1
|
Bell DR, Domeniconi G, Yang CC, Zhou R, Zhang L, Cong G. Dynamics-Based Peptide-MHC Binding Optimization by a Convolutional Variational Autoencoder: A Use-Case Model for CASTELO. J Chem Theory Comput 2021; 17:7962-7971. [PMID: 34793168 DOI: 10.1021/acs.jctc.1c00870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unsolved challenge in the development of antigen-specific immunotherapies is determining the optimal antigens to target. Comprehension of antigen-major histocompatibility complex (MHC) binding is paramount toward achieving this goal. Here, we apply CASTELO, a combined machine learning-molecular dynamics (ML-MD) approach, to identify per-residue antigen binding contributions and then design novel antigens of increased MHC-II binding affinity for a type 1 diabetes-implicated system. We build upon a small-molecule lead optimization algorithm by training a convolutional variational autoencoder (CVAE) on MD trajectories of 48 different systems across four antigens and four HLA serotypes. We develop several new machine learning metrics including a structure-based anchor residue classification model as well as cluster comparison scores. ML-MD predictions agree well with experimental binding results and free energy perturbation-predicted binding affinities. Moreover, ML-MD metrics are independent of traditional MD stability metrics such as contact area and root-mean-square fluctuations (RMSF), which do not reflect binding affinity data. Our work supports the role of structure-based deep learning techniques in antigen-specific immunotherapy design.
Collapse
Affiliation(s)
- David R Bell
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Giacomo Domeniconi
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Chih-Chieh Yang
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States.,Zhejiang University, 688 Yuhangtang Road, Hangzhou 310027, China
| | - Leili Zhang
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Guojing Cong
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States.,Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
2
|
Scheetz L, Kadiyala P, Sun X, Son S, Hassani Najafabadi A, Aikins M, Lowenstein PR, Schwendeman A, Castro MG, Moon JJ. Synthetic High-density Lipoprotein Nanodiscs for Personalized Immunotherapy Against Gliomas. Clin Cancer Res 2020; 26:4369-4380. [PMID: 32439701 PMCID: PMC7442596 DOI: 10.1158/1078-0432.ccr-20-0341] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Gliomas are brain tumors with dismal prognoses. The standard-of-care treatments for gliomas include surgical resection, radiation, and temozolomide administration; however, they have been ineffective in providing significant increases in median survival. Antigen-specific cancer vaccines and immune checkpoint blockade may provide promising immunotherapeutic approaches for gliomas. EXPERIMENTAL DESIGN We have developed immunotherapy delivery vehicles based on synthetic high-density lipoprotein (sHDL) loaded with CpG, a Toll-like receptor-9 agonist, and tumor-specific neoantigens to target gliomas and elicit immune-mediated tumor regression. RESULTS We demonstrate that vaccination with neoantigen peptide-sHDL/CpG cocktail in combination with anti-PD-L1 immune checkpoint blocker elicits robust neoantigen-specific T-cell responses against GL261 cells and eliminated established orthotopic GL261 glioma in 33% of mice. Mice remained tumor free upon tumor cell rechallenge in the contralateral hemisphere, indicating the development of immunologic memory. Moreover, in a genetically engineered murine model of orthotopic mutant IDH1 (mIDH1) glioma, sHDL vaccination with mIDH1 neoantigen eliminated glioma in 30% of animals and significantly extended the animal survival, demonstrating the versatility of our approach in multiple glioma models. CONCLUSIONS Overall, our strategy provides a general roadmap for combination immunotherapy against gliomas and other cancer types.
Collapse
Affiliation(s)
- Lindsay Scheetz
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Sejin Son
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Alireza Hassani Najafabadi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Marisa Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan.
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan.
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
3
|
Afridi S, Hoessli DC, Hameed MW. Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications. Immunol Rev 2017; 272:151-68. [PMID: 27319349 DOI: 10.1111/imr.12435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4(+) T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4(+) T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II-peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II-peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4(+) T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II-peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide-MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.
Collapse
Affiliation(s)
- Saifullah Afridi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Daniel C Hoessli
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Waqar Hameed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Casillas-Ituarte NN, Cruz CHB, Lins RD, DiBartola AC, Howard J, Liang X, Höök M, Viana IFT, Sierra-Hernández MR, Lower SK. Amino acid polymorphisms in the fibronectin-binding repeats of fibronectin-binding protein A affect bond strength and fibronectin conformation. J Biol Chem 2017; 292:8797-8810. [PMID: 28400484 DOI: 10.1074/jbc.m117.786012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/08/2017] [Indexed: 11/06/2022] Open
Abstract
The Staphylococcus aureus cell surface contains cell wall-anchored proteins such as fibronectin-binding protein A (FnBPA) that bind to host ligands (e.g. fibronectin; Fn) present in the extracellular matrix of tissue or coatings on cardiac implants. Recent clinical studies have found a correlation between cardiovascular infections caused by S. aureus and nonsynonymous SNPs in FnBPA. Atomic force microscopy (AFM), surface plasmon resonance (SPR), and molecular simulations were used to investigate interactions between Fn and each of eight 20-mer peptide variants containing amino acids Ala, Asn, Gln, His, Ile, and Lys at positions equivalent to 782 and/or 786 in Fn-binding repeat-9 of FnBPA. Experimentally measured bond lifetimes (1/koff) and dissociation constants (Kd = koff/kon), determined by mechanically dissociating the Fn·peptide complex at loading rates relevant to the cardiovascular system, varied from the lowest-affinity H782A/K786A peptide (0.011 s, 747 μm) to the highest-affinity H782Q/K786N peptide (0.192 s, 15.7 μm). These atomic force microscopy results tracked remarkably well to metadynamics simulations in which peptide detachment was defined solely by the free-energy landscape. Simulations and SPR experiments suggested that an Fn conformational change may enhance the stability of the binding complex for peptides with K786I or H782Q/K786I (Kdapp = 0.2-0.5 μm, as determined by SPR) compared with the lowest-affinity double-alanine peptide (Kdapp = 3.8 μm). Together, these findings demonstrate that amino acid substitutions in Fn-binding repeat-9 can significantly affect bond strength and influence the conformation of Fn upon binding. They provide a mechanistic explanation for the observation of nonsynonymous SNPs in fnbA among clinical isolates of S. aureus that cause endovascular infections.
Collapse
Affiliation(s)
| | - Carlos H B Cruz
- the Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50.740-465, Brazil, and
| | - Roberto D Lins
- the Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50.740-465, Brazil, and
| | | | | | - Xiaowen Liang
- the Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Magnus Höök
- the Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Isabelle F T Viana
- the Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50.740-465, Brazil, and
| | | | | |
Collapse
|
5
|
Apportioning Blame: Autoreactive CD4 + and CD8 + T Cells in Type 1 Diabetes. Arch Immunol Ther Exp (Warsz) 2017; 65:275-284. [PMID: 28083620 DOI: 10.1007/s00005-016-0452-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/18/2016] [Indexed: 01/14/2023]
Abstract
Type 1 diabetes (T1D) is one of the most studied archetypal organ-specific autoimmune diseases. Although many clinical, epidemiological, and pathological characteristics have been described, there are still important issues which need to be resolved as these will have a major impact on the development of future antigen-specific immunotherapies. An important question relates to T lymphocytes in the development of the disease, in particular their role in the destruction of insulin-producing beta cells. Since the discovery that certain class II histocompatibility complex molecules (HLA) are linked to the development of T1D, much research has focused on CD4+ helper T lymphocytes; however, recent studies highlight class I HLA molecules as an independent risk factor; hence, research into the role played by CD8+ cytotoxic T lymphocytes has gained momentum. In this review, we summarize recent studies clarifying the role played by both sets of autoreactive T lymphocytes in T1D, discuss the targets recognized by these cells and their phenotype in T1D patients. Finally, we will examine the possible generation of regulatory CD8+ T lymphocytes upon different immuno-intervention strategies.
Collapse
|
6
|
Snyder A, Chan TA. Immunogenic peptide discovery in cancer genomes. Curr Opin Genet Dev 2015; 30:7-16. [PMID: 25588790 DOI: 10.1016/j.gde.2014.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022]
Abstract
As immunotherapies to treat malignancy continue to diversify along with the tumor types amenable to treatment, it will become very important to predict which treatment is most likely to benefit a given patient. Tumor neoantigens, novel peptides resulting from somatic tumor mutations and recognized by the immune system as foreign, are likely to contribute significantly to the efficacy of immunotherapy. Multiple in silico methods have been developed to predict whether peptides, including tumor neoantigens, will be presented by the major histocompatibility complex (MHC) Class I or Class II, and interact with the T cell receptor (TCR). The methods for neoantigen prediction will be reviewed here, along with the most important examples of their use in the field of oncology.
Collapse
Affiliation(s)
- Alexandra Snyder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
7
|
Meydan C, Otu HH, Sezerman OU. Prediction of peptides binding to MHC class I and II alleles by temporal motif mining. BMC Bioinformatics 2013; 14 Suppl 2:S13. [PMID: 23368521 PMCID: PMC3549809 DOI: 10.1186/1471-2105-14-s2-s13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND MHC (Major Histocompatibility Complex) is a key player in the immune response of most vertebrates. The computational prediction of whether a given antigenic peptide will bind to a specific MHC allele is important in the development of vaccines for emerging pathogens, the creation of possibilities for controlling immune response, and for the applications of immunotherapy. One of the problems that make this computational prediction difficult is the detection of the binding core region in peptides, coupled with the presence of bulges and loops causing variations in the total sequence length. Most machine learning methods require the sequences to be of the same length to successfully discover the binding motifs, ignoring the length variance in both motif mining and prediction steps. In order to overcome this limitation, we propose the use of time-based motif mining methods that work position-independently. RESULTS The prediction method was tested on a benchmark set of 28 different alleles for MHC class I and 27 different alleles for MHC class II. The obtained results are comparable to the state of the art methods for both MHC classes, surpassing the published results for some alleles. The average prediction AUC values are 0.897 for class I, and 0.858 for class II. CONCLUSIONS Temporal motif mining using partial periodic patterns can capture information about the sequences well enough to predict the binding of the peptides and is comparable to state of the art methods in the literature. Unlike neural networks or matrix based predictors, our proposed method does not depend on peptide length and can work with both short and long fragments. This advantage allows better use of the available training data and the prediction of peptides of uncommon lengths.
Collapse
Affiliation(s)
- Cem Meydan
- Bioengineering Department, Sabanci University, 34956, Istanbul, Turkey
| | | | | |
Collapse
|
8
|
Painter CA, Stern LJ. Structural Insights Into HLA-DM Mediated MHC II Peptide Exchange. CURRENT TOPICS IN BIOCHEMICAL RESEARCH 2011; 13:39-55. [PMID: 25264402 PMCID: PMC4175922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Antigen presentation by class II MHC proteins (MHC-II) is a critical component of the adaptive immune response to foreign pathogens. Our understanding of how antigens are presented has been greatly enhanced by crystallographic studies of MHC-II-peptide complexes, which have shown a canonical extended conformation of peptide antigens within the peptide-binding domain of MHC-II. However, a detailed understanding of the peptide loading process, which is mediated by the accessory molecule HLA-DM (DM), remains unresolved. MHC-II proteins appear to undergo conformational changes during the peptide loading/exchange process that have not been clearly described in a structural context. In the absence of a crystal structure for the DM-MHC-II complex, mutational studies have provided a low resolution understanding as to how these molecules interact. This review will focus on structural and biochemical studies of the MHC-II-peptide interaction, and on studies of the DM-MHC-II interaction, with an emphasis on identifying structural features important for the mechanism of DM mediated peptide catalysis.
Collapse
Affiliation(s)
- Corrie A Painter
- Department of Biochemistry and Molecular Pharmacology and Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655 USA
| | - Lawrence J Stern
- Department of Biochemistry and Molecular Pharmacology and Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655 USA
| |
Collapse
|
9
|
Lozano JM, Lesmes LP, Carreño LF, Gallego GM, Patarroyo ME. Development of designed site-directed pseudopeptide-peptido-mimetic immunogens as novel minimal subunit-vaccine candidates for malaria. Molecules 2010; 15:8856-89. [PMID: 21135800 PMCID: PMC6259129 DOI: 10.3390/molecules15128856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 10/28/2010] [Indexed: 11/16/2022] Open
Abstract
Synthetic vaccines constitute the most promising tools for controlling and preventing infectious diseases. When synthetic immunogens are designed from the pathogen native sequences, these are normally poorly immunogenic and do not induce protection, as demonstrated in our research. After attempting many synthetic strategies for improving the immunogenicity properties of these sequences, the approach consisting of identifying high binding motifs present in those, and then performing specific changes on amino-acids belonging to such motifs, has proven to be a workable strategy. In addition, other strategies consisting of chemically introducing non-natural constraints to the backbone topology of the molecule and modifying the α-carbon asymmetry are becoming valuable tools to be considered in this pursuit. Non-natural structural constraints to the peptide backbone can be achieved by introducing peptide bond isosters such as reduced amides, partially retro or retro-inverso modifications or even including urea motifs. The second can be obtained by strategically replacing L-amino-acids with their enantiomeric forms for obtaining both structurally site-directed designed immunogens as potential vaccine candidates and their Ig structural molecular images, both having immuno-therapeutic effects for preventing and controlling malaria.
Collapse
MESH Headings
- Animals
- Haplorhini
- Humans
- Malaria Vaccines/chemical synthesis
- Malaria Vaccines/chemistry
- Malaria Vaccines/immunology
- Malaria Vaccines/pharmacology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/prevention & control
- Mice
- Mice, Inbred BALB C
- Peptidomimetics/chemical synthesis
- Peptidomimetics/chemistry
- Peptidomimetics/immunology
- Peptidomimetics/pharmacology
- Vaccines, Subunit/chemical synthesis
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Vaccines, Subunit/pharmacology
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/pharmacology
Collapse
Affiliation(s)
- José Manuel Lozano
- Fundación Instituto de Inmunología de Colombia (FIDIC), Universidad del Rosario and Universidad Nacional de Colombia, Bogotá DC, Colombia.
| | | | | | | | | |
Collapse
|
10
|
Younes SA, Trautmann L, Yassine-Diab B, Kalfayan LH, Kernaleguen AE, Cameron TO, Boulassel R, Stern LJ, Routy JP, Grossman Z, Dumont AR, Sekaly RP. The Duration of Exposure to HIV Modulates the Breadth and the Magnitude of HIV-Specific Memory CD4+T Cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:788-97. [PMID: 17202340 DOI: 10.4049/jimmunol.178.2.788] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The impact of exposure to Ag on the development and maintenance of human CD4(+) memory T cells in general and HIV infection in particular is partially understood. In this study, we measured HIV-specific CD4(+) T cell proliferative responses against HIV proteins and derived peptides one year after highly active antiretroviral therapy initiation in 39 HIV-infected patients who initiated therapy at different times following infection. We show that a brief exposure to HIV of <1 month does not allow the generation of significant detectable frequencies of HIV-specific CD4(+) memory T cells. Patients having prolonged cumulative exposure to high viral load due to therapy failures also demonstrated limited HIV-specific CD4(+) T cell responses. In contrast, patients exposed to significant levels of virus for periods ranging from 3 to 18 mo showed brisk and broad HIV-specific CD4(+) T cell responses 1 year following the onset of therapy intervention. We also demonstrate that the nadir CD4(+) T cell count before therapy initiation correlated positively with the breadth and magnitude of these responses. Our findings indicate that the loss of proliferative HIV-specific CD4(+) T cell responses is associated with the systemic progression of the disease and that a brief exposure to HIV does not allow the establishment of detectable frequencies of HIV-specific memory CD4(+) T cells.
Collapse
Affiliation(s)
- Souheil-Antoine Younes
- Laboratoire d'Immunologie, Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Multiple sclerosis (MS) is an autoimmune disease associated with chronic inflammatory demyelination of the central nervous system in genetically susceptible individuals. Because of the disease complexity and heterogeneity, its pathogenesis remains unknown despite extensive research efforts, and specific effective treatments have not yet been developed. Peptide-based research has been important in attempts to unravel particular aspects of this complex disease, including the characterization of the different molecular mechanisms of MS, with the goal of providing useful products for immune-mediated therapies. In fact, in the past decade, peptide-based research has been predominant in research aimed to identify and/or develop target antigens as synthetic probes for specific biomarkers as well as innovative immunomodulating therapies. This review presents an overview of the contributions of peptide science to MS research and discusses future directions of peptide-based investigations.
Collapse
Affiliation(s)
- Maria Claudia Alcaro
- Laboratory of Peptide and Protein Chemistry and Biology, Dipartimento di Chimica Organica, University of Firenze, Polo Scientifico, via della Lastruccia 13, I-50019 Sesto Fiorentino (FI), Italy
| | | |
Collapse
|
12
|
Boder ET, Bill JR, Nields AW, Marrack PC, Kappler JW. Yeast surface display of a noncovalent MHC class II heterodimer complexed with antigenic peptide. Biotechnol Bioeng 2005; 92:485-91. [PMID: 16155952 DOI: 10.1002/bit.20616] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbial protein display technologies have enabled directed molecular evolution of binding and stability properties in numerous protein systems. In particular, dramatic improvements to antibody binding affinity and kinetics have been accomplished using these tools in recent years. Examples of successful application of display technologies to other immunological proteins have been limited to date. Herein, we describe the expression of human class II major histocompatibility complex allele (MHCII) HLA-DR4 on the surface of Saccharomyces cerevisiae as a noncovalently associated heterodimer. The yeast-displayed MHCII is fully native as assessed by binding of conformationally specific monoclonal antibodies; failure of antibodies specific for empty HLA-DR4 to bind yeast-displayed protein indicates antigenic peptide is bound. This report represents the first example of a noncovalent protein dimer displayed on yeast and of successful display of wild-type MHCII. Results further point to the potential for using yeast surface display for engineering and analyzing the antigen binding properties of MHCII.
Collapse
Affiliation(s)
- Eric T Boder
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|
13
|
Drouin EE, Glickstein LJ, Steere AC. Molecular characterization of the OspA(161-175) T cell epitope associated with treatment-resistant Lyme arthritis: differences among the three pathogenic species of Borrelia burgdorferi sensu lato. J Autoimmun 2005; 23:281-92. [PMID: 15501399 DOI: 10.1016/j.jaut.2004.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 06/04/2004] [Accepted: 06/18/2004] [Indexed: 11/29/2022]
Abstract
Treatment-resistant Lyme arthritis, which may result from infection-induced autoimmunity, is associated with reactivity to a T cell epitope of outer-surface protein A (OspA(161-175)) of Borrelia burgdorferi sensu stricto (Bb). This syndrome has been noted primarily in the United States where only Bb is present, and rarely in Europe where Borrelia garinii (Bg) and Borrelia afzelii (Ba) predominate. To gain a better understanding of this epitope, we identified its species-specific polymorphisms, determined their immunogenicity, and characterized the contribution of individual amino acids. Based on published sequences the Bb peptide differed from the Ba peptide in six of the nine core residues (amino acids 165-173), whereas the Bg peptide usually differed in three of the nine residues. Lymphocytes from seven patients with treatment-resistant Lyme arthritis proliferated in response to the Bb peptide, but not to the Ba or Bg peptide. Substitution analysis showed that valine166 and threonine172 were critical for the immunogenicity of the Bb peptide. Thus, consistent with the geographic distribution of the illness, the European causative agents of Lyme borreliosis usually lack the putative pathogenic OspA epitope. These observations are consistent with the hypothesis that T cell recognition of this epitope is important in the induction of autoimmunity in treatment-resistant Lyme arthritis.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Antigens, Surface/chemistry
- Antigens, Surface/immunology
- Antigens, Surface/pharmacology
- Arthritis, Infectious/complications
- Arthritis, Infectious/immunology
- Arthritis, Infectious/microbiology
- Arthritis, Infectious/therapy
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Outer Membrane Proteins/pharmacology
- Bacterial Vaccines
- Borrelia burgdorferi/classification
- Borrelia burgdorferi/immunology
- Borrelia burgdorferi/pathogenicity
- Cell Proliferation
- Cells, Cultured
- Cytokines/metabolism
- Drug Resistance, Bacterial
- Epitopes, T-Lymphocyte/drug effects
- Epitopes, T-Lymphocyte/immunology
- Humans
- Lipoproteins/chemistry
- Lipoproteins/immunology
- Lipoproteins/pharmacology
- Lyme Disease/complications
- Lyme Disease/immunology
- Lyme Disease/microbiology
- Lyme Disease/therapy
- Lymphocyte Activation
- Molecular Sequence Data
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Peptide Fragments/pharmacology
- Sequence Alignment
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Elise E Drouin
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
14
|
Hess AD, Thoburn CJ, Miura Y, Bright EC. Functionally divergent T lymphocyte responses induced by modification of a self-peptide from a tumor-associated antigen. Clin Immunol 2005; 114:307-19. [PMID: 15721842 DOI: 10.1016/j.clim.2004.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 11/12/2004] [Indexed: 11/26/2022]
Abstract
The N- and C-terminal flanking domains of the invariant chain peptide, CLIP, have remarkable immunological properties. Addition of these flanking domains to a foreign peptide antigen increases its immunologic potency. The present studies evaluated whether altering a peptide ligand from the tumor-associated antigen c-neu with the flanking domains of CLIP could modify the systemic immune response. The results indicate that the immunogenicity of an MHC class II restricted peptide (NEU) derived from c-neu was significantly altered by addition of the flanking domains from CLIP. Interestingly, selective modification of the peptide with either the N- or the C-terminal flanking domains resulted in functionally divergent systemic immune responses. Immunization of normal F344 rats with the NEU peptide modified with the N-terminal domain of CLIP (N-NEU) resulted in an immune response primarily consisting of type 1 (IL-2, IFNgamma) cytokine producing T cells. On the other hand, type 2 (IL-4) cytokine responses were largely predominant following immunization with the self-peptide modified with the C-terminal flanking domain (NEU-C). The functionally divergent responses elicited by the modified self-peptides were accompanied by significant changes in the expression of the CD28/CTLA4/B7 family of co-stimulatory molecules. Immunization with the N-NEU peptide led to enhanced expression of CD28 in the antigen-specific, CD4+ T cell compartment while expression of B7.1 was dramatically reduced in antigen-specific CD8+ T cells. Comparatively, expression of CTLA4 was down-regulated in the antigen-specific CD4+ T cell compartment following immunization with NEU-C peptide. The N-NEU peptide also had a direct effect on dendritic cells leading to the up-regulation of B7.1 expression. Taken together, functionally divergent systemic immune responses can be elicited by strategically altering a self-peptide ligand with the N- and C-terminal flanking domains of CLIP. Moreover, changes in expression of co-stimulatory molecules that are required for T cell activation and T cell-T cell communication may account for the polarization of the immune response elicited by the chimeric peptides.
Collapse
Affiliation(s)
- Allan D Hess
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, 1650 Orleans Street, Room 489, Baltimore, MD 21231, USA.
| | | | | | | |
Collapse
|
15
|
van de Corput L, Chaux P, van der Meijden ED, De Plaen E, Frederik Falkenburg JH, van der Bruggen P. A novel approach to identify antigens recognized by CD4 T cells using complement-opsonized bacteria expressing a cDNA library. Leukemia 2005; 19:279-85. [PMID: 15526018 DOI: 10.1038/sj.leu.2403583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In patients with hematological malignancies receiving HLA-matched stem cell transplantation, T cells specific for minor histocompatibility antigens play a major role in graft rejection, induction of graft-versus-host disease and beneficial graft-versus-leukemia reactivity. Several human minor histocompatibility antigens recognized by T cells have been identified, but only two are presented by HLA class II molecules. In search of an efficient approach to identify antigenic peptides processed through the HLA class II pathway, we constructed a cDNA library in bacteria that were induced to express proteins. Bacteria were opsonized with complement to enforce receptor-mediated uptake by Epstein-Barr virus immortalized B cells that were subsequently used as antigen-presenting cells. This approach was validated with an HLA class II-restricted antigen encoded by gene DBY. We were able to identify bacteria expressing DBY diluted into a 300-fold excess of bacteria expressing a nonrelevant gene. Screening of a bacterial library using a DBY-specific CD4 T cell clone resulted in the isolation of several DBY cDNAs. We propose this strategy for a rapid identification of HLA class II-restricted antigenic peptides recognized by CD4 T cells.
Collapse
Affiliation(s)
- L van de Corput
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Moschella F, Ombra MN, Del Pozzo G, Guardiola J. Administration of different antigenic forms of altered peptide ligands derived from HIV-1 RTase influences their effects on T helper cell activation. Hum Immunol 2003; 64:1-8. [PMID: 12507809 DOI: 10.1016/s0198-8859(02)00783-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genetic hypervariability of viruses such as HIV-1 facilitates appearance of escape mutants for immune response. HIV-1 isolates display variant epitopes, which may fail to stimulate T-lymphocyte responses or act as natural T-cell receptor antagonists, contributing to viral persistence. We evaluated the effect on epitope specific T-cell reactions of different amino acid substitutions in a residue of the 248-262 sequence of HIV-1 reverse transcriptase (peptide 23), showing variability in different viral isolates. Responses against such a determinant have been detected in long-term nonprogressive patients. The modified antigenic determinant was administered either as synthetic peptide or as recombinant protein. Our results show that certain amino acid substitutions abolished peptide binding to major histocompatibility complex (MHC); other modifications, although not affecting the formation of the MHC/peptide complex, either abrogated T-cell proliferation or exhibited an antagonistic effect. The results suggest that residue 11 of peptide 23 exhibits a double function; its alteration affects both the peptide affinity for the MHC and the MHC/peptide complex affinity for the T-cell receptor. Furthermore, we demonstrated that synthetic ligands and recombinant proteins may produce distinct functional effects, providing evidence that synthetic peptides, compared with corresponding epitopes generated by intracellular processing of recombinant proteins, may bind to the MHC groove in a different conformation.
Collapse
Affiliation(s)
- Federica Moschella
- Division of Medical Oncology, Department of Medicine of the College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
17
|
Rötzschke O, Lau JM, Hofstätter M, Falk K, Strominger JL. A pH-sensitive histidine residue as control element for ligand release from HLA-DR molecules. Proc Natl Acad Sci U S A 2002; 99:16946-50. [PMID: 12471156 PMCID: PMC139249 DOI: 10.1073/pnas.212643999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2002] [Indexed: 11/18/2022] Open
Abstract
Class II MHC molecules undergo conformational changes on shifts of the pH. As a consequence, low-affinity peptides tightly bound at pH 7.0 can be released at pH 5.0. The imidazole group of histidine is the only amino acid side chain affected within this range. At pH 5.0 the group is positively charged, polar, and hydrophilic, whereas at pH 7.4 it is neutral, apolar, and hydrophobic. In this study, we used soluble forms of HLA-DR and substituted conserved histidine residues with tyrosine, an isosteric analogue to the uncharged form of histidine. The goal of this substitution was to identify crucial His residues by an increase in pH stability of the ligand complex. HLA-DM-mediated release experiments revealed that substitution of His-33 in the alpha(1) domain of the HLA-DR molecule almost doubled the half-life of HLA-DR1class II-associated invariant-chain peptide complexes. The divergence in the off-rate of WT and H33Y mutated complex was strictly pH-dependent and correlated with the theoretical titration curve of the imidazole group. For both HLA-DR1 and HLA-DR4 molecules the mutation resulted in a shift of class II-associated invariant-chain peptide release curves by up to 0.5 pH units. His-33alpha1 is present in all HLA-DR and H-2E molecules. It connects the alpha(1) and alpha(2) domains in its noncharged form by hydrophobic interactions with residue Val-136alpha2. It is located in close proximity to the putative interface with HLA-DM and may function as a pH-sensitive "button," which is closed at pH 7.0 but opens below pH 6.0 to allow conformational transitions necessary for ligand exchange.
Collapse
Affiliation(s)
- Olaf Rötzschke
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
18
|
Neveu R, Auriault C, Angyalosi G, Georges B. Evidences of conformational changes in class II Major Histocompatibility Complex molecules that affect the immunogenicity. Mol Immunol 2002; 38:661-7. [PMID: 11858821 DOI: 10.1016/s0161-5890(01)00106-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The N-terminal part of class II-associated invariant chain peptide (CLIP) is assumed to interact with an accessory peptide-binding site on the class II Major Histocompatibility Complex (MHC) molecule, and promote a conformational modification. We have linked this immunoregulatory segment (residues 81-88) to the N-terminus of the influenza hemagglutinin (HA) 307-319 epitope in order to evaluate relationships between the MHC conformational changes and their implication in immune responses. Our chimeric peptide, named CLIP-HA, bind with the same affinity to class II HLA-DR1 molecules as the HA peptide, and is normally recognized by HA-specific T cells. Interestingly, the presence of the N-terminal CLIP region enhances the rate of association to soluble DR1 molecules but prevents the formation of SDS-resistant complexes. These features suggest the existence of HLA-DR1 conformational changes induced by the chimeric peptide. Furthermore, while in vitro HA and CLIP-HA peptides associated to DR1 could not be differentiated based on T-cell recognition, in vivo the CLIP residues strongly impaired the immunogenicity of HA epitope as assessed in HLA-DR1 transgenic mice. Our study demonstrates for the first time that MHC conformational changes, revealed at molecular level, may influence the immunogenicity.
Collapse
Affiliation(s)
- Raphaële Neveu
- SEDAC-Therapeutics Inc., Institut de Biologie de Lille, Lille, France
| | | | | | | |
Collapse
|
19
|
Jung G, Fleckenstein B, von der Mülbe F, Wessels J, Niethammer D, Wiesmüller KH. From combinatorial libraries to MHC ligand motifs, T-cell superagonists and antagonists. Biologicals 2001; 29:179-81. [PMID: 11851313 DOI: 10.1006/biol.2001.0299] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Complete experimental data sets of HLA-ligand motifs and T-cell recognition patterns can be derived from combinatorial peptide libraries. These data provide the exact molecular basis for a fast development of synthetic vaccines, T-cell superagonists and non-peptide antagonists. Patient-specific peptides, peptidomimetics and vaccines of highest reactivity can be derived directly from the data sets via our prediction programme EPIPREDICT. The resulting lead structures may be developed into valuable diagnostics and therapeutic tools for the treatment of viral infections, autoimmune diseases and tumors. As one example, antibody and T cell recognition in the intestinal auto-immune disease, coeliac disease was investigated in more detail concerning the deamidation of gamma-gliadin peptides by tissue transglutaminase 9tTG) leading to autoreactive peptides specific for HLA-DQA1*0501, DQB1*0201.
Collapse
Affiliation(s)
- G Jung
- Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Godkin AJ, Smith KJ, Willis A, Tejada-Simon MV, Zhang J, Elliott T, Hill AV. Naturally processed HLA class II peptides reveal highly conserved immunogenic flanking region sequence preferences that reflect antigen processing rather than peptide-MHC interactions. THE JOURNAL OF IMMUNOLOGY 2001; 166:6720-7. [PMID: 11359828 DOI: 10.4049/jimmunol.166.11.6720] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class II heterodimers bind peptides 12-20 aa in length. The peptide flanking residues (PFRs) of these ligands extend from a central binding core consisting of nine amino acids. Increasing evidence suggests that the PFRs can alter the immunogenicity of T cell epitopes. We have previously noted that eluted peptide pool sequence data derived from an MHC class II Ag reflect patterns of enrichment not only in the core binding region but also in the PFRS: We sought to distinguish whether these enrichments reflect cellular processes or direct MHC-peptide interactions. Using the multiple sclerosis-associated allele HLA-DR2, pool sequence data from naturally processed ligands were compared with the patterns of enrichment obtained by binding semicombinatorial peptide libraries to empty HLA-DR2 molecules. Naturally processed ligands revealed patterns of enrichment reflecting both the binding motif of HLA-DR2 (position (P)1, aliphatic; P4, bulky hydrophobic; and P6, polar) as well as the nonbound flanking regions, including acidic residues at the N terminus and basic residues at the C terminus. These PFR enrichments were independent of MHC-peptide interactions. Further studies revealed similar patterns in nine other HLA alleles, with the C-terminal basic residues being as highly conserved as the previously described N-terminal prolines of MHC class II ligands. There is evidence that addition of C-terminal basic PFRs to known peptide epitopes is able to enhance both processing as well as T cell activation. Recognition of these allele-transcending patterns in the PFRs may prove useful in epitope identification and vaccine design.
Collapse
Affiliation(s)
- A J Godkin
- Nuffield Department of Medicine, Molecular Immunology Group, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
21
|
Viret C, He X, Janeway CA. Paradoxical intrathymic positive selection in mice with only a covalently presented agonist peptide. Proc Natl Acad Sci U S A 2001; 98:9243-8. [PMID: 11470911 PMCID: PMC55405 DOI: 10.1073/pnas.161274698] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Y-Ae mAb and the 1H3.1 alphabeta T cell antigen receptor (TCR) are both specific for the I-Ealpha52-68 peptide bound to the I-A(b) major histocompatibility complex (MHC) class II molecule. Antigen-presenting cells (APCs) from I-A(b+) mice with a natural or transgenic (Tg) I-Ealpha chain activate mature 1H3.1 T cells and cause the deletion of 1H3.1 TCR Tg thymocytes. However, 1H3.1 T cells were neither activated nor inactivated by confrontation with APCs from I-Ab-Ep mice in which I-A(b) molecules are occupied only by the covalently associated Ealpha52-68 peptide. Instead, immature 1H3.1 TCR Tg thymocytes were efficiently positively selected into the CD4 lineage in the I-Ab-Ep thymus. This selection relied on specific recognition of the Ealpha52-68/I-A(b) complex because it was blocked by Y-Ae. 1H3.1 TCR Tg T cells maturing in the I-Ab-Ep thymus efficiently populated the periphery, displayed a naive phenotype, and were specifically reactive to the Ealpha52-68 peptide or to I-A(b+)I-Ealpha(+) APCs, indicating that 1H3.1 T cells were not antagonized in I-Ab-Ep mice. The data identify major histocompatibility complex class II molecules with only a covalently attached self-peptide as a ligand for in vivo positive selection of T cells specific for the same peptide.
Collapse
Affiliation(s)
- C Viret
- Section of Immunobiology, Yale University School of Medicine, and Howard Hughes Medical Institute, New Haven, CT 06520-8011, USA
| | | | | |
Collapse
|
22
|
Golovkina T, Agafonova Y, Kazansky D, Chervonsky A. Diverse repertoire of the MHC class II-peptide complexes is required for presentation of viral superantigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2244-50. [PMID: 11160278 DOI: 10.4049/jimmunol.166.4.2244] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Among other features, peptides affect MHC class II molecules, causing changes in the binding of bacterial superantigens (b-Sag). Whether peptides can alter binding of viral superantigens (v-Sag) to MHC class II was not known. Here we addressed the question of whether mutations limiting the diversity of peptides bound by the MHC class II molecules influenced the presentation of v-Sag and, subsequently, the life cycle of the mouse mammary tumor virus (MMTV). T cells reactive to v-Sag were found in mice lacking DM molecules as well as in A(b)Ep-transgenic mice in which MHC class II binding grooves were predominantly occupied by an invariant chain fragment or Ealpha(52-68) peptide, respectively. APCs from the mutant mice failed to present v-Sag, as determined by the lack of Sag-specific T cell activation, Sag-induced T cell deletion, and by the aborted MMTV infection. In contrast, mice that express I-A(b) with a variety of bound peptides presented v-Sag and were susceptible to MMTV infection. Comparison of v-Sag and b-Sag presentation by the same mutant cells suggested that presentation of v-Sag had requirements similar to that for presentation of toxic shock syndrome toxin-1. Thus, MHC class II peptide repertoire is critical for recognition of v-Sag by the T cells and affects the outcome of infection with a retrovirus.
Collapse
MESH Headings
- Animals
- Antigen Presentation/genetics
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigen-Presenting Cells/microbiology
- Antigen-Presenting Cells/virology
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Enterotoxins/immunology
- Enterotoxins/metabolism
- Female
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/physiology
- Male
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Tumor Virus, Mouse/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Mice, Transgenic
- Peptides/immunology
- Peptides/metabolism
- Retroviridae Infections/genetics
- Retroviridae Infections/immunology
- Staphylococcus aureus/immunology
- Superantigens/immunology
- Superantigens/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Tumor Virus Infections/genetics
- Tumor Virus Infections/immunology
Collapse
Affiliation(s)
- T Golovkina
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.
| | | | | | | |
Collapse
|
23
|
Kasai M, Kropshofer H, Vogt AB, Kominami E, Mizuochi T. CLIP-derived self peptides bound to MHC class II molecules of medullary thymic epithelial cells differ from those of cortical thymic epithelial cells in their diversity, length, and C-terminal processing. Eur J Immunol 2000; 30:3542-51. [PMID: 11169395 DOI: 10.1002/1521-4141(200012)30:12<3542::aid-immu3542>3.0.co;2-n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Medullary thymic epithelial cells (mTEC) are able to present soluble antigens to CD4+ helper T cell lines, whereas cortical thymic epithelial cells (cTEC) are not (Mizuochi, T., et al., J. Exp. Med. 1992. 175: 1601-1605). In addition, class II heterodimers from mTEC migrated with apparently less relative molecular mass in SDS-PAGE than those from cTEC (Kasai, M., et al., Eur. J. Immunol. 1998. 28:1867-1876). To investigate the cause of the distinct migration profiles of class II heterodimers in both TEC types, class II heterodimer-associated peptides were analyzed by matrix-assisted laser desorption ionization mass spectrometry. Self peptides from cTEC were shown to vary moderately in length and to be highly diverse, including low amounts of CLIP (class II-associated invariant chain peptide) variants. On the other hand, self peptides from two mTEC consisted predominantly of two CLIP variants with exceptional C-terminal extensions. C-terminally overhanging residues of CLIP in mTEC may be responsible for the distinct migration of class II heterodimers in SDS-PAGE. Differences in migration of class II heterodimers on SDS gels was also observed in H2-DM+ vesicles isolated from both TEC. The possible contribution of self peptides bound to class II heterodimers in TEC to positive or negative selection of T cells in the thymus is discussed.
Collapse
Affiliation(s)
- M Kasai
- Department of Bacterial and Blood Products, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
24
|
Bonomi G, Moschella F, Ombra MN, Del Pozzo G, Granier C, De Berardinis P, Guardiola J. Modulation of TCR recognition of MHC class II/peptide by processed remote N- and C-terminal epitope extensions. Hum Immunol 2000; 61:753-63. [PMID: 10980386 DOI: 10.1016/s0198-8859(00)00147-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N- and C-terminal extensions of naturally processed MHC class II-bound peptides may affect TCR recognition. In fact, residues immediately flanking the minimal epitope on either side can contact the MHC groove and modify the interaction with a TCR. We report now that residues much farther away from the peptide core can also modulate TCR recognition in a functional antigen presentation system. To show this, we isolated from the same donor DR5-restricted T cell clones, specific for the HIV-1 RT(248-262) sequence and differing in their ability to respond to recombinant antigens obtained by insertion of the epitope in different positions of schistosomal, human, or murine glutathione-S-transferase (GST). We found that the reactivity profile of individual clones was related to their TCR fine specificity, suggesting that processing can generate determinants focused onto the same epitope, but antigenically distinct. In addition, we analyzed the response of this panel of T-helper cell clones against GST-derived recombinant antigens in which the epitope was flanked by stretches of polyalanine or polyserine on either side. These spacers had different effects on TCR recognition suggesting that secondary structures outside the core peptide may influence MHC/epitope complex recognition over a distance of 15-30 residues from the determinant.
Collapse
Affiliation(s)
- G Bonomi
- International Institute of Genetics and Biophysics, CNR, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|