1
|
Duncan EM. The common yet enigmatic activity of histone tail clipping. J Biol Chem 2025:110239. [PMID: 40381696 DOI: 10.1016/j.jbc.2025.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025] Open
Abstract
Histone proteolysis is sometimes described as an extreme post-translational modification (PTM), as it removes both a stretch of histone sequence and any PTMs that were previously added to it. Such an acute and significant loss of information could trigger many different downstream effects, making it attractive as a mechanism for rapid gene silencing or activation. Yet protease activity is challenging to study and is often treated like background noise that is best kept as low as possible. As both histones and protease activity are highly abundant in most cells, evidence of proteolysis of histone tails - a.k.a. histone clipping - has often been dismissed as nonspecific noise. Yet over the past decades there have been several studies that suggest this activity should not be ignored, as it may represent a rare but relevant process that plays important roles in cell biology. Here I review the key studies that both support this argument and raise additional questions about the mechanisms and functions of histone clipping.
Collapse
|
2
|
Cai X, Zhai Z, Noto T, Dong G, Wang X, Liucong M, Liu Y, Agreiter C, Loidl J, Mochizuki K, Tian M. A specialized TFIIB is required for transcription of transposon-targeting noncoding RNAs. Nucleic Acids Res 2025; 53:gkaf427. [PMID: 40377217 PMCID: PMC12082453 DOI: 10.1093/nar/gkaf427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/14/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
Transposable elements (TEs) pose threats to genome stability. Therefore, small RNA-mediated heterochromatinization suppresses the transcription and hence the mobility of TEs. Paradoxically, transcription of noncoding RNA (ncRNA) from TEs is needed for the production of TE-targeting small RNAs and/or recruiting the silencing machinery to TEs. Hence, specialized RNA polymerase II (Pol II) regulators are required for such unconventional transcription in different organisms, including the developmental stage-specific Mediator complex (Med)-associated proteins in the ncRNA transcription from TE-related sequences in Tetrahymena. Yet it remains unclear how the Pol II transcriptional machinery is assembled at TE-related sequences for the ncRNA transcription. Here, we report that Pol II is regulated by Emit3, a stage-specific TFIIB-like protein specialized in TE transcription. Emit3 interacts with the TFIIH complex and localizes to TE-dense regions, especially at sites enriched with a G-rich sequence motif. Deletion of Emit3 globally abolishes Pol II-chromatin association in the meiotic nucleus, disrupts the chromatin binding of Med, and impairs the TE-biased localization of TFIIH. Conversely, Emit3's preferential localization to TE-rich loci relies in part on Med-associated proteins. These findings suggest that Emit3, TFIIH, and Med-associated proteins work together to initiate Pol II ncRNA transcription from TE-dense regions, possibly in a sequence-dependent manner.
Collapse
Affiliation(s)
- Xia Cai
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zhihao Zhai
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tomoko Noto
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier 34090, France
| | - Gang Dong
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna A-1030, Austria
| | - Xue Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Mingmei Liucong
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yujie Liu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Christiane Agreiter
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna A-1030, Austria
| | - Josef Loidl
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna A-1030, Austria
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier 34090, France
| | - Miao Tian
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier 34090, France
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna A-1030, Austria
| |
Collapse
|
3
|
Jiao P, Lu H, Hao L, Degen AA, Cheng J, Yin Z, Mao S, Xue Y. Nutrigenetic and Epigenetic Mechanisms of Maternal Nutrition-Induced Glucolipid Metabolism Changes in the Offspring. Nutr Rev 2025; 83:728-748. [PMID: 38781288 DOI: 10.1093/nutrit/nuae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Maternal nutrition during pregnancy regulates the offspring's metabolic homeostasis, including insulin sensitivity and the metabolism of glucose and lipids. The fetus undergoes a crucial period of plasticity in the uterus; metabolic changes in the fetus during pregnancy caused by maternal nutrition not only influence fetal growth and development but also have a long-term or even life-long impact for the offspring. Epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNAs, play important roles in intergenerational and transgenerational effects. In this context, this narrative review comprehensively summarizes and analyzes the molecular mechanisms underlying how maternal nutrition, including a high-fat diet, polyunsaturated fatty acid diet, methyl donor nutrient supplementation, feed restriction, and protein restriction during pregnancy, impacts the genes involved in glucolipid metabolism in the liver, adipose tissue, hypothalamus, muscle, and oocytes of the offspring in terms of the epigenetic modifications. This will provide a foundation for the further exploration of nutrigenetic and epigenetic mechanisms for integrative mother-child nutrition and promotion of the offspring's health through the regulation of maternal nutrition during pregnancy. Note: This paper is part of the Nutrition Reviews Special Collection on Precision Nutrition.
Collapse
Affiliation(s)
- Peng Jiao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huizhen Lu
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine of Qinghai University, Xining, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Khosravi S, Hinrichs R, Rönspies M, Haghi R, Puchta H, Houben A. Epigenetic state and gene expression remain stable after CRISPR/Cas-mediated chromosomal inversions. THE NEW PHYTOLOGIST 2025; 245:2527-2539. [PMID: 39878102 PMCID: PMC11840415 DOI: 10.1111/nph.20403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
The epigenetic state of chromatin, gene activity and chromosomal positions are interrelated in plants. In Arabidopsis thaliana, chromosome arms are DNA-hypomethylated and enriched with the euchromatin-specific histone mark H3K4me3, while pericentromeric regions are DNA-hypermethylated and enriched with the heterochromatin-specific mark H3K9me2. We aimed to investigate how the chromosomal location affects epigenetic stability and gene expression by chromosome engineering. Two chromosomal inversions of different sizes were induced using CRISPR/Cas9 to move heterochromatic, pericentric sequences into euchromatic regions. The epigenetic status of these lines was investigated using whole-genome bisulfite sequencing and chromatin immunoprecipitation. Gene expression changes following the induction of the chromosomal inversions were studied via transcriptome analysis. Both inversions had a minimal impact on the global distribution of histone marks and DNA methylation patterns, although minor epigenetic changes were observed across the genome. Notably, the inverted chromosomal regions and their borders retained their original epigenetic profiles. Gene expression analysis showed that only 0.5-1% of genes were differentially expressed genome-wide following the induction of the inversions. CRISPR/Cas-induced chromosomal inversions minimally affect epigenetic landscape and gene expression, preserving their profiles in subsequent generations.
Collapse
Affiliation(s)
- Solmaz Khosravi
- Leibniz Institute of Plant Genetics and Crop Plant Research GaterslebenCorrensstrasse 306466SeelandGermany
| | - Rebecca Hinrichs
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Michelle Rönspies
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Reza Haghi
- Leibniz Institute of Plant Genetics and Crop Plant Research GaterslebenCorrensstrasse 306466SeelandGermany
| | - Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research GaterslebenCorrensstrasse 306466SeelandGermany
| |
Collapse
|
5
|
Wang Y, Nan B, Ye F, Zhang Z, Yang W, Pan B, Wei F, Duan L, Li H, Niu J, Ju A, Liu Y, Wang D, Zhang W, Liu Y, Gao S. Dual modes of DNA N 6-methyladenine maintenance by distinct methyltransferase complexes. Proc Natl Acad Sci U S A 2025; 122:e2413037121. [PMID: 39813249 PMCID: PMC11761967 DOI: 10.1073/pnas.2413037121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025] Open
Abstract
Stable inheritance of DNA N6-methyladenine (6mA) is crucial for its biological functions in eukaryotes. Here, we identify two distinct methyltransferase (MTase) complexes, both sharing the catalytic subunit AMT1, but featuring AMT6 and AMT7 as their unique components, respectively. While the two complexes are jointly responsible for 6mA maintenance methylation, they exhibit distinct enzymology, DNA/chromatin affinity, genomic distribution, and knockout phenotypes. AMT7 complex, featuring high MTase activity and processivity, is connected to transcription-associated epigenetic marks, including H2A.Z and H3K4me3, and is required for the bulk of maintenance methylation. In contrast, AMT6 complex, with reduced activity and processivity, is recruited by PCNA to initiate maintenance methylation immediately after DNA replication. These two complexes coordinate in maintenance methylation. By integrating signals from both replication and transcription, this mechanism ensures the faithful and efficient transmission of 6mA as an epigenetic mark in eukaryotes.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Bei Nan
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Fei Ye
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Zhe Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Wentao Yang
- Department of Biochemistry & Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA90033
| | - Bo Pan
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Fan Wei
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Lili Duan
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Haicheng Li
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Junhua Niu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Aili Ju
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Yongqiang Liu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | | | - Wenxin Zhang
- Institute of Biomedical Research, Yunnan University, Kunming650500, China
| | - Yifan Liu
- Department of Biochemistry & Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA90033
| | - Shan Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| |
Collapse
|
6
|
Kobrossy L, Xu W, Zhang C, Feng W, Turner CE, Cosgrove MS. Unraveling MLL1-fusion leukemia: Epigenetic revelations from an iPS cell point mutation. J Biol Chem 2024; 300:107825. [PMID: 39342993 PMCID: PMC11541820 DOI: 10.1016/j.jbc.2024.107825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Our understanding of acute leukemia pathology is heavily dependent on 11q23 chromosomal translocations involving the mixed lineage leukemia-1 (MLL1) gene, a key player in histone H3 lysine 4 (H3K4) methylation. These translocations result in MLL1-fusion (MLL1F) proteins that are thought to drive leukemogenesis. However, the mechanism behind increased H3K4 trimethylation in MLL1F-leukemic stem cells (MLL1F-LSCs), following loss of the catalytic SET domain of MLL1 (known for H3K4 monomethylation and dimethylation) remains unclear. In our investigation, we introduced a homozygous loss-of-function point mutation in MLL1 within human-induced pluripotent stem cells. This mutation mimics the histone methylation, gene expression, and epithelial-mesenchymal transition phenotypes of MLL1F-LSCs-without requiring a translocation or functional WT MLL1. The mutation caused a genome-wide redistribution of the H3K4 trimethyl mark and upregulated LSC-maintenance genes like HoxA9-A13, Meis1, and the HOTTIP long noncoding RNA. Epithelial-mesenchymal transition markers such as ZEB1, SNAI2, and HIC-5 were also increased leading to enhanced cellular migration and invasiveness. These observations underscore the essential role of MLL1's enzymatic activity in restraining the cascade of epigenetic changes associated with the gene-activating H3K4 trimethylation mark, which we show may be catalyzed by mislocalized SETd1a H3K4 trimethyltransferase in the absence of MLL1's enzymatic activity. Challenging existing models, our findings imply that MLL1F-induced leukemias arise from a dominant-negative impact on MLL1's histone methyltransferase activity. We propose targeting SETd1a in precision medicine as a new therapeutic approach for MLL1-associated leukemias.
Collapse
Affiliation(s)
- Laila Kobrossy
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Weiyi Xu
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Chunling Zhang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Christopher E Turner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Michael S Cosgrove
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States.
| |
Collapse
|
7
|
Ogino J, Dou Y. Histone methyltransferase KMT2A: Developmental regulation to oncogenic transformation. J Biol Chem 2024; 300:107791. [PMID: 39303915 PMCID: PMC11736124 DOI: 10.1016/j.jbc.2024.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Our current understanding of epigenetic regulation is deeply rooted in the founding contributions of Dr C. David Allis. In 2002, Allis and colleagues first characterized the lysine methyltransferase activity of the mammalian KMT2A (MLL1), a paradigm-shifting discovery that brings epigenetic dysregulation into focus for many human diseases that carry KMT2A mutations. This review will discuss the current understanding of the multifaceted roles of KMT2A in development and disease, which has paved the way for innovative and upcoming approaches to cancer therapy.
Collapse
Affiliation(s)
- Jayme Ogino
- Division of Pediatric Hematology-Oncology, Children's Hospital Los Angeles, Los Angeles, California, USA; Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Yali Dou
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
8
|
Fox GC, Poncha KF, Smith BR, van der Maas LN, Robbins NN, Graham B, Dowen JM, Strahl BD, Young NL, Jain K. Histone H3K18 & H3K23 acetylation directs establishment of MLL-mediated H3K4 methylation. J Biol Chem 2024; 300:107527. [PMID: 38960040 PMCID: PMC11338103 DOI: 10.1016/j.jbc.2024.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
In an unmodified state, positively charged histone N-terminal tails engage nucleosomal DNA in a manner which restricts access to not only the underlying DNA but also key tail residues subject to binding and/or modification. Charge-neutralizing modifications, such as histone acetylation, serve to disrupt this DNA-tail interaction, facilitating access to such residues. We previously showed that a polyacetylation-mediated chromatin "switch" governs the read-write capability of H3K4me3 by the MLL1 methyltransferase complex. Here, we discern the relative contributions of site-specific acetylation states along the H3 tail and extend our interrogation to other chromatin modifiers. We show that the contributions of H3 tail acetylation to H3K4 methylation by MLL1 are highly variable, with H3K18 and H3K23 acetylation exhibiting robust stimulatory effects and that this extends to the related H3K4 methyltransferase complex, MLL4. We show that H3K4me1 and H3K4me3 are found preferentially co-enriched with H3 N-terminal tail proteoforms bearing dual H3K18 and H3K23 acetylation (H3{K18acK23ac}). We further show that this effect is specific to H3K4 methylation, while methyltransferases targeting other H3 tail residues (H3K9, H3K27, & H3K36), a methyltransferase targeting the nucleosome core (H3K79), and a kinase targeting a residue directly adjacent to H3K4 (H3T3) are insensitive to tail acetylation. Together, these findings indicate a unique and robust stimulation of H3K4 methylation by H3K18 and H3K23 acetylation and provide key insight into why H3K4 methylation is often associated with histone acetylation in the context of active gene expression.
Collapse
Affiliation(s)
- Geoffrey C Fox
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Karl F Poncha
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - B Rutledge Smith
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lara N van der Maas
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Jill M Dowen
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Nicolas L Young
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA.
| | - Kanishk Jain
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
9
|
Bailey JK, Ma D, Clegg DO. Initial Characterization of WDR5B Reveals a Role in the Proliferation of Retinal Pigment Epithelial Cells. Cells 2024; 13:1189. [PMID: 39056772 PMCID: PMC11275010 DOI: 10.3390/cells13141189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The chromatin-associated protein WDR5 has been widely studied due to its role in histone modification and its potential as a pharmacological target for the treatment of cancer. In humans, the protein with highest sequence homology to WDR5 is encoded by the retrogene WDR5B, which remains unexplored. Here, we used CRISPR-Cas9 genome editing to generate WDR5B knockout and WDR5B-FLAG knock-in cell lines for further characterization. In contrast to WDR5, WDR5B exhibits low expression in pluripotent cells and is upregulated upon neural differentiation. Loss or shRNA depletion of WDR5B impairs cell growth and increases the fraction of non-viable cells in proliferating retinal pigment epithelial (RPE) cultures. CUT&RUN chromatin profiling in RPE and neural progenitors indicates minimal WDR5B enrichment at established WDR5 binding sites. These results suggest that WDR5 and WDR5B exhibit several divergent biological properties despite sharing a high degree of sequence homology.
Collapse
Affiliation(s)
- Jeffrey K. Bailey
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Dennis O. Clegg
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
10
|
Verma P, Sánchez Alvarado A, Duncan EM. Chromatin remodeling protein BPTF regulates transcriptional stability in planarian stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595819. [PMID: 38826365 PMCID: PMC11142235 DOI: 10.1101/2024.05.24.595819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Trimethylation of histone H3 lysine 4 (H3K4me3) correlates strongly with gene expression in many different organisms, yet the question of whether it plays a causal role in transcriptional activity remains unresolved. Although H3K4me3 does not directly affect chromatin accessibility, it can indirectly affect genome accessibility by recruiting the ATP-dependent chromatin remodeling complex NuRF (Nucleosome Remodeling Factor). The largest subunit of NuRF, BPTF/NURF301, binds H3K4me3 specifically and recruits the NuRF complex to loci marked by this modification. Studies have shown that the strength and duration of BPTF binding likely also depends on additional chromatin features at these loci, such as lysine acetylation and variant histone proteins. However, the exact details of this recruitment mechanism vary between studies and have largely been tested in vitro. Here, we use stem cells isolated directly from live planarian animals to investigate the role of BPTF in regulating chromatin accessibility in vivo. We find that BPTF operates at gene promoters and is most effective at facilitating transcription at genes marked by Set1-dependent H3K4me3 peaks, which are significantly broader than those added by the lysine methyltransferase MLL1/2. Moreover, BPTF is essential for planarian stem cell biology and its loss of function phenotype mimics that of Set1 knockdown. Together, these data suggest that BPTF and H3K4me3 are important mediators of both transcription and in vivo stem cell function.
Collapse
|
11
|
Fox GC, Poncha KF, Smith BR, van der Maas LN, Robbins NN, Graham B, Dowen JM, Strahl BD, Young NL, Jain K. H3K18 & H3K23 acetylation directs establishment of MLL-mediated H3K4 methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.590588. [PMID: 38798640 PMCID: PMC11118386 DOI: 10.1101/2024.05.13.590588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In an unmodified state, positively charged histone N-terminal tails engage nucleosomal DNA in a manner which restricts access to not only the underlying DNA, but also key tail residues subject to binding and/or modification. Charge-neutralizing modifications, such as histone acetylation, serve to disrupt this DNA-tail interaction, facilitating access to such residues. We previously showed that a polyacetylation-mediated chromatin "switch" governs the read-write capability of H3K4me3 by the MLL1 methyltransferase complex. Here, we discern the relative contributions of site-specific acetylation states along the H3 tail and extend our interrogation to other chromatin modifiers. We show that the contributions of H3 tail acetylation to H3K4 methylation by MLL1 are highly variable, with H3K18 and H3K23 acetylation exhibiting robust stimulatory effects, and that this extends to the related H3K4 methyltransferase complex, MLL4. We show that H3K4me1 and H3K4me3 are found preferentially co-enriched with H3 N-terminal tail proteoforms bearing dual H3K18 and H3K23 acetylation (H3{K18acK23ac}). We further show that this effect is specific to H3K4 methylation, while methyltransferases targeting other H3 tail residues (H3K9, H3K27, & H3K36), a methyltransferase targeting the nucleosome core (H3K79), and a kinase targeting a residue directly adjacent to H3K4 (H3T3) are insensitive to tail acetylation. Together, these findings indicate a unique and robust stimulation of H3K4 methylation by H3K18 and H3K23 acetylation and provide key insight into why H3K4 methylation is often associated with histone acetylation in the context of active gene expression.
Collapse
Affiliation(s)
- Geoffrey C. Fox
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC
| | - Karl F. Poncha
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX
| | - B. Rutledge Smith
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC
| | - Lara N. van der Maas
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC
| | | | | | - Jill M. Dowen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC
| | - Brian D. Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC
| | - Nicolas L. Young
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX
| | - Kanishk Jain
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC
| |
Collapse
|
12
|
Wang Z, Ren B. Role of H3K4 monomethylation in gene regulation. Curr Opin Genet Dev 2024; 84:102153. [PMID: 38278054 PMCID: PMC11065453 DOI: 10.1016/j.gde.2024.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
Methylation of histone H3 on the lysine-4 residue (H3K4me) is found throughout the eukaryotic domain, and its initial discovery as a conserved epigenetic mark of active transcription from yeast to mammalian cells has contributed to the histone code hypothesis. However, recent studies have raised questions on whether the different forms of H3K4me play a direct role in gene regulation or are simply by-products of the transcription process. Here, we review the often-conflicting experimental evidence, focusing on the monomethylation of lysine 4 on histone H3 that has been linked to the transcriptional state of enhancers in metazoans. We suggest that this epigenetic mark acts in a context-dependent manner to directly facilitate the transcriptional output of the genome and the establishment of cellular identity.
Collapse
Affiliation(s)
- Zhaoning Wang
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA. https://twitter.com/@ZhaoningWang
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA; Institute of Genomic Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
13
|
Jain K, Marunde MR, Burg JM, Gloor SL, Joseph FM, Poncha KF, Gillespie ZB, Rodriguez KL, Popova IK, Hall NW, Vaidya A, Howard SA, Taylor HF, Mukhsinova L, Onuoha UC, Patteson EF, Cooke SW, Taylor BC, Weinzapfel EN, Cheek MA, Meiners MJ, Fox GC, Namitz KEW, Cowles MW, Krajewski K, Sun ZW, Cosgrove MS, Young NL, Keogh MC, Strahl BD. An acetylation-mediated chromatin switch governs H3K4 methylation read-write capability. eLife 2023; 12:e82596. [PMID: 37204295 PMCID: PMC10229121 DOI: 10.7554/elife.82596] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
In nucleosomes, histone N-terminal tails exist in dynamic equilibrium between free/accessible and collapsed/DNA-bound states. The latter state is expected to impact histone N-termini availability to the epigenetic machinery. Notably, H3 tail acetylation (e.g. K9ac, K14ac, K18ac) is linked to increased H3K4me3 engagement by the BPTF PHD finger, but it is unknown if this mechanism has a broader extension. Here, we show that H3 tail acetylation promotes nucleosomal accessibility to other H3K4 methyl readers, and importantly, extends to H3K4 writers, notably methyltransferase MLL1. This regulation is not observed on peptide substrates yet occurs on the cis H3 tail, as determined with fully-defined heterotypic nucleosomes. In vivo, H3 tail acetylation is directly and dynamically coupled with cis H3K4 methylation levels. Together, these observations reveal an acetylation 'chromatin switch' on the H3 tail that modulates read-write accessibility in nucleosomes and resolves the long-standing question of why H3K4me3 levels are coupled with H3 acetylation.
Collapse
Affiliation(s)
- Kanishk Jain
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill of MedicineChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of MedicineChapel HillUnited States
| | | | | | | | - Faith M Joseph
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | - Karl F Poncha
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | | | | | | | | | | | | | | | | | | | | | - Spencer W Cooke
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill of MedicineChapel HillUnited States
| | - Bethany C Taylor
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | | | | | | | - Geoffrey C Fox
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, School of MedicineChapel HillUnited States
| | | | | | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill of MedicineChapel HillUnited States
| | | | - Michael S Cosgrove
- Department of Biochemistry and Molecular Biology, Upstate Medical UniversitySyracuseUnited States
| | - Nicolas L Young
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | | | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill of MedicineChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of MedicineChapel HillUnited States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, School of MedicineChapel HillUnited States
| |
Collapse
|
14
|
Morgan MA, Shilatifard A. Epigenetic moonlighting: Catalytic-independent functions of histone modifiers in regulating transcription. SCIENCE ADVANCES 2023; 9:eadg6593. [PMID: 37083523 PMCID: PMC10121172 DOI: 10.1126/sciadv.adg6593] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The past three decades have yielded a wealth of information regarding the chromatin regulatory mechanisms that control transcription. The "histone code" hypothesis-which posits that distinct combinations of posttranslational histone modifications are "read" by downstream effector proteins to regulate gene expression-has guided chromatin research to uncover fundamental mechanisms relevant to many aspects of biology. However, recent molecular and genetic studies revealed that the function of many histone-modifying enzymes extends independently and beyond their catalytic activities. In this review, we highlight original and recent advances in the understanding of noncatalytic functions of histone modifiers. Many of the histone modifications deposited by these enzymes-previously considered to be required for transcriptional activation-have been demonstrated to be dispensable for gene expression in living organisms. This perspective aims to prompt further examination of these enigmatic chromatin modifications by inspiring studies to define the noncatalytic "epigenetic moonlighting" functions of chromatin-modifying enzymes.
Collapse
|
15
|
Roth C, Kilpinen H, Kurian MA, Barral S. Histone lysine methyltransferase-related neurodevelopmental disorders: current knowledge and saRNA future therapies. Front Cell Dev Biol 2023; 11:1090046. [PMID: 36923252 PMCID: PMC10009263 DOI: 10.3389/fcell.2023.1090046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Neurodevelopmental disorders encompass a group of debilitating diseases presenting with motor and cognitive dysfunction, with variable age of onset and disease severity. Advances in genetic diagnostic tools have facilitated the identification of several monogenic chromatin remodeling diseases that cause Neurodevelopmental disorders. Chromatin remodelers play a key role in the neuro-epigenetic landscape and regulation of brain development; it is therefore not surprising that mutations, leading to loss of protein function, result in aberrant neurodevelopment. Heterozygous, usually de novo mutations in histone lysine methyltransferases have been described in patients leading to haploinsufficiency, dysregulated protein levels and impaired protein function. Studies in animal models and patient-derived cell lines, have highlighted the role of histone lysine methyltransferases in the regulation of cell self-renewal, cell fate specification and apoptosis. To date, in depth studies of histone lysine methyltransferases in oncology have provided strong evidence of histone lysine methyltransferase dysregulation as a determinant of cancer progression and drug resistance. As a result, histone lysine methyltransferases have become an important therapeutic target for the treatment of different cancer forms. Despite recent advances, we still lack knowledge about the role of histone lysine methyltransferases in neuronal development. This has hampered both the study and development of precision therapies for histone lysine methyltransferases-related Neurodevelopmental disorders. In this review, we will discuss the current knowledge of the role of histone lysine methyltransferases in neuronal development and disease progression. We will also discuss how RNA-based technologies using small-activating RNAs could potentially provide a novel therapeutic approach for the future treatment of histone lysine methyltransferase haploinsufficiency in these Neurodevelopmental disorders, and how they could be first tested in state-of-the-art patient-derived neuronal models.
Collapse
Affiliation(s)
- Charlotte Roth
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Helena Kilpinen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Serena Barral
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
16
|
Li Y. Epigenetic Modifications in Obesity and Type 2 Diabetes. Open Biochem J 2022. [DOI: 10.2174/1874091x-v16-e2206271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity is a chronic condition that is also a risk factor of several other chronic conditions including type 2 diabetes. The effects of maternal obesity and type 2 diabetes on fetal development and offspring health are mediated through the transmission of epigenetic modifications in addition to the possible permanent changes of the organs caused by the intrauterine environment hypothesized by the Developmental Origins of Health and Disease (DOHaD) theory. Epigenetic modifications can be altered by environmental factors including dietary and lifestyle factors. The current priorities include identification and confirmation of the specific epigenetic biomarkers associated with obesity and type 2 diabetes in human subjects and identification of the dietary and lifestyle factors that contribute to each of the identified specific epigenetic biomarkers.
Collapse
|
17
|
Studying Epigenetics of Cardiovascular Diseases on Chip Guide. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epigenetics is defined as the study of inheritable changes in the gene expressions and phenotypes that occurs without altering the normal DNA sequence. These changes are mainly due to an alteration in chromatin or its packaging, which changes the DNA accessibility. DNA methylation, histone modification, and noncoding or microRNAs can best explain the mechanism of epigenetics. There are various DNA methylated enzymes, histone-modifying enzymes, and microRNAs involved in the cause of various CVDs (cardiovascular diseases) such as cardiac hypertrophy, heart failure, and hypertension. Moreover, various CVD risk factors such as diabetes mellitus, hypoxia, aging, dyslipidemia, and their epigenetics are also discussed together with CVDs such as CHD (coronary heart disease) and PAH (pulmonary arterial hypertension). Furthermore, different techniques involved in epigenetic chromatin mapping are explained. Among these techniques, the ChIP-on-chip guide is explained with regard to its role in cardiac hypertrophy, a final form of heart failure. This review focuses on different epigenetic factors that are involved in causing cardiovascular diseases.
Collapse
|
18
|
Cui C, Yang F, Li Q. Post-Translational Modification of GPX4 is a Promising Target for Treating Ferroptosis-Related Diseases. Front Mol Biosci 2022; 9:901565. [PMID: 35647032 PMCID: PMC9133406 DOI: 10.3389/fmolb.2022.901565] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Glutathione peroxidase 4 (GPX4) is one of the most important antioxidant enzymes. As the key regulator of ferroptosis, GPX4 has attracted considerable attention in the fields of cancer, cardiovascular, and neuroscience research in the past 10 years. How to regulate GPX4 activity has become a hot topic nowadays. GPX4 protein level is regulated transcriptionally by transcription factor SP2 or Nrf2. GPX4 activity can be upregulated by supplementing intracellular selenium or glutathione, and also be inhibited by ferroptosis inducers such as ML162 and RSL3. These regulatory mechanisms of GPX4 level/activity have already shown a great potential for treating ferroptosis-related diseases in preclinical studies, especially in cancer cells. Until recently, research show that GPX4 can undergo post-translational modifications (PTMs), such as ubiquitination, succination, phosphorylation, and glycosylation. PTMs of GPX4 affect the protein level/activity of GPX4, indicating that modifying these processes can be a potential therapy for treating ferroptosis-related diseases. This article summarizes the protein characteristics, enzyme properties, and PTMs of GPX4. It also provides a hypothetical idea for treating ferroptosis-related diseases by targeting the PTMs of GPX4.
Collapse
Affiliation(s)
- Can Cui
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Yang
- Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Li
- Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
- *Correspondence: Qian Li,
| |
Collapse
|
19
|
Özturan D, Morova T, Lack NA. Androgen Receptor-Mediated Transcription in Prostate Cancer. Cells 2022; 11:898. [PMID: 35269520 PMCID: PMC8909478 DOI: 10.3390/cells11050898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Androgen receptor (AR)-mediated transcription is critical in almost all stages of prostate cancer (PCa) growth and differentiation. This process involves a complex interplay of coregulatory proteins, chromatin remodeling complexes, and other transcription factors that work with AR at cis-regulatory enhancer regions to induce the spatiotemporal transcription of target genes. This enhancer-driven mechanism is remarkably dynamic and undergoes significant alterations during PCa progression. In this review, we discuss the AR mechanism of action in PCa with a focus on how cis-regulatory elements modulate gene expression. We explore emerging evidence of genetic variants that can impact AR regulatory regions and alter gene transcription in PCa. Finally, we highlight several outstanding questions and discuss potential mechanisms of this critical transcription factor.
Collapse
Affiliation(s)
- Doğancan Özturan
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Tunç Morova
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| | - Nathan A. Lack
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| |
Collapse
|
20
|
Jang S, Hwang J, Jeong HS. The Role of Histone Acetylation in Mesenchymal Stem Cell Differentiation. Chonnam Med J 2022; 58:6-12. [PMID: 35169553 PMCID: PMC8813658 DOI: 10.4068/cmj.2022.58.1.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/06/2022] Open
Abstract
The mechanism and action concerning epigenetic modifications, especially that of histone modifications, are not fully understood. However, it is clear that histone modifications play an essential role in several biological processes that are involved in cell proliferation and differentiation. In this article, we focused on how histone acetylation may result in differentiation into mesenchymal stem cells as well as histone acetylation function. Moreover, histone acetylation followed by the action of histone deacetylase inhibitors, which can result in the differentiation of stem cells into other types of cells such as adipocytes, chondrocytes, osteocytes, neurons, and other lineages, were also reviewed.
Collapse
Affiliation(s)
- Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun, Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun, Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
21
|
Erlendson AA, Freitag M. Not all Is SET for Methylation: Evolution of Eukaryotic Protein Methyltransferases. Methods Mol Biol 2022; 2529:3-40. [PMID: 35733008 DOI: 10.1007/978-1-0716-2481-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic posttranslational modifications to canonical histones that constitute the nucleosome (H2A, H2B, H3, and H4) control all aspects of enzymatic transactions with DNA. Histone methylation has been studied heavily for the past 20 years, and our mechanistic understanding of the control and function of individual methylation events on specific histone arginine and lysine residues has been greatly improved over the past decade, driven by excellent new tools and methods. Here, we will summarize what is known about the distribution and some of the functions of protein methyltransferases from all major eukaryotic supergroups. The main conclusion is that protein, and specifically histone, methylation is an ancient process. Many taxa in all supergroups have lost some subfamilies of both protein arginine methyltransferases (PRMT) and the heavily studied SET domain lysine methyltransferases (KMT). Over time, novel subfamilies, especially of SET domain proteins, arose. We use the interactions between H3K27 and H3K36 methylation as one example for the complex circuitry of histone modifications that make up the "histone code," and we discuss one recent example (Paramecium Ezl1) for how extant enzymes that may resemble more ancient SET domain KMTs are able to modify two lysine residues that have divergent functions in plants, fungi, and animals. Complexity of SET domain KMT function in the well-studied plant and animal lineages arose not only by gene duplication but also acquisition of novel DNA- and histone-binding domains in certain subfamilies.
Collapse
Affiliation(s)
- Allyson A Erlendson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
22
|
Abstract
Animal and humans exposed to stress early in life are more likely to suffer from long-term behavioral, mental health, metabolic, immune, and cardiovascular health consequences. The hypothalamus plays a nodal role in programming, controlling, and regulating stress responses throughout the life course. Epigenetic reprogramming in the hippocampus and the hypothalamus play an important role in adapting genome function to experiences and exposures during the perinatal and early life periods and setting up stable phenotypic outcomes. Epigenetic programming during development enables one genome to express multiple cell type identities. The most proximal epigenetic mark to DNA is a covalent modification of the DNA itself by enzymatic addition of methyl moieties. Cell-type-specific DNA methylation profiles are generated during gestational development and define cell and tissue specific phenotypes. Programming of neuronal phenotypes and sex differences in the hypothalamus is achieved by developmentally timed rearrangement of DNA methylation profiles. Similarly, other stations in the life trajectory such as puberty and aging involve predictable and scheduled reorganization of DNA methylation profiles. DNA methylation and other epigenetic marks are critical for maintaining cell-type identity in the brain, across the body, and throughout life. Data that have emerged in the last 15 years suggest that like its role in defining cell-specific phenotype during development, DNA methylation might be involved in defining experiential identities, programming similar genes to perform differently in response to diverse experiential histories. Early life stress impact on lifelong phenotypes is proposed to be mediated by DNA methylation and other epigenetic marks. Epigenetic marks, as opposed to genetic mutations, are reversible by either pharmacological or behavioral strategies and therefore offer the potential for reversing or preventing disease including behavioral and mental health disorders. This chapter discusses data testing the hypothesis that DNA methylation modulations of the HPA axis mediate the impact of early life stress on lifelong behavioral and physical phenotypes.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
23
|
SMYD3 promotes hepatocellular carcinoma progression by methylating S1PR1 promoters. Cell Death Dis 2021; 12:731. [PMID: 34301921 PMCID: PMC8302584 DOI: 10.1038/s41419-021-04009-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. SET and MYND domain-containing protein 3 (SMYD3) has been shown to promote the progression of various types of human cancers, including liver cancer; however, the detailed molecular mechanism is still largely unknown. Here, we report that SMYD3 expression in HCC is an independent prognostic factor for survival and promotes the proliferation and migration of HCC cells. We observed that SMYD3 upregulated sphingosine-1-phosphate receptor 1 (S1PR1) promoter activity by methylating histone 3 (H3K4me3). S1PR1 was expressed at high levels in HCC samples, and high S1PR1 expression was associated with shorter survival. S1PR1 expression was also positively correlated with SMYD3 expression in HCC samples. We confirmed that SMYD3 promotes HCC cell growth and migration in vitro and in vivo by upregulating S1PR1 expression. Further investigations revealed that SMYD3 affects critical signaling pathways associated with the progression of HCC through S1PR1. These findings strongly suggest that SMYD3 has a crucial function in HCC progression that is partially mediated by histone methylation at the downstream gene S1PR1, which affects key signaling pathways associated with carcinogenesis and the progression of HCC.
Collapse
|
24
|
Dhar SS, Lee MG. Cancer-epigenetic function of the histone methyltransferase KMT2D and therapeutic opportunities for the treatment of KMT2D-deficient tumors. Oncotarget 2021; 12:1296-1308. [PMID: 34194626 PMCID: PMC8238240 DOI: 10.18632/oncotarget.27988] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/27/2022] Open
Abstract
Epigenetic mechanisms are central to understanding the molecular basis underlying tumorigenesis. Aberrations in epigenetic modifiers alter epigenomic landscapes and play a critical role in tumorigenesis. Notably, the histone lysine methyltransferase KMT2D (a COMPASS/ Set1 family member; also known as MLL4, ALR, and MLL2) is among the most frequently mutated genes in many different types of cancer. Recent studies have demonstrated how KMT2D loss induces abnormal epigenomic reprograming and rewires molecular pathways during tumorigenesis. These findings also have clinical and therapeutic implications for cancer treatment. In this review, we summarize recent advances in understanding the role of KMT2D in regulating tumorigenesis and discuss therapeutic opportunities for the treatment of KMT2D-deficient tumors.
Collapse
Affiliation(s)
- Shilpa S Dhar
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
25
|
Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1236-1280. [PMID: 33893979 DOI: 10.1007/s11427-020-1915-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology, or Evo-Devo for short, has become an established field that, broadly speaking, seeks to understand how changes in development drive major transitions and innovation in organismal evolution. It does so via integrating the principles and methods of many subdisciplines of biology. Although we have gained unprecedented knowledge from the studies on model organisms in the past decades, many fundamental and crucially essential processes remain a mystery. Considering the tremendous biodiversity of our planet, the current model organisms seem insufficient for us to understand the evolutionary and physiological processes of life and its adaptation to exterior environments. The currently increasing genomic data and the recently available gene-editing tools make it possible to extend our studies to non-model organisms. In this review, we review the recent work on the regulatory signaling of developmental and regeneration processes, environmental adaptation, and evolutionary mechanisms using both the existing model animals such as zebrafish and Drosophila, and the emerging nonstandard model organisms including amphioxus, ascidian, ciliates, single-celled phytoplankton, and marine nematode. In addition, the challenging questions and new directions in these systems are outlined as well.
Collapse
|
26
|
Palli SR. Epigenetic regulation of post-embryonic development. CURRENT OPINION IN INSECT SCIENCE 2021; 43:63-69. [PMID: 33068783 PMCID: PMC8044252 DOI: 10.1016/j.cois.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 05/02/2023]
Abstract
Modifications to DNA and core histones influence chromatin organization and expression of the genome. DNA methylation plays a significant role in the regulation of multiple biological processes that regulate behavior and caste differentiation in social insects. Histone modifications play significant roles in the regulation of development and reproduction in other insects. Genes coding for acetyltransferases, deacetylases, methyltransferases, and demethylases that modify core histones have been identified in genomes of multiple insects. Studies on the function and mechanisms of action of some of these enzymes uncovered their contribution to post-embryonic development. The results from studies on epigenetic modifiers could help in the identification of inhibitors of epigenetic modifiers that could be developed to control pests and disease vectors.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, S225 Ag. Science N, Lexington, KY 40546, United States.
| |
Collapse
|
27
|
Quick and facile preparation of histone proteins from the green microalga Chlamydomonas reinhardtii and other photosynthetic organisms. Methods 2020; 184:102-111. [DOI: 10.1016/j.ymeth.2020.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/16/2019] [Accepted: 01/26/2020] [Indexed: 11/23/2022] Open
|
28
|
Christoforou ER, Sferruzzi-Perri AN. Molecular mechanisms governing offspring metabolic programming in rodent models of in utero stress. Cell Mol Life Sci 2020; 77:4861-4898. [PMID: 32494846 PMCID: PMC7658077 DOI: 10.1007/s00018-020-03566-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
The results of different human epidemiological datasets provided the impetus to introduce the now commonly accepted theory coined as 'developmental programming', whereby the presence of a stressor during gestation predisposes the growing fetus to develop diseases, such as metabolic dysfunction in later postnatal life. However, in a clinical setting, human lifespan and inaccessibility to tissue for analysis are major limitations to study the molecular mechanisms governing developmental programming. Subsequently, studies using animal models have proved indispensable to the identification of key molecular pathways and epigenetic mechanisms that are dysregulated in metabolic organs of the fetus and adult programmed due to an adverse gestational environment. Rodents such as mice and rats are the most used experimental animals in the study of developmental programming. This review summarises the molecular pathways and epigenetic mechanisms influencing alterations in metabolic tissues of rodent offspring exposed to in utero stress and subsequently programmed for metabolic dysfunction. By comparing molecular mechanisms in a variety of rodent models of in utero stress, we hope to summarise common themes and pathways governing later metabolic dysfunction in the offspring whilst identifying reasons for incongruencies between models so to inform future work. With the continued use and refinement of such models of developmental programming, the scientific community may gain the knowledge required for the targeted treatment of metabolic diseases that have intrauterine origins.
Collapse
Affiliation(s)
- Efthimia R Christoforou
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, UK.
| |
Collapse
|
29
|
Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat Genet 2020; 52:1271-1281. [PMID: 33257899 DOI: 10.1038/s41588-020-00736-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Histone-modifying enzymes are implicated in the control of diverse DNA-templated processes including gene expression. Here, we outline historical and current thinking regarding the functions of histone modifications and their associated enzymes. One current viewpoint, based largely on correlative evidence, posits that histone modifications are instructive for transcriptional regulation and represent an epigenetic 'code'. Recent studies have challenged this model and suggest that histone marks previously associated with active genes do not directly cause transcriptional activation. Additionally, many histone-modifying proteins possess non-catalytic functions that overshadow their enzymatic activities. Given that much remains unknown regarding the functions of these proteins, the field should be cautious in interpreting loss-of-function phenotypes and must consider both cellular and developmental context. In this Perspective, we focus on recent progress relating to the catalytic and non-catalytic functions of the Trithorax-COMPASS complexes, Polycomb repressive complexes and Clr4/Suv39 histone-modifying machineries.
Collapse
|
30
|
Ramazi S, Allahverdi A, Zahiri J. Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. J Biosci 2020. [DOI: 10.1007/s12038-020-00099-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Tafessu A, Banaszynski LA. Establishment and function of chromatin modification at enhancers. Open Biol 2020; 10:200255. [PMID: 33050790 PMCID: PMC7653351 DOI: 10.1098/rsob.200255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
How a single genome can give rise to distinct cell types remains a fundamental question in biology. Mammals are able to specify and maintain hundreds of cell fates by selectively activating unique subsets of their genome. This is achieved, in part, by enhancers-genetic elements that can increase transcription of both nearby and distal genes. Enhancers can be identified by their unique chromatin signature, including transcription factor binding and the enrichment of specific histone post-translational modifications, histone variants, and chromatin-associated cofactors. How each of these chromatin features contributes to enhancer function remains an area of intense study. In this review, we provide an overview of enhancer-associated chromatin states, and the proteins and enzymes involved in their establishment. We discuss recent insights into the effects of the enhancer chromatin state on ongoing transcription versus their role in the establishment of new transcription programmes, such as those that occur developmentally. Finally, we highlight the role of enhancer chromatin in new conceptual advances in gene regulation such as condensate formation.
Collapse
Affiliation(s)
| | - Laura A. Banaszynski
- UT Southwestern Medical Center, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, Hamon Center for Regenerative Science and Medicine, Dallas, TX 75390-8511, USA
| |
Collapse
|
32
|
Wang Y, Sheng Y, Liu Y, Zhang W, Cheng T, Duan L, Pan B, Qiao Y, Liu Y, Gao S. A distinct class of eukaryotic MT-A70 methyltransferases maintain symmetric DNA N6-adenine methylation at the ApT dinucleotides as an epigenetic mark associated with transcription. Nucleic Acids Res 2020; 47:11771-11789. [PMID: 31722409 PMCID: PMC7145601 DOI: 10.1093/nar/gkz1053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Rediscovered as a potential eukaryotic epigenetic mark, DNA N6-adenine methylation (6mA) varies across species in abundance and its relationships with transcription. Here we characterize AMT1—representing a distinct MT-A70 family methyltransferase—in the ciliate Tetrahymena thermophila. AMT1 loss-of-function leads to severe defects in growth and development. Single Molecule, Real-Time (SMRT) sequencing reveals that AMT1 is required for the bulk of 6mA and all symmetric methylation at the ApT dinucleotides. The detection of hemi-methylated ApT sites suggests a semi-conservative mechanism for maintaining symmetric methylation. AMT1 affects expression of many genes; in particular, RAB46, encoding a Rab family GTPase involved in contractile vacuole function, is likely a direct target. The distribution of 6mA resembles H3K4 methylation and H2A.Z, two conserved epigenetic marks associated with RNA polymerase II transcription. Furthermore, strong 6mA and nucleosome positioning in wild-type cells is attenuated in ΔAMT1 cells. Our results support that AMT1-catalyzed 6mA is an integral part of the transcription-associated epigenetic landscape. AMT1 homologues are generally found in protists and basal fungi featuring ApT hyper-methylation associated with transcription, which are missing in animals, plants, and true fungi. This dichotomy of 6mA functions and the underlying molecular mechanisms may have implications in eukaryotic diversification.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yalan Sheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yongqiang Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenxin Zhang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Ting Cheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lili Duan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Pan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yu Qiao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shan Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
33
|
Liu H, Lee S, Zhang Q, Chen Z, Zhang G. The potential underlying mechanism of the leukemia caused by MLL-fusion and potential treatments. Mol Carcinog 2020; 59:839-851. [PMID: 32329934 DOI: 10.1002/mc.23204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
A majority of infant and pediatric leukemias are caused by the mixed-lineage leukemia gene (MLL) fused with a variety of candidates. Several underlying mechanisms have been proposed. One currently popular view is that truncated MLL1 fusion and its associated complex constitutively hijacks super elongation complex, including positive transcription elongation factor b, CDK9, and cyclin T1 complex and DOT1L, to enhance the expression of transcription factors that maintain or restore stemness of leukocytes, as well as prevent the differentiation of hematopoietic progenitor cells. An alternative emerging view proposes that MLL1-fusion promotes the recruitment of TATA binding protein and RNA polymerase II (Pol II) initiation complex, so as to increase the expression levels of target genes. The fundamental mechanism of both theories are gain of function for truncated MLL1 fusions, either through Pol II elongation or initiation. Our recent progress in transcription regulation of paused Pol II through JMJD5, JMJD6, and JMJD7, combined with the repressive role of H3K4me3 revealed by others, prompted us to introduce a contrarian hypothesis: the failure to shut down transcribing units by MLL-fusions triggers the transformation: loss of function of truncated MLL1 fusions coupled with the loss of conversion of H3K4me1 to H3K4me3, leading to the constitutive expression of transcription factors that are in charge of maintenance of hematopoietic progenitor cells, may trigger the transformation of normal cells into cancer cells. Following this track, a potential treatment to eliminate these fusion proteins, which may ultimately cure the disease, is proposed.
Collapse
Affiliation(s)
- Haolin Liu
- Department of Biomedical Research, National Jewish Health, and Department of Immunology and Microbiology, Anschutz Medical Center, University of Colorado, Denver, Colorado
| | - Schuyler Lee
- Department of Biomedical Research, National Jewish Health, and Department of Immunology and Microbiology, Anschutz Medical Center, University of Colorado, Denver, Colorado
| | - Qianqian Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Agriculture University, Beijing, China
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Agriculture University, Beijing, China
| | - Gongyi Zhang
- Department of Biomedical Research, National Jewish Health, and Department of Immunology and Microbiology, Anschutz Medical Center, University of Colorado, Denver, Colorado
| |
Collapse
|
34
|
Lin T, Sun L, Lee JE, Lee JB, Kim SY, Jin DI. Changes of histone H3 lysine 23 acetylation and methylation in porcine somatic cells, oocytes and preimplantation embryos. Theriogenology 2020; 148:162-173. [PMID: 32182524 DOI: 10.1016/j.theriogenology.2020.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 01/09/2023]
Abstract
Histone modifications play important roles in regulating the expression of developmental genes during preimplantation embryonic development. Here, we analyzed the temporal and spatial distribution of the acetylation and mono-, di- and tri-methylations of noncanonical histone H3 at lysine 23 (H3K23ac, H3K23me1, H3K23me2 and H3K23me3) during porcine oocyte maturation and pre-implantation development, as well as in porcine fetal fibroblasts. H3K23ac, -me1, -me2 and -me3 were enhanced in EdU-positive fetal fibroblasts (S-phase) compared to EdU-negative fetal fibroblasts (G1 and/or G2-phase). More than 91% of the DNA replication foci were well colocalized with H3K23 methylation sites in porcine fetal fibroblasts. H3K23ac and -me3 were detectable through oocyte meiotic resumption. After parthenogenic activation (PA), H3K23me3 was very weakly detected in the pronuclei of zygotes and the nuclei of blastocysts. After in vitro fertilization (IVF), no H3K23me3 signal was observed in the nuclei of IVF-derived embryos, with the exception of the residual polar bodies. In contrast, H3K23ac signals were clearly detected in the nuclei of PA- and IVF-derived blastocysts. The RNA polymerase inhibitor, actinomycin D, reduced the H3K23ac signal in porcine blastocysts. These findings may serve as a valuable reference for further studies of how H3K23 modifications contribute to the regulation of oocyte maturation and early embryonic development in mammals.
Collapse
Affiliation(s)
- Tao Lin
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ling Sun
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Eun Lee
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Joo Bin Lee
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - So Yeon Kim
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dong Il Jin
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
35
|
Abstract
Regeneration is a remarkable phenomenon that has been the subject of awe and bafflement for hundreds of years. Although regeneration competence is found in highly divergent organisms throughout the animal kingdom, recent advances in tools used for molecular and genomic characterization have uncovered common genes, molecular mechanisms, and genomic features in regenerating animals. In this review we focus on what is known about how genome regulation modulates cellular potency during regeneration. We discuss this regulation in the context of complex tissue regeneration in animals, from Hydra to humans, with reference to ex vivo-cultured cell models of pluripotency when appropriate. We emphasize the importance of a detailed molecular understanding of both the mechanisms that regulate genomic output and the functional assays that assess the biological relevance of such molecular characterizations.
Collapse
Affiliation(s)
- Elizabeth M Duncan
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Alejandro Sánchez Alvarado
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| |
Collapse
|
36
|
Bonnet J, Lindeboom RGH, Pokrovsky D, Stricker G, Çelik MH, Rupp RAW, Gagneur J, Vermeulen M, Imhof A, Müller J. Quantification of Proteins and Histone Marks in Drosophila Embryos Reveals Stoichiometric Relationships Impacting Chromatin Regulation. Dev Cell 2019; 51:632-644.e6. [PMID: 31630981 DOI: 10.1016/j.devcel.2019.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/09/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
Gene transcription in eukaryotes is regulated through dynamic interactions of a variety of different proteins with DNA in the context of chromatin. Here, we used mass spectrometry for absolute quantification of the nuclear proteome and methyl marks on selected lysine residues in histone H3 during two stages of Drosophila embryogenesis. These analyses provide comprehensive information about the absolute copy number of several thousand proteins and reveal unexpected relationships between the abundance of histone-modifying and -binding proteins and the chromatin landscape that they generate and interact with. For some histone modifications, the levels in Drosophila embryos are substantially different from those previously reported in tissue culture cells. Genome-wide profiling of H3K27 methylation during developmental progression and in animals with reduced PRC2 levels illustrates how mass spectrometry can be used for quantitatively describing and comparing chromatin states. Together, these data provide a foundation toward a quantitative understanding of gene regulation in Drosophila.
Collapse
Affiliation(s)
- Jacques Bonnet
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Rik G H Lindeboom
- Radboud Institute for Molecular Life Sciences, Oncode Institute, Department of Molecular Biology, Radboud University, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Daniil Pokrovsky
- Institute for Molecular Biology, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany; Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Georg Stricker
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Muhammed Hasan Çelik
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Ralph A W Rupp
- Institute for Molecular Biology, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Michiel Vermeulen
- Radboud Institute for Molecular Life Sciences, Oncode Institute, Department of Molecular Biology, Radboud University, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands.
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany.
| | - Jürg Müller
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
37
|
Abstract
Repair of damaged DNA plays a crucial role in maintaining genomic integrity and normal cell function. The base excision repair (BER) pathway is primarily responsible for removing modified nucleobases that would otherwise cause deleterious and mutagenic consequences and lead to disease. The BER process is initiated by a DNA glycosylase, which recognizes and excises the target nucleobase lesion, and is completed via downstream enzymes acting in a well-coordinated manner. A majority of our current understanding about how BER enzymes function comes from in vitro studies using free duplex DNA as a simplified model. In eukaryotes, however, BER is challenged by the packaging of genomic DNA into chromatin. The fundamental structural repeating unit of chromatin is the nucleosome, which presents a more complex substrate context than free duplex DNA for repair. In this chapter, we discuss how BER enzymes, particularly glycosylases, engage in the context of packaged DNA with insights obtained from both in vivo and in vitro studies. Furthermore, we review factors and mechanisms that can modify chromatin architecture and/or influence DNA accessibility to BER machinery, such as the geometric location of the damage site, nucleosomal DNA unwrapping, histone post-translational modifications, histone variant incorporation, and chromatin remodeling.
Collapse
Affiliation(s)
- Chuxuan Li
- Department of Chemistry, Brown University, Providence, RI, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
38
|
Crump NT, Milne TA. Why are so many MLL lysine methyltransferases required for normal mammalian development? Cell Mol Life Sci 2019; 76:2885-2898. [PMID: 31098676 PMCID: PMC6647185 DOI: 10.1007/s00018-019-03143-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
The mixed lineage leukemia (MLL) family of proteins became known initially for the leukemia link of its founding member. Over the decades, the MLL family has been recognized as an important class of histone H3 lysine 4 (H3K4) methyltransferases that control key aspects of normal cell physiology and development. Here, we provide a brief history of the discovery and study of this family of proteins. We address two main questions: why are there so many H3K4 methyltransferases in mammals; and is H3K4 methylation their key function?
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
39
|
Tian M, Mochizuki K, Loidl J. Non-coding RNA Transcription in Tetrahymena Meiotic Nuclei Requires Dedicated Mediator Complex-Associated Proteins. Curr Biol 2019; 29:2359-2370.e5. [PMID: 31280995 DOI: 10.1016/j.cub.2019.05.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022]
Abstract
To preserve genome integrity, eukaryotic cells use small RNA-directed mechanisms to repress transposable elements (TEs). Paradoxically, in order to silence TEs, precursors of the small RNAs must be transcribed from TEs. However, it is still poorly understood how these precursors are transcribed from TEs under silenced conditions. In the otherwise transcriptionally silent germline micronucleus (MIC) of Tetrahymena, a burst of non-coding RNA (ncRNA) transcription occurs during meiosis. The transcripts are processed into small RNAs that serve to identify TE-related sequences for elimination. The Mediator complex (Med) has an evolutionarily conserved role for transcription by bridging gene-specific transcription factors and RNA polymerase II. Here, we report that three Med-associated factors, Emit1, Emit2, and Rib1, are required for the biogenesis of small ncRNAs. Med localizes to the MIC only during meiosis, and both Med localization and MIC ncRNA transcription require Emit1 and Emit2. In the MIC, Med occupies TE-rich pericentromeric and telomeric regions in a Rib1-dependent manner. Rib1 is dispensable for ncRNA transcription but is required for the accumulation of double-stranded ncRNAs. Nuclear and sub-nuclear localization of the three Med-associated proteins is interdependent. Hence, Emit1 and Emit2 act coordinately to import Med into the MIC, and Rib1 recruits Med to specific chromosomal locations to quantitatively or qualitatively promote the biogenesis of functional ncRNA. Our results underscore that the transcription machinery can be regulated by a set of specialized Med-associated proteins to temporally transcribe TE-related sequences from a silent genome for small RNA biogenesis and genome defense.
Collapse
Affiliation(s)
- Miao Tian
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria.
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, 34090 Montpellier, France
| | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
40
|
Liu H, Li Z, Yang Q, Liu W, Wan J, Li J, Zhang M. Substrate docking-mediated specific and efficient lysine methylation by the SET domain-containing histone methyltransferase SETD7. J Biol Chem 2019; 294:13355-13365. [PMID: 31324717 DOI: 10.1074/jbc.ra119.009630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/15/2019] [Indexed: 11/06/2022] Open
Abstract
Lysine methylation of cellular proteins is catalyzed by dozens of lysine methyltransferases (KMTs), occurs in thousands of different histone and nonhistone proteins, and regulates diverse biological processes. Dysregulation of KMT-mediated lysine methylations underlies many human diseases. A key unanswered question is how proteins, nonhistone proteins in particular, are specifically methylated by each KMT. Here, using several biochemical approaches, including analytical gel filtration chromatography, isothermal titration calorimetry, and in vitro methylation assays, we discovered that SET domain-containing 7 histone lysine methyltransferase (SETD7), a KMT capable of methylating both histone and nonhistone proteins, uses its N-terminal membrane occupation and recognition nexus (MORN) repeats to dock its substrates and subsequently juxtapose their Lys methylation motif for efficient and specific methylation by the catalytic SET domain. Such docking site-mediated methylation mechanism rationalizes binding and methylation of previously known substrates and predicts new SETD7 substrates. Our findings further suggest that other KMTs may also use docking-mediated substrate recognition mechanisms to achieve their catalytic specificity and efficiency.
Collapse
Affiliation(s)
- Haiyang Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Zhiwei Li
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Qingqing Yang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jun Wan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Cell, Developmental, and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| |
Collapse
|
41
|
Lukito Y, Chujo T, Hale TK, Mace W, Johnson LJ, Scott B. Regulation of subtelomeric fungal secondary metabolite genes by H3K4me3 regulators CclA and KdmB. Mol Microbiol 2019; 112:837-853. [DOI: 10.1111/mmi.14320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Yonathan Lukito
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Tetsuya Chujo
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Tracy K. Hale
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Wade Mace
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Linda J. Johnson
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Barry Scott
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| |
Collapse
|
42
|
Romanick SS, Ferguson BS. The nonepigenetic role for small molecule histone deacetylase inhibitors in the regulation of cardiac function. Future Med Chem 2019; 11:1345-1356. [PMID: 31161804 PMCID: PMC6714070 DOI: 10.4155/fmc-2018-0311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Eight million US adults are projected to suffer from heart failure (HF) by 2030. Of concern, 5-year mortality rates following HF diagnosis approximate 40%. Small molecule histone deacetylase (HDAC) inhibitors have demonstrated efficacy for the treatment and reversal of HF. Historically, HDACs were studied as regulators of nucleosomal histones, in which lysine deacetylation on histone tails changed DNA-histone protein electrostatic interactions, leading to chromatin condensation and changes in gene expression. However, recent proteomics studies have demonstrated that approximately 4500 proteins can be acetylated in various tissues; the function of most of these remains unknown. This Review will focus on the nonepigenetic role for lysine acetylation in the heart, with a focus on nonepigenetic actions for HDAC inhibitors on cardiac function.
Collapse
Affiliation(s)
- Samantha S Romanick
- Department of Pharmacology, University of Nevada Reno, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA
- COBRE Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada Reno, Reno, NV 89557, USA
| | - Bradley S Ferguson
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA
- COBRE Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada Reno, Reno, NV 89557, USA
| |
Collapse
|
43
|
Beh LY, Debelouchina GT, Clay DM, Thompson RE, Lindblad KA, Hutton ER, Bracht JR, Sebra RP, Muir TW, Landweber LF. Identification of a DNA N6-Adenine Methyltransferase Complex and Its Impact on Chromatin Organization. Cell 2019; 177:1781-1796.e25. [PMID: 31104845 DOI: 10.1016/j.cell.2019.04.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/31/2019] [Accepted: 04/12/2019] [Indexed: 11/27/2022]
Abstract
DNA N6-adenine methylation (6mA) has recently been described in diverse eukaryotes, spanning unicellular organisms to metazoa. Here, we report a DNA 6mA methyltransferase complex in ciliates, termed MTA1c. It consists of two MT-A70 proteins and two homeobox-like DNA-binding proteins and specifically methylates dsDNA. Disruption of the catalytic subunit, MTA1, in the ciliate Oxytricha leads to genome-wide loss of 6mA and abolishment of the consensus ApT dimethylated motif. Mutants fail to complete the sexual cycle, which normally coincides with peak MTA1 expression. We investigate the impact of 6mA on nucleosome occupancy in vitro by reconstructing complete, full-length Oxytricha chromosomes harboring 6mA in native or ectopic positions. We show that 6mA directly disfavors nucleosomes in vitro in a local, quantitative manner, independent of DNA sequence. Furthermore, the chromatin remodeler ACF can overcome this effect. Our study identifies a diverged DNA N6-adenine methyltransferase and defines the role of 6mA in chromatin organization.
Collapse
Affiliation(s)
- Leslie Y Beh
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Derek M Clay
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Robert E Thompson
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Kelsi A Lindblad
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Elizabeth R Hutton
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - John R Bracht
- Department of Biology, American University, Washington, DC 20016, USA
| | - Robert P Sebra
- Icahn Institute and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
44
|
Saettone A, Nabeel-Shah S, Garg J, Lambert JP, Pearlman RE, Fillingham J. Functional Proteomics of Nuclear Proteins in Tetrahymena thermophila: A Review. Genes (Basel) 2019; 10:E333. [PMID: 31052454 PMCID: PMC6562869 DOI: 10.3390/genes10050333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Identification and characterization of protein complexes and interactomes has been essential to the understanding of fundamental nuclear processes including transcription, replication, recombination, and maintenance of genome stability. Despite significant progress in elucidation of nuclear proteomes and interactomes of organisms such as yeast and mammalian systems, progress in other models has lagged. Protists, including the alveolate ciliate protozoa with Tetrahymena thermophila as one of the most studied members of this group, have a unique nuclear biology, and nuclear dimorphism, with structurally and functionally distinct nuclei in a common cytoplasm. These features have been important in providing important insights about numerous fundamental nuclear processes. Here, we review the proteomic approaches that were historically used as well as those currently employed to take advantage of the unique biology of the ciliates, focusing on Tetrahymena, to address important questions and better understand nuclear processes including chromatin biology of eukaryotes.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada.
- CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
45
|
Lie S, Banks P, Lawless C, Lydall D, Petersen J. The contribution of non-essential Schizosaccharomyces pombe genes to fitness in response to altered nutrient supply and target of rapamycin activity. Open Biol 2019; 8:rsob.180015. [PMID: 29720420 PMCID: PMC5990653 DOI: 10.1098/rsob.180015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022] Open
Abstract
Nutrient fluctuations in the cellular environment promote changes in cell metabolism and growth to adapt cell proliferation accordingly. The target of rapamycin (TOR) signalling network plays a key role in the coordination of growth and cell proliferation with the nutrient environment and, importantly, nutrient limitation reduces TOR complex 1 (TORC1) signalling. We have performed global quantitative fitness profiling of the collection of Schizosaccharomyces pombe strains from which non-essential genes have been deleted. We identified genes that regulate fitness when cells are grown in a nutrient-rich environment compared with minimal environments, with varying nitrogen sources including ammonium, glutamate and proline. In addition, we have performed the first global screen for genes that regulate fitness when both TORC1 and TORC2 signalling is reduced by Torin1. Analysis of genes whose deletions altered fitness when nutrients were limited, or when TOR signalling was compromised, identified a large number of genes that regulate transmembrane transport, transcription and chromatin organization/regulation and vesicle-mediated transport. The ability to tolerate reduced TOR signalling placed demands upon a large number of biological processes including autophagy, mRNA metabolic processing and nucleocytoplasmic transport. Importantly, novel biological processes and all processes known to be regulated by TOR were identified in our screens. In addition, deletion of 62 genes conserved in humans gave rise to strong sensitivity or resistance to Torin1, and 29 of these 62 genes have novel links to TOR signalling. The identification of chromatin and transcriptional regulation, nutritional uptake and transport pathways in this powerful genetic model now paves the way for a molecular understanding of how cells adapt to the chronic and acute fluctuations in nutrient supply that all eukaryotes experience at some stage, and which is a key feature of cancer cells within solid tumours.
Collapse
Affiliation(s)
- Shervi Lie
- Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Peter Banks
- High Throughput Screening Facility, Newcastle Biomedicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Conor Lawless
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - David Lydall
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia .,South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000, Australia
| |
Collapse
|
46
|
Herrera-Solorio AM, Vembar SS, MacPherson CR, Lozano-Amado D, Meza GR, Xoconostle-Cazares B, Martins RM, Chen P, Vargas M, Scherf A, Hernández-Rivas R. Clipped histone H3 is integrated into nucleosomes of DNA replication genes in the human malaria parasite Plasmodium falciparum. EMBO Rep 2019; 20:embr.201846331. [PMID: 30833341 PMCID: PMC6446197 DOI: 10.15252/embr.201846331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 01/15/2023] Open
Abstract
Post-translational modifications of histone H3 N-terminal tails are key epigenetic regulators of virulence gene expression and sexual commitment in the human malaria parasite Plasmodium falciparum Here, we identify proteolytic clipping of the N-terminal tail of nucleosome-associated histone H3 at amino acid position 21 as a new chromatin modification. A cathepsin C-like proteolytic clipping activity is observed in nuclear parasite extracts. Notably, an ectopically expressed version of clipped histone H3, PfH3p-HA, is targeted to the nucleus and integrates into mononucleosomes. Furthermore, chromatin immunoprecipitation and next-generation sequencing analysis identified PfH3p-HA as being highly enriched in the upstream region of six genes that play a key role in DNA replication and repair: In these genes, PfH3p-HA demarcates a specific 1.5 kb chromatin island adjacent to the open reading frame. Our results indicate that, in P. falciparum, the process of histone clipping may precede chromatin integration hinting at preferential targeting of pre-assembled PfH3p-containing nucleosomes to specific genomic regions. The discovery of a protease-directed mode of chromatin organization in P. falciparum opens up new avenues to develop new anti-malarials.
Collapse
Affiliation(s)
- Abril Marcela Herrera-Solorio
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de Mexico, México
| | - Shruthi Sridhar Vembar
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France.,CNRS, ERL 9195, Paris, France.,INSERM, Unit U1201, Paris, France
| | - Cameron Ross MacPherson
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France.,CNRS, ERL 9195, Paris, France.,INSERM, Unit U1201, Paris, France
| | - Daniela Lozano-Amado
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de Mexico, México
| | - Gabriela Romero Meza
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de Mexico, México
| | - Beatriz Xoconostle-Cazares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, México
| | - Rafael Miyazawa Martins
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France.,CNRS, ERL 9195, Paris, France.,INSERM, Unit U1201, Paris, France
| | - Patty Chen
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France.,CNRS, ERL 9195, Paris, France.,INSERM, Unit U1201, Paris, France
| | - Miguel Vargas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de Mexico, México
| | - Artur Scherf
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France .,CNRS, ERL 9195, Paris, France.,INSERM, Unit U1201, Paris, France
| | - Rosaura Hernández-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de Mexico, México
| |
Collapse
|
47
|
Collins BE, Greer CB, Coleman BC, Sweatt JD. Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics Chromatin 2019; 12:7. [PMID: 30616667 PMCID: PMC6322263 DOI: 10.1186/s13072-018-0251-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023] Open
Abstract
Epigenetic modifications such as histone methylation permit change in chromatin structure without accompanying change in the underlying genomic sequence. A number of studies in animal models have shown that dysregulation of various components of the epigenetic machinery causes cognitive deficits at the behavioral level, suggesting that proper epigenetic control is necessary for the fundamental processes of learning and memory. Histone H3 lysine K4 (H3K4) methylation comprises one component of such epigenetic control, and global levels of this mark are increased in the hippocampus during memory formation. Modifiers of H3K4 methylation are needed for memory formation, shown through animal studies, and many of the same modifiers are mutated in human cognitive diseases. Indeed, all of the known H3K4 methyltransferases and four of the known six H3K4 demethylases have been associated with impaired cognition in a neurologic or psychiatric disorder. Cognitive impairment in such patients often manifests as intellectual disability, consistent with a role for H3K4 methylation in learning and memory. As a modification quintessentially, but not exclusively, associated with transcriptional activity, H3K4 methylation provides unique insights into the regulatory complexity of writing, reading, and erasing chromatin marks within an activated neuron. The following review will discuss H3K4 methylation and connect it to transcriptional events required for learning and memory within the developed nervous system. This will include an initial discussion of the most recent advances in the developing methodology to analyze H3K4 methylation, namely mass spectrometry and deep sequencing, as well as how these methods can be applied to more deeply understand the biology of this mark in the brain. We will then introduce the core enzymatic machinery mediating addition and removal of H3K4 methylation marks and the resulting epigenetic signatures of these marks throughout the neuronal genome. We next foray into the brain, discussing changes in H3K4 methylation marks within the hippocampus during memory formation and retrieval, as well as the behavioral correlates of H3K4 methyltransferase deficiency in this region. Finally, we discuss the human cognitive diseases connected to each H3K4 methylation modulator and summarize advances in developing drugs to target them.
Collapse
Affiliation(s)
- Bridget E Collins
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - Celeste B Greer
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - Benjamin C Coleman
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - J David Sweatt
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
48
|
Munsell EV, Fang B, Sullivan MO. Histone-Mimetic Gold Nanoparticles as Versatile Scaffolds for Gene Transfer and Chromatin Analysis. Bioconjug Chem 2018; 29:3691-3704. [PMID: 30350573 DOI: 10.1021/acs.bioconjchem.8b00611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Histone-inspired polymer assemblies (polyplexes) can regulate gene expression and subcellular transport in plasmids by harnessing the cellular machinery normally used for histone proteins. When grafted to polyplexes, histone tails promote nuclear accumulation, trigger plasmid DNA (pDNA) release, and enhance transcription. Herein, we developed multifunctional gold nanoparticles (AuNPs) decorated by histone motifs as histone-inspired scaffolds with improved pDNA binding, easy bioimaging, and increased potential for gene delivery and chromatin analysis applications. We hypothesized that polycationic AuNPs coupled to histone motifs would mimic the native presentation of these sequences on the histone octamer and thereby create structures with the capacity to both engage native histone effectors and condense pDNA into nucleosome-inspired nanostructures. AuNPs bearing ∼2 nm cores were prepared based on the well-established Brust-Schiffrin two-phase method involving tetrachloroaurate reduction in the presence of 1-pentanethiol. Solid phase peptide synthesis was employed to generate thiolated polycationic ligands and histone tail motifs, and the AuNPs and peptide ligands were combined in a two-step Murray place exchange reaction at various ratios to produce a collection of polycationic AuNPs modified with varying amounts of histone tails. Electron microscopy and thermal analyses demonstrated that these modified AuNPs exhibited tunable biochemical and biophysical properties that closely mimicked the properties of native histones. The histone-mimetic nanoscaffolds efficiently and sequence-specifically engaged histone effectors responsible for activating transcription. In addition, the nanoscaffolds condensed pDNA into complexes with high stability in the presence of physiological concentrations of heparin, a common extracellular polyanion. These combined properties of histone engagement and high stability led to a ∼6-fold enhancement in transfection efficiency as compared with typical polymeric transfection reagents, with the increased transfection efficiency correlated to the presence and amount of histone tails displayed on the surface of the nanoscaffolds. These findings demonstrate the utility of employing a biomimetic materials design approach to develop more effective and stable delivery vehicles for gene transfer and chromatin analysis applications.
Collapse
Affiliation(s)
- Erik V Munsell
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| | - Bing Fang
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| |
Collapse
|
49
|
Gavin DP, Hashimoto JG, Lazar NH, Carbone L, Crabbe JC, Guizzetti M. Stable Histone Methylation Changes at Proteoglycan Network Genes Following Ethanol Exposure. Front Genet 2018; 9:346. [PMID: 30214456 PMCID: PMC6125400 DOI: 10.3389/fgene.2018.00346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic mental illness in which patients often achieve protracted periods of abstinence prior to relapse. Epigenetic mechanisms may provide an explanation for the persisting gene expression changes that can be observed even after long periods of abstinence and may contribute to relapse. In this study, we examined two histone modifications, histone 3 lysine 4 tri-methylation (H3K4me3) and histone 3 lysine 27 tri-methylation (H3K27me3), in the prefrontal cortex of Withdrawal Seizure Resistant (WSR) mice 21 days after 72 h of ethanol vapor exposure. These histone modifications were selected because they are associated with active promoters (H3K4me3) and repressed gene expression in a euchromatic environment (H3K27me3). We performed a genome-wide analysis to identify differences in H3K4me3 and H3K27me3 levels in post-ethanol exposure vs. control mice by ChIP-seq. We detected a global reduction in H3K4me3 peaks and increase in H3K27me3 peaks in post-ethanol exposure mice compared to controls, these changes are consistent with persistent reductions in gene expression. Pathway analysis of genes displaying changes in H3K4me3 and H3K27me3 revealed enrichment for genes involved in proteoglycan and calcium signaling pathways, respectively. Microarray analysis of 7,683 genes and qPCR analysis identified eight genes displaying concordant regulation of gene expression and H3K4me3/H3K27me3. We also compared changes in H3K4me3 and/or H3K27me3 from our study with changes in gene expression in response to ethanol from published literature and we found that the expression of 52% of the genes with altered H3K4me3 binding and 40% of genes with H3K27me3 differences are altered by ethanol exposure. The chromatin changes associated with the 21-day post-exposure period suggest that this period is a unique state in the addiction cycle that differs from ethanol intoxication and acute withdrawal. These results provide insights into the enduring effects of ethanol on proteoglycan and calcium signaling genes in the brain.
Collapse
Affiliation(s)
- David P. Gavin
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Joel G. Hashimoto
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Nathan H. Lazar
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Lucia Carbone
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - John C. Crabbe
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
50
|
Feng L, Wang G, Hamilton EP, Xiong J, Yan G, Chen K, Chen X, Dui W, Plemens A, Khadr L, Dhanekula A, Juma M, Dang HQ, Kapler GM, Orias E, Miao W, Liu Y. A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucleic Acids Res 2017; 45:9481-9502. [PMID: 28934495 PMCID: PMC5766162 DOI: 10.1093/nar/gkx652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022] Open
Abstract
Developmentally programmed genome rearrangement accompanies differentiation of the silent germline micronucleus into the transcriptionally active somatic macronucleus in the ciliated protozoan Tetrahymena thermophila. Internal eliminated sequences (IES) are excised, followed by rejoining of MAC-destined sequences, while fragmentation occurs at conserved chromosome breakage sequences, generating macronuclear chromosomes. Some macronuclear chromosomes, referred to as non-maintained chromosomes (NMC), are lost soon after differentiation. Large NMC contain genes implicated in development-specific roles. One such gene encodes the domesticated piggyBac transposase TPB6, required for heterochromatin-dependent precise excision of IES residing within exons of functionally important genes. These conserved exonic IES determine alternative transcription products in the developing macronucleus; some even contain free-standing genes. Examples of precise loss of some exonic IES in the micronucleus and retention of others in the macronucleus of related species suggest an evolutionary analogy to introns. Our results reveal that germline-limited sequences can encode genes with specific expression patterns and development-related functions, which may be a recurring theme in eukaryotic organisms experiencing programmed genome rearrangement during germline to soma differentiation.
Collapse
Affiliation(s)
- Lifang Feng
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Eileen P Hamilton
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guanxiong Yan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao Chen
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wen Dui
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amber Plemens
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lara Khadr
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arjune Dhanekula
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mina Juma
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hung Quang Dang
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Geoffrey M Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|