1
|
Melin E, Andersson M, Gøtzsche CR, Wickham J, Huang Y, Szczygiel JA, Boender A, Christiansen SH, Pinborg L, Woldbye DPD, Kokaia M. Combinatorial gene therapy for epilepsy: Gene sequence positioning and AAV serotype influence expression and inhibitory effect on seizures. Gene Ther 2023; 30:649-658. [PMID: 37029201 PMCID: PMC10457185 DOI: 10.1038/s41434-023-00399-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
Gene therapy with AAV vectors carrying genes for neuropeptide Y and its receptor Y2 has been shown to inhibit seizures in multiple animal models of epilepsy. It is however unknown how the AAV serotype or the sequence order of these two transgenes in the expression cassette affects the actual parenchymal gene expression levels and the seizure-suppressant efficacy. To address these questions, we compared three viral vector serotypes (AAV1, AAV2 and AAV8) and two transgene sequence orders (NPY-IRES-Y2 and Y2-IRES-NPY) in a rat model of acutely induced seizures. Wistar male rats were injected bilaterally with viral vectors and 3 weeks later acute seizures were induced by a subcutaneous injection of kainate. The latency until 1st motor seizure, time spent in motor seizure and latency to status epilepticus were measured to evaluate the seizure-suppressing efficacy of these vectors compared to an empty cassette control vector. Based on the results, the effect of the AAV1-NPY-IRES-Y2 vector was further investigated by in vitro electrophysiology, and its ability to achieve transgene overexpression in resected human hippocampal tissue was evaluated. The AAV1-NPY-IRES-Y2 proved to be better to any other serotype or gene sequence considering both transgene expression and ability to suppress induced seizures in rats. The vector also demonstrated transgene-induced decrease of glutamate release from excitatory neuron terminals and significantly increased both NPY and Y2 expression in resected human hippocampal tissue from patients with drug-resistant temporal lobe epilepsy. These results validate the feasibility of NPY/Y2 receptor gene therapy as a therapeutic opportunity in focal epilepsies.
Collapse
Affiliation(s)
- Esbjörn Melin
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden.
| | - My Andersson
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Casper R Gøtzsche
- CombiGene AB, Medicon Village, 2 Scheelevägen, 223 81, Lund, Sweden
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Jenny Wickham
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Yuzhe Huang
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Julia Alicja Szczygiel
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Arnie Boender
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Søren H Christiansen
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Lars Pinborg
- Department of Neurology and Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, 9 Blegdamsvej, DK-2100, Copenhagen, Denmark
| | - David P D Woldbye
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Merab Kokaia
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| |
Collapse
|
2
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
3
|
Gøtzsche CR, Woldbye DPD, Hundahl CA, Hay-Schmidt A. Neuroglobin deficiency increases seizure susceptibility but does not affect basal behavior in mice. J Neurosci Res 2022; 100:1921-1932. [PMID: 35822521 PMCID: PMC9544565 DOI: 10.1002/jnr.25105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 12/27/2022]
Abstract
Neuroglobin (Ngb) is found in the neurones of several different brain areas and is known to bind oxygen and other gaseous molecules and reactive oxygen species (ROS) in vitro, but it does not seem to act as a respiratory molecule for neurones. Using male and female Ngb‐knockout (KO) mice, we addressed the role of Ngb in neuronal brain activity using behavioral tests but found no differences in general behaviors, memory processes, and anxiety−/depression‐like behaviors. Oxidative stress and ROS play key roles in epileptogenesis, and oxidative injury produced by an excessive production of free radicals is involved in the initiation and progression of epilepsy. The ROS binding properties led us to hypothesize that lack of Ngb could affect central coping with excitatory stimuli. We consequently explored whether exposure to the excitatory molecule kainate (KA) would increase severity of seizures in mice lacking Ngb. We found that the duration and severity of seizures were increased, while the latency time to develop seizures was shortened in Ngb‐KO compared to wildtype adult female mice. Consistently, c‐fos expression after KA was significantly increased in Ngb‐KO mice in the amygdala and piriform cortex, regions rich in Ngb and known to be centrally involved in seizure generation. Moreover, the measured c‐fos expression levels were correlated with seizure susceptibility. With these new findings combined with previous studies we propose that Ngb could constitute an intrinsic defense mechanism against neuronal hyperexcitability and oxidative stress by buffering of ROS in amygdala and other Ngb‐containing brain regions.
Collapse
Affiliation(s)
- Casper R Gøtzsche
- Department for Neuroscience, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - David P D Woldbye
- Department for Neuroscience, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Hay-Schmidt
- Department of Odontology, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
You J, Huang H, Chan CTY, Li L. Pathological Targets for Treating Temporal Lobe Epilepsy: Discoveries From Microscale to Macroscale. Front Neurol 2022; 12:779558. [PMID: 35069411 PMCID: PMC8777077 DOI: 10.3389/fneur.2021.779558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common and severe types of epilepsy, characterized by intractable, recurrent, and pharmacoresistant seizures. Histopathology of TLE is mostly investigated through observing hippocampal sclerosis (HS) in adults, which provides a robust means to analyze the related histopathological lesions. However, most pathological processes underlying the formation of these lesions remain elusive, as they are difficult to detect and observe. In recent years, significant efforts have been put in elucidating the pathophysiological pathways contributing to TLE epileptogenesis. In this review, we aimed to address the new and unrecognized neuropathological discoveries within the last 5 years, focusing on gene expression (miRNA and DNA methylation), neuronal peptides (neuropeptide Y), cellular metabolism (mitochondria and ion transport), cellular structure (microtubule and extracellular matrix), and tissue-level abnormalities (enlarged amygdala). Herein, we describe a range of biochemical mechanisms and their implication for epileptogenesis. Furthermore, we discuss their potential role as a target for TLE prevention and treatment. This review article summarizes the latest neuropathological discoveries at the molecular, cellular, and tissue levels involving both animal and patient studies, aiming to explore epileptogenesis and highlight new potential targets in the diagnosis and treatment of TLE.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Haiyan Huang
- Department of Nutrition and Food Science, Texas Women University, Denton, TX, United States
| | - Clement T Y Chan
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Cattaneo S, Verlengia G, Marino P, Simonato M, Bettegazzi B. NPY and Gene Therapy for Epilepsy: How, When,... and Y. Front Mol Neurosci 2021; 13:608001. [PMID: 33551745 PMCID: PMC7862707 DOI: 10.3389/fnmol.2020.608001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Neuropeptide Y (NPY) is a neuropeptide abundantly expressed in the mammalian central and peripheral nervous system. NPY is a pleiotropic molecule, which influences cell proliferation, cardiovascular and metabolic function, pain and neuronal excitability. In the central nervous system, NPY acts as a neuromodulator, affecting pathways that range from cellular (excitability, neurogenesis) to circuit level (food intake, stress response, pain perception). NPY has a broad repertoire of receptor subtypes, each activating specific signaling pathways in different tissues and cellular sub-regions. In the context of epilepsy, NPY is thought to act as an endogenous anticonvulsant that performs its action through Y2 and Y5 receptors. In fact, its overexpression in the brain with the aid of viral vectors can suppress seizures in animal models of epilepsy. Therefore, NPY-based gene therapy may represent a novel approach for the treatment of epilepsy patients, particularly for pharmaco-resistant and genetic forms of the disease. Nonetheless, considering all the aforementioned aspects of NPY signaling, the study of possible NPY applications as a therapeutic molecule is not devoid of critical aspects. The present review will summarize data related to NPY biology, focusing on its anti-epileptic effects, with a critical appraisal of key elements that could be exploited to improve the already existing NPY-based gene therapy approaches for epilepsy.
Collapse
Affiliation(s)
- Stefano Cattaneo
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Verlengia
- San Raffaele Scientific Institute, Milan, Italy.,Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Pietro Marino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy.,Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Barbara Bettegazzi
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Szczygieł JA, Danielsen KI, Melin E, Rosenkranz SH, Pankratova S, Ericsson A, Agerman K, Kokaia M, Woldbye DPD. Gene Therapy Vector Encoding Neuropeptide Y and Its Receptor Y2 for Future Treatment of Epilepsy: Preclinical Data in Rats. Front Mol Neurosci 2020; 13:232. [PMID: 33343295 PMCID: PMC7746806 DOI: 10.3389/fnmol.2020.603409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023] Open
Abstract
Gene therapy to treat pharmacoresistant temporal lobe epilepsy in humans is now being developed using an AAV vector (CG01) that encodes the combination of neuropeptide Y and its antiepileptic receptor Y2. With this in mind, the present study aimed to provide important preclinical data on the effects of CG01 on the duration of transgene expression, cellular tropism, and potential side effects on body weight and cognitive function. The CG01 vector was administered unilaterally into the dorsal and ventral hippocampus of adult male rats and expression of both transgenes was found to remain elevated without a sign of decline at 6 months post-injection. CG01 appeared to mediate expression selectively in hippocampal neurons, without expression in astrocytes or oligodendrocytes. No effects were seen on body weight as well as on short- or long-term memory as revealed by testing in the Y-maze or Morris water maze tests. Thus these data show that unilateral CG01 vector treatment as future gene therapy in pharmacoresistant temporal lobe epilepsy patients should result in stable and long-term expression predominantly in neurons and be well tolerated without side effects on body weight and cognitive function.
Collapse
Affiliation(s)
| | - Kira Iben Danielsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Lund, Sweden
| | - Esbjörn Melin
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Lund, Sweden
| | | | | | | | | | - Merab Kokaia
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Lund, Sweden
| | | |
Collapse
|
7
|
LaSarge CL, Pun RYK, Gu Z, Riccetti MR, Namboodiri DV, Tiwari D, Gross C, Danzer SC. mTOR-driven neural circuit changes initiate an epileptogenic cascade. Prog Neurobiol 2020; 200:101974. [PMID: 33309800 DOI: 10.1016/j.pneurobio.2020.101974] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/22/2020] [Accepted: 12/05/2020] [Indexed: 11/29/2022]
Abstract
Mutations in genes regulating mTOR pathway signaling are now recognized as a significant cause of epilepsy. Interestingly, these mTORopathies are often caused by somatic mutations, affecting variable numbers of neurons. To better understand how this variability affects disease phenotype, we developed a mouse model in which the mTOR pathway inhibitor Pten can be deleted from 0 to 40 % of hippocampal granule cells. In vivo, low numbers of knockout cells caused focal seizures, while higher numbers led to generalized seizures. Generalized seizures coincided with the loss of local circuit interneurons. In hippocampal slices, low knockout cell loads produced abrupt reductions in population spike threshold, while spontaneous excitatory postsynaptic currents and circuit level recurrent activity increased gradually with rising knockout cell load. Findings demonstrate that knockout cells load is a critical variable regulating disease phenotype, progressing from subclinical circuit abnormalities to electrobehavioral seizures with secondary involvement of downstream neuronal populations.
Collapse
Affiliation(s)
- Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Raymund Y K Pun
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Zhiqing Gu
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Shanghai Children's Hospital, Shanghai, 200062, China
| | - Matthew R Riccetti
- Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Devi V Namboodiri
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christina Gross
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Department of Anesthesia, University of Cincinnati, Cincinnati, OH, 45267, United States.
| |
Collapse
|
8
|
Gschwind T, Lafourcade C, Gfeller T, Zaichuk M, Rambousek L, Knuesel I, Fritschy JM. Contribution of early Alzheimer's disease-related pathophysiology to the development of acquired epilepsy. Eur J Neurosci 2018; 47:1534-1562. [DOI: 10.1111/ejn.13983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/25/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Tilo Gschwind
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| | - Carlos Lafourcade
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Laboratorio de Neurociencias; Universidad de los Andes; Santiago Chile
| | - Tim Gfeller
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
| | - Mariana Zaichuk
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| | - Lukas Rambousek
- Institute of Experimental Immunology; University of Zurich; Zurich Switzerland
| | - Irene Knuesel
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Roche Pharmaceutical Research and Early Development; NORD Discovery & Translational Area; Roche Innovation Center Basel; Basel Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| |
Collapse
|
9
|
Matovu D, Alele PE. Seizure vulnerability and anxiety responses following chronic co-administration and acute withdrawal of caffeine and ethanol in a rat model. J Basic Clin Physiol Pharmacol 2018; 29:1-10. [PMID: 29127761 DOI: 10.1515/jbcpp-2017-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 08/31/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Caffeine antagonizes the intoxicating effects of alcohol. Consequently, there has been a dramatic global increase in the consumption of caffeinated drinks together with alcohol, especially among young adults. We assessed the seizure vulnerability and anxiety responses following the chronic co-administration of, and withdrawal from, caffeine and ethanol in male rats. METHODS The rats were randomly assigned to six groups consisting of 10 animals each: 10 mg/kg of caffeine, 20 mg/kg of caffeine, 4 g/kg of 20% ethanol, combined caffeine (20 mg/kg) and ethanol (4 g/kg of 20%), 4 mL/kg distilled water, and an untreated control group. The test substances were administered intragastrically twice daily for 29 days. On day 29, the rats were tested on the elevated plus maze to assess anxiety-related responses. On day 30, pentylenetetrazol (PTZ), a chemoconvulsant, was administered intraperitoneally at a dose of 40 mg/kg to the animals. Seizure responses and mortality up to 72 h were recorded. RESULTS Compared with the control group, the rats that received chronic treatment with low-dose caffeine, ethanol alone, and combined caffeine and ethanol exhibited significant anxiogenic-like effects, unlike with high-dose caffeine. Both low- and high-dose caffeine significantly increased PTZ seizure latency. Ethanol alone and combined caffeine and ethanol both lowered PTZ seizure latency. No significant difference occurred between the controls and the untreated group for either anxiety or seizure expression. Combined caffeine and ethanol increased the seizure-induced mortality from withdrawal effects at 72 h. CONCLUSIONS These findings suggest that the chronic co-administration of caffeine and ethanol and the acute withdrawal from these drugs lead to anxiogenic effects and increased seizure vulnerability.
Collapse
Affiliation(s)
- Daniel Matovu
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Paul E Alele
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda, Phone: +256773775132, Fax: +256485420782
| |
Collapse
|
10
|
Altered expression of neuropeptide Y receptors caused by focal cortical dysplasia in human intractable epilepsy. Oncotarget 2017; 7:15329-38. [PMID: 26943580 PMCID: PMC4941244 DOI: 10.18632/oncotarget.7855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/29/2016] [Indexed: 11/25/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a common cause of pharmacologically-intractable epilepsy, however, the precise mechanisms underlying the epileptogenicity of FCD remains to be determined. Neuropeptide Y (NPY), an endogenous anticonvulsant in the central nervous system, plays an important role in the regulation of neuronal excitability. Increased expression of NPY and its receptors has been identified in the hippocampus of patients with mesial temporal lobe epilepsy, presumed to act as an endogenous anticonvulsant mechanism. Therefore, we investigated whether expression changes in NPY receptors occurs in patients with FCD. We specifically investigated the expression of seizure-related NPY receptor subtypes Y1, Y2, and Y5 in patients with FCD versus autopsy controls. We found that Y1R and Y2R were up-regulated at the mRNA and protein levels in the temporal and frontal lobes in FCD lesions. By contrast, there was no significant change in either receptor detected in parietal lesions. Notably, overexpression of Y5R was consistently observed in all FCD lesions. Our results demonstrate the altered expression of Y1R, Y2R and Y5R occurs in FCD lesions within the temporal, frontal and parietal lobe. Abnormal NPY receptor subtype expression may be associated with the onset and progression of epileptic activity and may act as a therapeutic candidate for the treatment of refractory epilepsy caused by FCD.
Collapse
|
11
|
ABHD6 blockade exerts antiepileptic activity in PTZ-induced seizures and in spontaneous seizures in R6/2 mice. Neuron 2014; 83:361-371. [PMID: 25033180 DOI: 10.1016/j.neuron.2014.06.030] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2014] [Indexed: 12/17/2022]
Abstract
The serine hydrolase α/β-hydrolase domain 6 (ABHD6) hydrolyzes the most abundant endocannabinoid (eCB) in the brain, 2-arachidonoylglycerol (2-AG), and controls its availability at cannabinoid receptors. We show that ABHD6 inhibition decreases pentylenetetrazole (PTZ)-induced generalized tonic-clonic and myoclonic seizure incidence and severity. This effect is retained in Cnr1(-/-) or Cnr2(-/-) mice, but blocked by addition of a subconvulsive dose of picrotoxin, suggesting the involvement of GABAA receptors. ABHD6 inhibition also blocked spontaneous seizures in R6/2 mice, a genetic model of juvenile Huntington's disease known to exhibit dysregulated eCB signaling. ABHD6 blockade retained its antiepileptic activity over chronic dosing and was not associated with psychomotor or cognitive effects. While the etiology of seizures in R6/2 mice remains unsolved, involvement of the hippocampus is suggested by interictal epileptic discharges, increased expression of vGLUT1 but not vGAT, and reduced Neuropeptide Y (NPY) expression. We conclude that ABHD6 inhibition may represent a novel antiepileptic strategy.
Collapse
|
12
|
Dong C, Zhao W, Li W, Lv P, Dong X. Anti-epileptic effects of neuropeptide Y gene transfection into the rat brain. Neural Regen Res 2014; 8:1307-15. [PMID: 25206425 PMCID: PMC4107651 DOI: 10.3969/j.issn.1673-5374.2013.14.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 04/24/2013] [Indexed: 02/04/2023] Open
Abstract
Neuropeptide Y gene transfection into normal rat brain tissue can provide gene overexpression, which can attenuate the severity of kainic acid-induced seizures. In this study, a recombinant adeno-associated virus carrying the neuropeptide Y gene was transfected into brain tissue of rats with kainic acid-induced epilepsy through stereotactic methods. Following these transfections, we verified overexpression of the neuropeptide Y gene in the epileptic brain. Electroencephalograms showed that seizure severity was significantly inhibited and seizure latency was significantly prolonged up to 4 weeks after gene transfection. Moreover, quantitative fluorescent PCR and western blot assays revealed that the mRNA and protein expression of the N-methyl-D-aspartate receptor subunits NR1, NR2A, and NR2B was inhibited in the hippocampus of epileptic rats. These findings indicate that neuropeptide Y may inhibit seizures via down-regulation of the functional expression of N-methyl-D-aspartate receptors.
Collapse
Affiliation(s)
- Changzheng Dong
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Wenqing Zhao
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang 050051, Hebei Province, China ; Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Wenling Li
- Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Xiufang Dong
- Department of Neurology, First Hospital of Xingtai, Xingtai 054000, Hebei Province, China
| |
Collapse
|
13
|
Elbrønd-Bek H, Olling JD, Gøtzsche CR, Waterfield A, Wörtwein G, Woldbye DPD. Neuropeptide Y-stimulated [(35) S]GTPγs functional binding is reduced in the hippocampus after kainate-induced seizures in mice. Synapse 2014; 68:427-36. [PMID: 24985894 DOI: 10.1002/syn.21762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/16/2014] [Accepted: 06/26/2014] [Indexed: 11/09/2022]
Abstract
Kainate-induced seizures constitute a model of temporal lobe epilepsy where prominent changes are observed in the hippocampal neuropeptide Y (NPY) system. However, little is known about the functional state and signal transduction of the NPY receptor population resulting from kainate exposure. Thus, in this study, we explored functional NPY receptor activity in the mouse hippocampus and neocortex after kainate-induced seizures using NPY-stimulated [(35) S]GTPγS binding. Moreover, we also studied levels of [(125) I]-peptide YY (PYY) binding and NPY, Y1, Y2, and Y5 receptor mRNA in these kainate-treated mice. Functional NPY binding was unchanged up to 12 h post-kainate, but decreased significantly in all hippocampal regions after 24 h and 1 week. Similarly, a decrease in [(125) I]-PYY binding was found in the dentate gyrus (DG) 1 week post-kainate. However, at 2 h, 6 h, and 12 h, [(125) I]-PYY binding was increased in all regions, and in the CA1 also at 24 h post-kainate. NPY mRNA levels were prominently increased in hippocampal regions, reaching maximum at 12 and 24 h. Y1 and Y5 mRNA levels were lowered in the DG at 24 and 2 h, respectively, while Y2 mRNA levels were elevated at 24 h in the DG and CA3. This study confirms rat kainate studies by showing pronounced adaptive changes in the mouse hippocampus both with regard to NPY synthesis and NPY receptor synthesis and binding, which may contribute to regulating neuronal seizure susceptibility after kainate. However, the potential seizure-suppressant effects of increased NPY gene expression at late time points post-kainate could be attenuated by the novel finding of reduced NPY-receptor G-protein activation.
Collapse
Affiliation(s)
- Heidi Elbrønd-Bek
- Department of Neuroscience and Pharmacology, Laboratory of Neural Plasticity, University of Copenhagen, Copenhagen, Denmark; Department of Neuroscience and Pharmacology, Laboratory of Neuropsychiatry, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
14
|
Kormos V, Gaszner B. Role of neuropeptides in anxiety, stress, and depression: from animals to humans. Neuropeptides 2013; 47:401-19. [PMID: 24210138 DOI: 10.1016/j.npep.2013.10.014] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 12/11/2022]
Abstract
Major depression, with its strikingly high prevalence, is the most common cause of disability in communities of Western type, according to data of the World Health Organization. Stress-related mood disorders, besides their deleterious effects on the patient itself, also challenge the healthcare systems with their great social and economic impact. Our knowledge on the neurobiology of these conditions is less than sufficient as exemplified by the high proportion of patients who do not respond to currently available medications targeting monoaminergic systems. The search for new therapeutical strategies became therefore a "hot topic" in neuroscience, and there is a large body of evidence suggesting that brain neuropeptides not only participate is stress physiology, but they may also have clinical relevance. Based on data obtained in animal studies, neuropeptides and their receptors might be targeted by new candidate neuropharmacons with the hope that they will become important and effective tools in the management of stress related mood disorders. In this review, we attempt to summarize the latest evidence obtained using animal models for mood disorders, genetically modified rodent models for anxiety and depression, and we will pay some attention to previously published clinical data on corticotropin releasing factor, urocortin 1, urocortin 2, urocortin 3, arginine-vasopressin, neuropeptide Y, pituitary adenylate-cyclase activating polypeptide, neuropeptide S, oxytocin, substance P and galanin fields of stress research.
Collapse
Affiliation(s)
- Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary; Department of Anatomy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
| | | |
Collapse
|
15
|
Berlicki L, Kaske M, Gutiérrez-Abad R, Bernhardt G, Illa O, Ortuño RM, Cabrele C, Buschauer A, Reiser O. Replacement of Thr32 and Gln34 in the C-terminal neuropeptide Y fragment 25-36 by cis-cyclobutane and cis-cyclopentane β-amino acids shifts selectivity toward the Y(4) receptor. J Med Chem 2013; 56:8422-31. [PMID: 24090364 DOI: 10.1021/jm4008505] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neuropeptide Y (NPY) and pancreatic polypeptide (PP) control central and peripheral processes by activating the G protein coupled receptors YxR (x = 1, 2, 4, 5). We present analogs of the C-terminal fragments 25-36 and 32-36 of NPY and PP containing (1R,2S)-cyclobutane (βCbu) or (1R,2S)-cyclopentane (βCpe) β-amino acids, which display exclusively Y4R affinity. In particular, [βCpe(34)]-NPY-(25-36) is a Y4R selective partial agonist (EC50 41 ± 6 nM, Emax 71%) that binds Y4R with a Ki of 10 ± 2 nM and a selectivity >100-fold relative to Y1R and Y2R and >50-fold relative to Y5R. Comparably, [Y(32), βCpe(34)]-NPY(PP)-(32-36) selectively binds and activates Y4R (EC50 94 ± 21 nM, Emax 73%). The NMR structure of [βCpe(34)]-NPY-(25-36) in dodecylphosphatidylcholine micelles shows a short helix at residues 27-32, while the C-terminal segment R(33)βCpe(34)R(35)Y(36) is extended. The biological properties of the βCbu- or βCpe-containing NPY and PP C-terminal fragments encourage the future application of these β-amino acids in the synthesis of selective Y4R ligands.
Collapse
Affiliation(s)
- Lukasz Berlicki
- Institute of Organic Chemistry, University of Regensburg , Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Casillas-Espinosa PM, Powell KL, O'Brien TJ. Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia 2013; 53 Suppl 9:41-58. [PMID: 23216578 DOI: 10.1111/epi.12034] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synaptic transmission is the communication between a presynaptic and a postsynaptic neuron, and the subsequent processing of the signal. These processes are complex and highly regulated, reflecting their importance in normal brain functioning and homeostasis. Sustaining synaptic transmission depends on the continuing cycle of synaptic vesicle formation, release, and endocytosis, which requires proteins such as dynamin, syndapin, synapsin, and synaptic vesicle protein 2A. Synaptic transmission is regulated by diverse mechanisms, including presynaptic modulators of synaptic vesicle formation and release, postsynaptic receptors and signaling, and modulators of neurotransmission. Neurotransmitters released presynaptically can bind to their postsynaptic receptors, the inhibitory γ-aminobutyric acid (GABA)ergic receptors or the excitatory glutamate receptors. Once released, glutamate activates a variety of postsynaptic receptors including α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA), kainate, and metabotropic receptors. The activation of the receptors triggers downstream signaling cascades generating a vast array of effects, which can be modulated by a numerous auxiliary regulatory subunits. Moreover, different neuropeptides such as neuropeptide Y, brain-derived neurotrophic factor (BDNF), somatostatin, ghrelin, and galanin, act as regulators of diverse synaptic functions and along with the classic neurotransmitters. Abnormalities in the regulation of synaptic transmission play a critical role in the pathogenesis of numerous brain diseases, including epilepsy. This review focuses on the different mechanisms involved in the regulation of synaptic transmission, which may play a role in the pathogenesis of epilepsy: the presynaptic modulators of synaptic vesicle formation and release, postsynaptic receptors, and modulators of neurotransmission, including the mechanism by which drugs can modulate the frequency and severity of epileptic seizures.
Collapse
Affiliation(s)
- Pablo M Casillas-Espinosa
- The Departments of Medicine and Neurology, The Royal Melbourne Hospital, The Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
17
|
Abstract
Neuropeptides are found in many mammalian CNS neurons where they play key roles in modulating neuronal activity. In contrast to amino acid transmitter release at the synapse, neuropeptide release is not restricted to the synaptic specialization, and after release, a neuropeptide may diffuse some distance to exert its action through a G protein-coupled receptor. Some neuropeptides such as hypocretin/orexin are synthesized only in single regions of the brain, and the neurons releasing these peptides probably have similar functional roles. Other peptides such as neuropeptide Y (NPY) are synthesized throughout the brain, and neurons that synthesize the peptide in one region have no anatomical or functional connection with NPY neurons in other brain regions. Here, I review converging data revealing a complex interaction between slow-acting neuromodulator peptides and fast-acting amino acid transmitters in the control of energy homeostasis, drug addiction, mood and motivation, sleep-wake states, and neuroendocrine regulation.
Collapse
|
18
|
Olesen MV, Christiansen SH, Gøtzsche CR, Holst B, Kokaia M, Woldbye DPD. Y5 neuropeptide Y receptor overexpression in mice neither affects anxiety- and depression-like behaviours nor seizures but confers moderate hyperactivity. Neuropeptides 2012; 46:71-9. [PMID: 22342800 DOI: 10.1016/j.npep.2012.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 02/07/2023]
Abstract
Neuropeptide Y (NPY) has been implicated in anxiolytic- and antidepressant-like behaviour as well as seizure-suppressant effects in rodents. Although these effects appear to be predominantly mediated via other NPY receptors (Y1 and/or Y2), several studies have also indicated a role for Y5 receptors. Gene therapy using recombinant viral vectors to induce overexpression of NPY, Y1 or Y2 receptors in the hippocampus or amygdala has previously been shown to modulate emotional behaviour and seizures in rodents. The present study explored the potential effects of gene therapy with the Y5 receptor, by testing effects of recombinant adeno-associated viral vector (rAAV) encoding Y5 (rAAV-Y5) in anxiety- and depression-like behaviour as well as in kainate-induced seizures in adult mice. The rAAV-Y5 vector injected into the hippocampus and amygdala induced a pronounced and sustained increase in Y5 receptor mRNA expression and functional Y5 receptor binding, but no significant effects were found with regard to anxiety- and depression-like behaviours or seizure susceptibility. Instead, rAAV-mediated Y5 receptor transgene overexpression resulted in moderate hyperactivity in the open field test. These results do not support a potential role for single transgene overexpression of Y5 receptors for modulating anxiety-/depression-like behaviours or seizures in adult mice. Whether the induction of hyperactivity by rAAV-Y5 could be relevant for other conditions remains to be studied.
Collapse
Affiliation(s)
- M V Olesen
- Protein Laboratory & Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
19
|
Wu G, Feder A, Wegener G, Bailey C, Saxena S, Charney D, Mathé AA. Central functions of neuropeptide Y in mood and anxiety disorders. Expert Opin Ther Targets 2012; 15:1317-31. [PMID: 21995655 DOI: 10.1517/14728222.2011.628314] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Neuropeptide Y (NPY) is a highly conserved neuropeptide belonging to the pancreatic polypeptide family. Its potential role in the etiology and pathophysiology of mood and anxiety disorders has been extensively studied. NPY also has effects on feeding behavior, ethanol intake, sleep regulation, tissue growth and remodeling. Findings from animal studies have delineated the physiological and behavioral effects mediated by specific NPY receptor subtypes, of which Y1 and Y2 are the best understood. AREAS COVERED Physiological roles and alterations of the NPYergic system in anxiety disorders, depression, posttraumatic stress disorder (PTSD), alcohol dependence and epilepsy. For each disorder, studies in animal models and human investigations are outlined and discussed, focusing on behavior, neurophysiology, genetics and potential for novel treatment targets. EXPERT OPINION The wide implications of NPY in psychiatric disorders such as depression and PTSD make the NPYergic system a promising target for the development of novel therapeutic interventions. These include intranasal NPY administration, currently under study, and the development of agonists and antagonists targeting NPY receptors. Therefore, we are proposing that via this mode of administration, NPY might exert CNS therapeutic actions without untoward systemic effects. Future work will show if this is a feasible approach.
Collapse
Affiliation(s)
- Gang Wu
- Karolinska Institutet-Clinical Neuroscience, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
20
|
van Raay L, Jovanovska V, Morris MJ, O'Brien TJ. Focal administration of neuropeptide Y into the S2 somatosensory cortex maximally suppresses absence seizures in a genetic rat model. Epilepsia 2012; 53:477-84. [PMID: 22220638 DOI: 10.1111/j.1528-1167.2011.03370.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Neuropeptide Y (NPY) is an inhibitory neurotransmitter that suppresses focal and generalized seizures in animal models. In this study, we investigated the sites within the thalamocortical circuit that NPY acts to suppress seizures in genetic absence epilepsy rats from Strasbourg (GAERS). METHODS In conscious freely moving GAERS, NPY was administered via intracerebral microcannulae implanted bilaterally into one of the following regions: primary somatosensory cortex (S1), secondary somatosensory cortex (S2), the primary motor cortex (M1), caudal nucleus reticular thalamus (nRT), or ventrobasal thalamus (VB). Animals received vehicle and up to three doses of NPY, in a randomized order. Electroencephalography (EEG) recordings were carried out for 30 min prior to injection and 90 min after the injection of NPY or vehicle. KEY FINDINGS Focal microinjections of NPY into the S2 cortex suppressed seizures in a dose-dependent manner, with the response being significantly different at the highest dose (1.5 mm) compared to vehicle for total time in seizures postinjection (7.2 ± 3.0% of saline, p < 0.01) and average number of seizures (9.4 ± 4.9% of saline, p < 0.05). In contrast NPY microinjections into the VB resulted in an aggravation of seizures. SIGNIFICANCE NPY produces contrasting effects on absence-like seizures in GAERS depending on the site of injection within the thalamocortical circuit. The S2 is the site at which NPY most potently acts to suppress absence-like seizures in GAERS, whereas seizure-aggravating effects are seen in the VB. These results provide further evidence to support the proposition that these electroclinically "generalized" seizures are being driven by a topographically restricted region within the somatosensory cortex.
Collapse
Affiliation(s)
- Leena van Raay
- The Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
21
|
Dubois CJ, Ramamoorthy P, Whim MD, Liu SJ. Activation of NPY type 5 receptors induces a long-lasting increase in spontaneous GABA release from cerebellar inhibitory interneurons. J Neurophysiol 2011; 107:1655-65. [PMID: 22190627 DOI: 10.1152/jn.00755.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neuropeptide Y (NPY), a widely distributed neuropeptide in the central nervous system, can transiently suppress inhibitory synaptic transmission and alter membrane excitability via Y2 and Y1 receptors (Y2rs and Y1rs), respectively. Although many GABAergic neurons express Y5rs, the functional role of these receptors in inhibitory neurons is not known. Here, we investigated whether activation of Y5rs can modulate inhibitory transmission in cerebellar slices. Unexpectedly, application of NPY triggered a long-lasting increase in the frequency of miniature inhibitory postsynaptic currents in stellate cells. NPY also induced a sustained increase in spontaneous GABA release in cultured cerebellar neurons. When cerebellar cultures were examined for Y5r immunoreactivity, the staining colocalized with that of VGAT, a presynaptic marker for GABAergic cells, suggesting that Y5rs are located in the presynaptic terminals of inhibitory neurons. RT-PCR experiments confirmed the presence of Y5r mRNA in the cerebellum. The NPY-induced potentiation of GABA release was blocked by Y5r antagonists and mimicked by application of a selective peptide agonist for Y5r. Thus Y5r activation is necessary and sufficient to trigger an increase in GABA release. Finally, the potentiation of inhibitory transmission could not be reversed by a Y5r antagonist once it was initiated, consistent with the development of a long-term potentiation. These results indicate that activation of presynaptic Y5rs induces a sustained increase in spontaneous GABA release from inhibitory neurons in contrast to the transient suppression of inhibitory transmission that is characteristic of Y1r and Y2r activation. Our findings thus reveal a novel role of presynaptic Y5rs in inhibitory interneurons in regulating GABA release and suggest that these receptors could play a role in shaping neuronal network activity in the cerebellum.
Collapse
Affiliation(s)
- C J Dubois
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
22
|
Alele PE, Rujumba JB. Khat (Catha edulis) and ethanol co-dependence modulate seizure expression in a pentylenetetrazol seizure model. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1431-1436. [PMID: 21871549 DOI: 10.1016/j.jep.2011.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 07/11/2011] [Accepted: 08/09/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Khat is a plant with psychostimulant properties whose parts, mainly leaves and twigs, are chewed for its euphoriant effects. Khat use and ethanol abuse are increasingly becoming global health concerns especially among many disadvantaged social groups. The present studies were undertaken to investigate seizure susceptibility and responses following chronic co-administration of khat and ethanol. MATERIALS AND METHODS Juvenile male Sprague-Dawley (SD) rats were administered khat, ethanol or combined khat and ethanol twice daily for 28 days by gavage. Khat-treated animals received 2 g/kg or 4 g/kg body weight continuously for the study period. Ethanol-treated animals received 20% ethanol at a dose of 4 g/kg body weight. The convulsant, pentylenetetrazol (PTZ), was administered intraperitoneally at a dose of 40 mg/kg body weight. Seizure responses were recorded. RESULTS Twice-daily dosing of khat did not produce inhibition of weight gain. Khat alone, combined khat and 20% ethanol, but not 20% ethanol alone, significantly reduced the latency to seize. Khat treatment at 2 g/kg but not 4 g/kg body weight also significantly increased the duration of seizures. Conversely, combined khat and ethanol reduced the duration of seizures compared to controls. Ethanol alone reduced the seizure severity while khat alone, and combined khat and ethanol, produced close to the maximum seizure severity. CONCLUSIONS These data suggest that combined moderate to high dose khat and ethanol co-dependence produce a greater deleterious CNS effect than either drug alone. Future studies will address neurochemical effects, in addition to neuroadaptations, resulting from coabuse of these drugs.
Collapse
Affiliation(s)
- Paul E Alele
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, PO Box 1410, Mbarara, Uganda.
| | | |
Collapse
|
23
|
Robertson CR, Flynn SP, White HS, Bulaj G. Anticonvulsant neuropeptides as drug leads for neurological diseases. Nat Prod Rep 2011; 28:741-62. [PMID: 21340067 DOI: 10.1039/c0np00048e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anticonvulsant neuropeptides are best known for their ability to suppress seizures and modulate pain pathways. Galanin, neuropeptide Y, somatostatin, neurotensin, dynorphin, among others, have been validated as potential first-in-class anti-epileptic or/and analgesic compounds in animal models of epilepsy and pain, but their therapeutic potential extends to other neurological indications, including neurodegenerative and psychatric disorders. Disease-modifying properties of neuropeptides make them even more attractive templates for developing new-generation neurotherapeutics. Arguably, efforts to transform this class of neuropeptides into drugs have been limited compared to those for other bioactive peptides. Key challenges in developing neuropeptide-based anticonvulsants are: to engineer optimal receptor-subtype selectivity, to improve metabolic stability and to enhance their bioavailability, including penetration across the blood–brain barrier (BBB). Here, we summarize advances toward developing systemically active and CNS-penetrant neuropeptide analogs. Two main objectives of this review are: (1) to provide an overview of structural and pharmacological properties for selected anticonvulsant neuropeptides and their analogs and (2) to encourage broader efforts to convert these endogenous natural products into drug leads for pain, epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Charles R Robertson
- College of Pharmacy, Department of Medicinal Chemistry, 421 Wakara Way, STE. 360 Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
24
|
Boison D. Cell and gene therapies for refractory epilepsy. Curr Neuropharmacol 2010; 5:115-25. [PMID: 18615179 DOI: 10.2174/157015907780866938] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 12/20/2022] Open
Abstract
Despite recent advances in the development of antiepileptic drugs, refractory epilepsy remains a major clinical problem affecting up to 35% of patients with partial epilepsy. Currently, there are few therapies that affect the underlying disease process. Therefore, novel therapeutic concepts are urgently needed. The recent development of experimental cell and gene therapies may offer several advantages compared to conventional systemic pharmacotherapy: (i) Specificity to underlying pathogenetic mechanisms by rational design; (ii) specificity to epileptogenic networks by focal delivery; and (iii) avoidance of side effects. A number of naturally occurring brain substances, such as GABA, adenosine, and the neuropeptides galanin and neuropeptide Y, may function as endogenous anticonvulsants and, in addition, may interact with the process of epileptogenesis. Unfortunately, the systemic application of these compounds is compromised by limited bioavailability, poor penetration of the blood-brain barrier, or the widespread systemic distribution of their respective receptors. Therefore, in recent years a new field of cell and gene-based neuropharmacology has emerged, aimed at either delivering endogenous anticonvulsant compounds by focal intracerebral transplantation of bioengineered cells (ex vivo gene therapy), or by inducing epileptogenic brain areas to produce these compounds in situ (in vivo gene therapy). In this review, recent efforts to develop GABA-, adenosine-, galanin-, and neuropeptide Y- based cell and gene therapies are discussed. The neurochemical rationales for using these compounds are discussed, the advantages of focal applications are highlighted and preclinical cell transplantation and gene therapy studies are critically evaluated. Although many promising data have been generated recently, potential problems, such as long-term therapeutic efficacy, long-term safety, and efficacy in clinically relevant animal models, need to be addressed before clinical applications can be contemplated.
Collapse
Affiliation(s)
- Detlev Boison
- RS Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA.
| |
Collapse
|
25
|
Abstract
Febrile convulsion (FC) is the most common neurological disease in children. Cases with seizures that persist for more than 15 minutes or recurrent seizures within the same febrile illness are considered to be atypical and may have a different prognosis. Neuropeptide Y (NPY), an endogenous anticonvulsant that is widely distributed throughout the central nervous system, including the hippocampus, is known to prevent seizures by increasing the seizure threshold. Based on our previously finding that patients with atypical FC have lower concentrations of NPY, we hypothesized that the concentration of NPY may play a role in the development of atypical FC. To investigate this hypothesis, we used a radioimmunoassay to measure the plasma NPY concentration of 60 children with FC (typical FC, n = 46; atypical FC, n = 14) and 56 age-matched controls. The atypical FC group had significantly lower concentrations of NPY than children with typical FC and controls (66.47 +/- 19.11 pmol/L vs. 88.68 +/- 28.50 pmol/L and 86.82 +/- 22.66 pmol/L, respectively). Very low NPY levels were found in two patients; one patient (NPY level: 44.75 pmol/L) experienced prolonged seizures lasting for up to 1 hour and the other had recurrent seizures (three seizures) during the same febrile illness (NPY level: 33.53 pmol/L). These results suggest that patients with inadequate NPY inhibitory activity are more susceptible to atypical FC.
Collapse
|
26
|
Olling JD, Ulrichsen J, Correll M, Woldbye DPD. Gene expression in the neuropeptide Y system during ethanol withdrawal kindling in rats. Alcohol Clin Exp Res 2009; 34:462-70. [PMID: 20028355 DOI: 10.1111/j.1530-0277.2009.01110.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Multiple episodes of ethanol intoxication and withdrawal result in progressive, irreversible intensification of the withdrawal reaction, a process termed "ethanol withdrawal kindling." Previous studies show that a single episode of chronic ethanol intoxication and withdrawal causes prominent changes in neuropeptide Y (NPY) and its receptors that have been implicated in regulating withdrawal hyperexcitability. This study for the first time examined the NPY system during ethanol withdrawal kindling. METHODS Ethanol withdrawal kindling was studied in rats receiving 16 episodes of 2 days of chronic ethanol intoxication by intragastric intubations followed by 5 days withdrawal. The study included 6 groups: 4 multiple withdrawal episode (MW) groups [peak withdrawal plus (MW+)/minus (MW-) seizures, 3-day (MW3d), and 1-month (MW1mth) withdrawal], a single withdrawal episode group (SW), and an isocalorically fed control group. Gene expression of NPY and its receptors Y1, Y2, and Y5 was studied in the hippocampal dentate gyrus (DG) and CA3/CA1, as well as piriform cortex (PirCx), and neocortex (NeoCx). RESULTS MW+/- as well as SW groups showed decreased NPY gene expression in all hippocampal areas compared with controls, but, in the DG and CA3, decreases were significantly smaller in the MW- group compared with the SW group. In the MW+/- and SW groups, Y1, Y2, and Y5 mRNA levels were decreased in most brain areas compared with controls; however, decreases in Y1 and Y5 mRNA were augmented in the MW+/- groups compared with the SW group. The MW+ group differed from the MW- group in the PirCx, where Y2 gene expression was significantly higher. CONCLUSION Multiple withdrawal episodes reversibly decreased NPY and NPY receptor mRNA levels at peak withdrawal, with smaller decreases in NPY mRNA levels and augmented decreases in Y1/Y5 mRNA levels compared with a SW episode. Multiple withdrawal-induced seizures increased the Y2 mRNA levels in PirCx. These complex changes in NPY system gene expression could play a role in the ethanol withdrawal kindling process.
Collapse
Affiliation(s)
- Janne D Olling
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen & University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | | |
Collapse
|
27
|
Peier A, Kosinski J, Cox-York K, Qian Y, Desai K, Feng Y, Trivedi P, Hastings N, Marsh DJ. The antiobesity effects of centrally administered neuromedin U and neuromedin S are mediated predominantly by the neuromedin U receptor 2 (NMUR2). Endocrinology 2009; 150:3101-9. [PMID: 19324999 PMCID: PMC2703546 DOI: 10.1210/en.2008-1772] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuromedin U (NMU) and neuromedin S (NMS) are structurally related neuropeptides that have been reported to modulate energy homeostasis. Pharmacological data have shown that NMU and NMS inhibit food intake when administered centrally and that NMU increases energy expenditure. Additionally, NMU-deficient mice develop obesity, whereas transgenic mice overexpressing NMU are lean and hypophagic. Two high-affinity NMU/NMS receptors, NMUR1 and NMUR2, have been identified. NMUR1 is predominantly expressed in the periphery, whereas NMUR2 is predominantly expressed in the brain, suggesting that the effects of centrally administered NMU and NMS are mediated by NMUR2. To evaluate the role of NMUR2 in the regulation of energy homeostasis, we characterized NMUR2-deficient (Nmur2(-/-)) mice. Nmur2(-/-) mice exhibited a modest resistance to diet-induced obesity that was at least in part due to reduced food intake. Acute central administration of NMU and NMS reduced food intake in wild-type but not in Nmur2(-/-) mice. The effects on activity and core temperature induced by centrally administered NMU were also absent in Nmur2(-/-) mice. Moreover, chronic central administration of NMU and NMS evoked significant reductions in body weight and sustained reductions in food intake in mice. In contrast, Nmur2(-/-) mice were largely resistant to these effects. Collectively, these data demonstrate that the anorectic and weight-reducing actions of centrally administered NMU and NMS are mediated predominantly by NMUR2, suggesting that NMUR2-selective agonists may be useful for the treatment of obesity.
Collapse
Affiliation(s)
- Andrea Peier
- Merck Research Laboratories, Department of Metabolic Disorders, 126 East Lincoln Avenue, RY80L-126, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Smiałowska M, Domin H, Zieba B, Koźniewska E, Michalik R, Piotrowski P, Kajta M. Neuroprotective effects of neuropeptide Y-Y2 and Y5 receptor agonists in vitro and in vivo. Neuropeptides 2009; 43:235-49. [PMID: 19318226 DOI: 10.1016/j.npep.2009.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 11/15/2022]
Abstract
It is generally assumed that neurodegeneration is connected with glutamatergic hyperactivity, and that neuropeptide Y (NPY) inhibits glutamate release. Some earlier studies indicated that NPY may have neuroprotective effect; however, the results obtained so far are still divergent, and the role of different Y receptors remains unclear. Therefore in the presented study we investigated the neuroprotective potential of NPY and its Y2, Y5 or Y1 receptor (R) ligands against the kainate (KA)-induced excitotoxicity in neuronal cultures in vitro, as well as in vivo after intrahippocampal KA injection and also in an ischemic middle cerebral artery occlusion model after intraventricular injection of Y2R agonist. NPY compounds were applicated 30 min, 1, 3 or 6 h after the start of the exposure to KA, or 30 min after the onset of ischemia. Our results indicate the neuroprotective activity of NPY and its Y2R and Y5R ligands against the kainate-induced excitotoxicity in primary cortical and hippocampal cultures. Importantly, NPY was effective when given as late as 6 h, while Y2R or Y5R agonists 3 h, after starting the exposure to KA. In in vitro studies those protective effects were inhibited by the respective receptor antagonists. Neuroprotection was also observed in vivo after intrahippocampal injection of Y2R and Y5R agonists 30 min or 1 h after KA. No protection was found either in vitro or in vivo after the Y1R agonist. The Y2R agonist also showed neuroprotective activity in the ischemic model. The obtained results indicate that neuropeptide Y produces neuroprotective effect via Y2 and Y5 receptors, and that the compounds may be effective after delayed application.
Collapse
Affiliation(s)
- Maria Smiałowska
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Osberg S, Melien O, Taubøll E, Gjerstad L. G protein beta3 subunit C825T polymorphism modifies the presentation of temporal lobe epilepsy. Acta Neurol Scand 2008; 188:62-6. [PMID: 18439224 DOI: 10.1111/j.1600-0404.2008.01034.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Experimental studies suggest a role of G protein-mediated signaling pathways in epileptogenesis. A genetic variation affecting the G protein subunit Gbeta3 denoted the C825T polymorphism has been reported to increase the signaling efficiency through G(i) proteins and to modify responses to certain drugs. The C825T polymorphism has also been associated with several diseases including hypertension, diabetes type II, obesity, and major depressive disorder. In this study, we have explored whether the G protein polymorphism C825T is associated with or influences temporal lobe epilepsy (TLE). METHODS The study included 227 TLE patients, 186 controls, and 106 family members of TLE patients. DNA was extracted from blood samples and typing of the polymorphism was performed. Case record forms were analyzed for all the homozygote TLE patients and homozygote controls, i.e., carrying the TT genotype as well as for 28 matched TLE patients (16 females, 12 males) without the polymorphism (CC genotype). RESULTS Typing of the C825T polymorphism showed that 6.0% of the TLE patients, 7.0% of the controls, and 7.5% of the family members were homozygote for the polymorphism; i.e., carrying the TT genotype. TLE patients carrying the TT genotype had higher severity score on eight out of nine predefined parameters compared with the TLE patients without polymorphism, i.e., carrying CC genotype. TT genotype TLE patients also had increased body mass index, body weight, and waist circumference compared with the TLE patients carrying the CC genotype. There was no increased frequency of hypertension or diabetes. CONCLUSIONS There was no increased frequency of TLE between the carriers of the TT genotype compared with the healthy controls and/or family members without epilepsy. However, the TLE patients with the TT genotype showed tendencies of a more severe disease phenotype.
Collapse
Affiliation(s)
- S Osberg
- Department of Neurology, Division of Clinical Neuroscience, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | |
Collapse
|
30
|
Lin L, Lin H, Yang R. Neuropeptide Y gene polymorphism and plasma neuropeptide Y level in febrile seizure patients in Taiwan. Kaohsiung J Med Sci 2007; 23:560-5. [PMID: 18055304 PMCID: PMC11917944 DOI: 10.1016/s1607-551x(08)70003-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 04/25/2007] [Indexed: 11/23/2022] Open
Abstract
Neuropeptide Y (NPY) has been shown to depress the hyperexcitability of neurons. In the present study, we investigated the association between the nucleotide (nt) 5671 C/T polymorphism of the NPY gene and the plasma NPY level in patients with febrile seizures (FS). Fifty-six patients with FS and 55 control subjects were enrolled. Genotype and allele frequencies were compared. The frequencies of genotypes TT, TC and CC for the NPY gene nt 5671 C/T polymorphism were 21.4%, 28.6% and 50.0%, respectively, in patients with FS, and 14.6%, 40.0% and 45.4%, respectively, in control subjects. The frequencies of alleles T and C were 35.7% and 64.3%, respectively, in patients with FS, while those in the control group were 34.5% and 65.5%, respectively. We found no significant relationship between the NPY gene nt 5671 C/T polymorphism and FS. The plasma NPY concentrations of the FS group, the age-matched non-FS group, and subjects aged > 6 years in the non-FS group were 48.23 +/- 32.49, 55.36 +/- 23.12, and 70.10 +/- 60.31 pg/mL, respectively. These results indicate no statistical difference in plasma NPY concentration between FS patients and the non-FS group. However, plasma NPY concentration was found to increase significantly with age.
Collapse
Affiliation(s)
- Lung‐Chang Lin
- Department of Pediatrics, Kaohsiung Municipal Hsiao‐Kang Hospital, Kaohsiung, Taiwan
| | - Hung‐Shun Lin
- Clinical Laboratory, Kaohsiung Municipal Hsiao‐Kang Hospital, Kaohsiung, Taiwan
| | - Rei‐Cheng Yang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Physiology, Graduate Institute of Physiology and Molecular Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Abstract
We briefly survey the current knowledge and concepts regarding structure and function of the neuropeptide Y Y2 receptor and its agonists, especially as related to pharmacology of the receptor and its roles in pathological processes. Specific structural features are considered that could be responsible for the known compartmentalization and participation of the receptor in cell and tissue organization. This is further discussed in relation to changes of levels of the Y2 receptor in pathological conditions (especially in epilepsy and drug abuse), to endocytosis and recycling, and to participation in wound healing, retinopathy and angiogenesis. Properties of the receptor and of Y2 agonists are considered and reviewed in connection to the negative regulation of transmitter release, feeding, mood and social behavior. The possible involvement of the Y2 receptor in diabetes, carcinogenesis and bone formation is also reviewed.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | |
Collapse
|
32
|
Ishida H, Shirayama Y, Iwata M, Katayama S, Yamamoto A, Kawahara R, Nakagome K. Infusion of neuropeptide Y into CA3 region of hippocampus produces antidepressant-like effect via Y1 receptor. Hippocampus 2007; 17:271-80. [PMID: 17265460 DOI: 10.1002/hipo.20264] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A couple of papers indicate that patients with depression show a decrease in serum neuropeptide Y (NPY). To study the role of NPY in depression, we examined the effects of infusion of NPY into the hippocampus of learned helplessness (LH) rats (an animal model of depression). Infusion of NPY into the cerebral ventricle of LH rats showed antidepressant-like effects. Infusion of NPY into the CA3 region, but not the dentate gyrus (DG), produced antidepressant-like effects in the LH paradigm. Infusion of NPY did not affect locomotor activity or aversive learning ability. Coadministration of BIBO3304 (a Y1 receptor antagonist) with NPY to the CA3 region blocked the antidepressant-like effects of NPY, whereas coadministration of NPY with BIIE0246 (a Y2 receptor antagonist) to the CA3 region failed to block antidepressant-like effects. Furthermore, infusions of [Leu(31) Pro(34)]PYY (a Y1 and Y5 receptor agonist) alone and BIIE0246 alone into the CA3 region produced the antidepressant-like effects in LH rats. These results suggest that infusion of NPY into the CA3 region of hippocampus of LH rats produces antidepressant-like activity through Y1 receptors and attenuating effects through Y2 receptors.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Avoidance Learning/drug effects
- Behavior, Animal
- Benzazepines/pharmacology
- Depression/drug therapy
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Interactions
- Exploratory Behavior/drug effects
- Helplessness, Learned
- Hippocampus/drug effects
- Hippocampus/physiology
- Injections, Intraventricular/methods
- Male
- Neuropeptide Y/pharmacology
- Neuropeptide Y/therapeutic use
- Peptide YY/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/physiology
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/physiology
Collapse
Affiliation(s)
- Hisahito Ishida
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Baraban SC, Dinday MT, Castro PA, Chege S, Guyenet S, Taylor MR. A large-scale mutagenesis screen to identify seizure-resistant zebrafish. Epilepsia 2007; 48:1151-7. [PMID: 17521353 PMCID: PMC2211740 DOI: 10.1111/j.1528-1167.2007.01075.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Zebrafish are a vertebrate organism ideally suited to mutagenesis screening strategies. Although a genetic basis for seizure susceptibility and epilepsy is well established, no efforts have been made to study seizure resistance. Here we describe a novel strategy to isolate seizure-resistant zebrafish mutants from a large-scale mutagenesis screen. METHODS Seizures were induced with pentylenetetrazole (PTZ). Zebrafish were analyzed between 3 and 7 days postfertilization (dpf). Genome mutations were induced in founders by using N-ethyl-nitrosourea (ENU). Seizure behavior was monitored by using a high-speed camera and quantified by locomotion-tracking software. Electrographic activity was monitored by using a field-recording electrode placed in the optic tectum of agar-immobilized zebrafish. RESULTS Short-term PTZ exposure elicited a burst-suppression seizure pattern in 3-dpf zebrafish and more complex activity consisting of interictal- and ictal-like discharges at 7 dpf. Prolonged exposure to PTZ induced status epilepticus-like seizure activity and fatality in wild-type zebrafish larvae. With a PTZ survival assay at 6-7 dpf, we identified six zebrafish mutants in a forward-genetic screen covering nearly 2,000 F(2) families. One mutant (s334) also was shown to exhibit reduced behavioral activity on short-term PTZ exposure and an inability to generate long-duration ictal-like discharge. CONCLUSIONS Zebrafish offers a powerful tool for the identification and study of a genetic basis for seizure resistance.
Collapse
Affiliation(s)
- Scott C Baraban
- Epilepsy Research Laboratory in the Department of Neurological Surgery, University of California, San Francisco, California 94143, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Morris MJ, Gannan E, Stroud LM, Beck-Sickinger AG, O'Brien TJ. Neuropeptide Y suppresses absence seizures in a genetic rat model primarily through effects on Y2 receptors. Eur J Neurosci 2007; 25:1136-43. [PMID: 17331209 DOI: 10.1111/j.1460-9568.2007.05348.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropeptide Y (NPY) potently suppresses absence seizures in a model of genetic generalized epilepsy, genetic absence epilepsy rats of Strasbourg (GAERS). Here we investigated the Y-receptor subtype(s) on which NPY exerts this anti-absence effect. A dual in vivo approach was used: the cumulative duration of seizures was quantified in adult male GAERS in 90-min electroencephalogram recordings following intracerebroventricular (i.c.v.) injection of: (i) subtype-selective agonists of Y1 ([Leu31Pro34]NPY, 2.5 nmol), Y2 (Ac[Leu(28,31)]NPY24-36, 3 nmol), Y5 receptors [hPP1(-17),Ala31,Aib32]NPY, 4 nmol), NPY (3 nmol) or vehicle; and following (ii) i.c.v. injection of antagonists of Y1 (BIBP3226, 20 nmol), Y2 (BIIE0246, 20 nmol) and Y5 (NPY5RA972, 20 nmol) receptors or vehicle, followed by NPY (3 nmol). Injection of the Y1- and Y5-selective agonists resulted in significantly less mean seizure suppression (37.4% and 53.9%, respectively) than NPY (83.2%; P < 0.05), while the Y2 agonist had similar effects to NPY (62.3% suppression, P = 0.57). Food intake was not increased following injection of the Y2 agonist, while significant increases in food intake were seen following NPY and the other Y-subtype agonists. Compared with vehicle, NPY injection suppressed seizures following the Y1 and Y5 antagonists (45.3% and 80.1%, respectively, P < 0.05), but not following the Y2 antagonist (5.1% suppression, P = 0.46). We conclude that NPY Y2 receptors are more important than Y1 and Y5 receptors in mediating the effect of NPY to suppress absence seizures in a genetic rat model. Y2 receptor agonists may represent targets for novel drugs against genetic generalized epilepsies without resulting in appetite stimulation.
Collapse
Affiliation(s)
- Margaret J Morris
- Department of Physiology and Pharmacology, University of New South Wales, Kensington, New South Wales, Australia, 2052.
| | | | | | | | | |
Collapse
|
35
|
Jaffe DB, Gutiérrez R. Mossy fiber synaptic transmission: communication from the dentate gyrus to area CA3. PROGRESS IN BRAIN RESEARCH 2007; 163:109-32. [PMID: 17765714 DOI: 10.1016/s0079-6123(07)63006-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Communication between the dentate gyrus (DG) and area CA3 of the hippocampus proper is transmitted via axons of granule cells--the mossy fiber (MF) pathway. In this review we discuss and compare the properties of transmitter release from the MFs onto pyramidal neurons and interneurons. An examination of the anatomical connectivity from DG to CA3 reveals a surprising interplay between excitation and inhibition for this circuit. In this respect it is particularly relevant that the major targets of the MFs are interneurons and that the consequence of MF input into CA3 may be inhibitory or excitatory, conditionally dependent on the frequency of input and modulatory regulation. This is further complicated by the properties of transmitter release from the MFs where a large number of co-localized transmitters, including GABAergic inhibitory transmitter release, and the effects of presynaptic modulation finely tune transmitter release. A picture emerges that extends beyond the hypothesis that the MFs are simply "detonators" of CA3 pyramidal neurons; the properties of synaptic information flow from the DG have more subtle and complex influences on the CA3 network.
Collapse
Affiliation(s)
- David B Jaffe
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
36
|
Alele PE, Devaud LL. Sex differences in steroid modulation of ethanol withdrawal in male and female rats. J Pharmacol Exp Ther 2007; 320:427-36. [PMID: 17021261 DOI: 10.1124/jpet.106.107896] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the actions of the neuroactive steroid, pregnanolone [corrected] and the ovarian steroid, 17beta-estradiol, on seizure expression during two time points of ethanol withdrawal (EW). Both steroids can exert rapid, nongenomic actions on the brain that include modulation of seizure activity. Because their basal levels differ in adult males and females and a major symptom of EW is increased seizure risk, we wanted to determine whether these steroids were anticonvulsant during EW. Rats were made ethanol-dependent by administration of 6% ethanol in a nutritionally complete liquid diet for 14 days. After removal of the ethanol-containing diet, EW and paired control rats were tested at 1 or 3 days for seizure responses to pentylenetetrazol. Consistent with previous reports, females seemed to have recovered from EW more quickly than males. We observed significant sex differences in responses to the steroids, primarily at 3 days EW. Pregnanolone afforded protection against seizures with larger effects during EW than in control conditions and greater effects in female than male rats. In contrast, effects of estradiol were mixed. Some responses of ovariectomized female rats were similar to intact females, whereas other responses were more similar to males. Our behavioral findings are consistent with observed EW-induced changes in plasma corticosterone levels, showing persistent elevations in male but not female rats. These results support and extend earlier findings suggesting that although the hormonal milieu influences EW, innate differences in brain structure between the sexes also contribute to sex differences in EW.
Collapse
Affiliation(s)
- P E Alele
- Department of Pharmaceutical Sciences, Idaho State University, Stop 8334, Pocatello, ID 83209-8334, USA
| | | |
Collapse
|
37
|
Silva AP, Lourenço J, Xapelli S, Ferreira R, Kristiansen H, Woldbye DPD, Oliveira CR, Malva JO. Protein kinase C activity blocks neuropeptide Y-mediated inhibition of glutamate release and contributes to excitability of the hippocampus in status epilepticus. FASEB J 2006; 21:671-81. [PMID: 17167071 DOI: 10.1096/fj.06-6163com] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The unbalanced excitatory/inhibitory neurotransmitter function in the neuronal network afflicted by seizures is the main biochemical and biophysical hallmark of epilepsy. The aim of this work was to identify changes in the signaling mechanisms associated with neuropeptide Y (NPY)-mediated inhibition of glutamate release that may contribute to hyperexcitability. Using isolated rat hippocampal nerve terminals, we showed that the KCl-evoked glutamate release is inhibited by NPY Y2 receptor activation and is potentiated by the stimulation of protein kinase C (PKC). Moreover, we observed that immediately after status epilepticus (6 h postinjection with kainate, 10 mg/kg), the functional inhibition of glutamate release by NPY Y2 receptors was transiently blocked concomitantly with PKC hyperactivation. The pharmacological blockade of seizure-activated PKC revealed again the Y2 receptor-mediated inhibition of glutamate release. The functional activity of PKC immediately after status epilepticus was assessed by evaluating phosphorylation of the AMPA receptor subunit GluR1 (Ser-831), a substrate for PKC. Moreover, NPY-stimulated [35S]GTPgammaS autoradiographic binding studies indicated that the common target for Y2 receptor and PKC on the inhibition/potentiation of glutamate release was located downstream of the Y2 receptor, or its interacting G-protein, and involves voltage-gated calcium channels.
Collapse
Affiliation(s)
- Ana P Silva
- Institute of Pharmacology and Therapeutics, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lin EJD, Young D, Baer K, Herzog H, During MJ. Differential actions of NPY on seizure modulation via Y1 and Y2 receptors: evidence from receptor knockout mice. Epilepsia 2006; 47:773-80. [PMID: 16650144 DOI: 10.1111/j.1528-1167.2006.00500.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Neuropeptide Y (NPY) has been shown to modulate seizure activities. To provide further understanding of the involvement of two of the most abundantly expressed NPY receptors, Y1 and Y2, we assessed the effect of Y1 and Y2 gene deletion on systemic kainic acid-induced seizures. We also examined the effect of rAAV-mediated hippocampal NPY overexpression on seizure susceptibility in these receptor knockout mice. METHODS Recombinant adeno-associated viral vector overexpressing NPY (rAAV-NPY) or an empty vector control (rAAV-Empty) was injected into the hippocampus of adult C57BL/6-129/SvJ wild-type male mice and mice deficient of Y1 or Y2 receptors on the same background. Four weeks after vector injection, mice were subjected to systemic kainic acid-induced seizures, and the seizure behaviors were scored. RESULTS The rAAV-mediated hippocampal overexpression of NPY led to a twofold reduction in seizures induced by systemic kainic acid in wild-type mice and Y1 receptor knockout mice but not in mice deficient of Y2 receptors. A differential action by the receptors was observed in the seizure-induced mortality rate, with increased fatality in Y2-/- mice. In addition, although NPY overexpression did not significantly affect the mortality rate in Y2-/- and wild-type mice, it abolished KA-induced mortality in Y1-/-mice. CONCLUSIONS This study shows for the first time an altered susceptibility to chemically induced seizures in Y1 and Y2 knockout mice and demonstrates a differential seizure modulation mediated by these receptors via a genetic approach.
Collapse
Affiliation(s)
- En-Ju Deborah Lin
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
39
|
Balasubramaniam A, Mullins DE, Lin S, Zhai W, Tao Z, Dhawan VC, Guzzi M, Knittel JJ, Slack K, Herzog H, Parker EM. Neuropeptide Y (NPY) Y4 receptor selective agonists based on NPY(32-36): development of an anorectic Y4 receptor selective agonist with picomolar affinity. J Med Chem 2006; 49:2661-5. [PMID: 16610810 DOI: 10.1021/jm050907d] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown [Cys-Trp-Arg-Nva-Arg-Tyr-NH(2)](2), 1, to be a moderately selective neuropeptide Y (NPY) Y(4) receptor agonist. Toward improving the selectivity and potency for Y(4) receptors, we studied the effects of dimerizing H-Trp-Arg-Nva-Arg-Tyr-NH(2) using various diamino-dicarboxylic acids containing either di-, tri-, or tetramethylene spacers. These parallel dimers, 2A, 2B, 3, 4A, and 4B, and the corresponding linear tandem dimer and trimer analogues, 5 and 6, had enhanced selectivity and affinity for Y(4) receptors compared to 1 (Table 1). Substitution of Trp and Nva with Tyr and Leu, respectively, as in 2,7-d/l-diaminosuberic acid derivatized dimer, 7, resulted in a superior Y(4) selective agonist with picomolar affinity. Intraperitoneal (ip) injection of 7 potently inhibited food intake in fasted mice. Moreover, 7 (ip) inhibited the food intake in wild-type mice and not in Y(4)(-/-) knock-out mice, confirming that the actions of 7 on food intake are not due to global effects, but specifically mediated Y(4) receptors.
Collapse
Affiliation(s)
- Ambikaipakan Balasubramaniam
- Division of Gastrointestinal Hormones, Department of Surgery and Interdisciplinary Neurosciences Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kakui N, Tanaka J, Tabata Y, Asai K, Masuda N, Miyara T, Nakatani Y, Ohsawa F, Nishikawa N, Sugai M, Suzuki M, Aoki K, Kitaguchi H. Pharmacological characterization and feeding-suppressive property of FMS586 [3-(5,6,7,8-tetrahydro-9-isopropyl-carbazol-3-yl)-1-methyl-1-(2-pyridin-4-yl-ethyl)-urea hydrochloride], a novel, selective, and orally active antagonist for neuropeptide Y Y5 receptor. J Pharmacol Exp Ther 2006; 317:562-70. [PMID: 16436501 DOI: 10.1124/jpet.105.099705] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We evaluated the pharmacological profiles of FMS586 [3-(5,6,7,8-tetrahydro-9-isopropyl-carbazol-3-yl)-1-methyl-1-(2-pyridin-4-yl-ethyl)-urea hydrochloride], a novel tetrahydrocarbazole derivative as a neuropeptide Y (NPY) Y5 receptor antagonist. This compound showed a highly selective in vitro affinity for Y5 (IC(50) = 4.3 +/- 0.4 nM) relative to other NPY receptor subtypes like Y1 or Y2. Its binding to Y5 was found to be fully antagonistic from cyclic AMP accumulation assays in human embryonic kidney 293 cells. Pharmacokinetic analysis revealed sufficient oral availability and brain permeability of this compound accompanied with clear dose relation. We attempted to assess the selectivity of FMS586 and, thereby, to infer the physiological role of Y5 in the following feeding experiments in normal rats. An intracerebroventricular injection of NPY and Y5-selective agonist peptide induced acute and robust feeding responses in satiated rats, and prior administration of FMS586 at the doses from 25 to 100 mg/kg clearly inhibited these responses by approximately 55 and 90%, respectively. This compound also showed dose-dependent but transient suppression in natural feeding models of both overnight fasting-induced hyperphagia and spontaneous daily intake. FMS586 did not modulate food intake induced by the topical injection of norepinephrine, galanin, or gamma-aminobutyric acid receptor agonist muscimol to the paraventricular nucleus. In addition, we confirmed the Y5-specific activity profile of FMS586 by immunohistochemical analysis. Taken together, we propose not only that our compound potentially expresses specific blockade of central Y5 signals but also that Y5 receptor would certainly contribute to physiological regulation of food intake in normal rats, as suggested from its origin.
Collapse
Affiliation(s)
- Nobukazu Kakui
- Pharmaceutical Research Department, Meiji Seika Kaisha, Ltd., 760, Moro-oka-cho, Kohoku-ku, Yokohama 222-8567, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Stanić D, Brumovsky P, Fetissov S, Shuster S, Herzog H, Hökfelt T. Characterization of neuropeptide Y2 receptor protein expression in the mouse brain. I. Distribution in cell bodies and nerve terminals. J Comp Neurol 2006; 499:357-90. [PMID: 16998904 DOI: 10.1002/cne.21046] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuropeptide Y (NPY), a 36-amino-acid peptide, mediates biological effects by activating Y1, Y2, Y5, and y6 receptors. NPY neurons innervate many brain regions, including the hypothalamus, where NPY is involved in regulation of a broad range of homeostatic functions. We examined, by immunohistochemistry with tyramide signal amplification, the expression of the NPY Y2 receptor (Y2R) in the mouse brain with a newly developed rabbit polyclonal antibody. Y2R immunoreactivity was specific with its absence in Y2R knockout (KO) mice and in adjacent sections following preadsorption with the immunogenic peptide (10(-5) M). Y2R-positive processes were located in many brain regions, including the olfactory bulb, some cortical areas, septum, basal forebrain, nucleus accumbens, amygdala, hippocampus, hypothalamus, substantia nigra compacta, locus coeruleus, and solitary tract nucleus. However, colchicine treatment was needed to detect Y2R-like immunoreactivity in cell bodies in many, but not all, areas. The densest distributions of cell bodies were located in the septum basal forebrain, including the bed nucleus, and amygdala, with lower density in the anterior olfactory nucleus, nucleus accumbens, caudal striatum, CA1, CA2, and CA3 hippocampal fields, preoptic nuclei lateral hypothalamus, and A13 DA cells. The widespread distribution of Y2R-positive cell bodies and fibers suggests that NPY signaling through the Y2R is common in the mouse brain. Localization of the Y2R suggests that it is mostly presynaptic, a view supported by its frequent absence in cell bodies in the normal mouse and its dramatic increase in cell bodies of colchicine-treated mice.
Collapse
Affiliation(s)
- Davor Stanić
- Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
42
|
Ste Marie L, Luquet S, Cole TB, Palmiter RD. Modulation of neuropeptide Y expression in adult mice does not affect feeding. Proc Natl Acad Sci U S A 2005; 102:18632-7. [PMID: 16339312 PMCID: PMC1309050 DOI: 10.1073/pnas.0509240102] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite numerous experiments showing that administration of neuropeptide Y (NPY) to rodents stimulates feeding and obesity, whereas acute interference with NPY signaling disrupts feeding and promotes weight loss, NPY-null mice have essentially normal body weight regulation. These conflicting observations suggest that chronic lack of NPY during development may lead to compensatory changes that normalize regulation of food intake and energy expenditure in the absence of NPY. To test this idea, we used gene targeting to introduce a doxycycline (Dox)-regulated cassette into the Npy locus, such that NPY would be expressed until the mice were given Dox, which blocks transcription. Compared with wild-type mice, adult mice bearing this construct expressed approximately 4-fold more Npy mRNA, which fell to approximately 20% of control values within 3 days after treatment with Dox. NPY protein also fell approximately 20-fold, but the half-life of approximately 5 days was surprisingly long. The biological effectiveness of these manipulations was demonstrated by showing that overexpression of NPY protected against kainate-induced seizures. Mice chronically overexpressing NPY had normal body weight, and administration of Dox to these mice did not suppress feeding. Furthermore, the refeeding response of these mice after a fast was normal. We conclude that, if there is compensation for changes in NPY levels, then it occurs within the time it takes for Dox treatment to deplete NPY levels. These observations suggest that pharmacological inhibition of NPY signaling is unlikely to have long-lasting effects on body weight.
Collapse
Affiliation(s)
- Linda Ste Marie
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
43
|
El Bahh B, Balosso S, Hamilton T, Herzog H, Beck-Sickinger AG, Sperk G, Gehlert DR, Vezzani A, Colmers WF. The anti-epileptic actions of neuropeptide Y in the hippocampus are mediated by Y2 and not Y5 receptors. Eur J Neurosci 2005; 22:1417-30. [PMID: 16190896 DOI: 10.1111/j.1460-9568.2005.04338.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neuropeptide Y (NPY) potently inhibits glutamate release and seizure activity in rodent hippocampus in vitro and in vivo, but the nature of the receptor(s) mediating this action is controversial. In hippocampal slices from rats and several wild-type mice, a Y2-preferring agonist mimicked, and the Y2-specific antagonist BIIE0246 blocked, the NPY-mediated inhibition both of glutamatergic transmission and of epileptiform discharges in two different slice models of temporal lobe epilepsy, stimulus train-induced bursting (STIB) and 0-Mg2+ bursting. Whereas Y5 receptor-preferring agonists had small but significant effects in vitro, they were blocked by BIIE0246, and a Y5 receptor-specific antagonist did not affect responses to any agonist tested in any preparation. In slices from mice, NPY was without effect on evoked potentials or in either of the two slice seizure models. In vivo, intrahippocampal injections of Y2- or Y5-preferring agonists inhibited seizures caused by intrahippocampal kainate, but again the Y5 agonist effects were insensitive to a Y5 antagonist. Neither Y2- nor Y5-preferring agonists affected kainate seizures in mice. A Y5-specific antagonist did not displace the binding of two different NPY ligands in WT or mice, whereas all NPY binding was eliminated in the mouse. Thus, we show that Y2 receptors alone mediate all the anti-excitatory actions of NPY seen in the hippocampus, whereas our findings do not support a role for Y5 receptors either in vitro or in vivo. The results suggest that agonists targeting the Y2 receptor may be useful anticonvulsants.
Collapse
Affiliation(s)
- Bouchaïb El Bahh
- Department of Pharmacology, University of Alberta. Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Woldbye DPD, Nanobashvili A, Sørensen AT, Husum H, Bolwig TG, Sørensen G, Ernfors P, Kokaia M. Differential suppression of seizures via Y2 and Y5 neuropeptide Y receptors. Neurobiol Dis 2005; 20:760-72. [PMID: 15979311 DOI: 10.1016/j.nbd.2005.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2004] [Revised: 04/14/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022] Open
Abstract
Neuropeptide Y (NPY) prominently inhibits epileptic seizures in different animal models. The NPY receptors mediating this effect remain controversial partially due to lack of highly selective agonists and antagonists. To circumvent this problem, we used various NPY receptor knockout mice with the same genetic background and explored anti-epileptic action of NPY in vitro and in vivo. In Y2 (Y2-/-) and Y5 (Y5-/-) receptor knockouts, NPY partially inhibited 0 Mg2+-induced epileptiform activity in hippocampal slices. In contrast, in double knockouts (Y2Y5-/-), NPY had no effect, suggesting that in the hippocampus in vitro both receptors mediate anti-epileptiform action of NPY in an additive manner. Systemic kainate induced more severe seizures in Y5-/- and Y2Y5-/-, but not in Y2-/- mice, as compared to wild-type mice. Moreover, kainate seizures were aggravated by administration of the Y5 antagonist L-152,804 in wild-type mice. In Y5-/- mice, hippocampal kindling progressed faster, and afterdischarge durations were longer in amygdala, but not in hippocampus, as compared to wild-type controls. Taken together, these data suggest that, in mice, both Y2 and Y5 receptors regulate hippocampal seizures in vitro, while activation of Y5 receptors in extra-hippocampal regions reduces generalized seizures in vivo.
Collapse
Affiliation(s)
- David P D Woldbye
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A-11, Lund University Hospital, S-221 84 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Silva AP, Xapelli S, Pinheiro PS, Ferreira R, Lourenço J, Cristóvão A, Grouzmann E, Cavadas C, Oliveira CR, Malva JO. Up-regulation of neuropeptide Y levels and modulation of glutamate release through neuropeptide Y receptors in the hippocampus of kainate-induced epileptic rats. J Neurochem 2005; 93:163-70. [PMID: 15773916 DOI: 10.1111/j.1471-4159.2004.03005.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kainate-induced epilepsy has been shown to be associated with increased levels of neuropeptide Y (NPY) in the rat hippocampus. However, there is no information on how increased levels of this peptide might modulate excitation in kainate-induced epilepsy. In this work, we investigated the modulation of glutamate release by NPY receptors in hippocampal synaptosomes isolated from epileptic rats. In the acute phase of epilepsy, a transient decrease in the efficiency of NPY and selective NPY receptor agonists in inhibiting glutamate release was observed. Moreover, in the chronic epileptic hippocampus, a decrease in the efficiency of NPY and the Y(2) receptor agonist, NPY13-36, was also found. Simultaneously, we observed that the epileptic hippocampus expresses higher levels of NPY, which may account for an increased basal inhibition of glutamate release. Consistently, the blockade of Y(2) receptors increased KCl-evoked glutamate release, and there was an increase in Y(2) receptor mRNA levels 30 days after kainic acid injection, suggesting a basal effect of NPY through Y(2) receptors. Taken together, these results indicate that an increased function of the NPY modulatory system in the epileptic hippocampus may contribute to basal inhibition of glutamate release and control hyperexcitability.
Collapse
Affiliation(s)
- Ana P Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Benmaamar R, Richichi C, Gobbi M, Daniels AJ, Beck-Sickinger AG, Vezzani A. Neuropeptide Y Y5 receptors inhibit kindling acquisition in rats. ACTA ACUST UNITED AC 2005; 125:79-83. [PMID: 15582717 DOI: 10.1016/j.regpep.2004.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/15/2004] [Accepted: 07/26/2004] [Indexed: 11/27/2022]
Abstract
Neuropeptide Y inhibits neuronal excitability and seizures in various experimental models. This peptide delays kindling epileptogenesis but the receptors involved in this action are unknown. We have studied the role of Y5 receptors in kindling using the selective antagonist GW438014A (IC50=210 nM), a small heterocycle molecule that crosses the blood-brain barrier, and the selective peptide agonist Ala31Aib34 NPY (IC50=6.0 nM). Intraperitoneal injection of GW438014A (10 mg/kg), 30 min before the beginning of a rapid-kindling protocol, significantly accelerated the rate of kindling acquisition as compared to vehicle-injected rats. Thus, the number of electrical stimuli required to reach stages 3 and 4-5 of kindling were reduced by 50% and 25%, respectively. The average afterdischarge duration in the stimulated hippocampus was prolonged by 2-fold. Conversely, kindling rate was delayed by intracerebroventricular administration of 24 nmol Ala31Aib32 NPY. Thus, the number of stimuli necessary to reach stages 2 and 3 of kindling was increased by 3- and 4-fold, respectively. During the stimulation protocol (40 stimuli) none of the rats treated with the Y5 agonist showed stages 4-5 seizures. Twenty-four hours after the last kindling stimulation, thus during the re-test session, Y5 agonist- or antagonist-treated rats had stages 4-5 seizures as their controls. In rats treated with both the antagonist and the agonist, kindling rate was similar to vehicle-injected rats. These data indicate that Y5 receptors mediate inhibitory effects of NPY in kindling and display anticonvulsant rather then antiepileptogenic effects upon agonist stimulation.
Collapse
Affiliation(s)
- R Benmaamar
- Laboratoire de Neuropharmacologie des Epilepsies, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
47
|
Wittmann W, Loacker S, Kapeller I, Herzog H, Schwarzer C. Y1-receptors regulate the expression of Y2-receptors in distinct mouse forebrain areas. Neuroscience 2005; 136:241-50. [PMID: 16198492 DOI: 10.1016/j.neuroscience.2005.07.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/27/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022]
Abstract
Y-receptor-knockout mice have become an important tool to elucidate specific physiological roles of individual Y-receptors. However, their phenotypes are not always confirmatory to results obtained by pharmacological investigations in vivo or in vitro. These discrepancies may, at least in part, be due to compensatory changes in the expression of remaining Y-receptor types. To determine whether deletion of individual Y-receptors results in altered mRNA expression and/or binding toward other Y-receptor types, we applied in-situ hybridization and radioligand-binding studies on brain slices of Npy1r-, Npy2r- or Npy5r-knockout mice. Significant changes were seen in Y1-receptor-deficient mice. Thus, Y2-receptor mRNA and (125)I-peptide YY(3-36) binding in the hippocampus proper were increased by up to 55% and 89%, respectively. Similar increases in (125)I-peptide YY(3-36) binding were observed in the caudo-dorsal extension of the lateral septum, an area heavily targeted by hippocampal projections and involved in Y1-receptor-regulated anxiety. Increased (125)I-peptide YY(3-36) binding and Y2-receptor mRNA levels were also observed in the medial amygdaloid nucleus. In contrast, (125)I-peptide YY(3-36) binding was reduced in the central amygdaloid nucleus. Y2-receptor mRNA in the intermediate part of the lateral septum was reduced by 42%. Only minimal changes were observed in Y2- or Y5-receptor-deficient mice. Our results demonstrate that compensatory changes in the expression of Y2-receptors occur in Y1-receptor-deficient mice. These adaptations are likely to contribute to changed physiological function. Thus, alterations in Y2-receptors have to be taken in account upon discussion of Y1-receptor function, especially in emotional aspects like anxiety and aggression, but also alcoholism.
Collapse
Affiliation(s)
- W Wittmann
- Institute of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
48
|
Abstract
AIM To investigate neuropeptide Y (NPY) expression in mouse hippocampus within early stages of kainic acid (KA) treatment and to understand its role in neuronal excitotoxicity. METHODS NPY expression in the hippocampus within early stages of KA intraperitoneal (ip) treatment was detected by immunohistochemistry (IHC) and in situ hybridization (ISH) methods. The role of NPY and Y5, Y2 receptors in excitotoxicity was analyzed by terminal deoxynucleotidyl transferase-mediated UTP nick end-labeling (TUNEL) assay. RESULTS Using IHC assay, in granule cell layer of the dentate gyrus (DG), NPY positive signals appeared 4 h after KA injection, reached the peak at 8 h and leveled off at 16 and 24 h. In CA3, no positive signal was found within the first 4 h after KA injection, but strong signal appeared at 16 and 24 h. No noticeable signal was detected in CA1 at all time points after KA injection. Using the ISH method, positive signals were detected at 4, 8, and 16 h in CA3, CA1, and hilus. In DG, much stronger ISH signals were detected at 4 h, but leveled off at 8 and 16 h. TUNEL analysis showed that intracerebroventricularly (icv) infusion of NPY and Y5, Y2 receptor agonists within 8 h after KA insult with proper dose could remarkably rescue pyramidal neurons in CA3 and CA1 from apoptosis. CONCLUSION NPY is an important anti-epileptic agent. The preceding elevated expression of NPY in granule cell layer of DG after KA injection might partially explain its different excitotoxicity-induced apoptotic responses in comparison with the pyramidal neurons from CA3 and CA1 regions. NPY can not only reduce neuronal excitability but also prevent excitotoxicity-induced neuronal apoptosis in a time- and dose-related way by activation of Y5 and Y2 receptors.
Collapse
Affiliation(s)
- Yong-fei Wu
- State Key Laboratory of Forensic Sciences, State Key Laboratory of Environment and Disease Related Genes, Xi'an Jiaotong University College of Medicine, Xi'an 710061, China
| | | |
Collapse
|
49
|
Mazarati A, Lu X, Shinmei S, Badie-Mahdavi H, Bartfai T. Patterns of seizures, hippocampal injury and neurogenesis in three models of status epilepticus in galanin receptor type 1 (GalR1) knockout mice. Neuroscience 2004; 128:431-41. [PMID: 15350653 PMCID: PMC1360211 DOI: 10.1016/j.neuroscience.2004.06.052] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2004] [Indexed: 11/26/2022]
Abstract
The neuropeptide galanin exhibits anticonvulsant effects in experimental epilepsy. Two galanin receptor subtypes, GalR1 and GalR2, are present in the brain. We examined the role of GalR1 in seizures by studying the susceptibility of GalR1 knockout (KO) mice to status epilepticus (SE) and accompanying neuronal injury. SE was induced in GalR1 KO and wild type (WT) mice by Li-pilocarpine, 60 min electrical perforant path stimulation (PPS), or systemic kainic acid (KA). Seizures were analyzed using Harmonie software. Cell injury was examined by FluoroJade B- and terminal deoxynucleotidyl transferase-mediated uridine triphosphate nick end labeling; neurogenesis was studied using bromodeoxyuridine labeling. Compared with WT littermates, GalR1 KO showed more severe seizures, more profound injury to the CA1 pyramidal cell layer, as well as injury to hilar interneurons and dentate granule cells upon Li-pilocarpine administration. PPS led to more severe seizures in KO, as compared with WT mice. No difference in the extent of neuronal degeneration was observed between the mice of two genotypes in CA1 pyramidal cell layer; however, in contrast to WT, GalR1 KO developed mild injury to hilar interneurons on the side of PPS. KA-induced seizures did not differ between GalR1 KO and WT animals, and led to no injury to the hippocampus in either of experimental group. No differences were found between KO and WT mice in both basal and seizure-induced neuronal progenitor proliferation in all seizure types. Li-pilocarpine led to more extensive glia proliferation in GalR1 KO than in WT, and in both mouse types in two other SE models. In conclusion, GalR1 mediate galanin protection from seizures and seizure-induced hippocampal injury in Li-pilocarpine and PPS models of limbic SE, but not under conditions of KA-induced seizures. The results justify the development and use of GalR1 agonists in the treatment of certain forms of epilepsy.
Collapse
Affiliation(s)
- A Mazarati
- West Los Angeles Veteran Administration Medical Center, Research 151, 11301 Wilshire Boulevard, CA 90073, USA.
| | | | | | | | | |
Collapse
|
50
|
Schöneberg T, Schulz A, Biebermann H, Hermsdorf T, Römpler H, Sangkuhl K. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 2004; 104:173-206. [PMID: 15556674 DOI: 10.1016/j.pharmthera.2004.08.008] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G-protein-coupled receptors (GPCR) are involved in directly and indirectly controlling an extraordinary variety of physiological functions. Their key roles in cellular communication have made them the target for more than 60% of all currently prescribed drugs. Mutations in GPCR can cause acquired and inherited diseases such as retinitis pigmentosa (RP), hypo- and hyperthyroidism, nephrogenic diabetes insipidus, several fertility disorders, and even carcinomas. To date, over 600 inactivating and almost 100 activating mutations in GPCR have been identified which are responsible for more than 30 different human diseases. The number of human disorders is expected to increase given the fact that over 160 GPCR have been targeted in mice. Herein, we summarize the current knowledge relevant to understanding the molecular basis of GPCR function, with primary emphasis on the mechanisms underlying GPCR malfunction responsible for different human diseases.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Institute of Biochemistry, Department of Molecular Biochemistry (Max-Planck-Institute Interim), Medical Faculty, University of Leipzig, Deutscher Platz 6, 04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|