1
|
Li Y, Hirano S, Sato K, Osawa M, Nagaoka H. Assessing Interferon Regulatory Factor 4 Complex Formation: Differential Behavior of Homocomplexes Versus Heterocomplexes Induced by Mutations. Biochemistry 2024; 63:767-776. [PMID: 38439718 DOI: 10.1021/acs.biochem.3c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Interferon regulatory factor 4 (IRF4) is a crucial transcription factor that plays a vital role in lymphocyte development, including in the fate-determining steps in terminal differentiation. It is also implicated in the development of lymphoid tumors such as multiple myeloma and adult T-cell leukemia. IRF4 can form a homodimer and multiple heterocomplexes with other transcription factors such as purine-rich box1 and activator protein 1. Each protein complex binds to specific DNA sequences to regulate a distinct set of genes. However, the precise relationship among these complex formations remains unclear. Herein, we investigated the abilities of IRF4 proteins with functional mutations in the IRF-association domain and autoinhibitory region to form complexes using luciferase reporter assays. The assays allowed us to selectively assess the activity of each complex. Our results revealed that certain IRF-association domain mutants, previously known to have impaired heterocomplex formation, maintained or even enhanced homodimer activity. This discrepancy suggests that the mutated amino acid residues selectively influence homodimer activity. Conversely, a phosphomimetic serine mutation in the autoinhibitory region displayed strong activating effects in all complexes. Furthermore, we observed that partner proteins involved in heterocomplex formation could disrupt the activity of the homodimer, suggesting a potential competition between homocomplexes and heterocomplexes. Our findings provide new insights into the mechanistic function of IRF4.
Collapse
Affiliation(s)
- Yupeng Li
- Department of Molecular Pathobiochemistry, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Setoka Hirano
- Department of Molecular Pathobiochemistry, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Katsuya Sato
- Department of Molecular Pathobiochemistry, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Masatake Osawa
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hitoshi Nagaoka
- Department of Molecular Pathobiochemistry, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
2
|
Inaba K, Yashiro T, Hiroki I, Watanabe R, Kasakura K, Nishiyama C. Dual Roles of PU.1 in the Expression of PD-L2: Direct Transactivation with IRF4 and Indirect Epigenetic Regulation. THE JOURNAL OF IMMUNOLOGY 2020; 205:822-829. [PMID: 32611724 DOI: 10.4049/jimmunol.1901008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 06/01/2020] [Indexed: 11/19/2022]
Abstract
PD-L2, which has been identified as a PD-1 ligand, is specifically expressed in dendritic cells (DCs) and macrophages. The transcription factors that determine the cell type-specific expression of PD-L2 are largely unknown, although PD-1 and its ligands, which have been shown to play important roles in T cell suppression, have been vigorously analyzed in the field of cancer immunology. To reveal the mechanism by which Pdcd1lg2 gene expression is regulated, we focused on DCs, which play key roles in innate and acquired immunity. The knockdown of the hematopoietic cell-specific transcription factors PU.1 and IRF4 decreased PD-L2 expression in GM-CSF-induced mouse bone marrow-derived DCs. Chromatin immunoprecipitation assays, luciferase assays, and electrophoretic mobility shift assays demonstrated that PU.1 and IRF4 bound directly to the Pdcd1lg2 gene via an Ets-IRF composite element sequence and coordinately transactivated the Pdcd1lg2 gene. Furthermore, PU.1 knockdown reduced the histone acetylation of the Pdcd1lg2 gene. The knockdown of the typical histone acetyltransferase p300, which has been reported to interact with PU.1, decreased the expression and H3K27 acetylation of the Pdcd1lg2 gene. GM-CSF stimulation upregulated the Pdcd1lg2 gene expression, which was accompanied by an increase in PU.1 binding and histone acetylation in Flt3L-generated mouse bone marrow-derived DCs. The involvement of PU.1, IRF4, and p300 were also observed in mouse splenic DCs. Overall, these results indicate that PU.1 positively regulates Pdcd1lg2 gene expression as a transactivator and an epigenetic regulator in DCs.
Collapse
Affiliation(s)
- Keito Inaba
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; and.,Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan
| | - Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Ikumi Hiroki
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Ryosuke Watanabe
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; and
| |
Collapse
|
3
|
Mancino A, Natoli G. Specificity and Function of IRF Family Transcription Factors: Insights from Genomics. J Interferon Cytokine Res 2016; 36:462-9. [DOI: 10.1089/jir.2016.0004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Alessandra Mancino
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| |
Collapse
|
4
|
White CL, Kessler PM, Dickerman BK, Ozato K, Sen GC. Interferon Regulatory Factor 8 (IRF8) Impairs Induction of Interferon Induced with Tetratricopeptide Repeat Motif (IFIT) Gene Family Members. J Biol Chem 2016; 291:13535-45. [PMID: 27137933 DOI: 10.1074/jbc.m115.705467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Indexed: 11/06/2022] Open
Abstract
The chromosomally clustered interferon-induced with tetratricopeptide repeat motif (IFIT) gene family members share structural features at the gene and protein levels. Despite these similarities, different IFIT genes have distinct inducer- and cell type-specific induction patterns. Here, we investigated the mechanism for the observed differential induction of the mouse Ifit1, Ifit2, and Ifit3 genes in B cells and demonstrated that the repressive effect of the transcription factor interferon regulatory factor 8 (IRF8), which is highly expressed in B cells, played an essential role in this regulation. Although IRF8 could impair induction of all three IFIT genes following stimulation of retinoic acid-inducible gene I (RIG-I), it could selectively impair the induction of the Ifit1 gene following IFN stimulation. The above properties could be imparted to IRF8-non-expressing cells by ectopic expression of the protein. Induction of reporter genes, driven by truncated Ifit1 promoters, identified the regions that mediate the repression, and a chromatin immunoprecipitation assay revealed that more IRF8 bound to the IFN-stimulated response element of the Ifit1 gene than to those of the Ifit2 and the Ifit3 genes. Mutational analyses of IRF8 showed that its ability to bind DNA, interact with other proteins, and undergo sumoylation were all necessary to selectively repress Ifit1 gene induction in response to IFN. Our study revealed a new role for IRFs in differentially regulating the induction patterns of closely related IFN-stimulated genes that are located adjacent to one another in the mouse genome.
Collapse
Affiliation(s)
- Christine L White
- From the Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195,
| | - Patricia M Kessler
- From the Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Benjamin K Dickerman
- From the Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, the Graduate Program in Molecular Virology, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Keiko Ozato
- the Program in Genomics of Differentiation, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Ganes C Sen
- From the Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, the Graduate Program in Molecular Virology, Case Western Reserve University, Cleveland, Ohio 44106, and
| |
Collapse
|
5
|
Huang B, Jia QQ, Liang Y, Huang WS, Nie P. Interferon regulatory factor 10 (IRF10): Cloning in orange spotted grouper, Epinephelus coioides, and evolutionary analysis in vertebrates. FISH & SHELLFISH IMMUNOLOGY 2015; 46:669-677. [PMID: 26260314 DOI: 10.1016/j.fsi.2015.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/02/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
IRF10 gene was cloned in orange spotted grouper, Epinephelus coioides, and its expression was examined following poly(I:C) stimulation and bacterial infection. The cDNA sequence of grouper IRF10 contains an open reading frame of 1197 bp, flanked by 99 bp 5'-untranslated region and 480 bp 3'- untranslated region. Multiple alignments showed that the grouper IRF10 has a highly conserved DNA binding domain in the N terminus with characteristic motif containing five tryptophan residues. Quantitative real-time PCR analysis revealed that the expression of IRF10 was responsive to both poly(I:C) stimulation and Vibrio parahemolyticus infection, with a higher increase to poly(I:C), indicating an important role of IRF10 in host immune response during infection. A phyletic distribution of IRF members was also examined in vertebrates, and IRF10 was found in most lineages of vertebrates, not in modern primates and rodents. It is suggested that the first divergence of IRF members might have occurred before the evolutionary split of vertebrate and cephalochordates, producing ancestors of IRF (1/2/11) and IRF (4/8/9/10)[(3/7) (5/6)], and that the second and/or third divergence of IRF members occurred following the split, thus leading to the subsets of the IRF family in vertebrates.
Collapse
Affiliation(s)
- Bei Huang
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province, 361021, China
| | - Qin Qin Jia
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province, 361021, China
| | - Ying Liang
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province, 361021, China
| | - Wen Shu Huang
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province, 361021, China
| | - P Nie
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province, 361021, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China.
| |
Collapse
|
6
|
Rational design of small-molecule stabilizers of spermine synthase dimer by virtual screening and free energy-based approach. PLoS One 2014; 9:e110884. [PMID: 25340632 PMCID: PMC4207787 DOI: 10.1371/journal.pone.0110884] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/17/2014] [Indexed: 11/19/2022] Open
Abstract
Snyder-Robinson Syndrome (SRS) is a rare mental retardation disorder which is caused by the malfunctioning of an enzyme, the spermine synthase (SMS), which functions as a homo-dimer. The malfunctioning of SMS in SRS patients is associated with several identified missense mutations that occur away from the active site. This investigation deals with a particular SRS-causing mutation, the G56S mutation, which was shown computationally and experimentally to destabilize the SMS homo-dimer and thus to abolish SMS enzymatic activity. As a proof-of-concept, we explore the possibility to restore the enzymatic activity of the malfunctioning SMS mutant G56S by stabilizing the dimer through small molecule binding at the mutant homo-dimer interface. For this purpose, we designed an in silico protocol that couples virtual screening and a free binding energy-based approach to identify potential small-molecule binders on the destabilized G56S dimer, with the goal to stabilize it and thus to increase SMS G56S mutant activity. The protocol resulted in extensive list of plausible stabilizers, among which we selected and tested 51 compounds experimentally for their capability to increase SMS G56S mutant enzymatic activity. In silico analysis of the experimentally identified stabilizers suggested five distinctive chemical scaffolds. This investigation suggests that druggable pockets exist in the vicinity of the mutation sites at protein-protein interfaces which can be used to alter the disease-causing effects by small molecule binding. The identified chemical scaffolds are drug-like and can serve as original starting points for development of lead molecules to further rescue the disease-causing effects of the Snyder-Robinson syndrome for which no efficient treatment exists up to now.
Collapse
|
7
|
Computational Approaches and Resources in Single Amino Acid Substitutions Analysis Toward Clinical Research. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 94:365-423. [DOI: 10.1016/b978-0-12-800168-4.00010-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Analyzing effects of naturally occurring missense mutations. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:805827. [PMID: 22577471 PMCID: PMC3346971 DOI: 10.1155/2012/805827] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 11/17/2022]
Abstract
Single-point mutation in genome, for example, single-nucleotide polymorphism (SNP) or rare genetic mutation, is the change of a single nucleotide for another in the genome sequence. Some of them will produce an amino acid substitution in the corresponding protein sequence (missense mutations); others will not. This paper focuses on genetic mutations resulting in a change in the amino acid sequence of the corresponding protein and how to assess their effects on protein wild-type characteristics. The existing methods and approaches for predicting the effects of mutation on protein stability, structure, and dynamics are outlined and discussed with respect to their underlying principles. Available resources, either as stand-alone applications or webservers, are pointed out as well. It is emphasized that understanding the molecular mechanisms behind these effects due to these missense mutations is of critical importance for detecting disease-causing mutations. The paper provides several examples of the application of 3D structure-based methods to model the effects of protein stability and protein-protein interactions caused by missense mutations as well.
Collapse
|
9
|
De Silva NS, Simonetti G, Heise N, Klein U. The diverse roles of IRF4 in late germinal center B-cell differentiation. Immunol Rev 2012; 247:73-92. [DOI: 10.1111/j.1600-065x.2012.01113.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
|
11
|
Turcotte K, Gauthier S, Malo D, Tam M, Stevenson MM, Gros P. Icsbp1/IRF-8 is required for innate and adaptive immune responses against intracellular pathogens. THE JOURNAL OF IMMUNOLOGY 2007; 179:2467-76. [PMID: 17675508 DOI: 10.4049/jimmunol.179.4.2467] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The chronic myeloid leukemia syndrome of the BXH-2 mouse strain (Mus musculus) is caused by a recessive mutation (R294C) in the transcriptional regulator Icsbp1/IRF-8. In trans activation assays using an IL-12p40 gene reporter construct introduced in RAW 264.7 mouse macrophages, we show that the Icsbp1(C294) isoform behaves as a partial loss-of-function. The Icsbp1(C294) hypomorph allele appears to have a threshold effect on IL-12 production, with pleiotropic consequences on resistance to different types of infections in vivo. Despite the presence of a resistance Nramp1(G169) allele, BXH-2 mice (Icsbp1(C294)) show impaired control of Mycobacterium bovis (bacille Calmette-Guérin) multiplication both early and late during infection, with uncontrolled replication linked to inability to form granulomas in infected liver and spleen. Studies in informative (BXH-2 x BALB/cJ)F(2) mice show that homozygosity for Icsbp1(C294) causes susceptibility to Salmonella enterica serovar Typhimurium to a level comparable to that seen for mice lacking functional Nramp1 or TLR4. Finally, impaired Icsbp1(C294) function is associated with the following: 1) increased replication of the Plasmodium chabaudi AS malarial parasite during the first burst of blood parasitemia, and 2) recurring waves of high blood parasitemia late during infection. These results show that Icsbp1 is required for orchestrating early innate responses and also long-term immune protection against unrelated intracellular pathogens.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Cation Transport Proteins/genetics
- Cation Transport Proteins/immunology
- Cell Line
- Genes, Recessive
- Immunity, Innate/genetics
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Interleukin-12 Subunit p40/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Macrophages/immunology
- Macrophages/microbiology
- Macrophages/parasitology
- Malaria/genetics
- Malaria/immunology
- Malaria/veterinary
- Mice
- Mice, Inbred BALB C
- Mice, Mutant Strains
- Mutation, Missense
- Mycobacterium bovis/immunology
- Parasitemia/genetics
- Parasitemia/immunology
- Plasmodium chabaudi/immunology
- Salmonella Infections/genetics
- Salmonella Infections/immunology
- Salmonella typhimurium/immunology
- Syndrome
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
- Tuberculosis/genetics
- Tuberculosis/immunology
- Tuberculosis/veterinary
Collapse
Affiliation(s)
- Karine Turcotte
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Liu J, Ma X. Interferon Regulatory Factor 8 Regulates RANTES Gene Transcription in Cooperation with Interferon Regulatory Factor-1, NF-κB, and PU.1. J Biol Chem 2006; 281:19188-95. [PMID: 16707500 DOI: 10.1074/jbc.m602059200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon regulatory factor (IRF)-8 is a member of the IRF family of transcription factors important in interferon-gamma-mediated signaling and in the development and function of dendritic cells. Regulated on activation, normal T cell expressed and secreted (RANTES, or CCL5) is a member of the CC chemokine family of proteins, strongly chemoattractant for several important immune cell types in host defense against infectious agents and cancer. Here we report that RANTES expression in IRF-8-null macrophages stimulated with interferon-gamma and lipopolysaccharide is markedly decreased. IRF-8 can activate RANTES gene transcription in synergism with IRF-1. Interestingly, IRF-8 can activate RANTES transcription independently of IRF-1 through direct physical interactions with NF-kappaB c-Rel and PU.1 via the NF-kappaB element located at -88 to -79 in vitro and in vivo. This study uncovers a novel role of IRF-8 in the regulation of RANTES gene expression and the underlying molecular mechanisms whereby IRF-8 interacts with several other important transcription factors to initiate innate immune responses to pathogenic and inflammatory challenges by activating the RANTES gene.
Collapse
Affiliation(s)
- Jianguo Liu
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
13
|
Pedchenko TV, Park GY, Joo M, Blackwell TS, Christman JW. Inducible binding of PU.1 and interacting proteins to the Toll-like receptor 4 promoter during endotoxemia. Am J Physiol Lung Cell Mol Physiol 2005; 289:L429-37. [PMID: 16093364 DOI: 10.1152/ajplung.00046.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that PU.1 and PU.1 interacting proteins (PIP) binding to the Toll-like receptor 4 (TLR4) promoter is involved in endotoxin-induced upregulation of TLR4 gene expression. Our results employing chromatin immunoprecipitation assays indicate that PU.1 binds to the murine TLR4 promoter both in macrophage cells and, most importantly, in whole lung tissue. Treatment of RAW 264.7 cells with endotoxin induced the association of PU.1 and the TLR4 promoter in a time-dependent manner, and this was closely tied to interactions between the TLR4 promoter and the PIP interferon regulatory factors (IRF)4 and IRF8. PU.1 binding was related to increases in steady-state TLR4 mRNA and total TLR4 protein in RAW cells. Endotoxemia in animals caused the similar inducible interaction between PU.1 and IRF4 and the TLR4 promoter in lung tissue of mice that was treated with a single intraperitoneal injection of endotoxin. PU.1 binding to the TLR4 promoter was not enhanced in the lung tissue of endotoxin-resistant C3H/HeJ mice in response to endotoxemia. Transient transfection studies in RAW cells indicate that inducible binding of PU.1 to the TLR4 promoter is abrogated by a Ser148 to Ala mutation in PU.1. These data suggest that induction of PU.1/PIP binding to the TLR4 promoter is involved in endotoxin response in vivo and may mediate transcriptional changes in TLR4 gene expression.
Collapse
Affiliation(s)
- Tetyana V Pedchenko
- Division of Allergy, Department of Medicine, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
14
|
Turcotte K, Gauthier S, Tuite A, Mullick A, Malo D, Gros P. A mutation in the Icsbp1 gene causes susceptibility to infection and a chronic myeloid leukemia-like syndrome in BXH-2 mice. ACTA ACUST UNITED AC 2005; 201:881-90. [PMID: 15781580 PMCID: PMC2213093 DOI: 10.1084/jem.20042170] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BXH-2 mice develop a fatal myeloid leukemia by a two-step mutagenic process. First, a BXH-2-specific recessive mutation causes a myeloproliferative syndrome. Second, retroviral insertions alter oncogenes or tumor suppressors, resulting in clonal expansion of leukemic cells. We have identified a recessive locus on chromosome 8 (Myls) that is responsible for myeloproliferation in BXH-2. This Myls interval has been narrowed down to 2 Mb and found to contain several positional candidates, including the interferon consensus sequence-binding protein 1 gene (Icsbp, also known as interferon regulatory factor 8 [IRF8]). We show that BXH-2 mice carry a mutation (915 C to T) resulting in an arginine-to-cysteine substitution at position 294 within the predicted IRF association domain of the protein. Although expression of Icsbp1 mRNA transcripts is normal in BXH-2 splenocytes, these cells are unable to produce interleukin 12 and interferon-gamma in response to activating stimuli, confirming that R294C behaves as a loss-of-function mutation. Myeloproliferation in BXH-2 mice is concomitant to increased susceptibility to Mycobacterium bovis (BCG) despite the presence of resistance alleles at the Nramp1 locus. These results suggest a two-step model for chronic myeloid leukemia in BXH-2, in which inactivation of Icsbp1 predisposes to myeloproliferation and immunodeficiency. This event is required for retroviral replication, and subsequent insertional mutagenesis that causes leukemia in BXH-2 mice.
Collapse
Affiliation(s)
- Karine Turcotte
- Department of Biochemistry, McGill Cancer Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Schmidt M, Bies J, Tamura T, Ozato K, Wolff L. The interferon regulatory factor ICSBP/IRF-8 in combination with PU.1 up-regulates expression of tumor suppressor p15(Ink4b) in murine myeloid cells. Blood 2004; 103:4142-9. [PMID: 14976051 DOI: 10.1182/blood-2003-01-0285] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CDKN2B (INK4B), which encodes the cyclin-dependent kinase inhibitor p15(INK4b), is up-regulated by many cytokines found in hematopoietic environments in vivo. In human acute myeloid leukemias (AMLs), it is inactivated with high frequency. To gain insight into the regulatory pathways leading to the normal activation of p15(Ink4b) expression, we examined interferon beta (IFNbeta)-induced transcription. Using reporter gene assays in murine myeloid cells M1, we determined that a 328-bp fragment, located 117 to 443 bp upstream of the translation initiation site, was sufficient to activate transcription. Both the interferon consensus sequence-binding protein/interferon regulatory factor 8 (ICSBP/IRF-8) and PU.1 were able to increase transcription from this region. It was determined that both ICSBP and PU.1 must bind to DNA to form a stable PU.1/ICSBP binding complex. Interestingly, introduction of the ICSBP into ICSBP-null Tot2 cells led to a significant increase in p15(Ink4b) RNA expression. This regulation of the Ink4b promoter is apparently myeloid specific because both ICSBP and PU.1 are myeloid commitment factors. Importantly, this provides a mechanism to explain in part the tumor suppressor activity of ICSBP, since ICSBP-deficient mice develop a chronic myelogenous leukemia (CML)-like disease and a high percentage of human AML and CML lack ICSBP transcripts.
Collapse
Affiliation(s)
- Martina Schmidt
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | | | | | | | | |
Collapse
|
16
|
Alter-Koltunoff M, Ehrlich S, Dror N, Azriel A, Eilers M, Hauser H, Bowen H, Barton CH, Tamura T, Ozato K, Levi BZ. Nramp1-mediated innate resistance to intraphagosomal pathogens is regulated by IRF-8, PU.1, and Miz-1. J Biol Chem 2003; 278:44025-32. [PMID: 12904288 DOI: 10.1074/jbc.m307954200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Natural resistance-associated macrophage protein 1 (Nramp1) is a proton/divalent cation antiporter exclusively expressed in monocyte/macrophage cells with a unique role in innate resistance to intraphagosomal pathogens. In humans, it is linked to several infectious diseases, including leprosy, pulmonary tuberculosis, visceral leishmaniasis, meningococcal meningitis, and human immunodeficiency virus as well as to autoimmune diseases such as rheumatoid arthritis and Crohn's disease. Here we demonstrate that the restricted expression of Nramp1 is mediated by the macrophage-specific transcription factor IRF-8. This factor exerts its activity via protein-protein interaction, which facilitates its binding to target DNA. Using yeast two-hybrid screen we identified Myc Interacting Zinc finger protein 1 (Miz-1) as new interacting partner. This interaction is restricted to immune cells and takes place on the promoter Nramp1 in association with PU.1, a transcription factor essential for myelopoiesis. Consistent with these data, IRF-8 knockout mice are sensitive to a repertoire of intracellular pathogens. Accordingly, IRF-8-/- mice express low levels of Nramp1 that can not be induced any further. Thus, our results explain in molecular terms the role of IRF-8 in conferring innate resistance to intracellular pathogens and point to its possible involvement in autoimmune diseases.
Collapse
|
17
|
Zhang YB, Hu CY, Zhang J, Huang GP, Wei LH, Zhang QY, Gui JF. Molecular cloning and characterization of crucian carp (Carassius auratus L.) interferon regulatory factor 7. FISH & SHELLFISH IMMUNOLOGY 2003; 15:453-466. [PMID: 14550671 DOI: 10.1016/s1050-4648(03)00025-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Interferon (IFN) can induce an antiviral state via interferon-regulatory transcription factors (IRFs), which bind to and control genes directed by the interferon-stimulated response element (ISRE). Here we describe a fish IRF, termed CaIRF7, cloned from a subtractive cDNA library which is constructed with mRNAs obtained from crucian carp (Carassius auratus L.) blastulae embryonic (CAB) cells infected by UV-inactivated GCHV and mock-infected cells. CaIRF7 cDNA was found to be 1816 bp in length, with a 42 bp 5'UTR and a 508 bp 3'UTR. The open reading frame translates into 421 amino acids in which a DNA-binding domain (DBD) containing the repeated tryptophan motif and IRFs association domain have been identified. Like chicken GgIRF3, CaIRF7 was most similar to mammalian IRF7 with 27 to 30% identity overall and some 37% identity in their DBDs. A single transcript of 1.9 kb was detected in virally induced CAB cells by virtual Northern blotting. RT-PCR analysis revealed a wide tissue distribution of CaIRF7 constitutive expression, with detectable transcript in non-infected CAB cells and various tissues of healthy crucian carp. In addition, CaIRF7 expression was differentially increased by stimulation of the CAB cells with active GCHV, UV-inactivated GCHV or CAB IFN, indicating that the activation of CaIRF7 was directly regulated by IFN.
Collapse
Affiliation(s)
- Yi-bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan Center for Developmental Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Gupta S, Lee A, Hu C, Fanzo J, Goldberg I, Cattoretti G, Pernis AB. Molecular cloning of IBP, a SWAP-70 homologous GEF, which is highly expressed in the immune system. Hum Immunol 2003; 64:389-401. [PMID: 12651066 DOI: 10.1016/s0198-8859(03)00024-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rho GTPases play a fundamental role in a variety of biological processes ranging from the reorganization of the actin cytoskeleton to the regulation of cell proliferation. The activation of Rho GTPases is regulated by guanine nucleotide exchange factors (GEFs) belonging to the Dbl family of proteins. The hallmark of this large family of GEFs is the presence of a tandem DH-PH module in which a pleckstrin-homology (PH) domain is located at the C-terminus of a Dbl-homology (DH) domain. Recent studies have demonstrated that SWAP-70 constitutes a novel class of Rac-GEF, in which the PH domain is located at the N-terminus, rather than the C terminus, of the DH domain. Here we report the molecular cloning of human IBP (IRF-4 binding protein), a new member of this novel family of GEFs. The IBP gene maps to human chromosome 6p21.31 centromeric to the MHC locus. Isolation of the murine IBP cDNA reveals a very high degree of homology with the human IBP cDNA suggesting that IBP is evolutionarily conserved. The 5' portion of the murine IBP cDNA is furthermore identical to the Def-6 cDNA fragment, which was identified in the course of a search for genes differentially expressed in the murine hematopoietic system. IBP is broadly expressed in the immune system and can be detected in both T and B cell compartments in contrast to SWAP-70 whose expression is primarily restricted to B cells. Taken together these findings indicate that IBP is a novel type of GEF, which participates in the activation of Rho GTPases in lymphoid tissues.
Collapse
Affiliation(s)
- Sanjay Gupta
- Department of Pathology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Tsujimura H, Tamura T, Gongora C, Aliberti J, Reis e Sousa C, Sher A, Ozato K. ICSBP/IRF-8 retrovirus transduction rescues dendritic cell development in vitro. Blood 2003; 101:961-9. [PMID: 12393459 DOI: 10.1182/blood-2002-05-1327] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells (DCs) develop from bone marrow (BM) progenitor cells and mature in response to external signals to elicit functions important for innate and adaptive immunity. Interferon consensus sequence binding protein (ICSBP; also called interferon regulatory factor 8 [IRF-8]) is a hematopoietic cell-specific transcription factor expressed in BM progenitor cells that contributes to myeloid cell development. In light of our earlier observation that ICSBP(-/-) mice lack CD8alpha(+) DCs, we investigated the role of ICSBP in DC development in vitro in the presence of Flt3 ligand. Immature ICSBP(-/-) DCs developed from BM progenitor cells showed assorted defects, did not mature in response to activation signals, and failed to express CD8alpha and interleukin 12 (IL-12) p40, a feature consistent with ICSBP(-/-) DCs in vivo. We show that retroviral introduction of ICSBP restores the development of immature DCs that can fully mature on activation signals. All the defects seen with ICSBP(-/-) DCs were corrected after ICSBP transduction, including the expression of CD8alpha and IL-12 p40 as well as major histocompatability complex class II and other costimulatory molecules. ICSBP is known to regulate gene expression by interacting with partner proteins PU.1 and IRFs, thereby binding to target elements ISRE and EICE. Analysis of a series of ICSBP mutants showed that the intact DNA-binding activity as well as the ability to interact with partner proteins are required for the restoration of DC development/maturation, pointing to the transcriptional function of ICSBP as a basis of restoration. Taken together, this study identifies ICSBP as a factor critical for both early differentiation and final maturation of DCs.
Collapse
Affiliation(s)
- Hideki Tsujimura
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
McKercher SR, Lombardo CR, Bobkov A, Jia X, Assa-Munt N. Identification of a PU.1-IRF4 protein interaction surface predicted by chemical exchange line broadening. Proc Natl Acad Sci U S A 2003; 100:511-6. [PMID: 12518046 PMCID: PMC141026 DOI: 10.1073/pnas.0136910100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Accepted: 11/13/2002] [Indexed: 11/18/2022] Open
Abstract
Relaxation values reflecting residue-specific line broadening revealed amino acids in the DNA-binding domain of PU.1 on a surface potentially involved in protein-protein interactions. Mutation of these amino acids did not cause protein unfolding but destabilized PU.1-DNA binding. Addition of IFN response factor 4 to form the ternary complex recovered binding stability. Fluorescence quenching experiments proved that this surface of PU.1 interacts with IFN response factor 4 during binding. Our results provide evidence that residues that display increased conformational exchange can be used to predict areas of protein-protein interactions.
Collapse
Affiliation(s)
- Scott R McKercher
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037-1062, USA
| | | | | | | | | |
Collapse
|
21
|
Veselovsky AV, Ivanov YD, Ivanov AS, Archakov AI, Lewi P, Janssen P. Protein-protein interactions: mechanisms and modification by drugs. J Mol Recognit 2002; 15:405-22. [PMID: 12501160 DOI: 10.1002/jmr.597] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein-protein interactions form the proteinaceous network, which plays a central role in numerous processes in the cell. This review highlights the main structures, properties of contact surfaces, and forces involved in protein-protein interactions. The properties of protein contact surfaces depend on their functions. The characteristics of contact surfaces of short-lived protein complexes share some similarities with the active sites of enzymes. The contact surfaces of permanent complexes resemble domain contacts or the protein core. It is reasonable to consider protein-protein complex formation as a continuation of protein folding. The contact surfaces of the protein complexes have unique structure and properties, so they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations have been undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or on the other hand, induce protein dimerization.
Collapse
|
22
|
Nehyba J, Hrdlicková R, Burnside J, Bose HR. A novel interferon regulatory factor (IRF), IRF-10, has a unique role in immune defense and is induced by the v-Rel oncoprotein. Mol Cell Biol 2002; 22:3942-57. [PMID: 11997525 PMCID: PMC133824 DOI: 10.1128/mcb.22.11.3942-3957.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cloning and functional characterization of a novel interferon regulatory factor (IRF), IRF-10, are described. IRF-10 is most closely related to IRF-4 but differs in both its constitutive and inducible expression. The expression of IRF-10 is inducible by interferons (IFNs) and by concanavalin A. In contrast to that of other IRFs, the inducible expression of IRF-10 is characterized by delayed kinetics and requires protein synthesis, suggesting a unique role in the later stages of an antiviral defense. Accordingly, IRF-10 is involved in the upregulation of two primary IFN-gamma target genes (major histocompatibility complex [MHC] class I and guanylate-binding protein) and interferes with the induction of the type I IFN target gene for 2',5'-oligo(A) synthetase. IRF-10 binds the interferon-stimulated response element site of the MHC class I promoter. In contrast to that of IRF-1, which has some of the same functional characteristics, the expression of IRF-10 is not cytotoxic for fibroblasts or B cells. The expression of IRF-10 is induced by the oncogene v-rel, the proto-oncogene c-rel, and IRF-4 in a tissue-specific manner. Moreover, v-Rel and IRF-4 synergistically cooperate in the induction of IRF-10 in fibroblasts. The level of IRF-10 induction in lymphoid cell lines by Rel proteins correlates with Rel transformation potential. These results suggest that IRF-10 plays a role in the late stages of an immune defense by regulating the expression some of the IFN-gamma target genes in the absence of a cytotoxic effect. Furthermore, IRF-10 expression is regulated, at least in part, by members of the Rel/NF-kappa B and IRF families.
Collapse
Affiliation(s)
- Jirí Nehyba
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712-1095,USA
| | | | | | | |
Collapse
|
23
|
Abstract
H-bonds and cation-pi interactions between nucleic acid bases and amino acid side-chains are known to occur often concomitantly at the interface between protein and double-stranded DNA. Here we define and analyze stair-shaped motifs, which simultaneously involve base stacking, H-bond and cation-pi interactions. They consist of two successive bases along the DNA stack, one in cation-pi interaction with an amino acid side-chain that carries a total or partial positive charge, and the other H-bonded with the same side-chain. A survey of 52 high-resolution structures of protein/DNA complexes reveals the occurrence of such motifs in the majority of the complexes, the most frequent of these motifs involving Arg side-chains and G bases. These stair motifs are sometimes part of larger motifs, called multiple stair motifs, which contain several successive stairs; zinc finger proteins for example exhibit up to quadruple stairs. In another kind of stair motif extension, termed cation-pi chain motif, an amino acid side-chain or a nucleic acid base forms simultaneously two cation-pi interactions. Such a motif is observed in several homeodomains, where it involves a DNA base in cation-pi interactions with an Arg in the minor groove and an Asn in the major groove. A different cation-pi chain motif contains an Arg in cation-pi with a G and a Tyr, and is found in ets transcription factors. Still another chain motif is encountered in proteins that expulse a base from the DNA stack and replace it by an amino acid side-chain carrying a net or partial positive charge, which forms cation-pi interactions with the two neighboring bases along the DNA strand. The striking conservation of typical stair and cation-pi chain motifs within families of protein/DNA complexes suggests that they might play a structural and/or functional role and might moreover influence electron migration through the DNA double helix.
Collapse
Affiliation(s)
- Marianne Rooman
- Ingénierie Biomoléculaire - CP 165/64, Université Libre de Bruxelles, 50 avenue Roosevelt, B-1050 Bruxelles, Belgium.
| | | | | | | |
Collapse
|
24
|
Abstract
Appropriate activation and differentiation of lymphocytes are critical for effective immune responses. These processes are normally guided by exposure of lymphocytes to different stimuli, which need to be appropriately integrated in order for lymphocytes to proceed along their activation and differentiation pathways. Although the early steps in lymphocyte activation have been studied extensively, the downstream effectors of these activation pathways and the basic mechanisms employed by lymphocytes to integrate the information provided by different activation stimuli are not fully characterized. Interferon (IFN) regulatory factor-4 (IRF-4) is a recently described member of the IRF family of transcription factors whose expression is largely restricted to lymphocytes. Genetic studies have indicated that IRF-4 is critical for the function of mature T and B cells. Here we review the role of IRF-4 as a downstream effector and potentially an integrator of lymphocyte responses.
Collapse
|
25
|
Abstract
Gene expression is a tightly regulated process involving multiple levels of control spanning histone acetylation to protein turnover. One of the first events in this cascade is transcription, which itself is a multistep process involving protein-protein interaction and macromolecular assembly. Here we review the role of the interferon (IFN) regulatory factor (IRF) transcription factor family member IRF-4 in transcriptional regulation. IRF-4 was initially characterized in lymphocytes and was shown to function as both a transcriptional repressor and activator. More recently, IRF-4 expression and function have been reported in macrophages. The ability of IRF-4 to serve as both a transcriptional activator and repressor is determined, in part, by binding to distinct DNA-binding motifs and through interaction with various additional transcription factors, most notably with the Ets family member PU.1. The details governing these functional differences are the focus of this review. Importantly, the role of posttranslational modification and nuclear translocation of IRF-4 in transcriptional regulation are addressed. Several possible paradigms of transcriptional regulation by IRF-4 are proposed, where these paradigms may describe regulatory mechanisms common to many distinct transcription factor families.
Collapse
Affiliation(s)
- Sylvia Marecki
- The Pulmonary Center, Boston University School of Medicine, Boston, MA 02118
| | | |
Collapse
|
26
|
Levi BZ, Hashmueli S, Gleit-Kielmanowicz M, Azriel A, Meraro D. ICSBP/IRF-8 transactivation: a tale of protein-protein interaction. J Interferon Cytokine Res 2002; 22:153-60. [PMID: 11846986 DOI: 10.1089/107999002753452764] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interferon (IFN) consensus sequence binding protein (ICSBP) is a member of a family of transcription factors termed IFN regulatory factors (IRF) and is also called IRF-8. Its expression is restricted mainly to cells of the immune system, and it plays a key role in the maturation of macrophages. ICSBP exerts its activity through the formation of different DNA-binding heterocomplexes. The interacting partner dictates a specific DNA recognition sequence, thus rendering ICSBP dual transcriptional activity, that is, repression or activation. Accordingly, such DNA elements were identified at the promoter regions of target genes that manifest macrophage action. A specific module (IRF association domain [IAD]) within ICSBP and a PEST domain located on the interacting partners mediate this association. Thus, ICSBP serves as an excellent prototype, demonstrating how a small subset of transcription factors can regulate gene expression in a spatial, temporal, and delicate tuning through combinatorial protein-protein interactions on different enhanceasomes.
Collapse
Affiliation(s)
- Ben-Zion Levi
- Department of Food Engineering and Biotechnology, Technion-Israel Institute of Technology, Haifa 32,000, Israel
| | | | | | | | | |
Collapse
|
27
|
Marecki S, Riendeau CJ, Liang MD, Fenton MJ. PU.1 and Multiple IFN Regulatory Factor Proteins Synergize to Mediate Transcriptional Activation of the Human IL-1β Gene. THE JOURNAL OF IMMUNOLOGY 2001; 166:6829-38. [PMID: 11359842 DOI: 10.4049/jimmunol.166.11.6829] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both lymphoid and myeloid cells express two related members of the IFN regulatory factor (IRF) family of transcription factors, specifically IRF-4 and IFN consensus binding protein (ICSBP or IRF-8). We previously reported that macrophages express IRF-4 and in combination with the ETS-like protein PU.1 can synergistically activate a human IL-1beta reporter gene. Here we report that this synergy is mediated by a composite PU.1/IRF element located within an upstream enhancer known to confer cytokine- and LPS-inducible expression. In macrophages, synergistic activation of IL-1beta reporter gene expression was preferentially mediated by IRF-4, whereas IRF-4 and ICSBP were equally capable of synergizing with PU.1 when coexpressed in fibroblasts. Furthermore, coexpression of IRF-1 and IRF-2 dramatically increased the capacity of both PU.1/IRF-4 and PU.1/ICSBP to induce IL-1beta reporter gene expression in fibroblasts. The additional synergy observed with IRF-1 and IRF-2 coexpression is mediated by a region of DNA distinct from either the IL-1beta enhancer or promoter. We also assessed the capacity of these transcription factors to activate endogenous IL-1beta gene when overexpressed in human embryonic kidney 293 cells. Although ectopic expression of PU.1 alone was sufficient to activate modest levels of IL-1beta transcripts, endogenous IL-1beta expression was markedly increased following coexpression of additional IRF proteins. Thus, maximal expression of both a human IL-1beta reporter gene and the endogenous IL-1beta gene was observed in cells that coexpressed PU.1, IRF-4 (or ICSBP), IRF1, and IRF2. Together, our observations suggest that these factors may function together as an enhanceosome.
Collapse
Affiliation(s)
- S Marecki
- Pulmonary Center and Department of Pathology, Boston University School of Medicine, Boston MA 02118, USA
| | | | | | | |
Collapse
|
28
|
Gupta S, Anthony A, Pernis AB. Stage-specific modulation of IFN-regulatory factor 4 function by Krüppel-type zinc finger proteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6104-11. [PMID: 11342629 DOI: 10.4049/jimmunol.166.10.6104] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Optimal humoral responses depend on the activation of Ag-specific B cells, followed by their progression toward a fully differentiated phenotype. Acquisition of stage-appropriate patterns of gene expression is crucial to this differentiation program. However, the molecular mechanisms used by B cells to modulate gene expression as they complete their maturation program are poorly understood. IFN-regulatory factor 4 (IRF-4) plays a critical role in mature B cell function. Using the transcriptional regulation of the human B cell activation marker CD23 as a model system, we have previously demonstrated that IRF-4 is induced in response to B cell-activating stimuli and that it acts as a transactivator of CD23 gene expression. We have furthermore found that IRF-4 function can be blocked by B cell lymphomas 6 (BCL-6) protein, a Krüppel-type zinc finger repressor normally expressed in germinal center B cells. However, CD23 expression is known to be down-regulated in plasma cells despite high level expression of IRF-4 and the lack of BCL-6, suggesting that in plasma cells the IRF-4-mediated induction of CD23 is prevented by its interaction with a distinct repressor. In this set of studies, we demonstrate that IRF-4 interacts with B lymphocyte-induced maturation protein/positive regulatory domain I-binding factor 1 (Blimp1/PRD1-BF1), a Krüppel-type zinc finger protein whose expression correlates with terminal B cell differentiation. Functional studies indicate that Blimp1, like BCL-6, can block IRF-4-transactivating ability. These findings thus support a model whereby IRF-4 function is modulated in a stage-specific manner by its interaction with developmentally restricted sets of Krüppel-type zinc finger proteins.
Collapse
Affiliation(s)
- S Gupta
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
29
|
Grazia Cappiello M, Sutterwala FS, Trinchieri G, Mosser DM, Ma X. Suppression of Il-12 transcription in macrophages following Fc gamma receptor ligation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4498-506. [PMID: 11254706 DOI: 10.4049/jimmunol.166.7.4498] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ligating Fc gamma R on macrophages results in suppression of IL-12 production. We show that Fc gamma R ligation selectively down-regulates IL-12 p40 and p35 gene expression at the level of transcription. The region responsive to this inhibition maps to the Ets site of the p40 promoter. PU.1, IFN consensus sequence binding protein, and c-REL: form a complex on this element upon macrophage activation. Receptor ligation abolishes the binding of this PU.1-containing activation complex, and abrogates p40 transcription. A dominant-negative construct of PU.1 diminishes IL-12 p40 promoter activity and endogenous IL-12 p40 protein secretion. Thus, the specificity of IL-12 down-regulation following receptor ligation lies in the inhibition of binding of a PU.1-containing complex to the Ets site of the IL-12 promoter. These findings provide evidence demonstrating for the first time the importance of PU.1 in the transcriptional regulation of IL-12 gene expression.
Collapse
Affiliation(s)
- M Grazia Cappiello
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Ets proteins are a family of transcription factors that share an 85 amino acid conserved DNA binding domain, the ETS domain. Over 25 mammalian Ets family members control important biological processes, including cellular proliferation, differentiation, lymphocyte development and activation, transformation and apoptosis by recognizing the GGA core motif in the promoter or enhancer of their target genes. Protein - protein interactions regulates DNA binding, subcellular localization, target gene selection and transcriptional activity of Ets proteins. Combinatorial control is a characteristic property of Ets family members, involving interaction between Ets and other key transcriptional factors such as AP-1, NFkappaB and Pax family members. Specific domains of Ets proteins interact with many protein motifs such as bHLH, bZipper and Paired domain. Such interactions coordinate cellular processes in response to diverse signals including cytokines, growth factors, antigen and cellular stresses.
Collapse
Affiliation(s)
- R Li
- Center for Molecular and Structural Biology, Medical University of South Carolina, Charleston, South Carolina, SC 29425, USA
| | | | | |
Collapse
|
31
|
Cohen H, Azriel A, Cohen T, Meraro D, Hashmueli S, Bech-Otschir D, Kraft R, Dubiel W, Levi BZ. Interaction between interferon consensus sequence-binding protein and COP9/signalosome subunit CSN2 (Trip15). A possible link between interferon regulatory factor signaling and the COP9/signalosome. J Biol Chem 2000; 275:39081-9. [PMID: 10991940 DOI: 10.1074/jbc.m004900200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon consensus sequence-binding protein (ICSBP) is a member of the interferon regulatory factors (IRF) that has a pivotal role in mediating resistance to pathogenic infections in mice and in promoting the differentiation of myeloid cells. ICSBP exerts some of its transcriptional activities via association with other factors that enable its binding to a variety of promoters containing DNA composite elements. These interactions are mediated through a specific COOH-terminal domain termed IAD (IRF association domain). To gain a broader insight of the capacity of ICSBP to interact with other factors, yeast two-hybrid screens were performed using ICSBP-IAD as a bait against a B-cell cDNA library. Trip15 was identified as a specific interacting factor with ICSBP in yeast cells, which was also confirmed by in vitro glutathione S-transferase pull-down assays and by coimmunoprecipitation studies in COS7 cells. Trip15 was recently identified as a component of the COP9/signalosome (CSN) complex composed of eight evolutionary conserved subunits and thus termed CSN2. This complex has a role in cell-signaling processes, which is manifested by its associated novel kinase activity and by the involvement of its subunits in regulating multiple cell-signaling pathways and cell-cycle progression. We show that in vitro association of ICSBP with the CSN leads to phosphorylation of ICSBP at a unique serine residue within its IAD. The phosphorylated residue is essential for efficient association with IRF-1 and thus for the repressor activity of ICSBP exerted on IRF-1. This suggests that the CSN has a role in integrating incoming signals that affect the transcriptional activity of ICSBP.
Collapse
MESH Headings
- 3T3 Cells
- Alanine/chemistry
- Animals
- B-Lymphocytes/metabolism
- Blotting, Northern
- COP9 Signalosome Complex
- COS Cells
- Carrier Proteins/chemistry
- Carrier Proteins/metabolism
- DNA/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Gene Library
- Glutathione Transferase/metabolism
- HL-60 Cells
- HeLa Cells
- Humans
- Interferon Regulatory Factors
- Mice
- Models, Biological
- Multiprotein Complexes
- Mutagenesis, Site-Directed
- Nuclear Proteins
- Peptide Hydrolases
- Phosphorylation
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/metabolism
- RNA, Messenger/metabolism
- Receptors, Thyroid Hormone
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Serine/chemistry
- Signal Transduction
- Transcription Factors
- Transcription, Genetic
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- H Cohen
- Department of Food Engineering and Biotechnology, Technion, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Grant CE, May DL, Deeley RG. DNA binding and transcription activation by chicken interferon regulatory factor-3 (chIRF-3). Nucleic Acids Res 2000; 28:4790-9. [PMID: 11095692 PMCID: PMC115154 DOI: 10.1093/nar/28.23.4790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interferon regulatory factors (IRFs) are a family of transcription factors involved in the cellular response to interferons and viral infection. Previously we isolated an IRF from a chicken embryonic liver cDNA library. Using a PCR-based binding site selection assay, we have characterised the binding specificity of chIRF-3. The optimal binding site (OBS) fits within the consensus interferon-stimulated response element (ISRE) but the specificity of chIRF-3 binding allows less variation in nucleotides outside the core IRF-binding sequence. A comparison of IRF-1 and chIRF-3 binding to ISREs in electrophoretic mobility shift assays confirmed that the binding specificity of chIRF-3 was clearly distinguishable from IRF-1. The selection assay also showed that chIRF-3 is capable of binding an inverted repeat of two half OBSs separated by 10-13 nt. ChIRF-3 appears to bind both the OBS and inverted repeat sites as a dimer with the protein-protein interaction requiring a domain between amino acids 117 and 311. In transfection experiments expression of chIRF-3 strongly activated a promoter containing the OBS. The activation domain was mapped to between amino acids 138 and 221 and a domain inhibitory to activation was also mapped to the C-terminal portion of chIRF-3.
Collapse
Affiliation(s)
- C E Grant
- Cancer Research Laboratories, Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
33
|
May DL, Grant CE, Deeley RG. Cloning and promoter analysis of the chicken interferon regulatory factor-3 gene. DNA Cell Biol 2000; 19:555-66. [PMID: 11034548 DOI: 10.1089/104454900439782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interferon regulatory factors (IRFs) are a family of DNA-binding proteins involved in mediating the cellular response to interferons (IFNs) and viral infection. Although extensively studied in mammals, IRFs of other vertebrates have been less well characterized. Previously, we cloned chicken interferon regulatory factor-3 (chIRF-3) mRNA, which is rapidly and transiently induced by double-stranded (ds)RNA. The chIRF-3 mRNA encodes a protein distinct from any known mammalian IRF. Here, we show that chIRF-3 is activated additively by type I and type II IFNs. To delineate the sequence elements required to regulate chIRF-3 expression, we cloned chlRF-3 and 0.48 kb of 5' flanking sequence. Computer analysis of the proximal promoter revealed three putative binding sites for nuclear factor (NF)-kappaB, two overlapping interferon-stimulated response elements (ISREs), and an interferon gamma activating sequence (GAS). The presence of both GAS and ISRE consensus sequences in the chIRF-3 promoter is unique among IRF family members. Both type I and II IFNs, as well as dsRNA and IRF-1, trans-activate the promoter in short-term transfection experiments. Mutational analysis of the promoter demonstrated that the putative NF-kappaB binding sites are needed for stimulation by dsRNA but not by either type I or type II IFN and that both the overlapping ISREs and GAS are required for full induction by type I or type II IFN.
Collapse
Affiliation(s)
- D L May
- Cancer Research Laboratories and the Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
34
|
Tamura T, Nagamura-Inoue T, Shmeltzer Z, Kuwata T, Ozato K. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 2000; 13:155-65. [PMID: 10981959 DOI: 10.1016/s1074-7613(00)00016-9] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During hematopoiesis, myeloid progenitor cells give rise to granulocytes and macrophages. To study the role for ICSBP, a hematopoietic cell-specific transcription factor in myeloid cell development, the gene was introduced into myeloid progenitor cells established from ICSBP-/- mice. ICSBP retrovirus-transduced cells differentiated into mature macrophages with phagocytic activity, which coincided with the induction of specific target DNA binding activity. Similar to macrophages in vivo, ICSBP-transduced cells were growth arrested, expressed many macrophage-specific genes, and responded to macrophage activation signals. Contrary to this, ICSBP transducion led to repression of granulocyte-specific genes and inhibited G-CSF-mediated granulocytic differentiation in these and other myeloid progenitor cells. Together, ICSBP has a key role in the myeloid cell lineage selection and macrophage maturation.
Collapse
Affiliation(s)
- T Tamura
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
35
|
Falvo JV, Parekh BS, Lin CH, Fraenkel E, Maniatis T. Assembly of a functional beta interferon enhanceosome is dependent on ATF-2-c-jun heterodimer orientation. Mol Cell Biol 2000; 20:4814-25. [PMID: 10848607 PMCID: PMC85927 DOI: 10.1128/mcb.20.13.4814-4825.2000] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heterodimeric transcription factors, including the basic region-leucine zipper (bZIP) protein ATF-2-c-jun, are well-characterized components of an enhanceosome that mediates virus induction of the human beta interferon (IFN-beta) gene. Here we report that within the IFN-beta enhanceosome the ATF-2-c-jun heterodimer binds in a specific orientation, which is required for assembly of a complex between ATF-2-c-jun and interferon regulatory factor 3 (IRF-3). We demonstrate that correct orientation of the ATF-2-c-jun binding site is required for virus induction of the IFN-beta gene and for IRF-3-dependent activation of a composite ATF-2- c-jun-IRF site in the IFN-beta promoter. We also show that in vitro the DNA-bound ATF-2-c-jun heterodimer adopts a fixed orientation upon the binding of IRF-3 at an adjacent site in the IFN-beta enhancer and that the DNA-binding domain of IRF-3 is sufficient to mediate this effect. In addition, we show that the DNA-binding domain of ATF-2 is necessary and sufficient for selective protein-protein interactions with IRF-3. Strikingly, in vivo chromatin immunoprecipitation experiments with IFN-beta reporter constructs reveal that recruitment of IRF-3 to the IFN-beta promoter upon virus infection is dependent on the orientation of the ATF-2-c-jun heterodimer binding site. These observations demonstrate functional and physical cooperativity between the bZIP and IRF transcription factor families and illustrate the critical role of heterodimeric transcription factors in formation of the IFN-beta enhanceosome.
Collapse
Affiliation(s)
- J V Falvo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
36
|
Rehli M, Poltorak A, Schwarzfischer L, Krause SW, Andreesen R, Beutler B. PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene. J Biol Chem 2000; 275:9773-81. [PMID: 10734131 DOI: 10.1074/jbc.275.13.9773] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein product of the Toll-like receptor (TLR) 4 gene has been implicated in the signal transduction events induced by lipopolysaccharide (LPS). In mice, destructive mutations of Tlr4 impede the normal response to LPS and cause a high susceptibility to Gram-negative infection. Expression of TLR4 mRNA in humans is restricted to a small number of cell types, including LPS-responsive myeloid cells, B-cells, and endothelial cells. To investigate the molecular basis for TLR4 expression in cells of myeloid origin, we cloned the human TLR4 gene and analyzed its putative 5'-proximal promoter. In transient transfections a region of only 75 base pairs upstream of the major transcription initiation site was sufficient to induce maximal luciferase activity in THP-1 cells. The sequence of this region is similar in human and mouse TLR4 genes and lacks a TATA box, typical Sp1-sites or CCAAT box sequences. Instead, it contains consensus-binding sites for Ets family transcription factors, octamer-binding factors, and a composite interferon response factor/Ets motif. The activity of the promoter in macrophages was strictly dependent on the integrity of both half sites of the composite interferon response factor/Ets motif, which was constitutively bound by the myeloid and B-cell-specific transcription factor PU.1 and interferon consensus sequence-binding protein. These results indicate that the two tissue-restricted transcription factors PU.1 and interferon consensus sequence-binding protein participate in the basal regulation of human TLR4 in myeloid cells. Cloning of the human TLR4 gene provides a basis for further investigation of the possible impact of genetic variations on the susceptibility to infection and sepsis.
Collapse
Affiliation(s)
- M Rehli
- Department of Hematology and Oncology, University of Regensburg, 93042 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Mamane Y, Sharma S, Petropoulos L, Lin R, Hiscott J. Posttranslational regulation of IRF-4 activity by the immunophilin FKBP52. Immunity 2000; 12:129-40. [PMID: 10714679 DOI: 10.1016/s1074-7613(00)80166-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Interferon regulatory factor-4 (IRF-4) plays an important role in immunoregulatory gene expression in B and T lymphocytes and is also highly expressed in human T cell leukemia virus type 1 infected cells. In this study, we characterize a novel interaction between IRF-4 and the FK506-binding protein 52 (FKBP52), a 59 kDa member of the immunophilin family with peptidyl-prolyl isomerase activity (PPIase). IRF-4-FKBP52 association inhibited IRF4-PU.1 binding to the immunoglobulin light chain enhancer E(lambda2-4) as well as IRF-4-PU.1 transactivation, effects that were dependent on functional PPIase activity. FKBP52 association also resulted in a structural modification of IRF-4, detectable by immunoblot analysis and by IRF-4 partial proteolysis. These results demonstrate a novel posttranslational mechanism of transcriptional control, mediated through the interaction of an immunophilin with a transcriptional regulator.
Collapse
Affiliation(s)
- Y Mamane
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research and Department of Microbiology, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
38
|
Abstract
The resonance assignments, secondary structure and backbone dynamics of the ETS domain of the transcription factor PU.1 have been determined for the free protein in solution by NMR spectroscopy. The secondary structure for the free ETS domain is similar to that observed in the crystal structure of the PU.1 protein complexed with DNA, except that helix alpha2 and recognition helix alpha3 are shorter for the free protein in solution. Backbone dynamics of the protein have been examined using amide hydrogen-deuterium exchange and (15)N laboratory-frame spin relaxation measurements. A significant probability of local unfolding of helix alpha2, which precedes the loop-helix-loop DNA recognition domain, is inferred from the very fast hydrogen-deuterium exchange for amide protons in this helix. The (15)N relaxation measurements indicate that the protein is partially oligomerized at a concentration of 2.5 mM, but monomeric at a concentration of 0.3 mM. The (15)N relaxation data for the low concentration sample were interpreted, using the model-free formalism, to provide insight into protein dynamics on picosecond-nanosecond and microsecond-millisecond time scales. High flexibility of the protein backbone is observed for the residues in the loop between alpha2 and alpha3. This loop is variable in length and in structure within the class of winged helix proteins and is partially responsible for binding to DNA. The dynamic properties observed for alpha2, alpha3 and the intervening loop may indicate a correlation between protein plasticity in particular structural elements and recognition of specific DNA sequences.
Collapse
Affiliation(s)
- X Jia
- The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
39
|
Mamane Y, Heylbroeck C, Génin P, Algarté M, Servant MJ, LePage C, DeLuca C, Kwon H, Lin R, Hiscott J. Interferon regulatory factors: the next generation. Gene 1999; 237:1-14. [PMID: 10524230 DOI: 10.1016/s0378-1119(99)00262-0] [Citation(s) in RCA: 429] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Interferons are a large family of multifunctional secreted proteins involved in antiviral defense, cell growth regulation and immune activation. Viral infection induces transcription of multiple IFN genes, a response that is in part mediated by the interferon regulatory factors (IRFs). The initially characterized members IRF-1 and IRF-2 are now part of a growing family of transcriptional regulators that has expanded to nine members. The functions of the IRFs have also expanded to include distinct roles in biological processes such as pathogen response, cytokine signaling, cell growth regulation and hematopoietic development. The aim of this review is to provide an update on the novel discoveries in the area of IRF transcription factors and the important roles of the new generation of IRFs--particularly IRF-3, IRF-4 and IRF-7.
Collapse
Affiliation(s)
- Y Mamane
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|