families. Four dorsal gland effector families were investigated in more detail. SPRYSECs, known to be implicated in plant defence suppression, constitute by far the most diversified family studied herein with 60 and 99 variants in Ro1 and Ro5 distributed over 18 and 26 scaffolds. In contrast, CLEs, effectors involved in feeding site induction, show strong physical clustering. The 10 and 16 variants cluster on respectively 2 and 1 scaffolds. Given that pathotypes are defined by their effectoromes, we pinpoint the disparate nature of the contributing effector families in terms of sequence diversification and loss and gain of variants. CONCLUSIONS Two novel reference genomes allow for nearly complete inventories of effector diversification and physical organisation within and between pathotypes. Combined with insights we provide on effector family-specific diversification patterns, this constitutes a basis for an effectorome-based virulence scheme for this notorious pathogen.
Collapse
Affiliation(s)
| | - Sven van den Elsen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martijn Holterman
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands.,Solynta, Dreijenlaan 2, 6703 HA, Wageningen, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter Thorpe
- School of Medicine, Medical & Biological Sciences, University of St. Andrews, North Haugh, St Andrews, United Kingdom
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Vieira P, Vicente CSL, Branco J, Buchan G, Mota M, Nemchinov LG. The Root Lesion Nematode Effector Ppen10370 Is Essential for Parasitism of Pratylenchus penetrans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:645-657. [PMID: 33400561 DOI: 10.1094/mpmi-09-20-0267-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The root lesion nematode Pratylenchus penetrans is a migratory species that attacks a broad range of crops. Like other plant pathogens, P. penetrans deploys a battery of secreted protein effectors to manipulate plant hosts and induce disease. Although several candidate effectors of P. penetrans have been identified, detailed mechanisms of their functions and particularly their host targets remain largely unexplored. In this study, a repertoire of candidate genes encoding pioneer effectors of P. penetrans was amplified from mixed life stages of the nematode, and candidate effectors were cloned and subjected to transient expression in a heterologous host, Nicotiana benthamiana, using potato virus X-based gene vector. Among seven analyzed genes, the candidate effector designated as Ppen10370 triggered pleiotropic phenotypes substantially different from those produced by wild type infection. Transcriptome analysis of plants expressing Ppen10370 demonstrated that observed phenotypic changes were likely related to disruption of core biological processes in the plant due to effector-originated activities. Cross-species comparative analysis of Ppen10370 identified homolog gene sequences in five other Pratylenchus species, and their transcripts were found to be localized specifically in the nematode esophageal glands by in situ hybridization. RNA silencing of the Ppen10370 resulted in a significant reduction of nematode reproduction and development, demonstrating an important role of the esophageal gland effector for parasitism.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Paulo Vieira
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Molecular Plant Pathology Laboratory, Beltsville, MD 20705-2350, U.S.A
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Cláudia S L Vicente
- NemaLab, MED-Mediterranean Institute for Agriculture, Environment and Development, Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- INIAV, I.P.-Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Jordana Branco
- NemaLab, MED-Mediterranean Institute for Agriculture, Environment and Development, Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Gary Buchan
- Electron & Confocal Microscopy Unit, USDA-ARS, Beltsville, MD 20705, U.S.A
| | - Manuel Mota
- NemaLab, MED-Mediterranean Institute for Agriculture, Environment and Development, Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Lev G Nemchinov
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Molecular Plant Pathology Laboratory, Beltsville, MD 20705-2350, U.S.A
| |
Collapse
|
14
|
Price JA, Coyne D, Blok VC, Jones JT. Potato cyst nematodes Globodera rostochiensis and G. pallida. MOLECULAR PLANT PATHOLOGY 2021; 22:495-507. [PMID: 33709540 PMCID: PMC8035638 DOI: 10.1111/mpp.13047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 05/12/2023]
Abstract
TAXONOMY Phylum Nematoda; class Chromadorea; order Rhabditida; suborder Tylenchina; infraorder Tylenchomorpha; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; Genus Globodera. BIOLOGY Potato cyst nematodes (PCN) are biotrophic, sedentary endoparasitic nematodes. Invasive (second) stage juveniles (J2) hatch from eggs in response to the presence of host root exudates and subsequently locate and invade the host. The nematodes induce the formation of a large, multinucleate syncytium in host roots, formed by fusion of up to 300 root cell protoplasts. The nematodes rely on this single syncytium for the nutrients required to develop through a further three moults to the adult male or female stage. This extended period of biotrophy-between 4 and 6 weeks in total-is almost unparalleled in plant-pathogen interactions. Females remain at the root while adult males revert to the vermiform body plan of the J2 and leave the root to locate and fertilize the female nematodes. The female body forms a cyst that contains the next generation of eggs. HOST RANGE The host range of PCN is limited to plants of the Solanaceae family. While the most economically important hosts are potato (Solanum tuberosum), tomato (Solanum lycopersicum), and aubergine (Solanum melongena), over 170 species of Solanaceae are thought to be potential hosts for PCN (Sullivan et al., 2007). DISEASE SYMPTOMS Symptoms are similar to those associated with nutrient deficiency, such as stunted growth, yellowing of leaves and reduced yields. This absence of specific symptoms reduces awareness of the disease among growers. DISEASE CONTROL Resistance genes (where available in suitable cultivars), application of nematicides, crop rotation. Great effort is put into reducing the spread of PCN through quarantine measures and use of certified seed stocks. USEFUL WEBSITES Genomic information for PCN is accessible through WormBase ParaSite.
Collapse
Affiliation(s)
- James A. Price
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - Danny Coyne
- International Institute of Tropical Agriculture (IITA)NairobiKenya
| | - Vivian C. Blok
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - John T. Jones
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| |
Collapse
|
15
|
Host Cell Wall Damage during Pathogen Infection: Mechanisms of Perception and Role in Plant-Pathogen Interactions. PLANTS 2021; 10:plants10020399. [PMID: 33669710 PMCID: PMC7921929 DOI: 10.3390/plants10020399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
The plant cell wall (CW) is a complex structure that acts as a mechanical barrier, restricting the access to most microbes. Phytopathogenic microorganisms can deploy an arsenal of CW-degrading enzymes (CWDEs) that are required for virulence. In turn, plants have evolved proteins able to inhibit the activity of specific microbial CWDEs, reducing CW damage and favoring the accumulation of CW-derived fragments that act as damage-associated molecular patterns (DAMPs) and trigger an immune response in the host. CW-derived DAMPs might be a component of the complex system of surveillance of CW integrity (CWI), that plants have evolved to detect changes in CW properties. Microbial CWDEs can activate the plant CWI maintenance system and induce compensatory responses to reinforce CWs during infection. Recent evidence indicates that the CWI surveillance system interacts in a complex way with the innate immune system to fine-tune downstream responses and strike a balance between defense and growth.
Collapse
|
16
|
Feng H, Zhou D, Daly P, Wang X, Wei L. Characterization and Functional Importance of Two Glycoside Hydrolase Family 16 Genes from the Rice White Tip Nematode Aphelenchoides besseyi. Animals (Basel) 2021; 11:ani11020374. [PMID: 33540794 PMCID: PMC7913077 DOI: 10.3390/ani11020374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The rice white tip nematode Aphelenchoides besseyi is a plant parasite but can also feed on fungi if this alternative nutrient source is available. Glucans are a major nutrient source found in fungi, and β-linked glucans from fungi can be hydrolyzed by β-glucanases from the glycoside hydrolase family 16 (GH16). The GH16 family is abundant in A. besseyi, but their functions have not been well studied, prompting the analysis of two GH16 members (AbGH16-1 and AbGH16-2). AbGH16-1 and AbGH16-2 are most similar to GH16s from fungi and probably originated from fungi via a horizontal gene transfer event. These two genes are important for feeding on fungi: transcript levels increased when cultured with the fungus Botrytis cinerea, and the purified AbGH16-1 and AbGH16-2 proteins inhibited the growth of B. cinerea. When AbGH16-1 and AbGH16-2 expression was silenced, the reproduction ability of A. besseyi was reduced. These findings have proved for the first time that GH16s contribute to the feeding and reproduction of A. besseyi, which thus provides novel insights into how plant-parasitic nematodes can obtain nutrition from sources other than their plant hosts. Abstract The glycoside hydrolase family 16 (GH16) is widely found in prokaryotes and eukaryotes, and hydrolyzes the β-1,3(4)-linkages in polysaccharides. Notably, the rice white tip nematode Aphelenchoides besseyi harbors a higher number of GH16s compared with other plant-parasitic nematodes. In this work, two GH16 genes, namely AbGH16-1 and AbGH16-2, were isolated and characterized from A. besseyi. The deduced amino acid sequences of AbGH16-1 and AbGH16-2 contained an N-terminal signal peptide and a fungal Lam16A glucanase domain. Phylogenetic analysis revealed that AbGH16-1 and AbGH16-2 clustered with ascomycete GH16s, suggesting AbGH16-1 and AbGH16-2 were acquired by horizontal gene transfer from fungi. In situ hybridization showed that both AbGH16-1 and AbGH16-2 were specifically expressed in the nematode gonads, correlating with qPCR analysis that showed the high transcript levels of the two genes in the female nematodes. AbGH16-1 and AbGH16-2 were also significantly induced in nematodes feeding on Botrytis cinerea. Characterization of the recombinant protein showed AbGH16-1 and AbGH16-2 displayed pronounced inhibition of both conidial germination and germ tube elongation of B. cinerea. In addition, silencing of AbGH16-1 and AbGH16-2 by RNA interference significantly decreased the reproduction ability of A. besseyi and had a profound impact on the development process of offspring in this nematode. These findings have firstly proved that GH16s may play important roles in A.besseyi feeding and reproduction on fungi, which thus provides novel insights into the function of GH16s in plant-parasitic nematodes.
Collapse
|
17
|
Gartner U, Hein I, Brown LH, Chen X, Mantelin S, Sharma SK, Dandurand LM, Kuhl JC, Jones JT, Bryan GJ, Blok VC. Resisting Potato Cyst Nematodes With Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:661194. [PMID: 33841485 PMCID: PMC8027921 DOI: 10.3389/fpls.2021.661194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/03/2021] [Indexed: 05/17/2023]
Abstract
Potato cyst nematodes (PCN) are economically important pests with a worldwide distribution in all temperate regions where potatoes are grown. Because above ground symptoms are non-specific, and detection of cysts in the soil is determined by the intensity of sampling, infestations are frequently spread before they are recognised. PCN cysts are resilient and persistent; their cargo of eggs can remain viable for over two decades, and thus once introduced PCN are very difficult to eradicate. Various control methods have been proposed, with resistant varieties being a key environmentally friendly and effective component of an integrated management programme. Wild and landrace relatives of cultivated potato have provided a source of PCN resistance genes that have been used in breeding programmes with varying levels of success. Producing a PCN resistant variety requires concerted effort over many years before it reaches what can be the biggest hurdle-commercial acceptance. Recent advances in potato genomics have provided tools to rapidly map resistance genes and to develop molecular markers to aid selection during breeding. This review will focus on the translation of these opportunities into durably PCN resistant varieties.
Collapse
Affiliation(s)
- Ulrike Gartner
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lynn H. Brown
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Xinwei Chen
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Sophie Mantelin
- INRAE UMR Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Sanjeev K. Sharma
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Louise-Marie Dandurand
- Entomology, Plant Pathology and Nematology Department, University of Idaho, Moscow, ID, United States
| | - Joseph C. Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States
| | - John T. Jones
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Glenn J. Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Vivian C. Blok
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Vivian C. Blok,
| |
Collapse
|
18
|
Kumari P, Sayas T, Bucki P, Brown-Miyara S, Kleiman M. Real-Time Visualization of Cellulase Activity by Microorganisms on Surface. Int J Mol Sci 2020; 21:ijms21186593. [PMID: 32916923 PMCID: PMC7555966 DOI: 10.3390/ijms21186593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023] Open
Abstract
A variety of methods to detect cellulase secretion by microorganisms has been developed over the years, none of which enables the real-time visualization of cellulase activity on a surface. This visualization is critical to study the interaction between soil-borne cellulase-secreting microorganisms and the surface of plant roots and specifically, the effect of surface features on this interaction. Here, we modified the known carboxymethyl cellulase (CMC) hydrolysis visualization method to enable the real-time tracking of cellulase activity of microorganisms on a surface. A surface was formed using pure CMC with acridine orange dye incorporated in it. The dye disassociated from the film when hydrolysis occurred, forming a halo surrounding the point of hydrolysis. This enabled real-time visualization, since the common need for post hydrolysis dyeing was negated. Using root-knot nematode (RKN) as a model organism that penetrates plant roots, we showed that it was possible to follow microorganism cellulase secretion on the surface. Furthermore, the addition of natural additives was also shown to be an option and resulted in an increased RKN response. This method will be implemented in the future, investigating different microorganisms on a root surface microstructure replica, which can open a new avenue of research in the field of plant root-microorganism interactions.
Collapse
Affiliation(s)
- Pallavi Kumari
- Institute of Plant Sciences, Agricultural Research Organization (Volcani Center), Rishon Lezion 7505101, Israel; (P.K.); (T.S.)
| | - Tali Sayas
- Institute of Plant Sciences, Agricultural Research Organization (Volcani Center), Rishon Lezion 7505101, Israel; (P.K.); (T.S.)
| | - Patricia Bucki
- Institute of Plant Protection, Agricultural Research Organization (Volcani Center), Rishon Lezion 7505101, Israel; (P.B.); (S.B.-M.)
| | - Sigal Brown-Miyara
- Institute of Plant Protection, Agricultural Research Organization (Volcani Center), Rishon Lezion 7505101, Israel; (P.B.); (S.B.-M.)
| | - Maya Kleiman
- Institute of Plant Sciences, Agricultural Research Organization (Volcani Center), Rishon Lezion 7505101, Israel; (P.K.); (T.S.)
- Agro-NanoTechnology and Advanced Materials Center, Agricultural Research Organization (Volcani Center), Rishon Lezion 7505101, Israel
- Correspondence:
| |
Collapse
|
19
|
Joshi I, Kumar A, Kohli D, Singh AK, Sirohi A, Subramaniam K, Chaudhury A, Jain PK. Conferring root-knot nematode resistance via host-delivered RNAi-mediated silencing of four Mi-msp genes in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110592. [PMID: 32771150 DOI: 10.1016/j.plantsci.2020.110592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 05/27/2023]
Abstract
The root-knot nematode (RKN) Meloidogyne incognita is considered one of the most damaging pests among phytonematodes. The majority of nematode oesophageal gland effector genes are indispensable in facilitating M. incognita parasitization of host plants. We report the effect of host-delivered RNAi (HD-RNAi) silencing of four selected M. incognita effector genes, namely, Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24, in Arabidopsis thaliana. Mi-msp5, Mi-msp18 and Mi-msp24, which are dorsal gland genes, were found to be maximally expressed in the adult female stage, whereas Mi-msp3, which is a sub-ventral gland gene, was maximally expressed in an earlier stage. In transgenic plants expressing dsRNA, the reduction in the number of galls on roots was 89 %, 78 %, 86 % and 89 % for the Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24 RNAi events, respectively. Moreover, gene transcript abundance was significantly reduced in RKN females feeding on dsRNA-expressing lines by up to 60 %, 84 %, 31 % and 61 % for Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24, respectively. Furthermore, the M. incognita reproduction factor was reduced up to 71-, 344-, 107- and 114-fold in Arabidopsis plants expressing Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24 dsRNA constructs, respectively. This study provides a set of potential target genes to curb nematode infestation in economically important crops via the HD-RNAi approach.
Collapse
Affiliation(s)
- Ila Joshi
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India; Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Anil Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Deshika Kohli
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Ashish K Singh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - K Subramaniam
- Department of Biotechnology, Indian Institute of Technology, Madras, India
| | - Ashok Chaudhury
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Pradeep K Jain
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
20
|
Favery B, Dubreuil G, Chen MS, Giron D, Abad P. Gall-Inducing Parasites: Convergent and Conserved Strategies of Plant Manipulation by Insects and Nematodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:1-22. [PMID: 32853101 DOI: 10.1146/annurev-phyto-010820-012722] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Gall-inducing insects and nematodes engage in sophisticated interactions with their host plants. These parasites can induce major morphological and physiological changes in host roots, leaves, and other tissues. Sedentary endoparasitic nematodes, root-knot and cyst nematodes in particular, as well as gall-inducing and leaf-mining insects, manipulate plant development to form unique organs that provide them with food from feeding cells. Sometimes, infected tissues may undergo a developmental switch resulting in the formation of aberrant and spectacular structures (clubs or galls). We describe here the complex interactions between these plant-reprogramming sedentary endoparasites and their infected hosts, focusing on similarities between strategies of plant manipulation. We highlight progress in our understanding of the host plant response to infection and focus on the nematode and insect molecules secreted in planta. We suggest thatlooking at similarities may identify convergent and conserved strategies and shed light on the promise they hold for the development of new management strategies in agriculture and forestry.
Collapse
Affiliation(s)
- Bruno Favery
- INRAE, CNRS, Université Côte d'Azur, ISA, F-06600 Sophia-Antipolis, France;
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, CNRS, Université de Tours, UMR 7261, 37200 Tours, France;
| | - Ming-Shun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, CNRS, Université de Tours, UMR 7261, 37200 Tours, France;
| | - Pierre Abad
- INRAE, CNRS, Université Côte d'Azur, ISA, F-06600 Sophia-Antipolis, France;
| |
Collapse
|
21
|
Somvanshi VS, Phani V, Banakar P, Chatterjee M, Budhwar R, Shukla RN, Rao U. Transcriptomic changes in the pre-parasitic juveniles of Meloidogyne incognita induced by silencing of effectors Mi-msp-1 and Mi-msp-20. 3 Biotech 2020; 10:360. [PMID: 32832322 DOI: 10.1007/s13205-020-02353-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/22/2020] [Indexed: 01/18/2023] Open
Abstract
Plant-parasitic root-knot nematode Meloidogyne incognita uses an array of effector proteins to establish successful plant infections. Mi-msp-1 and Mi-msp-20 are two known effectors secreted from nematode subventral oesophageal glands; Mi-msp-1 being a putative secretory venom allergen AG5-like protein, whereas Mi-msp-20 is a pioneer gene with a coiled-coil motif. Expression of specific effector is known to cause disturbances in the expression of other effectors. Here, we used RNA-Seq to investigate the pleiotropic effects of silencing Mi-msp-1 and Mi-msp-20. A total of 25.1-51.9 million HQ reads generated from Mi-msp-1 and Mi-msp-20 silenced second-stage juveniles (J2s) along with freshly hatched J2s were mapped to an already annotated M. incognita proteome to understand the impact on various nematode pathways. As compared to control, silencing of Mi-msp-1 caused differential expression of 29 transcripts, while Mi-msp-20 silencing resulted in differential expression of a broader set of 409 transcripts. In the Mi-msp-1 silenced J2s, cytoplasm (GO:0005737) was the most enriched gene ontology (GO) term, whereas in the Mi-msp-20 silenced worms, embryo development (GO:0009792), reproduction (GO:0000003) and nematode larval development (GO:0002119) were the most enriched terms. Limited crosstalk was observed between these two effectors as a sheer 5.9% of the up-regulated transcripts were common between Mi-msp-1 and Mi-msp-20 silenced nematodes. Our results suggest that in addition to the direct knock-down caused by silencing of Mi-msp-1 and Mi-msp-20, the cascading effect on other genes might also be contributing to a reduction in nematode's parasitic abilities.
Collapse
|
22
|
Liu HB, Rui L, Feng YQ, Wu XQ. Autophagy contributes to resistance to the oxidative stress induced by pine reactive oxygen species metabolism, promoting infection by Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2020; 76:2755-2767. [PMID: 32187440 DOI: 10.1002/ps.5823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/25/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Autophagy plays an important role in eukaryotes. We investigated its role in the pine wood nematode (PWN), Bursaphelenchus xylophilus, the causative agent of pine wilt disease (PWD), to find promising control strategies against PWD. RESULTS We analysed the expression levels of PtRBOH1 and PtRBOH2, which regulate reactive oxygen species (ROS) metabolism, in Pinus thunbergii and the expression of three autophagy genes, BxATG5, BxATG9 and BxATG16, in PWN by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and measured the content of H2 O2 , the main product of ROS metabolism, in pine stem. There was a correlation between the expression of autophagy genes in PWN and pine ROS metabolism during early infection. We also found that oxidative stress induces autophagy in PWN according to qRT-PCR, transmission electron microscopy and Western blot analyses. Inhibition of autophagy by 3-methyladenine or silencing of the autophagy genes BxATG9 and BxATG16 in PWN showed that autophagy is essential for feeding, fecundity, egg hatching and survival of PWN under oxidative stress, confirming the importance of autophagy in the antioxidant defences of PWN. Similarly, we demonstrated that autophagy contributes to the virulence of PWN. Moreover, PWN likely ameliorates oxidative damage by enhancing the activities of the peroxidase and catalase antioxidant pathways when autophagy is inhibited. CONCLUSION Autophagy contributes to resistance to the oxidative stress induced by pine ROS metabolism, thus promoting infection by PWN. Our findings clarify the defence mechanisms of PWN and the pathogenesis of PWD, and provide promising hints for control of PWD by blocking autophagy. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Bin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Lin Rui
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Ya-Qi Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
23
|
Pokhare SS, Thorpe P, Hedley P, Morris J, Habash SS, Elashry A, Eves-van den Akker S, Grundler FMW, Jones JT. Signatures of adaptation to a monocot host in the plant-parasitic cyst nematode Heterodera sacchari. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1263-1274. [PMID: 32623778 DOI: 10.1111/tpj.14910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/18/2020] [Indexed: 05/03/2023]
Abstract
Interactions between plant-parasitic nematodes and their hosts are mediated by effectors, i.e. secreted proteins that manipulate the plant to the benefit of the pathogen. To understand the role of effectors in host adaptation in nematodes, we analysed the transcriptome of Heterodera sacchari, a cyst nematode parasite of rice (Oryza sativa) and sugarcane (Saccharum officinarum). A multi-gene phylogenetic analysis showed that H. sacchari and the cereal cyst nematode Heterodera avenae share a common evolutionary origin and that they evolved to parasitise monocot plants from a common dicot-parasitic ancestor. We compared the effector repertoires of H. sacchari with those of the dicot parasites Heterodera glycines and Globodera rostochiensis to understand the consequences of this transition. While, in general, effector repertoires are similar between the species, comparing effectors and non-effectors of H. sacchari and G. rostochiensis shows that effectors have accumulated more mutations than non-effectors. Although most effectors show conserved spatiotemporal expression profiles and likely function, some H. sacchari effectors are adapted to monocots. This is exemplified by the plant-peptide hormone mimics, the CLAVATA3/EMBRYO SURROUNDING REGION-like (CLE) effectors. Peptide hormones encoded by H. sacchari CLE effectors are more similar to those from rice than those from other plants, or those from other plant-parasitic nematodes. We experimentally validated the functional significance of these observations by demonstrating that CLE peptides encoded by H. sacchari induce a short root phenotype in rice, whereas those from a related dicot parasite do not. These data provide a functional example of effector evolution that co-occurred with the transition from a dicot-parasitic to a monocot-parasitic lifestyle.
Collapse
Affiliation(s)
- Somnath S Pokhare
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Peter Thorpe
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| | - Pete Hedley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jennifer Morris
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Samer S Habash
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | - Abdelnaser Elashry
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | | | - Florian M W Grundler
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | - John T Jones
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| |
Collapse
|
24
|
An overview on marine cellulolytic enzymes and their potential applications. Appl Microbiol Biotechnol 2020; 104:6873-6892. [DOI: 10.1007/s00253-020-10692-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 11/26/2022]
|
25
|
Vieira P, Nemchinov LG. An Expansin-Like Candidate Effector Protein from Pratylenchus penetrans Modulates Immune Responses in Nicotiana benthamiana. PHYTOPATHOLOGY 2020; 110:684-693. [PMID: 31680651 DOI: 10.1094/phyto-09-19-0336-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The root lesion nematode (RLN) Pratylenchus penetrans is a migratory species that attacks a broad range of crops. After the RLN is initially attracted to host roots by root exudates and compounds, it releases secretions that are critical for successful parasitism. Among those secretions are nematode virulence factors or effectors that facilitate the entry and migration of nematodes through the roots and modulate plant immune defenses. The recognition of the effectors by host resistance proteins leads to effector-triggered immunity and incompatible plant-nematode interactions. Although many candidate effectors of the RLN and other plant-parasitic nematodes have been identified, the detailed mechanisms of their functions and particularly, their host targets remain largely unexplored. In this study, we sequenced and annotated genes encoding expansin-like proteins, which are major candidate effectors of P. penetrans. One of the genes, Pp-EXPB1, which was the most highly expressed during nematode infection in different plant species, was further functionally characterized via transient expression in the model plant Nicotiana benthamiana and global transcriptome profiling of gene expression changes triggered by this candidate effector in plants. As a result of this investigation, the biological roles of Pp-EXPB1 in nematode parasitism were proposed, the putative cellular targets of the proteins were identified, and the molecular mechanisms of plant responses to the nematode-secreted proteins were outlined.
Collapse
Affiliation(s)
- Paulo Vieira
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705-2350
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
| | - Lev G Nemchinov
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705-2350
| |
Collapse
|
26
|
Kwon KM, Bekal S, Domier LL, Lambert KN. Active and inactive forms of biotin synthase occur in Heterodera glycines. J Nematol 2019; 51:e2019-69. [PMID: 34179812 PMCID: PMC6909392 DOI: 10.21307/jofnem-2019-069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 11/11/2022] Open
Abstract
Heterodera glycines, the soybean cyst nematode (SCN), is a plant-parasitic nematode capable of manipulating host plant biochemistry and development. Many studies have suggested that the nematode has acquired genes from bacteria via horizontal gene transfer events (HGTs) that have the potential to enhance nematode parasitism. A recent allelic imbalance analysis identified two candidate virulence genes, which also appear to have entered the SCN genome through HGTs. One of the candidate genes, H. glycines biotin synthase (HgBioB), contained sequence polymorphisms between avirulent and virulent inbred SCN strains. To test the function of these HgBioB alleles, a complementation experiment using biotin synthase-deficient Escherichia coli was conducted. Here, we report that avirulent nematodes produce an active biotin synthase while virulent ones contain an inactive form of the enzyme. Moreover, sequencing analysis of HgBioB genes from SCN field populations indicates the presence of diverse mixture of HgBioB alleles with the virulent form being the most prevalent. We hypothesize that the mutations in the inactive HgBioB allele within the virulent SCN could result in a change in protein function that in some unknown way bolster its parasitic lifestyle.
Collapse
Affiliation(s)
- Khee Man Kwon
- Department of Crop Sciences, University of Illinois, Urbana, IL.,Department of Plant Pathology and Center for Applied Genetic Technologies, University of Georgia, Athens, GA
| | - Sadia Bekal
- Department of Agricultural and Biological Engineering, University of Illinois, Urbana, IL
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Urbana, IL.,United States Department of Agriculture - Agricultural Research Service, Urbana, IL
| | - Kris N Lambert
- Department of Crop Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
27
|
Busch A, Danchin EGJ, Pauchet Y. Functional diversification of horizontally acquired glycoside hydrolase family 45 (GH45) proteins in Phytophaga beetles. BMC Evol Biol 2019; 19:100. [PMID: 31077129 PMCID: PMC6509783 DOI: 10.1186/s12862-019-1429-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cellulose, a major polysaccharide of the plant cell wall, consists of β-1,4-linked glucose moieties forming a molecular network recalcitrant to enzymatic breakdown. Although cellulose is potentially a rich source of energy, the ability to degrade it is rare in animals and was believed to be present only in cellulolytic microbes. Recently, it has become clear that some animals encode endogenous cellulases belonging to several glycoside hydrolase families (GHs), including GH45. GH45s are distributed patchily among the Metazoa and, in insects, are encoded only by the genomes of Phytophaga beetles. This study aims to understand both the enzymatic functions and the evolutionary history of GH45s in these beetles. RESULTS To this end, we biochemically assessed the enzymatic activities of 37 GH45s derived from five species of Phytophaga beetles and discovered that beetle-derived GH45s degrade three different substrates: amorphous cellulose, xyloglucan and glucomannan. Our phylogenetic and gene structure analyses indicate that at least one gene encoding a putative cellulolytic GH45 was present in the last common ancestor of the Phytophaga, and that GH45 xyloglucanases evolved several times independently in these beetles. The most closely related clade to Phytophaga GH45s was composed of fungal sequences, suggesting this GH family was acquired by horizontal gene transfer from fungi. Besides the insects, other arthropod GH45s do not share a common origin and appear to have emerged at least three times independently. CONCLUSION The rise of functional innovation from gene duplication events has been a fundamental process in the evolution of GH45s in Phytophaga beetles. Both, enzymatic activity and ancestral origin suggest that GH45s were likely an essential prerequisite for the adaptation allowing Phytophaga beetles to feed on plants.
Collapse
Affiliation(s)
- André Busch
- Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | | | - Yannick Pauchet
- Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany.
| |
Collapse
|
28
|
Tanaka SE, Dayi M, Maeda Y, Tsai IJ, Tanaka R, Bligh M, Takeuchi-Kaneko Y, Fukuda K, Kanzaki N, Kikuchi T. Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the lifecycle. Sci Rep 2019; 9:6080. [PMID: 30988401 PMCID: PMC6465311 DOI: 10.1038/s41598-019-42570-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
The pine wood nematode Bursaphelenchus xylophilus is the causal agent of pine wilt disease, one of the most devastating forest diseases in East Asian and West European countries. The lifecycle of B. xylophilus includes four propagative larval stages and gonochoristic adults which are involved in the pathogenicity, and two stages of dispersal larvae involved in the spread of the disease. To elucidate the ecological roles of each developmental stage in the pathogenic life cycle, we performed a comprehensive transcriptome analysis using RNA-seq generated from all developmental stages of B. xylophilus and compared transcriptomes between stages. We found more than 9000 genes are differentially expressed in at least one stage of the life cycle including genes involved in general nematode biology such as reproduction and moulting but also effector genes likely to be involved in parasitism. The dispersal-stage transcriptome revealed its analogy to C. elegans dauer and the distinct roles of the two larval stages from each other regarding survival and transmission. This study provides important insights and resources to understand B. xylophilus parasitic biology.
Collapse
Affiliation(s)
- Suguru E Tanaka
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Mehmet Dayi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
- Forestry Vocational School, Duzce University, 81620, Duzce, Turkey
| | - Yasunobu Maeda
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ryusei Tanaka
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Mark Bligh
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Yuko Takeuchi-Kaneko
- Laboratory of Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Fukuda
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto, 612-0855, Japan
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.
| |
Collapse
|
29
|
Hu LJ, Wu XQ, Li HY, Zhao Q, Wang YC, Ye JR. An Effector, BxSapB1, Induces Cell Death and Contributes to Virulence in the Pine Wood Nematode Bursaphelenchus xylophilus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:452-463. [PMID: 30351223 DOI: 10.1094/mpmi-10-18-0275-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The pine wood nematode (PWN) Bursaphelenchus xylophilus has caused serious damage to pine forests in China. Effectors secreted by phytonematodes play a role in host infection. We identified and characterized an effector, BxSapB1, based on the B. xylophilus transcriptome at the early stages of infection and the transient expression of proteins in Nicotiana benthamiana. BxSapB1 triggered cell death in N. benthamiana when secreted into the apoplast, and this effect was independent of N. benthamiana brassinosteroid-insensitive 1-associated kinase 1 (NbBAK1) and suppressor of BIR1-1 (NbSOBIR1). The signal peptide of BxSapB1 was proven to be functional in yeast using the yeast signal sequence trap system and BxSapB1 was strongly expressed in the subventral gland cells of B. xylophilus, as revealed by in-situ hybridization. In addition, based on local BLAST analysis, the BxSapB1 showed 100% identity to BUX.s00139.62, which was identified from the B. xylophilus secretome during Pinus thunbergii infection. BxSapB1 was upregulated in a highly virulent strain and downregulated in a weakly virulent strain of PWN at the early stages of infection. RNA interference assays showed that silencing BxSapB1 resulted in decreased expression of pathogenesis-related genes (PtPR-1b, PtPR-3, and PtPR-5) as well as delayed onset of symptoms in P. thunbergii infected by B. xylophilus. The combined data suggest that BxSapB1 can trigger cell death in N. benthamiana and that it contributes to the virulence in B. xylophilus during parasitic interaction.
Collapse
Affiliation(s)
- Long-Jiao Hu
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| | - Xiao-Qin Wu
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| | - Hai-Yang Li
- 3 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Zhao
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| | - Yuan-Chao Wang
- 3 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian-Ren Ye
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| |
Collapse
|
30
|
Nomura T, Iwase H, Saka N, Takahashi N, Mikami B, Mizutani K. High-resolution crystal structures of the glycoside hydrolase family 45 endoglucanase EG27II from the snail Ampullaria crossean. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:426-436. [PMID: 30988259 DOI: 10.1107/s2059798319003000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/27/2019] [Indexed: 11/10/2022]
Abstract
Although endogenous animal cellulases have great potential for industrial applications such as bioethanol production, few investigations have focused on these enzymes. In this study, the glycoside hydrolase family 45 (GH45) subfamily B endoglucanase EG27II from the snail Ampullaria crossean was expressed using a Pichia pastoris expression system and the crystal structure of the apo form was determined at 1.00 Å resolution; this is the highest resolution structure of an animal endoglucanase. The results showed that EG27II has a double-ψ six-stranded β-barrel and that the structure of EG27II more closely resembles those of subfamily C enzymes than those of subfamily A enzymes. The structure of EG27II complexed with cellobiose was also determined under cryoconditions and at room temperature at three pH values, pH 4.0, 5.5 and 8.0, and no structural changes were found to be associated with the change in pH. The structural comparison and catalytic activity measurements showed that Asp137 and Asn112 function as the catalytic acid and base, respectively, and that Asp27 is also an important residue for catalysis. These high-resolution structures of EG27II provide a large amount of information for structure-based enzyme modification and cell-surface engineering, which will advance biofuel production using animal-derived cellulases.
Collapse
Affiliation(s)
- Taisuke Nomura
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisamu Iwase
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Naoki Saka
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Nobuyuki Takahashi
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kimihiko Mizutani
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
31
|
da Costa RR, Hu H, Li H, Poulsen M. Symbiotic Plant Biomass Decomposition in Fungus-Growing Termites. INSECTS 2019; 10:E87. [PMID: 30925664 PMCID: PMC6523192 DOI: 10.3390/insects10040087] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/25/2023]
Abstract
Termites are among the most successful animal groups, accomplishing nutrient acquisition through long-term associations and enzyme provisioning from microbial symbionts. Fungus farming has evolved only once in a single termite sub-family: Macrotermitinae. This sub-family has become a dominant decomposer in the Old World; through enzymatic contributions from insects, fungi, and bacteria, managed in an intricate decomposition pathway, the termites obtain near-complete utilisation of essentially any plant substrate. Here we review recent insights into our understanding of the process of plant biomass decomposition in fungus-growing termites. To this end, we outline research avenues that we believe can help shed light on how evolution has shaped the optimisation of plant-biomass decomposition in this complex multipartite symbiosis.
Collapse
Affiliation(s)
- Rafael R da Costa
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark.
| | - Haofu Hu
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark.
| | - Hongjie Li
- Department of Bacteriology, University of Wisconsin⁻Madison, Madison, WI 53706, USA.
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark.
| |
Collapse
|
32
|
Di Lelio I, Illiano A, Astarita F, Gianfranceschi L, Horner D, Varricchio P, Amoresano A, Pucci P, Pennacchio F, Caccia S. Evolution of an insect immune barrier through horizontal gene transfer mediated by a parasitic wasp. PLoS Genet 2019; 15:e1007998. [PMID: 30835731 PMCID: PMC6420030 DOI: 10.1371/journal.pgen.1007998] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/15/2019] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
Genome sequencing data have recently demonstrated that eukaryote evolution has been remarkably influenced by the acquisition of a large number of genes by horizontal gene transfer (HGT) across different kingdoms. However, in depth-studies on the physiological traits conferred by these accidental DNA acquisitions are largely lacking. Here we elucidate the functional role of Sl gasmin, a gene of a symbiotic virus of a parasitic wasp that has been transferred to an ancestor of the moth species Spodoptera littoralis and domesticated. This gene is highly expressed in circulating immune cells (haemocytes) of larval stages, where its transcription is rapidly boosted by injection of microorganisms into the body cavity. RNAi silencing of Sl gasmin generates a phenotype characterized by a precocious suppression of phagocytic activity by haemocytes, which is rescued when these immune cells are incubated in plasma samples of control larvae, containing high levels of the encoded protein. Proteomic analysis demonstrates that the protein Sl gasmin is released by haemocytes into the haemolymph, where it opsonizes the invading bacteria to promote their phagocytosis, both in vitro and in vivo. Our results show that important physiological traits do not necessarily originate from evolution of pre-existing genes, but can be acquired by HGT events, through unique pathways of symbiotic evolution. These findings indicate that insects can paradoxically acquire selective advantages with the help of their natural enemies.
Collapse
Affiliation(s)
- Ilaria Di Lelio
- Department of Agricultural Sciences, University of Napoli Federico II, Portici (NA), Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Federica Astarita
- Department of Agricultural Sciences, University of Napoli Federico II, Portici (NA), Italy
| | | | - David Horner
- Department of Biosciences, University of Milano, Milano, Italy
| | - Paola Varricchio
- Department of Agricultural Sciences, University of Napoli Federico II, Portici (NA), Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Pietro Pucci
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Napoli Federico II, Portici (NA), Italy
| | - Silvia Caccia
- Department of Agricultural Sciences, University of Napoli Federico II, Portici (NA), Italy
| |
Collapse
|
33
|
Masonbrink R, Maier TR, Muppirala U, Seetharam AS, Lord E, Juvale PS, Schmutz J, Johnson NT, Korkin D, Mitchum MG, Mimee B, den Akker SEV, Hudson M, Severin AJ, Baum TJ. The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes. BMC Genomics 2019; 20:119. [PMID: 30732586 PMCID: PMC6367775 DOI: 10.1186/s12864-019-5485-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/28/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Heterodera glycines, commonly referred to as the soybean cyst nematode (SCN), is an obligatory and sedentary plant parasite that causes over a billion-dollar yield loss to soybean production annually. Although there are genetic determinants that render soybean plants resistant to certain nematode genotypes, resistant soybean cultivars are increasingly ineffective because their multi-year usage has selected for virulent H. glycines populations. The parasitic success of H. glycines relies on the comprehensive re-engineering of an infection site into a syncytium, as well as the long-term suppression of host defense to ensure syncytial viability. At the forefront of these complex molecular interactions are effectors, the proteins secreted by H. glycines into host root tissues. The mechanisms of effector acquisition, diversification, and selection need to be understood before effective control strategies can be developed, but the lack of an annotated genome has been a major roadblock. RESULTS Here, we use PacBio long-read technology to assemble a H. glycines genome of 738 contigs into 123 Mb with annotations for 29,769 genes. The genome contains significant numbers of repeats (34%), tandem duplicates (18.7 Mb), and horizontal gene transfer events (151 genes). A large number of putative effectors (431 genes) were identified in the genome, many of which were found in transposons. CONCLUSIONS This advance provides a glimpse into the host and parasite interplay by revealing a diversity of mechanisms that give rise to virulence genes in the soybean cyst nematode, including: tandem duplications containing over a fifth of the total gene count, virulence genes hitchhiking in transposons, and 107 horizontal gene transfers not reported in other plant parasitic nematodes thus far. Through extensive characterization of the H. glycines genome, we provide new insights into H. glycines biology and shed light onto the mystery underlying complex host-parasite interactions. This genome sequence is an important prerequisite to enable work towards generating new resistance or control measures against H. glycines.
Collapse
Affiliation(s)
- Rick Masonbrink
- Department of Plant Pathology, Iowa State University, Ames, IA USA
- Genome Informatics Facility, Iowa State University, Ames, IA USA
| | - Tom R. Maier
- Department of Plant Pathology, Iowa State University, Ames, IA USA
| | - Usha Muppirala
- Department of Plant Pathology, Iowa State University, Ames, IA USA
- Genome Informatics Facility, Iowa State University, Ames, IA USA
| | - Arun S. Seetharam
- Department of Plant Pathology, Iowa State University, Ames, IA USA
- Genome Informatics Facility, Iowa State University, Ames, IA USA
| | - Etienne Lord
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC Canada
| | | | - Jeremy Schmutz
- Department of Energy, Joint Genome Institute, Walnut Creek, CA USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Nathan T. Johnson
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA USA
| | - Dmitry Korkin
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA USA
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA USA
| | | | - Benjamin Mimee
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC Canada
| | | | - Matthew Hudson
- Department of Crop Sciences University of Illinois, Urbana, IL USA
| | | | - Thomas J. Baum
- Department of Plant Pathology, Iowa State University, Ames, IA USA
| |
Collapse
|
34
|
Naalden D, Haegeman A, de Almeida‐Engler J, Birhane Eshetu F, Bauters L, Gheysen G. The Meloidogyne graminicola effector Mg16820 is secreted in the apoplast and cytoplasm to suppress plant host defense responses. MOLECULAR PLANT PATHOLOGY 2018; 19:2416-2430. [PMID: 30011122 PMCID: PMC6638014 DOI: 10.1111/mpp.12719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 05/06/2023]
Abstract
On invasion of roots, plant-parasitic nematodes secrete effectors to manipulate the cellular regulation of the host to promote parasitism. The root-knot nematode Meloidogyne graminicola is one of the most damaging nematodes of rice. Here, we identified a novel effector of this nematode, named Mg16820, expressed in the nematode subventral glands. We localized the Mg16820 effector in the apoplast during the migration phase of the second-stage juvenile in rice roots. In addition, during early development of the feeding site, Mg16820 was localized in giant cells, where it accumulated in the cytoplasm and the nucleus. Using transient expression in Nicotiana benthamiana leaves, we demonstrated that Mg16820 directed to the apoplast was able to suppress flg22-induced reactive oxygen species production. In addition, expression of Mg16820 in the cytoplasm resulted in the suppression of the R2/Avr2- and Mi-1.2-induced hypersensitive response. A potential target protein of Mg16820 identified with the yeast two-hybrid system was the dehydration stress-inducible protein 1 (DIP1). Bimolecular fluorescence complementation resulted in a strong signal in the nucleus. DIP1 has been described as an abscisic acid (ABA)-responsive gene and ABA is involved in the biotic and abiotic stress response. Our results demonstrate that Mg16820 is able to act in two cellular compartments as an immune suppressor and targets a protein involved in the stress response, therefore indicating an important role for this effector in parasitism.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
| | - Annelies Haegeman
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences UnitCaritasstraat 399090MelleBelgium
| | | | - Firehiwot Birhane Eshetu
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002South Africa
| | - Lander Bauters
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
| | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
| |
Collapse
|
35
|
A tale of three kingdoms: members of the Phylum Nematoda independently acquired the detoxifying enzyme cyanase through horizontal gene transfer from plants and bacteria. Parasitology 2018; 146:445-452. [PMID: 30301483 DOI: 10.1017/s0031182018001701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Horizontal gene transfer (HGT) has played an important role in the evolution of nematodes. Among candidate genes, cyanase, which is typically found only in plants, bacteria and fungi, is present in more than 35 members of the Phylum Nematoda, but absent from free-living and clade V organisms. Phylogenetic analyses showed that the cyanases of clade I organisms Trichinella spp., Trichuris spp. and Soboliphyme baturini (Subclass: Dorylaimia) represent a well-supported monophyletic clade with plant cyanases. In contrast, all cyanases found within the Subclass Chromadoria which encompasses filarioids, ascaridoids and strongyloids are homologous to those of bacteria. Western blots exhibited typical multimeric forms of the native molecule in protein extracts of Trichinella spiralis muscle larvae, where immunohistochemical staining localized the protein to the worm hypodermis and underlying muscle. Recombinant Trichinella cyanase was bioactive where gene transcription profiles support functional activity in vivo. Results suggest that: (1) independent HGT in parasitic nematodes originated from different Kingdoms; (2) cyanase acquired an active role in the biology of extant Trichinella; (3) acquisition occurred more than 400 million years ago (MYA), prior to the divergence of the Trichinellida and Dioctophymatida, and (4) early, free-living ancestors of the genus Trichinella had an association with terrestrial plants.
Collapse
|
36
|
Busch A, Kunert G, Wielsch N, Pauchet Y. Cellulose degradation in Gastrophysa viridula (Coleoptera: Chrysomelidae): functional characterization of two CAZymes belonging to glycoside hydrolase family 45 reveals a novel enzymatic activity. INSECT MOLECULAR BIOLOGY 2018; 27:633-650. [PMID: 29774620 DOI: 10.1111/imb.12500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cellulose is a major component of the primary and secondary cell walls in plants. Cellulose is considered to be the most abundant biopolymer on Earth and represents a large potential source of metabolic energy. Yet, cellulose degradation is rare and mostly restricted to cellulolytic microorganisms. Recently, various metazoans, including leaf beetles, have been found to encode their own cellulases, giving them the ability to degrade cellulose independently of cellulolytic symbionts. Here, we analyzed the cellulosic capacity of the leaf beetle Gastrophysa viridula, which typically feeds on Rumex plants. We identified three putative cellulases member of two glycoside hydrolase (GH) families, namely GH45 and GH9. Using heterologous expression and functional assays, we demonstrated that both GH45 proteins are active enzymes, in contrast to the GH9 protein. One GH45 protein acted on amorphous cellulose as an endo-β-1,4-glucanase, whereas the other evolved to become an endo-β-1,4-xyloglucanase. We successfully knocked down the expression of both GH45 genes using RNAi, but no changes in weight gain or mortality were observed compared to control insects. Our data indicated that the breakdown of these polysaccharides in G. viridula may facilitate access to plant cell content, which is rich in nitrogen and simple sugars.
Collapse
Affiliation(s)
- A Busch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - G Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - N Wielsch
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Y Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
37
|
Abstract
Some of the most agriculturally important plant-parasitic nematodes (PPNs) harbor endosymbionts. Extensive work in other systems has shown that endosymbionts can have major effects on host virulence and biology. This review highlights the discovery, development, and diversity of PPN endosymbionts, incorporating inferences from genomic data. Cardinium, reported from five PPN hosts to date, is characterized by its presence in the esophageal glands and other tissues, with a discontinuous distribution across populations, and genomic data suggestive of horizontal gene exchange. Xiphinematobacter occurs in at least 27 species of dagger nematode in the ovaries and gut epithelial cells, where genomic data suggest it may serve in nutritional supplementation. Wolbachia, reported in just three PPNs, appears to have an ancient history in the Pratylenchidae and displays broad tissue distribution and genomic features intermediate between parasitic and reproductive groups. Finally, a model is described that integrates these insights to explain patterns of endosymbiont replacement.
Collapse
Affiliation(s)
- Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79410, USA;
| |
Collapse
|
38
|
Verma A, Lee C, Morriss S, Odu F, Kenning C, Rizzo N, Spollen WG, Lin M, McRae AG, Givan SA, Hewezi T, Hussey R, Davis EL, Baum TJ, Mitchum MG. The novel cyst nematode effector protein 30D08 targets host nuclear functions to alter gene expression in feeding sites. THE NEW PHYTOLOGIST 2018; 219:697-713. [PMID: 29726613 DOI: 10.1111/nph.15179] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/15/2018] [Indexed: 05/29/2023]
Abstract
Cyst nematodes deliver effector proteins into host cells to manipulate cellular processes and establish a metabolically hyperactive feeding site. The novel 30D08 effector protein is produced in the dorsal gland of parasitic juveniles, but its function has remained unknown. We demonstrate that expression of 30D08 contributes to nematode parasitism, the protein is packaged into secretory granules and it is targeted to the plant nucleus where it interacts with SMU2 (homolog of suppressor of mec-8 and unc-52 2), an auxiliary spliceosomal protein. We show that SMU2 is expressed in feeding sites and an smu2 mutant is less susceptible to nematode infection. In Arabidopsis expressing 30D08 under the SMU2 promoter, several genes were found to be alternatively spliced and the most abundant functional classes represented among differentially expressed genes were involved in RNA processing, transcription and binding, as well as in development, and hormone and secondary metabolism, representing key cellular processes known to be important for feeding site formation. In conclusion, we demonstrated that the 30D08 effector is secreted from the nematode and targeted to the plant nucleus where its interaction with a host auxiliary spliceosomal protein may alter the pre-mRNA splicing and expression of a subset of genes important for feeding site formation.
Collapse
Affiliation(s)
- Anju Verma
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Chris Lee
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Stephanie Morriss
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Fiona Odu
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Charlotte Kenning
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | | | - William G Spollen
- Informatics Research Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Marriam Lin
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Amanda G McRae
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Scott A Givan
- Informatics Research Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Richard Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Eric L Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
39
|
Kundu S, Sharma R. Origin, evolution, and divergence of plant class C GH9 endoglucanases. BMC Evol Biol 2018; 18:79. [PMID: 29848310 PMCID: PMC5977491 DOI: 10.1186/s12862-018-1185-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/18/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycoside hydrolases of the GH9 family encode cellulases that predominantly function as endoglucanases and have wide applications in the food, paper, pharmaceutical, and biofuel industries. The partitioning of plant GH9 endoglucanases, into classes A, B, and C, is based on the differential presence of transmembrane, signal peptide, and the carbohydrate binding module (CBM49). There is considerable debate on the distribution and the functions of these enzymes which may vary in different organisms. In light of these findings we examined the origin, emergence, and subsequent divergence of plant GH9 endoglucanases, with an emphasis on elucidating the role of CBM49 in the digestion of crystalline cellulose by class C members. RESULTS Since, the digestion of crystalline cellulose mandates the presence of a well-defined set of aromatic and polar amino acids and/or an attributable domain that can mediate this conversion, we hypothesize a vertical mode of transfer of genes that could favour the emergence of class C like GH9 endoglucanase activity in land plants from potentially ancestral non plant taxa. We demonstrated the concomitant occurrence of a GH9 domain with CBM49 and other homologous carbohydrate binding modules, in putative endoglucanase sequences from several non-plant taxa. In the absence of comparable full length CBMs, we have characterized several low strength patterns that could approximate the CBM49, thereby, extending support for digestion of crystalline cellulose to other segments of the protein. We also provide data suggestive of the ancestral role of putative class C GH9 endoglucanases in land plants, which includes detailed phylogenetics and the presence and subsequent loss of CBM49, transmembrane, and signal peptide regions in certain populations of early land plants. These findings suggest that classes A and B of modern vascular land plants may have emerged by diverging directly from CBM49 encompassing putative class C enzymes. CONCLUSION Our detailed phylogenetic and bioinformatics analysis of putative GH9 endoglucanase sequences across major taxa suggests that plant class C enzymes, despite their recent discovery, could function as the last common ancestor of classes A and B. Additionally, research into their ability to digest or inter-convert crystalline and amorphous forms of cellulose could make them lucrative candidates for engineering biofuel feedstock.
Collapse
Affiliation(s)
- Siddhartha Kundu
- Department of Biochemistry, Government of NCT of Delhi, Dr. Baba Saheb Ambedkar Medical College & Hospital, New Delhi, 110085, India. .,Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Rita Sharma
- Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
40
|
Shi Q, Mao Z, Zhang X, Zhang X, Wang Y, Ling J, Lin R, Li D, Kang X, Sun W, Xie B. A Meloidogyne incognita effector MiISE5 suppresses programmed cell death to promote parasitism in host plant. Sci Rep 2018; 8:7256. [PMID: 29740007 PMCID: PMC5940819 DOI: 10.1038/s41598-018-24999-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 04/13/2018] [Indexed: 11/09/2022] Open
Abstract
Root-knot nematodes (RKNs) are highly specialized parasites that interact with their host plants using a range of strategies. The esophageal glands are the main places where nematodes synthesize effector proteins, which play central roles in successful invasion. The Meloidogyne incognita effector MiISE5 is exclusively expressed within the subventral esophageal cells and is upregulated during early parasitic stages. In this study, we show that MiISE5 can be secreted to barley cells through infectious hyphae of Magnaporthe oryzae. Transgenic Arabidopsis plants expressing MiISE5 became significantly more susceptible to M. incognita. Inversely, the tobacco rattle virus (TRV)-mediated silence of MiISE5 decreased nematode parasitism. Moreover, transient expression of MiISE5 suppressed cell death caused by Burkholderia glumae in Nicotiana benthamiana. Based on transcriptome analysis of MiISE5 transgenic sample and the wild-type (WT) sample, we obtained 261 DEGs, and the results of GO and KEGG enrichment analysis indicate that MiISE5 can interfere with various metabolic and signaling pathways, especially the JA signaling pathway, to facilitate nematode parasitism. Results from the present study suggest that MiISE5 plays an important role during the early stages of parasitism and provides evidence to decipher the molecular mechanisms underlying the manipulation of host immune defense responses by M. incognita.
Collapse
Affiliation(s)
- Qianqian Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xi Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Xiaoping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunsheng Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Denghui Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xincong Kang
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128, China
| | - Wenxian Sun
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
41
|
Gahoi S, Singh S, Gautam B. Genome-wide identification and comprehensive analysis of Excretory/Secretory proteins in nematodes provide potential drug targets for parasite control. Genomics 2018. [PMID: 29522800 DOI: 10.1016/j.ygeno.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nematodes are responsible for causing severe diseases in plants, humans and other animals. Infection is associated with the release of Excretory/Secretory (ES) proteins into host cytoplasm and interference with the host immune system which make them attractive targets for therapeutic use. The identification of ES proteins through bioinformatics approaches is cost- and time-effective and could be used for screening of potential targets for parasitic diseases for further experimental studies. Here, we identified and functionally annotated 93,949 ES proteins, in the genome of 73 nematodes using integration of various bioinformatics tools. 30.6% of ES proteins were found to be supported at RNA level. The predicted ES proteins, annotated by Gene Ontology terms, domains, metabolic pathways, proteases and enzyme class analysis were enriched in molecular functions of proteases, protease inhibitors, c-type lectin and hydrolases which are strongly associated with typical functions of ES proteins. We identified a total of 452 ES proteins from human and plant parasitic nematodes, homologues to DrugBank-approved targets and C. elegans RNA interference phenotype genes which could represent potential targets for parasite control and provide valuable resource for further experimental studies to understand host-pathogen interactions.
Collapse
Affiliation(s)
- Shachi Gahoi
- Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India.
| | - Satendra Singh
- Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India.
| | - Budhayash Gautam
- Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India.
| |
Collapse
|
42
|
Vieira P, Maier TR, Eves‐van den Akker S, Howe DK, Zasada I, Baum TJ, Eisenback JD, Kamo K. Identification of candidate effector genes of Pratylenchus penetrans. MOLECULAR PLANT PATHOLOGY 2018; 19:1887-1907. [PMID: 29424950 PMCID: PMC6638058 DOI: 10.1111/mpp.12666] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 05/02/2023]
Abstract
Pratylenchus penetrans is one of the most important species of root lesion nematodes (RLNs) because of its detrimental and economic impact in a wide range of crops. Similar to other plant-parasitic nematodes (PPNs), P. penetrans harbours a significant number of secreted proteins that play key roles during parasitism. Here, we combined spatially and temporally resolved next-generation sequencing datasets of P. penetrans to select a list of candidate genes aimed at the identification of a panel of effector genes for this species. We determined the spatial expression of transcripts of 22 candidate effectors within the oesophageal glands of P. penetrans by in situ hybridization. These comprised homologues of known effectors of other PPNs with diverse putative functions, as well as novel pioneer effectors specific to RLNs. It is noteworthy that five of the pioneer effectors encode extremely proline-rich proteins. We then combined in situ localization of effectors with available genomic data to identify a non-coding motif enriched in promoter regions of a subset of P. penetrans effectors, and thus a putative hallmark of spatial expression. Expression profiling analyses of a subset of candidate effectors confirmed their expression during plant infection. Our current results provide the most comprehensive panel of effectors found for RLNs. Considering the damage caused by P. penetrans, this information provides valuable data to elucidate the mode of parasitism of this nematode and offers useful suggestions regarding the potential use of P. penetrans-specific target effector genes to control this important pathogen.
Collapse
Affiliation(s)
- Paulo Vieira
- Department of Plant Pathology, Physiology, and Weed ScienceVirginia TechBlacksburgVA 24061USA
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of AgricultureBeltsvilleMD 20705‐2350USA
| | - Thomas R. Maier
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | - Sebastian Eves‐van den Akker
- Department of Biological ChemistryJohn Innes Centre, Norwich Research ParkNorwich NR4 7UHUK
- School of Life SciencesUniversity of DundeeDundee DD1 5EHUK
| | - Dana K. Howe
- Department of Integrative BiologyOregon State UniversityCorvallisOR 97331USA
| | - Inga Zasada
- Horticultural Crops Research LaboratoryU.S. Department of AgricultureCorvallisOR 97330USA
| | - Thomas J. Baum
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | - Jonathan D. Eisenback
- Department of Plant Pathology, Physiology, and Weed ScienceVirginia TechBlacksburgVA 24061USA
| | - Kathryn Kamo
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of AgricultureBeltsvilleMD 20705‐2350USA
| |
Collapse
|
43
|
|
44
|
Shi Q, Mao Z, Zhang X, Ling J, Lin R, Zhang X, Liu R, Wang Y, Yang Y, Cheng X, Xie B. The Novel Secreted Meloidogyne incognita Effector MiISE6 Targets the Host Nucleus and Facilitates Parasitism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:252. [PMID: 29628931 PMCID: PMC5876317 DOI: 10.3389/fpls.2018.00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/12/2018] [Indexed: 05/16/2023]
Abstract
Meloidogyne incognita is highly specialized parasite that interacts with host plants using a range of strategies. The effectors are synthesized in the esophageal glands and secreted into plant cells through a needle-like stylet during parasitism. In this study, based on RNA-seq and bioinformatics analysis, we predicted 110 putative Meloidogyne incognita effectors that contain nuclear localization signals (NLSs). Combining the Burkholderia glumae-pEDV based screening system with subcellular localization, from 20 randomly selected NLS effector candidates, we identified an effector MiISE6 that can effectively suppress B. glumae-induced cell death in Nicotiana benthamiana, targets to the nuclei of plant cells, and is highly expressed in early parasitic J2 stage. Sequence analysis showed that MiISE6 is a 157-amino acid peptide, with an OGFr_N domain and two NLS motifs. Hybridization in situ verified that MiISE6 is expressed in the subventral esophageal glands. Yeast invertase secretion assay validated the function of the signal peptide harbored in MiISE6. Transgenic Arabidopsis thaliana plants expressing MiISE6 become more susceptible to M. incognita. Inversely, the host-derived RNAi of MiISE6 of the nematode can decrease its parasitism on host. Based on transcriptome analysis of the MiISE6 transgenic Arabidopsis samples and the wild-type samples, we obtained 852 differentially expressed genes (DEGs). Integrating Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, we found that expression of MiISE6 in Arabidopsis can suppress jasmonate signaling pathway. In addition, the expression of genes related to cell wall modification and the ubiquitination proteasome pathway also have detectable changes in the transgenic plants. Results from the present study suggest that MiISE6 is involved in interaction between nematode-plant, and plays an important role during the early stages of parasitism by interfering multiple signaling pathways of plant. Moreover, we found homologs of MiISE6 in other sedentary nematodes, Meloidogyne hapla and Globodera pallida. Our experimental results provide evidence to decipher the molecular mechanisms underlying the manipulation of host immune defense responses by plant parasitic nematodes, and transcriptome data also provide useful information for further study nematode-plant interactions.
Collapse
Affiliation(s)
- Qianqian Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, China
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Zhang
- School of Medical Science, Chifeng University, Chifeng, China
| | - Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xi Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Rui Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinyue Cheng
- College of Life Sciences, Beijing Normal University, Beijing, China
- *Correspondence: Bingyan Xie, Xinyue Cheng,
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Bingyan Xie, Xinyue Cheng,
| |
Collapse
|
45
|
Auer L, Lazuka A, Sillam-Dussès D, Miambi E, O'Donohue M, Hernandez-Raquet G. Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors. Front Microbiol 2017; 8:2623. [PMID: 29312279 PMCID: PMC5744482 DOI: 10.3389/fmicb.2017.02623] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022] Open
Abstract
Termites are xylophages, being able to digest a wide variety of lignocellulosic biomass including wood with high lignin content. This ability to feed on recalcitrant plant material is the result of complex symbiotic relationships, which involve termite-specific gut microbiomes. Therefore, these represent a potential source of microorganisms for the bioconversion of lignocellulose in bioprocesses targeting the production of carboxylates. In this study, gut microbiomes of four termite species were studied for their capacity to degrade wheat straw and produce carboxylates in controlled bioreactors. All of the gut microbiomes successfully degraded lignocellulose and up to 45% w/w of wheat straw degradation was observed, with the Nasutitermes ephratae gut-microbiome displaying the highest levels of wheat straw degradation, carboxylate production and enzymatic activity. Comparing the 16S rRNA gene diversity of the initial gut inocula to the bacterial communities in lignocellulose degradation bioreactors revealed important changes in community diversity. In particular, taxa such as Spirochaetes and Fibrobacteres that were highly abundant in the initial gut inocula were replaced by Firmicutes and Proteobacteria at the end of incubation in wheat straw bioreactors. Overall, this study demonstrates that termite-gut microbiomes constitute a reservoir of lignocellulose-degrading bacteria that can be harnessed in artificial conditions for biomass conversion processes that lead to the production of useful molecules.
Collapse
Affiliation(s)
- Lucas Auer
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, INSA, Toulouse, France
| | - Adèle Lazuka
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, INSA, Toulouse, France
| | - David Sillam-Dussès
- Laboratoire d'Éthologie Expérimentale et Comparée, Université Paris 13 - Sorbonne Paris Cité, Villetaneuse, France
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Institut de Recherche Pour le Développement – Sorbonne Universités, Bondy, France
| | - Edouard Miambi
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Université Paris-Est Créteil, Créteil, France
| | - Michael O'Donohue
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, INSA, Toulouse, France
| | - Guillermina Hernandez-Raquet
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, INSA, Toulouse, France
| |
Collapse
|
46
|
Shah SJ, Anjam MS, Mendy B, Anwer MA, Habash SS, Lozano-Torres JL, Grundler FMW, Siddique S. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5949-5960. [PMID: 29053864 PMCID: PMC5854129 DOI: 10.1093/jxb/erx374] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/05/2017] [Indexed: 05/21/2023]
Abstract
When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence responses. However, the molecular mechanisms mediating damage responses in plant-nematode interactions remain unexplored. Here, we characterized the role of a group of cell wall receptor proteins in Arabidopsis, designated as polygalacturonase-inhibiting proteins (PGIPs), during infection with the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita. PGIPs are encoded by a family of two genes in Arabidopsis, and are involved in the formation of active OG elicitors. Our results show that PGIP gene expression is strongly induced in response to cyst nematode invasion of roots. Analyses of loss-of-function mutants and overexpression lines revealed that PGIP1 expression attenuates infection of host roots by cyst nematodes, but not root-knot nematodes. The PGIP1-mediated attenuation of cyst nematode infection involves the activation of plant camalexin and indole-glucosinolate pathways. These combined results provide new insights into the molecular mechanisms underlying plant damage perception and response pathways during infection by cyst and root-knot nematodes, and establishes the function of PGIP in plant resistance to cyst nematodes.
Collapse
Affiliation(s)
- Syed Jehangir Shah
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Muhammad Shahzad Anjam
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Badou Mendy
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Muhammad Arslan Anwer
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Samer S Habash
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | | | - Florian M W Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
- Correspondence:
| |
Collapse
|
47
|
Yoshioka Y, Tanabe T, Iguchi A. The presence of genes encoding enzymes that digest carbohydrates in coral genomes and analysis of their activities. PeerJ 2017; 5:e4087. [PMID: 29201566 PMCID: PMC5710165 DOI: 10.7717/peerj.4087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/02/2017] [Indexed: 11/20/2022] Open
Abstract
Numerous enzymes that digest carbohydrates, such as cellulases and chitinases, are present in various organisms (e.g., termites, nematodes, and so on). Recently, the presence of cellulases and chitinases has been reported in marine organisms such as urchin and bivalves, and their several roles in marine ecosystems have been proposed. In this study, we reported the presence of genes predicted to encode proteins similar to cellulases and chitinases in the genome of the coral Acropora digitifera, their gene expression patterns at various life stages, and cellulose- and chitin-degrading enzyme activities in several coral species (A. digitifera, Galaxea fascicularis, Goniastrea aspera, Montipora digitata, Pavona divaricata, Pocillopora damicornis, and Porites australiensis). Our gene expression analysis demonstrated the expressions of these cellulase- and chitinase-like genes during various life stages, including unfertilized eggs, fertilized eggs, zygotes, planula larvae, primary polyps and adults of A. digitifera. Agar plate assays confirmed cellulase and chitinase activities in the tissues extracted from adult branches of several coral species. These results suggested that corals are able to utilize cellulases and chitinases in their life histories.
Collapse
Affiliation(s)
- Yuki Yoshioka
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Nago-City, Okinawa, Japan
| | - Toshiaki Tanabe
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Nago-City, Okinawa, Japan
| | - Akira Iguchi
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Nago-City, Okinawa, Japan
| |
Collapse
|
48
|
Danchin EGJ, Perfus-Barbeoch L, Rancurel C, Thorpe P, Da Rocha M, Bajew S, Neilson R, Guzeeva ES, Da Silva C, Guy J, Labadie K, Esmenjaud D, Helder J, Jones JT, den Akker SEV. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes. Genes (Basel) 2017; 8:genes8100287. [PMID: 29065523 PMCID: PMC5664137 DOI: 10.3390/genes8100287] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022] Open
Abstract
Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum.
Collapse
Affiliation(s)
- Etienne G J Danchin
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis Cedex, France.
| | | | - Corinne Rancurel
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis Cedex, France.
| | - Peter Thorpe
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | - Martine Da Rocha
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis Cedex, France.
| | - Simon Bajew
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | - Roy Neilson
- Ecological Sciences Group, IPM@Hutton, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | - Elena Sokolova Guzeeva
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
- Centre of Parasitology of the A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii Prospect 33, Moscow 119071, Russia.
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 92057, Evry, France.
| | - Julie Guy
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 92057, Evry, France.
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 92057, Evry, France.
| | - Daniel Esmenjaud
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis Cedex, France.
| | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
- School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9TZ, UK.
| | - Sebastian Eves-van den Akker
- Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
49
|
Rancurel C, Legrand L, Danchin EGJ. Alienness: Rapid Detection of Candidate Horizontal Gene Transfers across the Tree of Life. Genes (Basel) 2017; 8:E248. [PMID: 28961181 PMCID: PMC5664098 DOI: 10.3390/genes8100248] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 11/22/2022] Open
Abstract
Horizontal gene transfer (HGT) is the transmission of genes between organisms by other means than parental to offspring inheritance. While it is prevalent in prokaryotes, HGT is less frequent in eukaryotes and particularly in Metazoa. Here, we propose Alienness, a taxonomy-aware web application available at http://alienness.sophia.inra.fr. Alienness parses BLAST results against public libraries to rapidly identify candidate HGT in any genome of interest. Alienness takes as input the result of a BLAST of a whole proteome of interest against any National Center for Biotechnology Information (NCBI) protein library. The user defines recipient (e.g., Metazoa) and donor (e.g., bacteria, fungi) branches of interest in the NCBI taxonomy. Based on the best BLAST E-values of candidate donor and recipient taxa, Alienness calculates an Alien Index (AI) for each query protein. An AI > 0 indicates a better hit to candidate donor than recipient taxa and a possible HGT. Higher AI represent higher gap of E-values between candidate donor and recipient and a more likely HGT. We confirmed the accuracy of Alienness on phylogenetically confirmed HGT of non-metazoan origin in plant-parasitic nematodes. Alienness scans whole proteomes to rapidly identify possible HGT in any species of interest and thus fosters exploration of HGT more easily and largely across the tree of life.
Collapse
Affiliation(s)
- Corinne Rancurel
- INRA, CNRS, ISA, Université Côte d'Azur, 06903 Sophia Antipolis Cedex, France.
| | - Ludovic Legrand
- LIPM, INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan Cedex, France.
| | - Etienne G J Danchin
- INRA, CNRS, ISA, Université Côte d'Azur, 06903 Sophia Antipolis Cedex, France.
| |
Collapse
|
50
|
Bairwa A, Venkatasalam EP, Sudha R, Umamaheswari R, Singh BP. Techniques for characterization and eradication of potato cyst nematode: a review. J Parasit Dis 2017; 41:607-620. [PMID: 28848248 PMCID: PMC5555919 DOI: 10.1007/s12639-016-0873-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/26/2016] [Indexed: 11/24/2022] Open
Abstract
Correct identification of species and pathotypes is must for eradication of potato cyst nematodes (PCN). The identification of PCN species after completing the life cycle is very difficult because it is based on morphological and morphometrical characteristics. Genetically different populations of PCN are morphologically same and differentiated based on the host differential study. Later on these traditional techniques have been replaced by biochemical techniques viz, one and two dimensional gel electrophoresis, capillary gel electrophoresis, isozymes, dot blot hybridization and isoelectric focusing etc. to distinguish both the species. One and two dimensional gel electrophoresis has used to examine inter- and intra-specific differences in proteins of Globodera rostochiensis and G. pallida. Now application of PCR and DNA based characterization techniques like RAPD, AFLP and RFLP are the important tools for differentiating inter- and intra specific variation in PCN and has given opportunities to accurate identification of PCN. For managing the PCN, till now we are following integrated pest management (IPM) strategies, however these strategies are not effective to eradicate the PCN. Therefore to eradicate the PCN we need noval management practices like RNAi (RNA interference) or Gene silencing.
Collapse
Affiliation(s)
| | | | - R. Sudha
- ICAR-CPRI, Shimla, Himachal Pradesh India
| | | | | |
Collapse
|