1
|
Manian KV, Ludwig CH, Zhao Y, Abell N, Yang X, Root DE, Albert ML, Comander J. A comprehensive map of missense trafficking variants in rhodopsin and their response to pharmacologic correction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640335. [PMID: 40093169 PMCID: PMC11908143 DOI: 10.1101/2025.02.27.640335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Rhodopsin (RHO) missense variants are a leading cause of autosomal dominant retinitis pigmentosa (adRP), a progressive retinal degeneration with no currently approved therapies. Interpreting the pathogenicity of the growing number of identified RHO variants is a major clinical challenge, and understanding their disease mechanisms is essential for developing effective therapies. Here, we present a high-resolution map of RHO missense variant trafficking using two complementary deep mutational scanning (DMS) approaches based on a surface abundance immunoassay and a membrane proximity assay. We generated a comprehensive dataset encompassing all 6,612 possible single-residue missense variants, revealing a strong correlation between the two methods. Over 700 variants were identified with pathogenic trafficking scores, significantly expanding the number of RHO variants with functional evidence supporting pathogenicity. We demonstrate a high concordance between the trafficking scores and ClinVar pathogenicity classifications, highlighting this approach's utility in resolving variants of uncertain significance (VUS). The data also identified structurally clustered trafficking-deficient variants, predominantly within the N-terminal region and second extracellular loop, in and above the extracellular/intradiscal beta-plug region. Furthermore, we evaluated the efficacy of the non-retinoid pharmacological chaperone YC-001, observing significant rescue of trafficking defects in a majority of mistrafficking variants. This comprehensive functional map of RHO missense variants provides a valuable resource for pathogenicity assessment, genotype-phenotype correlations, and the development of targeted therapeutic strategies for RHO-adRP, paving the way for improved diagnosis and treatment for patients.
Collapse
Affiliation(s)
- Kannan V. Manian
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Yan Zhao
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Xiaoping Yang
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David E. Root
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jason Comander
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Sakai D, Hiraoka M, Matsuzaki M, Yokota S, Hirami Y, Onishi A, Nakamura M, Takahashi M, Kurimoto Y, Maeda A. Genotype and phenotype characteristics of RHO-associated retinitis pigmentosa in the Japanese population. Jpn J Ophthalmol 2023; 67:138-148. [PMID: 36648560 DOI: 10.1007/s10384-023-00975-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/19/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To identify the genotypic and phenotypic characteristics of rhodopsin (RHO)-associated retinitis pigmentosa (RP) in the Japanese population. STUDY DESIGN Cross-sectional, single-center study METHODS: The medical records of 1336 patients with RP who underwent genetic testing at our clinic between November 2008 and September 2021 were reviewed, and patients with RHO variants were included. The patients were divided into class A and class B to assess genotype-phenotype correlations based on previous reports. The clinical findings, including best-corrected visual acuity (BCVA), OCT parameters (ellipsoid zone [EZ] width and central retinal thickness [CRT]), and presence of macular degeneration, of the 2 groups were compared. RESULTS The study included 28 patients diagnosed with RHO-associated RP (class A, 19; class B, 9). The BCVA was significantly worse in class A patients than in class B patients (P = 0.045). Superior EZ width was significantly shorter in class A than in class B patients (P = 0.016). Class A patients tended to have thinner CRT and shorter inferior EZ width than those of class B patients, although this difference was not significant. Macular degeneration was observed in 61.5% of class A and 12.5% of class B patients, demonstrating that macular degeneration can be a common complication in class A variants. CONCLUSION Patients with class A variants presented with a severer form of RP than that of patients with class B variants in the Japanese population. These results suggest that the phenotype of RHO-associated RP is linked to the location of the variants and that such a genotype-phenotype correlation is less affected by ethnicities with different genetic backgrounds.
Collapse
Affiliation(s)
- Daiki Sakai
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan. .,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan. .,Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Masakazu Hiraoka
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mitsuhiro Matsuzaki
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Satoshi Yokota
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yasuhiko Hirami
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akishi Onishi
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Vision Care Inc., Kobe, Japan
| | - Makoto Nakamura
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayo Takahashi
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Vision Care Inc., Kobe, Japan
| | - Yasuo Kurimoto
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
3
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
4
|
Zhu P, Dyka F, Ma X, Yin L, Yu H, Baehr W, Hauswirth WW, Deng WT. Disease mechanisms of X-linked cone dystrophy caused by missense mutations in the red and green cone opsins. FASEB J 2021; 35:e21927. [PMID: 34547123 PMCID: PMC8462070 DOI: 10.1096/fj.202101066r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022]
Abstract
Cone photoreceptors are responsible for the visual acuity and color vision of the human eye. Red/green cone opsin missense mutations N94K, W177R, P307L, R330Q, and G338E have been identified in subjects with congenital blue cone monochromacy or color‐vision deficiency. Studies on disease mechanisms due to these cone opsin mutations have been previously carried out exclusively in vitro, and the reported impairments were not always consistent. Here we expressed these mutants via AAV specifically in vivo in M‐opsin knockout mouse cones to investigate their subcellular localization, the pathogenic effects on cone structure, function, and cone viability. We show that these mutations alter the M‐opsin structure, function, and localization. N94K and W177R mutants appeared to be misfolded since they localized exclusively in cone inner segments and endoplasmic reticulum. In contrast, P307L, R330Q, and G338E mutants were detected predominately in cone outer segments. Expression of R330Q and G338E, but not P307L opsins, also partially restored expression and correct localization of cone PDE6α’ and cone transducin γ and resulted in partial rescue of M‐cone‐mediated light responses. Expression of W177R and P307L mutants significantly reduced cone viability, whereas N94K, R330Q, and G338E were only modestly toxic. We propose that although the underlying biochemical and cellular defects caused by these mutants are distinct, they all seem to exhibit a dominant phenotype, resembling autosomal dominant retinitis pigmentosa associated with the majority of rhodopsin missense mutations. The understanding of the molecular mechanisms associated with these cone opsin mutants is fundamental to developing targeted therapies for cone dystrophy/dysfunction.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Frank Dyka
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Xiaojie Ma
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Ling Yin
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Heather Yu
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Wolfgang Baehr
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA.,Department of Neurobiology and Anatomy, University of Utah Health Science Center, Salt Lake City, Utah, USA.,Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Wen-Tao Deng
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Fanelli F, Felline A, Marigo V. Structural aspects of rod opsin and their implication in genetic diseases. Pflugers Arch 2021; 473:1339-1359. [PMID: 33728518 DOI: 10.1007/s00424-021-02546-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Vision in dim-light conditions is triggered by photoactivation of rhodopsin, the visual pigment of rod photoreceptor cells. Rhodopsin is made of a protein, the G protein coupled receptor (GPCR) opsin, and the chromophore 11-cis-retinal. Vertebrate rod opsin is the GPCR best characterized at the atomic level of detail. Since the release of the first crystal structure 20 years ago, a huge number of structures have been released that, in combination with valuable spectroscopic determinations, unveiled most aspects of the photobleaching process. A number of spontaneous mutations of rod opsin have been found linked to vision-impairing diseases like autosomal dominant or autosomal recessive retinitis pigmentosa (adRP or arRP, respectively) and autosomal congenital stationary night blindness (adCSNB). While adCSNB is mainly caused by constitutive activation of rod opsin, RP shows more variegate determinants affecting different aspects of rod opsin function. The vast majority of missense rod opsin mutations affects folding and trafficking and is linked to adRP, an incurable disease that awaits light on its molecular structure determinants. This review article summarizes all major structural information available on vertebrate rod opsin conformational states and the insights gained so far into the structural determinants of adCSNB and adRP linked to rod opsin mutations. Strategies to design small chaperones with therapeutic potential for selected adRP rod opsin mutants will be discussed as well.
Collapse
Affiliation(s)
- Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy. .,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.
| | - Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Valeria Marigo
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125, Modena, Italy
| |
Collapse
|
6
|
Valdez-Lopez JC, Petr ST, Donohue MP, Bailey RJ, Gebreeziabher M, Cameron EG, Wolf JB, Szalai VA, Robinson PR. The C-Terminus and Third Cytoplasmic Loop Cooperatively Activate Mouse Melanopsin Phototransduction. Biophys J 2020; 119:389-401. [PMID: 32621866 PMCID: PMC7376183 DOI: 10.1016/j.bpj.2020.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022] Open
Abstract
Melanopsin, an atypical vertebrate visual pigment, mediates non-image-forming light responses including circadian photoentrainment and pupillary light reflexes and contrast detection for image formation. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells are characterized by sluggish activation and deactivation of their light responses. The molecular determinants of mouse melanopsin's deactivation have been characterized (i.e., C-terminal phosphorylation and β-arrestin binding), but a detailed analysis of melanopsin's activation is lacking. We propose that an extended third cytoplasmic loop is adjacent to the proximal C-terminal region of mouse melanopsin in the inactive conformation, which is stabilized by the ionic interaction of these two regions. This model is supported by site-directed spin labeling and electron paramagnetic resonance spectroscopy of melanopsin, the results of which suggests a high degree of steric freedom at the third cytoplasmic loop, which is increased upon C-terminus truncation, supporting the idea that these two regions are close in three-dimensional space in wild-type melanopsin. To test for a functionally critical C-terminal conformation, calcium imaging of melanopsin mutants including a proximal C-terminus truncation (at residue 365) and proline mutation of this proximal region (H377P, L380P, Y382P) delayed melanopsin's activation rate. Mutation of all potential phosphorylation sites, including a highly conserved tyrosine residue (Y382), into alanines also delayed the activation rate. A comparison of mouse melanopsin with armadillo melanopsin-which has substitutions of various potential phosphorylation sites and a substitution of the conserved tyrosine-indicates that substitution of these potential phosphorylation sites and the tyrosine residue result in dramatically slower activation kinetics, a finding that also supports the role of phosphorylation in signaling activation. We therefore propose that melanopsin's C-terminus is proximal to intracellular loop 3, and C-terminal phosphorylation permits the ionic interaction between these two regions, thus forming a stable structural conformation that is critical for initiating G-protein signaling.
Collapse
Affiliation(s)
- Juan C Valdez-Lopez
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Stephen T Petr
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Matthew P Donohue
- Center for Nanoscale and Technology, National Institutes of Standards and Technology, Gaithersburg, Maryland; Maryland NanoCenter, University of Maryland College Park, College Park, Maryland
| | - Robin J Bailey
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Meheret Gebreeziabher
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Evan G Cameron
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Julia B Wolf
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Veronika A Szalai
- Center for Nanoscale and Technology, National Institutes of Standards and Technology, Gaithersburg, Maryland
| | - Phyllis R Robinson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland.
| |
Collapse
|
7
|
Aguilà M, Bellingham J, Athanasiou D, Bevilacqua D, Duran Y, Maswood R, Parfitt DA, Iwawaki T, Spyrou G, Smith AJ, Ali RR, Cheetham ME. AAV-mediated ERdj5 overexpression protects against P23H rhodopsin toxicity. Hum Mol Genet 2020; 29:1310-1318. [PMID: 32196553 PMCID: PMC7254845 DOI: 10.1093/hmg/ddaa049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Rhodopsin misfolding caused by the P23H mutation is a major cause of autosomal dominant retinitis pigmentosa (adRP). To date, there are no effective treatments for adRP. The BiP co-chaperone and reductase ERdj5 (DNAJC10) is part of the endoplasmic reticulum (ER) quality control machinery, and previous studies have shown that overexpression of ERdj5 in vitro enhanced the degradation of P23H rhodopsin, whereas knockdown of ERdj5 increased P23H rhodopsin ER retention and aggregation. Here, we investigated the role of ERdj5 in photoreceptor homeostasis in vivo by using an Erdj5 knockout mouse crossed with the P23H knock-in mouse and by adeno-associated viral (AAV) vector-mediated gene augmentation of ERdj5 in P23H-3 rats. Electroretinogram (ERG) and optical coherence tomography of Erdj5-/- and P23H+/-:Erdj5-/- mice showed no effect of ERdj5 ablation on retinal function or photoreceptor survival. Rhodopsin levels and localization were similar to those of control animals at a range of time points. By contrast, when AAV2/8-ERdj5-HA was subretinally injected into P23H-3 rats, analysis of the full-field ERG suggested that overexpression of ERdj5 reduced visual function loss 10 weeks post-injection (PI). This correlated with a significant preservation of photoreceptor cells at 4 and 10 weeks PI. Assessment of the outer nuclear layer (ONL) morphology showed preserved ONL thickness and reduced rhodopsin retention in the ONL in the injected superior retina. Overall, these data suggest that manipulation of the ER quality control and ER-associated degradation factors to promote mutant protein degradation could be beneficial for the treatment of adRP caused by mutant rhodopsin.
Collapse
Affiliation(s)
| | | | | | | | - Yanai Duran
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Ryea Maswood
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, 920-0293, Japan
| | - Giannis Spyrou
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, 581 83, Sweden
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | |
Collapse
|
8
|
Mitchell J, Balem F, Tirupula K, Man D, Dhiman HK, Yanamala N, Ollesch J, Planas-Iglesias J, Jennings BJ, Gerwert K, Iannaccone A, Klein-Seetharaman J. Comparison of the molecular properties of retinitis pigmentosa P23H and N15S amino acid replacements in rhodopsin. PLoS One 2019; 14:e0214639. [PMID: 31100078 PMCID: PMC6524802 DOI: 10.1371/journal.pone.0214639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
Mutations in the RHO gene encoding for the visual pigment protein, rhodopsin, are among the most common cause of autosomal dominant retinitis pigmentosa (ADRP). Previous studies of ADRP mutations in different domains of rhodopsin have indicated that changes that lead to more instability in rhodopsin structure are responsible for more severe disease in patients. Here, we further test this hypothesis by comparing side-by-side and therefore quantitatively two RHO mutations, N15S and P23H, both located in the N-terminal intradiscal domain. The in vitro biochemical properties of these two rhodopsin proteins, expressed in stably transfected tetracycline-inducible HEK293S cells, their UV-visible absorption, their Fourier transform infrared, circular dichroism and Metarhodopsin II fluorescence spectroscopy properties were characterized. As compared to the severely impaired P23H molecular function, N15S is only slightly defective in structure and stability. We propose that the molecular basis for these structural differences lies in the greater distance of the N15 residue as compared to P23 with respect to the predicted rhodopsin folding core. As described previously for WT rhodopsin, addition of the cytoplasmic allosteric modulator chlorin e6 stabilizes especially the P23H protein, suggesting that chlorin e6 may be generally beneficial in the rescue of those ADRP rhodopsin proteins whose stability is affected by amino acid replacement.
Collapse
Affiliation(s)
- James Mitchell
- Division of Biomedical Sciences, Medical School, University of Warwick, Coventry, United Kingdom
| | - Fernanda Balem
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kalyan Tirupula
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David Man
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Harpreet Kaur Dhiman
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Julian Ollesch
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Joan Planas-Iglesias
- Division of Biomedical Sciences, Medical School, University of Warwick, Coventry, United Kingdom
| | - Barbara J Jennings
- Retinal Degeneration & Ophthalmic Genetics Service & Lions Visual Function Diagnostic Lab, Hamilton Eye Institute, Dept. Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Klaus Gerwert
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Alessandro Iannaccone
- Retinal Degeneration & Ophthalmic Genetics Service & Lions Visual Function Diagnostic Lab, Hamilton Eye Institute, Dept. Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Judith Klein-Seetharaman
- Division of Biomedical Sciences, Medical School, University of Warwick, Coventry, United Kingdom
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
9
|
Coupling of Human Rhodopsin to a Yeast Signaling Pathway Enables Characterization of Mutations Associated with Retinal Disease. Genetics 2018; 211:597-615. [PMID: 30514708 DOI: 10.1534/genetics.118.301733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are crucial sensors of extracellular signals in eukaryotes, with multiple GPCR mutations linked to human diseases. With the growing number of sequenced human genomes, determining the pathogenicity of a mutation is challenging, but can be aided by a direct measurement of GPCR-mediated signaling. This is particularly difficult for the visual pigment rhodopsin-a GPCR activated by light-for which hundreds of mutations have been linked to inherited degenerative retinal diseases such as retinitis pigmentosa. In this study, we successfully engineered, for the first time, activation by human rhodopsin of the yeast mating pathway, resulting in signaling via a fluorescent reporter. We combine this novel assay for rhodopsin light-dependent activation with studies of subcellular localization, and the upregulation of the unfolded protein response in response to misfolded rhodopsin protein. We use these assays to characterize a panel of rhodopsin mutations with known molecular phenotypes, finding that rhodopsin maintains a similar molecular phenotype in yeast, with some interesting differences. Furthermore, we compare our assays in yeast with clinical phenotypes from patients with novel disease-linked mutations. We demonstrate that our engineered yeast strain can be useful in rhodopsin mutant classification, and in helping to determine the molecular mechanisms underlying their pathogenicity. This approach may also be applied to better understand the clinical relevance of other human GPCR mutations, furthering the use of yeast as a tool for investigating molecular mechanisms relevant to human disease.
Collapse
|
10
|
Rodgers J, Peirson SN, Hughes S, Hankins MW. Functional characterisation of naturally occurring mutations in human melanopsin. Cell Mol Life Sci 2018; 75:3609-3624. [PMID: 29700553 PMCID: PMC6133154 DOI: 10.1007/s00018-018-2813-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
Melanopsin is a blue light-sensitive opsin photopigment involved in a range of non-image forming behaviours, including circadian photoentrainment and the pupil light response. Many naturally occurring genetic variants exist within the human melanopsin gene (OPN4), yet it remains unclear how these variants affect melanopsin protein function and downstream physiological responses to light. Here, we have used bioinformatic analysis and in vitro expression systems to determine the functional phenotypes of missense human OPN4 variants. From 1242 human OPN4 variants collated in the NCBI Short Genetic Variation database (dbSNP), we identified 96 that lead to non-synonymous amino acid substitutions. These 96 missense mutations were screened using sequence alignment and comparative approaches to select 16 potentially deleterious variants for functional characterisation using calcium imaging of melanopsin-driven light responses in HEK293T cells. We identify several previously uncharacterised OPN4 mutations with altered functional properties, including attenuated or abolished light responses, as well as variants demonstrating abnormal response kinetics. These data provide valuable insight into the structure-function relationships of human melanopsin, including several key functional residues of the melanopsin protein. The identification of melanopsin variants with significantly altered function may serve to detect individuals with disrupted melanopsin-based light perception, and potentially highlight those at increased risk of sleep disturbance, circadian dysfunction, and visual abnormalities.
Collapse
Affiliation(s)
- Jessica Rodgers
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
11
|
Zhang Q, Zhou M, Zhao L, Jiang H, Yang H. Dynamic States of the Ligand-Free Class A G Protein-Coupled Receptor Extracellular Side. Biochemistry 2018; 57:4767-4775. [PMID: 29999306 DOI: 10.1021/acs.biochem.8b00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) make up the largest family of drug targets. The second extracellular loop (ECL2) and extracellular end of the third transmembrane helix (TM3) are basic structural elements of the GPCR ligand binding site. Currently, the disulfide bond between the two conserved cysteines in the ECL2 and TM3 is considered to be a basic GPCR structural feature. This disulfide bond has a significant effect on receptor dynamics and ligand binding. Here, molecular dynamics simulations and experimental results show that the two cysteines are distant from one another in the highest-population conformational state of ligand-free class A GPCRs and do not form a disulfide bond, indicating that the dynamics of the GPCR extracellular side are different from our conventional understanding. These surprising dynamics should have important effects on the drug binding process. On the basis of the two distinct ligand-free states, we suggest two kinetic processes for binding of ligands to GPCRs. These results challenge our commonly held beliefs regarding both GPCR structural features and ligand binding.
Collapse
Affiliation(s)
- Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences , East China Normal University , Shanghai 200241 , China
| | - Mang Zhou
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Lifen Zhao
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Hualiang Jiang
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences , East China Normal University , Shanghai 200241 , China
| |
Collapse
|
12
|
Behnen P, Felline A, Comitato A, Di Salvo MT, Raimondi F, Gulati S, Kahremany S, Palczewski K, Marigo V, Fanelli F. A Small Chaperone Improves Folding and Routing of Rhodopsin Mutants Linked to Inherited Blindness. iScience 2018; 4:1-19. [PMID: 30240733 PMCID: PMC6147235 DOI: 10.1016/j.isci.2018.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 11/24/2022] Open
Abstract
The autosomal dominant form of retinitis pigmentosa (adRP) is a blindness-causing conformational disease largely linked to mutations of rhodopsin. Molecular simulations coupled to the graph-based protein structure network (PSN) analysis and in vitro experiments were conducted to determine the effects of 33 adRP rhodopsin mutations on the structure and routing of the opsin protein. The integration of atomic and subcellular levels of analysis was accomplished by the linear correlation between indices of mutational impairment in structure network and in routing. The graph-based index of structural perturbation served also to divide the mutants in four clusters, consistent with their differences in subcellular localization and responses to 9-cis retinal. The stability core of opsin inferred from PSN analysis was targeted by virtual screening of over 300,000 anionic compounds leading to the discovery of a reversible orthosteric inhibitor of retinal binding more effective than retinal in improving routing of three adRP mutants. In silico and in vitro analyses of adRP rhodopsin mutants bridged folding and routing Structure network analysis grouped mutants amenable to treatment with small chaperones Virtual compound screening against the stability core of opsin found a small chaperone The pharmacoperone is a reversible orthosteric inhibitor of retinal binding
Collapse
Affiliation(s)
- Petra Behnen
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Antonella Comitato
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Maria Teresa Di Salvo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Francesco Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Sahil Gulati
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 East 101st Street, Cleveland, OH 44106, USA
| | - Shirin Kahremany
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 East 101st Street, Cleveland, OH 44106, USA
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, via Campi 287, 41125 Modena, Italy.
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, via Campi 287, 41125 Modena, Italy.
| |
Collapse
|
13
|
Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ, Cheetham ME. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res 2018; 62:1-23. [PMID: 29042326 PMCID: PMC5779616 DOI: 10.1016/j.preteyeres.2017.10.002] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Inherited mutations in the rod visual pigment, rhodopsin, cause the degenerative blinding condition, retinitis pigmentosa (RP). Over 150 different mutations in rhodopsin have been identified and, collectively, they are the most common cause of autosomal dominant RP (adRP). Mutations in rhodopsin are also associated with dominant congenital stationary night blindness (adCSNB) and, less frequently, recessive RP (arRP). Recessive RP is usually associated with loss of rhodopsin function, whereas the dominant conditions are a consequence of gain of function and/or dominant negative activity. The in-depth characterisation of many rhodopsin mutations has revealed that there are distinct consequences on the protein structure and function associated with different mutations. Here we categorise rhodopsin mutations into seven discrete classes; with defects ranging from misfolding and disruption of proteostasis, through mislocalisation and disrupted intracellular traffic to instability and altered function. Rhodopsin adRP offers a unique paradigm to understand how disturbances in photoreceptor homeostasis can lead to neuronal cell death. Furthermore, a wide range of therapies have been tested in rhodopsin RP, from gene therapy and gene editing to pharmacological interventions. The understanding of the disease mechanisms associated with rhodopsin RP and the development of targeted therapies offer the potential of treatment for this currently untreatable neurodegeneration.
Collapse
Affiliation(s)
| | - Monica Aguila
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Caroline McCulley
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Philip J Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK.
| | | |
Collapse
|
14
|
Collantes-Alegre JM, Mattenberger F, Barberà M, Martínez-Torres D. Characterisation, analysis of expression and localisation of the opsin gene repertoire from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. JOURNAL OF INSECT PHYSIOLOGY 2018; 104:48-59. [PMID: 29203177 DOI: 10.1016/j.jinsphys.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Organisms exhibit a wide range of seasonal responses as adaptions to predictable annual changes in their environment. These changes are originally caused by the effect of the Earth's cycles around the sun and its axial tilt. Examples of seasonal responses include floration, migration, reproduction and diapause. In temperate climate zones, the most robust variable to predict seasons is the length of the day (i.e. the photoperiod). The first step to trigger photoperiodic driven responses involves measuring the duration of the light-dark phases, but the molecular clockwork performing this task is poorly characterized. Photopigments such as opsins are known to participate in light perception, being part of the machinery in charge of providing information about the luminous state of the surroundings. Aphids (Hemiptera: Aphididae) are paradigmatic photoperiodic insects, exhibiting a strong induction to diapause when the light regime mimics autumn conditions. The availability of the pea aphid (Acyrthosiphon pisum) genome has facilitated molecular approaches to understand the effect of light stimulus in the photoperiodic induction process. We have identified, experimentally validated and characterized the expression of the full opsin gene repertoire in the pea aphid. Among identified opsin genes in A. pisum, arthropsin is absent in most insects sequenced to date (except for dragonflies and two other hemipterans) but also present in a crustacean, an onychophoran and chelicerates. We have quantified the expression of these genes in aphids exposed to different photoperiodic conditions and at different times of the day and localized their transcripts in the aphid brain. Clear differences in expression patterns were found, thus relating opsin expression with the photoperiodic response.
Collapse
Affiliation(s)
- Jorge Mariano Collantes-Alegre
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - Florian Mattenberger
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain; Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain.
| |
Collapse
|
15
|
Woods KN, Pfeffer J, Klein-Seetharaman J. Chlorophyll-Derivative Modulation of Rhodopsin Signaling Properties through Evolutionarily Conserved Interaction Pathways. Front Mol Biosci 2017; 4:85. [PMID: 29312953 PMCID: PMC5733091 DOI: 10.3389/fmolb.2017.00085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 11/28/2017] [Indexed: 01/04/2023] Open
Abstract
Retinal is the light-absorbing chromophore that is responsible for the activation of visual pigments and light-driven ion pumps. Evolutionary changes in the intermolecular interactions of the retinal with specific amino acids allow for adaptation of the spectral characteristics, referred to as spectral tuning. However, it has been proposed that a specific species of dragon fish has bypassed the adaptive evolutionary process of spectral tuning and replaced it with a single evolutionary event: photosensitization of rhodopsin by chlorophyll derivatives. Here, by using a combination of experimental measurements and computational modeling to probe retinal-receptor interactions in rhodopsin, we show how the binding of the chlorophyll derivative, chlorin-e6 (Ce6) in the intracellular domain (ICD) of the receptor allosterically excites G-protein coupled receptor class A (GPCR-A) conserved long-range correlated fluctuations that connect distant parts of the receptor. These long-range correlated motions are associated with regulating the dynamics and intermolecular interactions of specific amino acids in the retinal ligand-binding pocket that have been associated with shifts in the absorbance peak maximum (λmax) and hence, spectral sensitivity of the visual system. Moreover, the binding of Ce6 affects the overall global properties of the receptor. Specifically, we find that Ce6-induced dynamics alter the thermal stability of rhodopsin by adjusting hydrogen-bonding interactions near the receptor active-site that consequently also influences the intrinsic conformational equilibrium of the receptor. Due to the conservation of the ICD residues amongst different receptors in this class and the fact that all GPCR-A receptors share a common mechanism of activation, it is possible that the allosteric associations excited in rhodopsin with Ce6 binding are a common feature in all class A GPCRs.
Collapse
Affiliation(s)
- Kristina N. Woods
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität, München, Germany
- *Correspondence: Kristina N. Woods
| | - Jürgen Pfeffer
- Bavarian School of Public Policy, Technical University of Munich, München, Germany
| | | |
Collapse
|
16
|
Krebs MP, Collin GB, Hicks WL, Yu M, Charette JR, Shi LY, Wang J, Naggert JK, Peachey NS, Nishina PM. Mouse models of human ocular disease for translational research. PLoS One 2017; 12:e0183837. [PMID: 28859131 PMCID: PMC5578669 DOI: 10.1371/journal.pone.0183837] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/12/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse models provide a valuable tool for exploring pathogenic mechanisms underlying inherited human disease. Here, we describe seven mouse models identified through the Translational Vision Research Models (TVRM) program, each carrying a new allele of a gene previously linked to retinal developmental and/or degenerative disease. The mutations include four alleles of three genes linked to human nonsyndromic ocular diseases (Aipl1tvrm119, Aipl1tvrm127, Rpgrip1tvrm111, RhoTvrm334) and three alleles of genes associated with human syndromic diseases that exhibit ocular phentoypes (Alms1tvrm102, Clcn2nmf289, Fkrptvrm53). Phenotypic characterization of each model is provided in the context of existing literature, in some cases refining our current understanding of specific disease attributes. These murine models, on fixed genetic backgrounds, are available for distribution upon request and may be useful for understanding the function of the gene in the retina, the pathological mechanisms induced by its disruption, and for testing experimental approaches to treat the corresponding human ocular diseases.
Collapse
Affiliation(s)
- Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wanda L. Hicks
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Lan Ying Shi
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
17
|
Patterson EJ, Wilk M, Langlo CS, Kasilian M, Ring M, Hufnagel RB, Dubis AM, Tee JJ, Kalitzeos A, Gardner JC, Ahmed ZM, Sisk RA, Larsen M, Sjoberg S, Connor TB, Dubra A, Neitz J, Hardcastle AJ, Neitz M, Michaelides M, Carroll J. Cone Photoreceptor Structure in Patients With X-Linked Cone Dysfunction and Red-Green Color Vision Deficiency. Invest Ophthalmol Vis Sci 2017; 57:3853-63. [PMID: 27447086 PMCID: PMC4968428 DOI: 10.1167/iovs.16-19608] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/M opsin gene mutations to clarify the link between color vision deficiency and cone dysfunction. Methods We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone mosaic obtained with adaptive optics scanning light ophthalmoscopy. The L/M opsin gene array was characterized in 16 subjects, including at least one subject from each family. Results There were six subjects with the LVAVA haplotype encoded by exon 3, seven with LIAVA, two with the Cys203Arg mutation encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. Conclusions Our findings provide a direct link between disruption of the cone mosaic and L/M opsin variants. We hypothesize that, in addition to large phenotypic differences between different L/M opsin variants, the ratio of expression of first versus downstream genes in the L/M array contributes to phenotypic diversity. While the L/M opsin mutations underlie the cone dysfunction in all of the subjects tested, the color vision defect can be caused either by the same mutation or a gene rearrangement at the same locus.
Collapse
Affiliation(s)
- Emily J Patterson
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Melissa Wilk
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Christopher S Langlo
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Melissa Kasilian
- UCL Institute of Ophthalmology, London, United Kingdom 4Moorfields Eye Hospital, London, United Kingdom
| | - Michael Ring
- UCL Institute of Ophthalmology, London, United Kingdom 4Moorfields Eye Hospital, London, United Kingdom
| | - Robert B Hufnagel
- Department of Pediatrics, Division of Pediatric Ophthalmology, University of Cincinnati and Cincinnati Children's Hospital, Cincinnati, Ohio, United States
| | - Adam M Dubis
- UCL Institute of Ophthalmology, London, United Kingdom 4Moorfields Eye Hospital, London, United Kingdom
| | - James J Tee
- UCL Institute of Ophthalmology, London, United Kingdom 4Moorfields Eye Hospital, London, United Kingdom
| | - Angelos Kalitzeos
- UCL Institute of Ophthalmology, London, United Kingdom 4Moorfields Eye Hospital, London, United Kingdom
| | | | - Zubair M Ahmed
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States
| | - Robert A Sisk
- Department of Pediatrics, Division of Pediatric Ophthalmology, University of Cincinnati and Cincinnati Children's Hospital, Cincinnati, Ohio, United States
| | - Michael Larsen
- Department of Ophthalmology, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stacy Sjoberg
- Great River Eye Clinic, Crosby, Minnesota, United States
| | - Thomas B Connor
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alfredo Dubra
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States 9Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States 10Department of Cell Biology, Neurobiology, & Anatomy, Medical Coll
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | | | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Michel Michaelides
- UCL Institute of Ophthalmology, London, United Kingdom 4Moorfields Eye Hospital, London, United Kingdom
| | - Joseph Carroll
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States 9Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States 10Department of Cell Biology, Neurobiology, & Anatomy, Medical Coll
| |
Collapse
|
18
|
Lingerfelt MA, Zhao P, Sharir HP, Hurst DP, Reggio PH, Abood ME. Identification of Crucial Amino Acid Residues Involved in Agonist Signaling at the GPR55 Receptor. Biochemistry 2017; 56:473-486. [PMID: 28005346 PMCID: PMC5338039 DOI: 10.1021/acs.biochem.6b01013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GPR55 is a newly deorphanized class A G-protein-coupled receptor that has been implicated in inflammatory pain, neuropathic pain, metabolic disorder, bone development, and cancer. Few potent GPR55 ligands have been identified to date. This is largely due to an absence of information about salient features of GPR55, such as residues important for signaling and residues implicated in the GPR55 signaling cascade. The goal of this work was to identify residues that are key for the signaling of the GPR55 endogenous ligand, l-α-lysophosphatidylinositol (LPI), as well as the signaling of the GPR55 agonist, ML184 {CID 2440433, 3-[4-(2,3-dimethylphenyl)piperazine-1-carbonyl]-N,N-dimethyl-4-pyrrolidin-1-ylbenzenesulfonamide}. Serum response element (SRE) and serum response factor (SRF) luciferase assays were used as readouts for studying LPI and ML184 signaling at the GPR55 mutants. A GPR55 R* model based on the recent δ-opioid receptor (DOR) crystal structure was used to interpret the resultant mutation data. Two residues were found to be crucial for agonist signaling at GPR55, K2.60 and E3.29, suggesting that these residues form the primary interaction site for ML184 and LPI at GPR55. Y3.32F, H(170)F, and F6.55A/L mutation results suggested that these residues are part of the orthosteric binding site for ML184, while Y3.32F and H(170)F mutation results suggest that these two residues are part of the LPI binding pocket. Y3.32L, M3.36A, and F6.48A mutation results suggest the importance of a Y3.32/M3.36/F6.48 cluster in the GPR55 signaling cascade. C(10)A and C(260)A mutations suggest that these residues form a second disulfide bridge in the extracellular domain of GPR55, occluding ligand extracellular entry in the TMH1-TMH7 region of GPR55. Taken together, these results provide the first set of discrete information about GPR55 residues important for LPI and ML184 signaling and for GPR55 activation. This information should aid in the rational design of next-generation GPR55 ligands and the creation of the first high-affinity GPR55 radioligand, a tool that is sorely needed in the field.
Collapse
MESH Headings
- Amino Acid Motifs
- Binding Sites
- Crystallography, X-Ray
- Gene Expression
- HEK293 Cells
- Humans
- Kinetics
- Ligands
- Lysophospholipids/chemistry
- Lysophospholipids/pharmacology
- Molecular Docking Simulation
- Mutation
- Piperazines/chemistry
- Piperazines/pharmacology
- Protein Binding
- Pyrrolidines/chemistry
- Pyrrolidines/pharmacology
- Receptors, Cannabinoid
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Serum Response Element
- Serum Response Factor/chemistry
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Signal Transduction
- Glycine max
- Structural Homology, Protein
- Thermodynamics
Collapse
Affiliation(s)
- Mary A. Lingerfelt
- Department of Chemistry and Biochemistry, UNC-Greensboro, Greensboro, North Carolina 27402 United States
| | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Haleli P. Sharir
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Dow P. Hurst
- Department of Chemistry and Biochemistry, UNC-Greensboro, Greensboro, North Carolina 27402 United States
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, UNC-Greensboro, Greensboro, North Carolina 27402 United States
| | - Mary E. Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
19
|
Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors. Sci Rep 2016; 6:37290. [PMID: 27849063 PMCID: PMC5110974 DOI: 10.1038/srep37290] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 10/28/2016] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals.
Collapse
|
20
|
Naranjo AN, Chevalier A, Cousins GD, Ayettey E, McCusker EC, Wenk C, Robinson AS. Conserved disulfide bond is not essential for the adenosine A2A receptor: Extracellular cysteines influence receptor distribution within the cell and ligand-binding recognition. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:603-14. [PMID: 25445670 PMCID: PMC4565196 DOI: 10.1016/j.bbamem.2014.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/22/2014] [Accepted: 11/10/2014] [Indexed: 11/16/2022]
Abstract
G protein-coupled receptors (GPCRs) are integral membrane proteins involved in cellular signaling and constitute major drug targets. Despite their importance, the relationship between structure and function of these receptors is not well understood. In this study, the role of extracellular disulfide bonds on the trafficking and ligand-binding activity of the human A2A adenosine receptor was examined. To this end, cysteine-to-alanine mutations were conducted to replace individual and both cysteines in three disulfide bonds present in the first two extracellular loops. Although none of the disulfide bonds were essential for the formation of plasma membrane-localized active GPCR, loss of the disulfide bonds led to changes in the distribution of the receptor within the cell and changes in the ligand-binding affinity. These results indicate that in contrast to many class A GPCRs, the extracellular disulfide bonds of the A2A receptor are not essential, but can modulate the ligand-binding activity, by either changing the conformation of the extracellular loops or perturbing the interactions of the transmembrane domains.
Collapse
Affiliation(s)
- Andrea N Naranjo
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA.
| | - Amy Chevalier
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA.
| | - Gregory D Cousins
- Department of Computer Science, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, USA
| | - Esther Ayettey
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Emily C McCusker
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA.
| | - Carola Wenk
- Department of Computer Science, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, USA.
| | - Anne S Robinson
- Department of Chemical and Biomolecular Engineering, Tulane University, 300 Lindy Boggs Laboratory, 6823 St. Charles Ave, New Orleans, LA 70118, USA; Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA.
| |
Collapse
|
21
|
The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 2014; 48:1-34. [PMID: 25420508 DOI: 10.1017/s0033583514000110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine.
Collapse
|
22
|
Tananuvat N, Charoenkwan P, Ohazama A, Ketuda Cairns JR, Kaewgahya M, Kantaputra PN. Root dentin anomaly and a PLG mutation. Eur J Med Genet 2014; 57:630-5. [DOI: 10.1016/j.ejmg.2014.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
|
23
|
Tao YX, Conn PM. Chaperoning G protein-coupled receptors: from cell biology to therapeutics. Endocr Rev 2014; 35:602-47. [PMID: 24661201 PMCID: PMC4105357 DOI: 10.1210/er.2013-1121] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence, are also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild-type GPCRs are not folded optimally, and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild-type GPCRs; therefore, they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology (Y.-X.T.), College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5519; and Departments of Internal Medicine and Cell Biology (P.M.C.), Texas Tech University Health Science Center, Lubbock, Texas 79430-6252
| | | |
Collapse
|
24
|
Athanasiou D, Bevilacqua D, Aguila M, McCulley C, Kanuga N, Iwawaki T, Chapple JP, Cheetham ME. The co-chaperone and reductase ERdj5 facilitates rod opsin biogenesis and quality control. Hum Mol Genet 2014; 23:6594-606. [PMID: 25055872 PMCID: PMC4240209 DOI: 10.1093/hmg/ddu385] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in rhodopsin, the light-sensitive protein of rod cells, are the most common cause of autosomal dominant retinitis pigmentosa (ADRP). Many rod opsin mutations, such as P23H, lead to misfolding of rod opsin with detrimental effects on photoreceptor function and viability. Misfolded P23H rod opsin and other mutations in the intradiscal domain are characterized by the formation of an incorrect disulphide bond between C185 and C187, as opposed to the correct and highly conserved C110–C187 disulphide bond. Therefore, we tested the hypothesis that incorrect disulphide bond formation might be a factor that affects the biogenesis of rod opsin by studying wild-type (WT) or P23H rod opsin in combination with amino acid substitutions that prevent the formation of incorrect disulphide bonds involving C185. These mutants had altered traffic dynamics, suggesting a requirement for regulation of disulphide bond formation/reduction during rod opsin biogenesis. Here, we show that the BiP co-chaperone and reductase protein ERdj5 (DNAJC10) regulates this process. ERdj5 overexpression promoted the degradation, improved the endoplasmic reticulum mobility and prevented the aggregation of P23H rod opsin. ERdj5 reduction by shRNA delayed rod opsin degradation and promoted aggregation. The reductase and co-chaperone activity of ERdj5 were both required for these effects on P23H rod opsin. Furthermore, mutations in these functional domains acted as dominant negatives that affected WT rod opsin biogenesis. Collectively, these data identify ERdj5 as a member of the proteostasis network that regulates rod opsin biogenesis and supports a role for disulphide bond formation/reduction in rod opsin biogenesis and disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Takao Iwawaki
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan and
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | | |
Collapse
|
25
|
Liu MY, Liu J, Mehrotra D, Liu Y, Guo Y, Baldera-Aguayo PA, Mooney VL, Nour AM, Yan ECY. Thermal stability of rhodopsin and progression of retinitis pigmentosa: comparison of S186W and D190N rhodopsin mutants. J Biol Chem 2013; 288:17698-712. [PMID: 23625926 DOI: 10.1074/jbc.m112.397257] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Over 100 point mutations in the rhodopsin gene have been associated with retinitis pigmentosa (RP), a family of inherited visual disorders. Among these, we focused on characterizing the S186W mutation. We compared the thermal properties of the S186W mutant with another RP-causing mutant, D190N, and with WT rhodopsin. To assess thermal stability, we measured the rate of two thermal reactions contributing to the thermal decay of rhodopsin as follows: thermal isomerization of 11-cis-retinal and hydrolysis of the protonated Schiff base linkage between the 11-cis-retinal chromophore and opsin protein. We used UV-visible spectroscopy and HPLC to examine the kinetics of these reactions at 37 and 55 °C for WT and mutant rhodopsin purified from HEK293 cells. Compared with WT rhodopsin and the D190N mutant, the S186W mutation dramatically increases the rates of both thermal isomerization and dark state hydrolysis of the Schiff base by 1-2 orders of magnitude. The results suggest that the S186W mutant thermally destabilizes rhodopsin by disrupting a hydrogen bond network at the receptor's active site. The decrease in the thermal stability of dark state rhodopsin is likely to be associated with higher levels of dark noise that undermine the sensitivity of rhodopsin, potentially accounting for night blindness in the early stages of RP. Further studies of the thermal stability of additional pathogenic rhodopsin mutations in conjunction with clinical studies are expected to provide insight into the molecular mechanism of RP and test the correlation between rhodopsin's thermal stability and RP progression in patients.
Collapse
Affiliation(s)
- Monica Yun Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Isin B, Tirupula KC, Oltvai ZN, Klein-Seetharaman J, Bahar I. Identification of motions in membrane proteins by elastic network models and their experimental validation. Methods Mol Biol 2012; 914:285-317. [PMID: 22976035 DOI: 10.1007/978-1-62703-023-6_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Identifying the functional motions of membrane proteins is difficult because they range from large-scale collective dynamics to local small atomic fluctuations at different timescales that are difficult to measure experimentally due to the hydrophobic nature of these proteins. Elastic Network Models, and in particular their most widely used implementation, the Anisotropic Network Model (ANM), have proven to be useful computational methods in many recent applications to predict membrane protein dynamics. These models are based on the premise that biomolecules possess intrinsic mechanical characteristics uniquely defined by their particular architectures. In the ANM, interactions between residues in close proximity are represented by harmonic potentials with a uniform spring constant. The slow mode shapes generated by the ANM provide valuable information on the global dynamics of biomolecules that are relevant to their function. In its recent extension in the form of ANM-guided molecular dynamics (MD), this coarse-grained approach is augmented with atomic detail. The results from ANM and its extensions can be used to guide experiments and thus speedup the process of quantifying motions in membrane proteins. Testing the predictions can be accomplished through (a) direct observation of motions through studies of structure and biophysical probes, (b) perturbation of the motions by, e.g., cross-linking or site-directed mutagenesis, and (c) by studying the effects of such perturbations on protein function, typically through ligand binding and activity assays. To illustrate the applicability of the combined computational ANM-experimental testing framework to membrane proteins, we describe-alongside the general protocols-here the application of ANM to rhodopsin, a prototypical member of the pharmacologically relevant G-protein coupled receptor family.
Collapse
Affiliation(s)
- Basak Isin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
27
|
Hollingsworth TJ, Gross AK. Defective trafficking of rhodopsin and its role in retinal degenerations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:1-44. [PMID: 22251557 DOI: 10.1016/b978-0-12-394304-0.00006-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Retinitis pigmentosa is a retinal degeneration transmitted by varied modes of inheritance and affects approximately 1 in 4000 individuals. The photoreceptors of the outer retina, as well as the retinal pigmented epithelium which supports the outer retina metabolically and structurally, are the retinal regions most affected by the disorder. In several forms of retinitis pigmentosa, the mislocalization of the rod photoreceptor protein rhodopsin is thought to be a contributing factor underlying the pathophysiology seen in patients. The mutations causing this mislocalization often occur in genes coding proteins involved in ciliary formation, vesicular transport, rod outer segment disc formation, and stability, as well as the rhodopsin protein itself. Often, these mutations result in the most early-onset cases of both recessive and dominant retinitis pigmentosa, and the following presents a discussion of the proteins, their degenerative phenotypes, and possible treatments of the disease.
Collapse
Affiliation(s)
- T J Hollingsworth
- Department of Vision Sciences, University of Alabama, Birmingham, Alabama, USA
| | | |
Collapse
|
28
|
Papale GA, Hanson PJ, Sahoo D. Extracellular disulfide bonds support scavenger receptor class B type I-mediated cholesterol transport. Biochemistry 2011; 50:6245-54. [PMID: 21675794 DOI: 10.1021/bi2005625] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Scavenger receptor class B type I (SR-BI) binds high-density lipoprotein (HDL) and mediates the selective uptake of cholesteryl esters (CE). Although the extracellular domain of SR-BI is critical for function, the structural characteristics of this region remain elusive. Using sulfhydryl labeling strategies, we report the novel finding that all six cysteine (Cys) residues in the extracellular domain of SR-BI are involved in disulfide bond formation that is intramolecular by nature. We hypothesized that an SR-BI conformation stabilized by extracellular disulfide bonds is a prerequisite for SR-BI-mediated cholesterol transport. Thus, single-Cys mutant SR-BI receptors (C251S-, C280S-, C321S-, C323S-, C334S-, and C384S-SR-BI), as well as Cys-less SR-BI, a mutant SR-BI receptor void of all Cys residues, were created, and plasma membrane localization was confirmed. Functional assays revealed that C280S-, C321S-, C323S-, and C334S-SR-BI and Cys-less SR-BI mutant receptors displayed weakened HDL binding and subsequent selective uptake of HDL-CE. However, only C323S-SR-BI and Cys-less SR-BI were unable to mediate wild-type levels of efflux of free cholesterol (FC) to HDL. None of the Cys mutations disrupted SR-BI's ability to redistribute plasma membrane FC. Taken together, the intramolecular disulfide bonds in the extracellular domain of SR-BI appear to maintain the receptor in a conformation integral to its cholesterol transport functions.
Collapse
Affiliation(s)
- Gabriella A Papale
- Department of Medicine, Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | | | | |
Collapse
|
29
|
Abstract
The visual pigment rhodopsin (rh1) constitutes the first step in the sensory transduction cascade in the rod photoreceptors of the vertebrate eye, forming the basis of vision at low light levels. In most vertebrates, rhodopsin is a single-copy gene whose function in rod photoreceptors is highly conserved. We found evidence for a second rhodopsin-like gene (rh1-2) in the zebrafish genome. This novel gene was not the product of a zebrafish-specific gene duplication event and contains a number of unique amino acid substitutions. Despite these differences, expression of rh1-2 in vitro yielded a protein that not only bound chromophore, producing an absorption spectrum in the visible range (λmax ≈ 500 nm), but also activated in response to light. Unlike rh1, rh1-2 is not expressed during the first 4 days of embryonic development; it is expressed in the retina of adult fish but not the brain or muscle. Similar rh1-2 sequences were found in two other Danio species, as well as a more distantly related cyprinid, Epalzeorhynchos bicolor. While sequences were only identified in cyprinid fish, phylogenetic analyses suggest an older origin for this gene family. Our study suggests that rh1-2 is a functional opsin gene that is expressed in the retina later in development. The discovery of a new previously uncharacterized opsin gene in zebrafish retina is surprising given its status as a model system for studies of vertebrate vision and visual development.
Collapse
|
30
|
Dzhemileva LU, Grinberg ER, Tazetdinov AM, Zaidullin IS, Bikbov MM, Musina VV, Khusnutdinova EK. Molecular genetic basis of tapetoretinal degeneration. Mol Biol 2011. [DOI: 10.1134/s0026893308010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Oveson BC, Iwase T, Hackett SF, Lee SY, Usui S, Sedlak TW, Snyder SH, Campochiaro PA, Sung JU. Constituents of bile, bilirubin and TUDCA, protect against oxidative stress-induced retinal degeneration. J Neurochem 2010; 116:144-53. [PMID: 21054389 DOI: 10.1111/j.1471-4159.2010.07092.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two constituents of bile, bilirubin and tauroursodeoxycholic acid (TUDCA), have antioxidant activity. However, bilirubin can also cause damage to some neurons and glial cells, particularly immature neurons. In this study, we tested the effects of bilirubin and TUDCA in two models in which oxidative stress contributes to photoreceptor cell death, prolonged light exposure and rd10+/+ mice. In albino BALB/c mice, intraperitoneal injection of 5 mg/kg of bilirubin or 500 mg/kg of TUDCA prior to exposure to 5000 lux of white light for 8 h significantly reduced loss of rod and cone function assessed by electroretinograms. Both treatments also reduced light-induced accumulation of superoxide radicals in the outer retina, rod cell death assessed by outer nuclear layer thickness, and disruption of cone inner and outer segments. In rd10+/+ mice, intraperitoneal injections of 5 or 50 mg/kg of bilirubin or 500 mg/kg of TUDCA every 3 days starting at postnatal day (P) 6, caused significant preservation of cone cell number and cone function at P50. Rods were not protected at P50, but both bilirubin and TUDCA provided modest preservation of outer nuclear layer thickness and rod function at P30. These data suggest that correlation of serum bilirubin levels with rate of vision loss in patients with retinitis pigmentosa could provide a useful strategy to test the hypothesis that cones die from oxidative damage in patients with retinitis pigmentosa. If proof-of-concept is established, manipulation of bilirubin levels and administration of TUDCA could be tested in interventional trials.
Collapse
Affiliation(s)
- Brian C Oveson
- Department of Ophthalmology Johns Hopkins University Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fanelli F, Seeber M. Structural insights into retinitis pigmentosa from unfolding simulations of rhodopsin mutants. FASEB J 2010; 24:3196-209. [PMID: 20395457 DOI: 10.1096/fj.09-151084] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Disease-causing missense mutations in membrane proteins, such as rhodopsin mutations associated with the autosomal dominant form of retinitis pigmentosa (ADRP), are often linked to defects in folding and/or trafficking. The mechanical unfolding of wild-type rhodopsin was compared with that of 20 selected ADRP-linked mutants more or less defective in folding and retinal binding. Rhodopsin fold is characterized by networks of amino acids in the retinal and G-protein binding sites likely to play a role in the stability and function of the protein. The distribution of highly connected nodes in the network reflects the existence of a diffuse intramolecular communication inside and between the 2 poles of the helix bundle, which makes pathogenic mutations share similar phenotypes irrespective of topological and physicochemical differences between them. Because of this communication, the ADRP-linked rhodopsin mutations share a more or less marked ability to impair selected hubs in the protein structure network. The extent of this structural effect relates to the severity of the biochemical defect caused by mutation. The investigative strategy employed in this study is likely to apply to all structurally known membrane proteins particularly susceptible to misassembly-causing mutations.
Collapse
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute and Department of Chemistry, via Campi 183 41100 Modena, Italy.
| | | |
Collapse
|
33
|
Cone photoreceptor mosaic disruption associated with Cys203Arg mutation in the M-cone opsin. Proc Natl Acad Sci U S A 2009; 106:20948-53. [PMID: 19934058 DOI: 10.1073/pnas.0910128106] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Missense mutations in the cone opsins have been identified as a relatively common cause of red/green color vision defects, with the most frequent mutation being the substitution of arginine for cysteine at position 203 (C203R). When the corresponding cysteine is mutated in rhodopsin, it disrupts proper folding of the pigment, causing severe, early onset retinitis pigmentosa. While the C203R mutation has been associated with loss of cone function in color vision deficiency, it is not known what happens to cones expressing this mutant opsin. Here, we used high-resolution retinal imaging to examine the cone mosaic in two individuals with genes encoding a middle-wavelength sensitive (M) pigment with the C203R mutation. We found a significant reduction in cone density compared to normal and color-deficient controls, accompanying disruption in the cone mosaic in both individuals, and thinning of the outer nuclear layer. The C203R mosaics were different from that produced by another mutation (LIAVA) previously shown to disrupt the cone mosaic. Comparison of these mosaics provides insight into the timing and degree of cone disruption and has implications for the prospects for restoration of vision loss associated with various cone opsin mutations.
Collapse
|
34
|
Krebs MP, Holden DC, Joshi P, Clark CL, Lee AH, Kaushal S. Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue. J Mol Biol 2009; 395:1063-78. [PMID: 19913029 DOI: 10.1016/j.jmb.2009.11.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/05/2009] [Accepted: 11/05/2009] [Indexed: 11/24/2022]
Abstract
Variants of rhodopsin, a complex of 11-cis retinal and opsin, cause retinitis pigmentosa (RP), a degenerative disease of the retina. Trafficking defects due to rhodopsin misfolding have been proposed as the most likely basis of the disease, but other potentially overlapping mechanisms may also apply. Pharmacological therapies for RP must target the major disease mechanism and contend with overlap, if it occurs. To this end, we have explored the molecular basis of rhodopsin RP in the context of pharmacological rescue with 11-cis retinal. Stable inducible cell lines were constructed to express wild-type opsin; the pathogenic variants T4R, T17M, P23A, P23H, P23L, and C110Y; or the nonpathogenic variants F220L and A299S. Pharmacological rescue was measured as the fold increase in rhodopsin or opsin levels upon addition of 11-cis retinal during opsin expression. Only Pro23 and T17M variants were rescued significantly. C110Y opsin was produced at low levels and did not yield rhodopsin, whereas the T4R, F220L, and A299S proteins reached near-wild-type levels and changed little with 11-cis retinal. All of the mutant rhodopsins exhibited misfolding, which increased over a broad range in the order F220L, A299S, T4R, T17M, P23A, P23H, P23L, as determined by decreased thermal stability in the dark and increased hydroxylamine sensitivity. Pharmacological rescue increased as misfolding decreased, but was limited for the least misfolded variants. Significantly, pathogenic variants also showed abnormal photobleaching behavior, including an increased ratio of metarhodopsin-I-like species to metarhodopsin-II-like species and aberrant photoproduct accumulation with prolonged illumination. These results, combined with an analysis of published biochemical and clinical studies, suggest that many rhodopsin variants cause disease by affecting both biosynthesis and photoactivity. We conclude that pharmacological rescue is promising as a broadly effective therapy for rhodopsin RP, particularly if implemented in a way that minimizes the photoactivity of the mutant proteins.
Collapse
Affiliation(s)
- Mark P Krebs
- Department of Ophthalmology and the Charlie Mack Overstreet Laboratories for Retinal Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
35
|
Liu H, Wang M, Xia CH, Du X, Flannery JG, Ridge KD, Beutler B, Gong X. Severe retinal degeneration caused by a novel rhodopsin mutation. Invest Ophthalmol Vis Sci 2009; 51:1059-65. [PMID: 19741247 DOI: 10.1167/iovs.09-3585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify a new mouse mutation developing early-onset dominant retinal degeneration, to determine the causative gene mutation, and to investigate the underlying mechanism. METHODS Retinal phenotype was examined by indirect ophthalmoscopy, histology, transmission electron microscopy, immunohistochemistry, Western blot analysis, and electroretinography. Causative gene mutation was determined by genomewide linkage analysis and DNA sequencing. Structural modeling was used to predict the impact of the mutation on protein structure. RESULTS An ENU-mutagenized mouse line (R3), displaying attenuated retinal vessels and pigmented patches, was identified by fundus examination. Homozygous R3/R3 mice lost photoreceptors rapidly, leaving only a single row of photoreceptor nuclei at postnatal day 18. The a- and b-waves of ERG were flat in R3/R3 mice, whereas heterozygous R3/+ mice showed reduced amplitude of a- and b-waves. The R3/+ mice had a slower rate of photoreceptor cell loss than compound heterozygous R3/- mice with a null mutant allele. The R3 mutation was mapped and verified to be a rhodopsin point mutation, a c.553T>C for a p.C185R substitution. The side chain of Arg(185) impacted on the extracellular loop of the protein. Mutant rhodopsin-C185R protein accumulated in the photoreceptor inner segments, cellular bodies, or both. CONCLUSIONS Rhodopsin C185R mutation leads to severe retinal degeneration in R3 mutant mice. A dosage-dependent accumulation of misfolded mutant proteins likely triggers or stimulates the death of rod photoreceptors. The presence of a wild-type rhodopsin allele can delay the loss of photoreceptor cells in R3/+ mice.
Collapse
Affiliation(s)
- Haiquan Liu
- Vision Science Program and School of Optometry, University of California, Berkeley, Berkeley, California 94720-2020, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Felline A, Seeber M, Rao F, Fanelli F. Computational Screening of Rhodopsin Mutations Associated with Retinitis Pigmentosa. J Chem Theory Comput 2009; 5:2472-85. [DOI: 10.1021/ct900145u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Angelo Felline
- Dulbecco Telethon Institute and Department of Chemistry, via Campi 183, 41100 Modena, Italy, and Laboratoire de Chimie Biophysique/ISIS 8, Universitè Louis Pasteur, allee Gaspard Monge, 67000 Strasbourg, France
| | - Michele Seeber
- Dulbecco Telethon Institute and Department of Chemistry, via Campi 183, 41100 Modena, Italy, and Laboratoire de Chimie Biophysique/ISIS 8, Universitè Louis Pasteur, allee Gaspard Monge, 67000 Strasbourg, France
| | - Francesco Rao
- Dulbecco Telethon Institute and Department of Chemistry, via Campi 183, 41100 Modena, Italy, and Laboratoire de Chimie Biophysique/ISIS 8, Universitè Louis Pasteur, allee Gaspard Monge, 67000 Strasbourg, France
| | - Francesca Fanelli
- Dulbecco Telethon Institute and Department of Chemistry, via Campi 183, 41100 Modena, Italy, and Laboratoire de Chimie Biophysique/ISIS 8, Universitè Louis Pasteur, allee Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
37
|
Aguilà M, Toledo D, Morillo M, Dominguez M, Vaz B, Alvarez R, de Lera AR, Garriga P. Structural coupling of 11-cis-7-methyl-retinal and amino acids at the ligand binding pocket of rhodopsin. Photochem Photobiol 2009; 85:485-93. [PMID: 19267873 DOI: 10.1111/j.1751-1097.2009.00535.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It was previously shown that opsin can be regenerated with the newly synthesized 11-cis-7-methyl-retinal forming an artificial visual pigment. We now extend this study to include mutants at positions close to the retinal to further dissect the interactions of native and artificial chromophores with opsin. Several mutants at M207, W265 and Y268 have been obtained and regenerated with 11-cis-retinal and the 7-methyl analog. M207 is the site of the point mutation M207R associated with the retinal degenerative disease retinitis pigmentosa. All the studied mutants regenerated with 11-cis-retinal except for M207C which proved to be completely misfolded. The naturally occurring M207R mutant formed a pigment with an unprotonated Schiff base linkage, altered photobleaching and low MetarhodopsinII stability. Mutants regenerated with the 7-methyl analog showed altered photobleaching reflecting a structural perturbation in the vicinity of M207. The newly obtained mutants at M207 also showed reduced levels of transducin activation with M207R showing essentially no transducin activation. Our results highlight the tight coupling of the vicinity of C7 of retinal and M207 and support the involvement of this amino acid residue in the conformational changes associated with rhodopsin photoactivation.
Collapse
Affiliation(s)
- Mònica Aguilà
- Departament d'Enginyeria Química, Centre de Biotecnologia Molecular, Universitat Politècnica de Catalunya, Colom 1, Terrassa, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gleim S, Stojanovic A, Arehart E, Byington D, Hwa J. Conserved rhodopsin intradiscal structural motifs mediate stabilization: effects of zinc. Biochemistry 2009; 48:1793-800. [PMID: 19206210 PMCID: PMC2765562 DOI: 10.1021/bi800968w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinitis pigmentosa (RP), a neurodegenerative disorder, can arise from single point mutations in rhodopsin, leading to a cascade of protein instability, misfolding, aggregation, rod cell death, retinal degeneration, and ultimately blindness. Divalent cations, such as zinc and copper, have allosteric effects on misfolded aggregates of comparable neurodegenerative disorders including Alzheimer disease, prion diseases, and ALS. We report that two structurally conserved low-affinity zinc coordination motifs, located among a cluster of RP mutations in the intradiscal loop region, mediate dose-dependent rhodopsin destabilization. Disruption of native interactions involving histidines 100 and 195, through site-directed mutagenesis or exogenous zinc coordination, results in significant loss of receptor stability. Furthermore, chelation with EDTA stabilizes the structure of both wild-type rhodopsin and the most prevalent rhodopsin RP mutation, P(23)H. These interactions suggest that homeostatic regulation of trace metal concentrations in the rod outer segment of the retina may be important both physiologically and for an important cluster of RP mutations. Furthermore, with a growing awareness of allosteric zinc binding domains on a diverse range of GPCRs, such principles may apply to many other receptors and their associated diseases.
Collapse
Affiliation(s)
- Scott Gleim
- Departments of Pharmacology & Toxicology and Medicine (Section of Cardiology), Dartmouth Medical School, Hanover, NH, 03755
| | - Aleksandar Stojanovic
- Departments of Pharmacology & Toxicology and Medicine (Section of Cardiology), Dartmouth Medical School, Hanover, NH, 03755
| | - Eric Arehart
- Departments of Pharmacology & Toxicology and Medicine (Section of Cardiology), Dartmouth Medical School, Hanover, NH, 03755
| | - Daniel Byington
- Departments of Pharmacology & Toxicology and Medicine (Section of Cardiology), Dartmouth Medical School, Hanover, NH, 03755
| | - John Hwa
- Departments of Pharmacology & Toxicology and Medicine (Section of Cardiology), Dartmouth Medical School, Hanover, NH, 03755
| |
Collapse
|
39
|
Abstract
Molecular chaperones facilitate and regulate protein conformational change within cells. This encompasses many fundamental cellular processes: including the correct folding of nascent chains; protein transport and translocation; signal transduction and protein quality control. Chaperones are, therefore, important in several forms of human disease, including neurodegeneration. Within the retina, the highly specialized photoreceptor cell presents a fascinating paradigm to investigate the specialization of molecular chaperone function and reveals unique chaperone requirements essential to photoreceptor function. Mutations in several photoreceptor proteins lead to protein misfolding mediated neurodegeneration. The best characterized of these are mutations in the molecular light sensor, rhodopsin, which cause autosomal dominant retinitis pigmentosa. Rhodopsin biogenesis is likely to require chaperones, while rhodopsin misfolding involves molecular chaperones in quality control and the cellular response to protein aggregation. Furthermore, the specialization of components of the chaperone machinery to photoreceptor specific roles has been revealed by the identification of mutations in molecular chaperones that cause inherited retinal dysfunction and degeneration. These chaperones are involved in several important cellular pathways and further illuminate the essential and diverse roles of molecular chaperones.
Collapse
Affiliation(s)
| | | | | | - Michael E. Cheetham
- Division of Molecular and Cellular Neuroscience, UCL Institute of
Ophthalmology, 11–43 Bath Street, London EC1 V 9EL, UK
| |
Collapse
|
40
|
Mechanism of signal propagation upon retinal isomerization: insights from molecular dynamics simulations of rhodopsin restrained by normal modes. Biophys J 2008; 95:789-803. [PMID: 18390613 DOI: 10.1529/biophysj.107.120691] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As one of the best studied members of the pharmaceutically relevant family of G-protein-coupled receptors, rhodopsin serves as a prototype for understanding the mechanism of G-protein-coupled receptor activation. Here, we aim at exploring functionally relevant conformational changes and signal transmission mechanisms involved in its photoactivation brought about through a cis-trans photoisomerization of retinal. For this exploration, we propose a molecular dynamics simulation protocol that utilizes normal modes derived from the anisotropic network model for proteins. Deformations along multiple low-frequency modes of motion are used to efficiently sample collective conformational changes in the presence of explicit membrane and water environment, consistent with interresidue interactions. We identify two highly stable regions in rhodopsin, one clustered near the chromophore, the other near the cytoplasmic ends of transmembrane helices H1, H2, and H7. Due to redistribution of interactions in the neighborhood of retinal upon stabilization of the trans form, local structural rearrangements in the adjoining H3-H6 residues are efficiently propagated to the cytoplasmic end of these particular helices. In the structures obtained by our simulations, all-trans retinal interacts with Cys(167) on H4 and Phe(203) on H5, which were not accessible in the dark state, and exhibits stronger interactions with H5, while some of the contacts made (in the cis form) with H6 are lost.
Collapse
|
41
|
McKibbin C, Toye AM, Reeves PJ, Khorana HG, Edwards PC, Villa C, Booth PJ. Opsin stability and folding: the role of Cys185 and abnormal disulfide bond formation in the intradiscal domain. J Mol Biol 2007; 374:1309-18. [PMID: 17988684 DOI: 10.1016/j.jmb.2007.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 09/11/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
The structure in the extracellular, intradiscal domain of rhodopsin surrounding the Cys110-Cys187 disulfide bond has been shown to be important for correct folding of this receptor in vivo. Retinitis pigmentosa misfolding mutants of the apoprotein opsin (such as P23H) misfold, as defined by a deficiency in ability to bind 11-cis retinal and form rhodopsin. These mutants also possess an abnormal Cys185-Cys187 disulfide bond in the intradiscal domain. Here, by mutating Cys185 to alanine, we eliminate the possibility of forming this abnormal disulfide bond and investigate the effect of combining the C185A mutation with the retinitis pigmentosa mutation P23H. Both the P23H and P23H/C185A double mutant suffer from low expression and poor 11-cis retinal binding. Our data suggest that misfolding events occur that do not have an absolute requirement for abnormal Cys185-Cys187 disulfide bond formation. In the detergent-solubilised, purified state, the C185A mutation allows formation of rhodopsin at wild-type (WT) levels, but has interesting effects on protein stability. C185A rhodopsin is less thermally stable than WT, whereas C185A opsin shows the same ability to regenerate rhodopsin in detergent as WT. Purified C185A and WT opsins, however, have contrasting 11-cis retinal binding kinetics. A high proportion of C185A opsin binds 11-cis retinal with a slow rate that reflects a denatured state of opsin reverting to a fast-binding, open-pocket conformation. This slower rate is not observed in a stabilising lipid/detergent system, 1,2-dimyristoyl-sn-glycero-3-phosphocholine/Chaps, in which C185A exhibits WT (fast) retinal binding. We propose that the C185A mutation destabilises the open-pocket conformation of opsin in detergent resulting in an equilibrium between correctly folded and denatured states of the protein. This equilibrium can be driven towards the correctly folded rhodopsin state by the binding of 11-cis retinal.
Collapse
Affiliation(s)
- Craig McKibbin
- Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | | | | | | | | | | | | |
Collapse
|
42
|
Tastan O, Yu E, Ganapathiraju M, Aref A, Rader AJ, Klein-Seetharaman J. Comparison of stability predictions and simulated unfolding of rhodopsin structures. Photochem Photobiol 2007; 83:351-62. [PMID: 17576347 DOI: 10.1562/2006-06-20-ra-942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Developing a better mechanistic understanding of membrane protein folding is urgently needed because of the discovery of an increasing number of human diseases, where membrane protein instability and misfolding is involved. Towards this goal, we investigated folding and stability of 7-transmembrane (TM) helical bundles by computational methods. We compared the results of three different algorithms for predicting changes in stability of proteins against an experimental mutation dataset obtained for bacteriorhodopsin (BR) and mammalian rhodopsin and find that 61.6% and 70.6% of the mutation results can potentially be explained by known local contributors to the stability of the folded state of BR and mammalian rhodopsin, respectively. To obtain further information on the predicted folding pathway of 7-TM proteins, we conducted simulated thermal unfolding experiments of all available rhodopsin structures with resolution better than 3 angstroms using the Floppy Inclusions and Rigid Substructure Topography (FIRST) method (Jacobs, D. J., A. J. Rader, L. A. Kuhn and M. F. Thorpe [2001] Proteins 44, 150) described previously for a single mammalian rhodopsin structure (Rader et al. [2004] PNAS 101, 7246). In statistical comparison we found that structures of mammalian rhodopsin have a stability core that is characterized by long-range interactions involving amino acids close in space but distant in sequence comprising positions from both extracellular loop and TM regions. In contrast, BR-simulated unfolding does not reveal such a core but is dominated by interactions within individual and groups of TM helices, consistent with the two-stage hypothesis of membrane protein folding. Similar results were obtained for halo- and sensory rhodopsins as for BRs. However, the average folding core energies of sensory rhodopsins were in between those observed for mammalian rhodopsins and BRs hinting at a possible evolution of these structures toward a rhodopsin-like behavior. These results support the conclusion that although the two-stage model can explain the mechanisms of folding and stability of BR, it fails to account for the folding and stability of mammalian rhodopsin, even though the two proteins are structurally related.
Collapse
Affiliation(s)
- Oznur Tastan
- Language Technologies Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
43
|
Iannaccone A, Man D, Waseem N, Jennings BJ, Ganapathiraju M, Gallaher K, Reese E, Bhattacharya SS, Klein-Seetharaman J. Retinitis pigmentosa associated with rhodopsin mutations: Correlation between phenotypic variability and molecular effects. Vision Res 2006; 46:4556-67. [PMID: 17014888 DOI: 10.1016/j.visres.2006.08.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/01/2006] [Accepted: 08/03/2006] [Indexed: 11/17/2022]
Abstract
Similar retinitis pigmentosa (RP) phenotypes can result from mutations affecting different rhodopsin regions, and distinct amino acid substitutions can cause different RP severity and progression rates. Specifically, both the R135L and R135W mutations (cytoplasmic end of H3) result in diffuse, severe disease (class A), but R135W causes more severe and more rapidly progressive RP than R135L. The P180A and G188R mutations (second intradiscal loop) exhibit a mild phenotype with regional variability (class B1) and diffuse disease of moderate severity (class B2), respectively. Computational and in vitro studies of these mutants provide molecular insights into this phenotypic variability.
Collapse
Affiliation(s)
- Alessandro Iannaccone
- Hamilton Eye Institute, Department of Ophthalmology, Retinal Degeneration and Ophthalmic Genetics Service, University of Tennessee Health Science Center, 930 Madison Avenue, Suit 731, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Senin II, Bosch L, Ramon E, Zernii EY, Manyosa J, Philippov PP, Garriga P. Ca2+/recoverin dependent regulation of phosphorylation of the rhodopsin mutant R135L associated with retinitis pigmentosa. Biochem Biophys Res Commun 2006; 349:345-52. [PMID: 16934219 DOI: 10.1016/j.bbrc.2006.08.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 08/11/2006] [Indexed: 11/19/2022]
Abstract
No single molecular mechanism accounts for the effect of mutations in rhodopsin associated with retinitis pigmentosa. Here we report on the specific effect of a Ca2+/recoverin upon phosphorylation of the autosomal dominant retinitis pigmentosa R135L rhodopsin mutant. This mutant shows specific features like impaired G-protein signaling but enhanced phosphorylation in the shut-off process. We now report that R135L hyperphosphorylation by rhodopsin kinase is less efficiently inhibited by Ca2+/recoverin than wild-type rhodopsin. This suggests an involvement of Ca2+/recoverin into the molecular pathogenic effect of the mutation in retinitis pigmentosa which is the cause of rod photoreceptor cell degeneration. This new proposed role of Ca2+/recoverin may be one of the specific features of the proposed new Type III class or rhodopsin mutations associated with retinitis pigmentosa.
Collapse
Affiliation(s)
- Ivan I Senin
- Department of Cell Signalling, A. N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russia
| | | | | | | | | | | | | |
Collapse
|
45
|
Leguia M, Wessel GM. The histamine H1 receptor activates the nitric oxide pathway at fertilization. Mol Reprod Dev 2006; 73:1550-63. [PMID: 16894544 DOI: 10.1002/mrd.20586] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sperm fusion with the egg initiates a signaling cascade that releases intracellular calcium (Ca(i) (2+)) from the endoplasmic reticulum (ER). In sea urchins, Ca(2+) is released as a single, large transient via two distinct pathways. The first depends on inositol 1,4,5-triphosphate (IP(3)) production and triggers the initial phase of Ca(2+) release, while the second depends on nitric oxide (NO) production and is thought to maintain the duration of the Ca(2+) wave. We identified a sea urchin homolog of the seven trans-membrane G protein-coupled receptor for histamine (suH(1)R) on the egg cell surface that activates NO production. Treatment with histamine (HA) causes fluctuations in the resting levels of NO in the egg, while antagonists or antibodies of H(1)R inhibit the rise of NO normally observed at fertilization. Inhibition of suH(1)R function decreases the maintenance, but not the amplitude, of the Ca(2+) transient and suggests that it is an integral part of the overall pathway leading to egg activation at fertilization in sea urchins.
Collapse
Affiliation(s)
- Mariana Leguia
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
46
|
Tanuj Sapra K, Park PSH, Filipek S, Engel A, Müller DJ, Palczewski K. Detecting molecular interactions that stabilize native bovine rhodopsin. J Mol Biol 2006; 358:255-69. [PMID: 16519899 DOI: 10.1016/j.jmb.2006.02.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 01/31/2006] [Accepted: 02/03/2006] [Indexed: 11/24/2022]
Abstract
Using single-molecule force spectroscopy we probed molecular interactions within native bovine rhodopsin and discovered structural segments of well-defined mechanical stability. Highly conserved residues among G protein-coupled receptors were located at the interior of individual structural segments, suggesting a dual role for these segments in rhodopsin. Firstly, structural segments stabilize secondary structure elements of the native protein, and secondly, they position and hold the highly conserved residues at functionally important environments. Two main classes of force curves were observed. One class corresponded to the unfolding of rhodopsin with the highly conserved Cys110-Cys187 disulfide bond remaining intact and the other class corresponded to the unfolding of the entire rhodopsin polypeptide chain. In the absence of the Cys110-Cys187 bond, the nature of certain molecular interactions within folded rhodopsin was altered. These changes highlight the structural importance of this disulfide bond and may form the basis of dysfunctions associated with its absence.
Collapse
Affiliation(s)
- K Tanuj Sapra
- Center for Biotechnology, University of Technology, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Vries JK, Munshi R, Tobi D, Klein-Seetharaman J, Benos PV, Bahar I. A sequence alignment-independent method for protein classification. ACTA ACUST UNITED AC 2005; 3:137-48. [PMID: 15693739 DOI: 10.2165/00822942-200403020-00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Annotation of the rapidly accumulating body of sequence data relies heavily on the detection of remote homologues and functional motifs in protein families. The most popular methods rely on sequence alignment. These include programs that use a scoring matrix to compare the probability of a potential alignment with random chance and programs that use curated multiple alignments to train profile hidden Markov models (HMMs). Related approaches depend on bootstrapping multiple alignments from a single sequence. However, alignment-based programs have limitations. They make the assumption that contiguity is conserved between homologous segments, which may not be true in genetic recombination or horizontal transfer. Alignments also become ambiguous when sequence similarity drops below 40%. This has kindled interest in classification methods that do not rely on alignment. An approach to classification without alignment based on the distribution of contiguous sequences of four amino acids (4-grams) was developed. Interest in 4-grams stemmed from the observation that almost all theoretically possible 4-grams (20(4)) occur in natural sequences and the majority of 4-grams are uniformly distributed. This implies that the probability of finding identical 4-grams by random chance in unrelated sequences is low. A Bayesian probabilistic model was developed to test this hypothesis. For each protein family in Pfam-A and PIR-PSD, a feature vector called a probe was constructed from the set of 4-grams that best characterised the family. In rigorous jackknife tests, unknown sequences from Pfam-A and PIR-PSD were compared with the probes for each family. A classification result was deemed a true positive if the probe match with the highest probability was in first place in a rank-ordered list. This was achieved in 70% of cases. Analysis of false positives suggested that the precision might approach 85% if selected families were clustered into subsets. Case studies indicated that the 4-grams in common between an unknown and the best matching probe correlated with functional motifs from PRINTS. The results showed that remote homologues and functional motifs could be identified from an analysis of 4-gram patterns.
Collapse
Affiliation(s)
- John K Vries
- Department of Molecular Genetics and Biochemistry, School of Medicine, Center for Computational Biology and Bioinformatics, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Pinto LH, Vitaterna MH, Shimomura K, Siepka SM, McDearmon EL, Fenner D, Lumayag SL, Omura C, Andrews AW, Baker M, Invergo BM, Olvera MA, Heffron E, Mullins RF, Sheffield VC, Stone EM, Takahashi JS. Generation, characterization, and molecular cloning of the Noerg-1 mutation of rhodopsin in the mouse. Vis Neurosci 2005; 22:619-29. [PMID: 16332273 DOI: 10.1017/s0952523805225117] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 05/18/2005] [Indexed: 11/06/2022]
Abstract
We performed genome-wide mutagenesis of C57BL/6J mice using the mutagen N-ethyl-N-nitrosourea (ENU) and screened the third generation (G3) offspring for visual system alterations using electroretinography and fundus photography. Several mice in one pedigree showed characteristics of retinal degeneration when tested at 12-14 weeks of age: no recordable electroretinogram (ERG), attenuation of retinal vessels, and speckled pigmentation of the fundus. Histological studies showed that the retinas undergo a photoreceptor degeneration with apoptotic loss of outer nuclear layer nuclei but visual acuity measured using the optomotor response under photopic conditions persists in spite of considerable photoreceptor loss. The Noerg-1 mutation showed an autosomal dominant pattern of inheritance in progeny. Studies in early postnatal mice showed degeneration to occur after formation of partially functional rods. The Noerg-1 mutation was mapped genetically to chromosome 6 by crossing C57BL/6J mutants with DBA/2J or BALB/cJ mice to produce an N2 generation and then determining the ERG phenotypes and the genotypes of the N2 offspring at multiple loci using SSLP and SNP markers. Fine mapping was accomplished with a set of closely spaced markers. A non-recombinant region from 112.8 Mb to 115.1 Mb was identified, encompassing the rhodopsin (Rho) coding region. A single nucleotide transition from G to A was found in the Rho gene that is predicted to result in a substitution of Tyr for Cys at position 110, in an intradiscal loop. This mutation has been found in patients with autosomal dominant retinitis pigmentosa (RP) and results in misfolding of rhodopsin expressed in vitro. Thus, ENU mutagenesis is capable of replicating mutations that occur in human patients and is useful for generating de novo models of human inherited eye disease. Furthermore, the availability of the mouse genomic sequence and extensive DNA polymorphisms made the rapid identification of this gene possible, demonstrating that the use of ENU-induced mutations for functional gene identification is now practical for individual laboratories.
Collapse
Affiliation(s)
- Lawrence H Pinto
- Department of Neurobiology and Physiology and Center for Functional Genomics, Northwestern University, Evanston, Il 60208, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The insertion and folding of proteins in biological membranes during protein synthesis in vivo is fundamental to membrane biogenesis. At present, however, certain molecular aspects of this process can only be understood by complementary studies in vitro. We bring together in vitro and in vivo results, highlighting how the studies inform each other and increase our knowledge of the folding and assembly of polytopic membrane proteins. A notable recent advance is the high-resolution crystal structure of the protein machinery responsible for membrane protein insertion into the endoplasmic reticulum. This provides an opportunity to combine in vitro and in vivo studies at a more sophisticated level and address mechanistic aspects of polytopic protein insertion and folding. Quality control is another important aspect of membrane biogenesis, and we give an overview of the current understanding of this process, focusing on cystic fibrosis as a well-studied paradigm. Mutations in the associated membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), can cause the quality control mechanisms to prevent the mutant protein reaching its normal site of action, the cell surface. In vitro studies of CFTR shed light on the possible origins of other clinically relevant folding mutants and highlight the potential synergy between in vitro and in vivo approaches.
Collapse
Affiliation(s)
- Paula J Booth
- Department of Biochemistry, School of Medical Sciences University of Bristol, University Walk BS8 1TD Bristol, UK.
| | | |
Collapse
|
50
|
Padrón-García JA, Crespo-Otero R, Hernández-Rodríguez EW, Garriga P, Montero LA, García-Piñeiro JC. Patterns of retinal light absorption related to retinitis pigmentosa mutants from in silico model structures of rhodopsin. Proteins 2004; 57:392-9. [PMID: 15340926 DOI: 10.1002/prot.20204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Changes induced by mutations in rhodopsin that are associated with the degenerative visual disease retinitis pigmentosa result in an altered pattern of light absorption according to quantum mechanical simulations and reference experimental works. Eleven single-point mutations associated with retinitis pigmentosa at and in the proximity to the retinal binding pocket of rhodopsin have been modeled in silico and their spectra calculated with the NDOL (Neglect of Differential Overlap accounting L azimuthal quantum number) a priori method. The altered pattern of absorption found would lead to cumulative consequences in energy dissipation with aging. Different energy balances in the case of mutants at the very molecular level, compared to native nonmutated rhodopsin, can cause permanent cellular stress and would play a role in the progression of the retine degenerative process. It could explain the worsening of the pathological condition mostly in adults and suggests the probable beneficial effects of using quenching drugs and protection devices against excess of light in the early stages of life for avoiding or reducing potential damage.
Collapse
Affiliation(s)
- J Alexander Padrón-García
- Laboratorio de Química Computacional y Teórica, Facultad de Química, Universidad de la Habana, Havana, Cuba
| | | | | | | | | | | |
Collapse
|